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Abstract 14 
 15 
Projecting the spatio-temporal changes in water resources under a no-analog future climate 16 

requires physically-based integrated hydrologic models, which simulate the transfer of water and 17 

energy across the earth’s surface. These models show promise in the context of unprecedented 18 

climate extremes given their reliance on the underlying physics of the system as opposed to 19 

empirical relationships. However, these techniques are plagued by several sources of uncertainty, 20 

including the inaccuracy of input datasets such as meteorological forcing. These datasets, usually 21 

derived from climate models or satellite-based products, are typically only resolved on the order 22 

of tens to hundreds of kilometers, while hydrologic variables of interest (e.g. discharge, 23 

groundwater levels) require a resolution at much smaller scales. In this work, a high-resolution 24 

hydrologic model is forced with various resolutions of meteorological forcing (0.5 to 40.5 km) 25 

generated by a dynamical downscaling analysis from the regional climate model Weather 26 

Research and Forecasting (WRF). The Cosumnes watershed, which spans the Sierra Nevada and 27 

Central Valley interface of California (USA), exhibits semi-natural flow conditions due to its 28 

rare un-dammed river basin and is used here as a testbed to illustrate potential impacts of various 29 

resolutions of meteorological forcing on snow accumulation and snowmelt, surface runoff, 30 

infiltration, evapotranspiration, and groundwater levels. Results show that the errors in spatial 31 

distribution patterns impact land surface processes and can be delayed in time. Localized biases 32 

in groundwater levels can be as large as 5-10 m, and 3 m in surface water. Most hydrologic 33 

variables reveal that biases are seasonally and spatially-dependent, which can have serious 34 

implications for model calibration and ultimately water management decisions.  35 
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1. Introduction 36 

 37 

Understanding water and energy fluxes across the Earth’s critical zone, a region spanning 38 

from bedrock to vegetation canopy, is important to assess the impacts of climate change on water 39 

resources. Integrated hydrologic models, solving water-energy interactions and transfers, across 40 

the lower-atmosphere, the land surface, and the subsurface, allow to analyze water resources in 41 

both time and space and to project into a no-analog future where empirical models are no longer 42 

valid. With the advancement of computing power, these high-fidelity, high-resolution models are 43 

becoming widely used (e.g. MIKE-SHE (Abbott et al., 1986), HydroGeoSphere (Panday and 44 

Huyakorn, 2004), and ParFlow-CLM (Maxwell and Miller, 2005)). However, their 45 

implementation can be plagued by several sources of uncertainty. While the accuracy, the 46 

precision, and the uncertainty reduction of hydrologic models are extensively discussed in the 47 

literature, more attention is given to the physical representation of the phenomena occurring in 48 

the hydrological systems (Beven, 1993; Beven and Binley, 1992; Liu and Gupta, 2007), the 49 

reduction of uncertainties related to the hydrodynamic parameters (Gilbert et al., 2016; Janetti et 50 

al., 2019; Maina and Guadagnini, 2018; Srivastava et al., 2014), and the numerical resolution of 51 

the mathematical equations governing the physics of the environment (Belfort et al., 2009; 52 

Bergamaschi and Putti, n.d.; Fahs et al., 2009; Hassane Maina and Ackerer, 2017; Miller et al., 53 

1998; Tocci et al., 1997).  54 

Atmospheric dynamics (e.g. precipitation patterns) constitute one of the main drivers of 55 

the simulated hydrologic processes. Unfortunately, measuring atmospheric conditions is difficult, 56 

and is often only at point locations with stations which are difficult to maintain. Thus, models 57 

relying on data assimilation methods that fuse observations at different scales and remote sensing 58 
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products are commonly used to generate the spatiotemporal distribution of meteorological 59 

variables. Furthermore, because integrated hydrologic models require many meteorological 60 

variables (i.e. precipitation, temperature, wind speed, solar radiation, air pressure, and relative 61 

humidity), synthetic data from climate models are often used due to the scarcity of 62 

measurements. In addition, in the context of climate change, only climate models can provide a 63 

spatial distribution of future meteorological conditions. Also, integrated hydrologic models 64 

require high resolution forcing to ensure fidelity and accuracy and meteorological variables such 65 

as precipitation, one of the most important data and key control of hydrological models, are very 66 

heterogeneous especially in mountainous areas (Olsson et al., 2014; Prein et al., 2013).  67 

Like any model input, meteororological forcing is impacted by several sources of 68 

uncertainty, including the fidelity of the physics of the atmospheric model as well as the 69 

representativity of the spatial resolution at which they occur. The impact of precipitation 70 

resolution on runoff and streamflow is widely documented in the literature with studies relying 71 

on (i) empirical hydrologic models with precipitation data coming from measurements (Arnaud 72 

et al., 2002; Berne et al., 2004; Lobligeois et al., 2014; Nicótina et al., 2008; Schilling, 1991; 73 

Shrestha et al., 2006; Tobin et al., 2011), satellite-based products (Koren et al., 1999; Ochoa-74 

Rodriguez et al., 2015; Vergara et al., 2013) and climate models outputs (Dankers et al., 2007; 75 

Kleinn et al., 2005) and (ii) physics-based hydrologic models with precipitation data coming 76 

from measurements (Elsner et al., 2014; Fu et al., 2011), satellite-based products (Eum et al., 77 

2014; Haddeland et al., 2006) and climate models outputs (Mendoza et al., 2016; Rasmussen et 78 

al., 2011). Moreover, Rasmussen et al., (2011) study the impact of meteorological forcing on 79 

snow dynamics.  80 
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Nevertheless, previous studies were mostly focused on runoff and streamflow analysis, 81 

lacking a complete analysis of all the hydrodynamic processes occurring at the watershed scale. 82 

Moreover, the resolutions of the meteorological data (~km) used remain relatively coarse 83 

compared to the scale of resolution of the hydrological models (~m). Hence, the objective of this 84 

study is to investigate the impact of the spatial resolution of the meteorological forcing from 85 

~km to ~m on the hydrologic processes occurring at the watershed scale using a physics-based 86 

integrated hydrologic model. In other words, we seek to understand how the uncertainties 87 

associated with the coarse spatial resolution of meteorological forcing propagate into the high-88 

resolution integrated hydrologic models and affect the output of interest.  89 

While in this study we utilize specific models to quantify the impact of meteorological 90 

forcing on hydrologic variables, the results generalized for watershed processes and meant to be 91 

illustrative of the potential bias with various codes and in various locations. In this work, we use 92 

ParFlow-CLM (Kollet and Maxwell, 2006; Maxwell, 2013; Maxwell and Miller, 2005) forced 93 

with the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008a; Skamarock 94 

and Klemp, 2008). ParFlow simulates subsurface and surface flows (as well as their interaction) 95 

by solving the mixed form of the Richards equation (Richards, 1931) and the kinematic wave 96 

equation, respectively. The transfer of water and energy from the subsurface and the land surface 97 

to the atmosphere is simulated using a coupled version of the Community Land Model (CLM, 98 

Dai et al., 2003) to ParFlow. Therefore, the model allows for the spatio-temporal analysis of all 99 

the hydrological components of interest such as the distribution of pressure-head which 100 

encompasses the information on the water level in the river and the groundwater, the 101 

groundwater and surface water storages, the evapotranspiration, the infiltration, and the snow 102 

dynamics. WRF is a state-of-the-art, fully compressible, non-hydrostatic, mesoscale numerical 103 
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weather prediction model that simulates the physics governing the atmospheric dynamics using a 104 

nested domain configuration to provide meteorological forcing data at different spatial 105 

resolutions for ParFlow-CLM. 106 

Our study focuses on the Cosumnes watershed located in Northern California, USA, a 107 

region where the effects of climate change have already been observed. The latter are 108 

characterized by a fluctuation between extreme droughts (Griffin and Anchukaitis, 2014) and the 109 

subsequent occurrence of unprecedented wildfires, and periods of intense precipitation mainly 110 

caused by atmospheric rivers (Dettinger, 2011). Atmospheric rivers, filaments of concentrated 111 

moisture in the atmosphere, generate storms with intensity much higher than the average 112 

precipitation events and are sometimes very localized. The Cosumnes hosts one of the last rivers 113 

without a dam in California, offering the opportunity to study natural flow. The watershed also 114 

spans the Sierra Nevada - Central Valley interface, offering an opportunity to assess the 115 

relationship between snowpack dynamics, large-scale river runoff, and aquifer storage. The 116 

region is representative of many watersheds in the state, given the strong variations in 117 

topography and land cover and land use, but also the snow dynamics given that the majority of 118 

the water resources in the state originate from snowmelt (Dettinger and Anderson, 2015). These 119 

sharp variations in above and below ground heterogeneities necessitate high-resolution models, 120 

making it an excellent candidate to understand the impact of the forcing resolution on hydrology.  121 

We study the water year 2017, the wettest water year on California record characterized 122 

by several atmospheric rivers (Di Liberto, 2017; SCRIPPS Institution of Oceanography, 2017). 123 

As mentioned by Swain et al., (2018), the future climate of California will likely be characterized 124 

by extreme wet and dry conditions. It is therefore important to understand the dynamics of these 125 

currently end-member conditions. Although exceptional today, these extremes will likely 126 
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become the “new normal” in the future. Wet conditions are also ideal to conservatively 127 

understand the amount of bias an overly coarse meteorological forcing dataset might have on a 128 

region’s hydrology. The developed integrated hydrologic model has a spatial resolution of 200 m 129 

and we use five different spatial resolutions (40.5, 13.5, 4.5, 1.5 and 0.5 km) of meteorological 130 

forcing derived from the WRF dynamical downscaling approach. Our study aims to answer the 131 

following questions: 132 

• What is the effect of meteorological forcing spatial resolution on simulated snow 133 

accumulation and melt, evapotranspiration, infiltration and pressure head and/or 134 

water table depth? In broader terms, how do meteorological uncertainties 135 

propagate into the resolved hydrodynamics and which processes require high-136 

resolution meteorological forcing? 137 

• At which spatial resolution should the climate models be solved to accurately 138 

describe the strong variations in meteorological conditions induced by 139 

atmospheric rivers and their effect on the hydrology and therefore water supply? 140 

 141 

2. The Cosumnes watershed model 142 

a. Study area 143 

The Cosumnes watershed is approximately 7,000 km2 in size (Figure 1a) and hosts one of 144 

the last rivers in the region without a major dam. Thus, it offers a rare opportunity to study the 145 

natural flow conditions. The geologic composition consists of materials ranging from nearly 146 

impermeable formations (volcanic and plutonic rocks located mainly in the Sierra Nevada 147 

mountains) to highly porous and permeable aquifers in the Central Valley. The agricultural 148 

region of Central Valley, subject to seasonal pumping and irrigation, is located in the southwest 149 
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of the watershed and consists of various crop types, including alfalfa, pasture lands, and 150 

vineyards. The Sierra Nevada Mountains are predominately covered by an evergreen forest. 151 

Spatial patterns of precipitation are highly heterogeneous across the watershed. On average, the 152 

Sierra Nevada Mountains receive three times more precipitation (1500 mm) than the Central 153 

Valley (Cosgrove et al., 2003), primarily in the form of snow. The regional climate is considered 154 

Mediterranean, with wet and cold winters (with a watershed average temperature equal to 0 °C) 155 

and hot and dry summers (with watershed average temperature reaching  25 °C) (Cosgrove et al., 156 

2003). 157 



 9 

 158 

Figure 1: (a) Land-use and land-cover (Homer et al., 2015) and (b) geology (Jennings et al., 159 

1977) and topography (USGS) of the Cosumnes Watershed 160 

 161 

3. Numerical Modeling Methods 162 

In this section, we briefly describe the two numerical models that we used in this study: 163 

(1) ParFlow-CLM, which simulates interactions as well as the transfer of water and energy 164 

between the lower atmosphere, the land surface, and the subsurface, and (2) Weather Research 165 
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Forecast (WRF), which simulates mesoscale numerical weather prediction, and is used here to 166 

drive the meteorological conditions of the ParFlow-CLM simulations. 167 

3.1. Integrated Hydrologic Model: ParFlow-CLM 168 

ParFlow-CLM (Kollet and Maxwell, 2006; Maxwell, 2013; Maxwell and Miller, 2005) 169 

describes the movement of water in the subsurface by solving the three-dimensional mixed form 170 

of Richards equation (Richards, 1931), given by: 171 

𝑆!𝑆! 𝜓!
!!!
!"

+ 𝜙 !!! !!
!"

= ∇. 𝑘 𝑥 𝑘! 𝜓! ∇ 𝜓! − 𝑧 + 𝑞!           (1) 172 

Where 𝑆! is the specific storage (L-1), 𝑆! 𝜓!  is the degree of saturation (-) associated 173 

with the subsurface pressure head 𝜓! (L), t is the time, 𝜙 is the porosity (-), 𝑘! is the relative 174 

permeability (-), z is the depth (L), 𝑞! is the source/sink term (T-1), and 𝑘 𝑥  is the saturated 175 

hydraulic conductivity (L T-1). The interdependence of variables (i.e. relationships between 176 

saturation and pressure head and between relative permeability and pressure head) is described 177 

by the Van Genuchten model (van Genuchten, 1980). Overland flow is described by the two-178 

dimensional form of the kinematic wave equation given by: 179 

−𝑘 𝑥 𝑘! 𝜓! ∇ 𝜓! − 𝑧 = ! !!,!
!"

− ∇. 𝜐 𝜓!, 0 − 𝑞! 𝑥            (2) 180 

Where 𝜓!, 0  indicates the greater term between 𝜓! the surface pressure-head and 0, 𝜐 181 

is the depth averaged velocity vector of surface runoff (L T-1), 𝑞! represents rainfall and 182 

evaporative fluxes (L T-1). The depth of the ponding water at the surface in x direction (𝜐!) and y 183 

direction (𝜐!) is calculated by: 184 

𝜐! =
!!,!
!
𝜓!! ! and   𝜐! =

!!,!
!

𝜓!! !             (3) 185 

Where 𝑆!,! and 𝑆!,! are the friction slopes in the x and y directions (respectively), and 𝑛 is 186 

the manning coefficient. 187 
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Solutions of the Richards and kinematic wave equations require the terms 𝑞! and 𝑞! 𝑥  188 

respectively. These terms include the land surface processes simulated by CLM, such as 189 

evapotranspiration, infiltration, and snow dynamics. To compute these processes, CLM uses soil 190 

moisture calculated by ParFlow, vegetation characteristics (the type of land use/land cover as 191 

well as its physical properties), and the meteorological forcing calculated by WRF.   192 

The Cosumnes ParFlow-CLM model is horizontally resolved at 200 m and varies in 193 

vertical discretization from 10 cm at the land surface to 30 m at the bottom of the domain. The 194 

total thickness of the domain is 80 m. An analysis of variations in measured groundwater levels 195 

showed that this thickness is sufficient to capture water table depth fluctuations and that in 196 

general, beyond 50 m below the ground surface the aquifer remains fully saturated. Simulations 197 

utilize parallel high-performance computing to accommodate the large number of cells 198 

(approximately 1.4 million) that constitute the high-resolution model.   199 

The Cosumnes watershed is bounded by the American and Mokelumne rivers and is 200 

constrained in the model with the use of weekly-varying values of Dirichlet boundary conditions 201 

along these borders. A no-flow (i.e. Neumann) boundary condition is imposed at the eastern, 202 

headwater side of the watershed. Hydrodynamic properties (including hydraulic conductivity, 203 

specific storage, porosity, Van Genuchten parameters) are derived from a regional geological 204 

map (Geologic Map of California, 2015; Jennings et al., 1977) and a literature review of previous 205 

studies (Faunt et al., 2010; Faunt and Geological Survey (U.S.), 2009; Flint et al., 2013; Gilbert 206 

and Maxwell, 2017; Welch and Allen, 2014). The 2011 National Land Cover (NLCD) map 207 

(Homer et al., 2015) is used in CLM to define land use and land cover. Agricultural maps 208 

provided by the National Agricultural Statistics Service (NASS) of the US Department of 209 

Agriculture’s (USDA) Cropland Data Layer (CDL) (Boryan et al., 2011) are used to further 210 
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delineate specific croplands in the Central Valley. Vegetation parameters are defined by the 211 

International Geosphere-Biosphere Programme (IGBP) database (IGBP, 2018). The developed 212 

model also accounts for pumping and irrigation occurring in the Central Valley. More details 213 

about the model parameterization and validation can be found in Maina et al. (2020) and Maina 214 

and Siirila­Woodburn, (2019).  215 

A full water year is simulated to demonstrate how different scales of meteorological 216 

forcing impact both wet and dry seasons of the year.  The water year 2017 (i.e. October 1st, 2016-217 

September 30th, 2017), a particularly wet year, is selected to conservatively demonstrate how 218 

forcing scales may impact hydrologic results in a wide range of weather conditions.  219 

 220 

3.2. Meteorological Model: Weather Research Forecast (WRF) 221 

WRF (Skamarock et al., 2008b; Skamarock and Klemp, 2008) is a state-of-the-art, fully 222 

compressible, non-hydrostatic, mesoscale numerical weather prediction model. As shown in 223 

Figure 2, we configure WRF version 3.6.1 over four two-way nested domains with a horizontal 224 

resolution of 13.5 km (domain 1, d01), 4.5 km (domain 2, d02), 1.5 km (domain 3, d03), and 0.5 225 

km (domain 4, d04). Each domain is composed of 30 vertical atmospheric levels. Land cover in 226 

WRF matches the one used in ParFlow-CLM. Post-spin-up soil moisture from ParFlow-CLM is 227 

used to initialize the WRF model at the beginning of the simulation. Other WRF initial 228 

conditions, as well as boundary conditions, are defined based on the NLDAS-2 (Cosgrove et al., 229 

2003) terrestrial and meteorological data. The lateral boundary condition is specified for the 230 

coarse grid (d01 in Figure 2) to constrain wind speed and direction, potential temperature, 231 

mixing ratio for water vapor, geopotential height, and hydrostatic pressure. The parametrizations 232 

that represent physical processes in the configuration of WRF used here include the Dudhia 233 
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scheme (Dudhia, 1988) for shortwave radiation, the Rapid Radiative Transfer Model (Mlawer et 234 

al., 1997) for longwave radiation, the Morrison double-moment scheme (Morrison et al., 2009) 235 

for microphysics, University of Washington Boundary Layer Scheme (Bretherton and Park, 236 

2009) for the planetary boundary layer, and the Eta Similarity scheme (Monin and Obukhov, 237 

1954) for the model surface layer. The Grell-Freitas scheme (Grell and Freitas, 2014) is used for 238 

cumulus parameterization in two outer-most domains only (d01 and d02). For domain d03 and 239 

d04, the higher-resolutions allow for convection to be resolved explicitly. WRF mass balance 240 

validation results are shown in Appendix A1. The described configuration of WRF has been 241 

extensively validated against ground observation of meteorological conditions in the California 242 

region in previous works (Vahmani et al., 2019; Vahmani and Jones, 2017). These studies show 243 

a very good performance for the current configuration of WRF over California, predicting daily 244 

mean and maximum air temperatures and evapotranspiration with errors of 1.1 °C, 0.4 °C, and 245 

0.74 mm day−1, respectively. We further compare WRF simulations over the Cosumnes 246 

watershed with ground measurements (see Appendix A3). Our comparisons indicate a reasonable 247 

match between measurements and simulations allowing us to gain confidence in the ability of 248 

WRF to reproduce the atmospheric dynamics in this watershed. 249 

Using the nested domain configuration of WRF described above, we design a series of 250 

simulations to dynamically downscale across the four spatial resolutions. The coarsest scale of 251 

forcing at 40.5 km resolution is generated by statistically up-scaling the coarsest of the WRF 252 

simulations (13.5 km). WRF simulations are conducted from September 1st, 2016 to September 253 

30th, 2017, covering the entire water year 2017 plus one month of spin-up. Spatial distributions 254 

of precipitation and temperature at three selected times (characterized by three different storms 255 
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of varying intensity and duration) obtained with the five spatial resolutions of forcing are shown 256 

in Appendix A. 257 

 258 

Figure 2: Geographical representation of four WRF nested domains with 13.5, 4.5, 1.5, and 0.5 259 

km spatial resolutions for d01, d02, d03, and d04, respectively. 260 

 261 

3.3.Hydrologic variables 262 

Results from the five spatial resolutions are compared for key land surface and 263 

subsurface processes. We consider the results obtained with the finest spatial resolution of 264 

meteorological forcing (0.5 km, closest to that of the hydrologic model) as the most accurate 265 

resolution, and evaluate the differences relative to that of the four remaining resolutions (1.5, 4.5, 266 

13.5 and 40.5 km). Comparisons are shown as an absolute error (AE) and/or percent error (PE) 267 

relative to the 0.5 km results via: 268 

𝐴𝐸!,! = 𝑋!.!!,! − 𝑋!!,!                      (5) 269 

and 270 
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𝑃𝐸!,! =
!!.!!,!!!!!,!

!!.!!,!
×100               (6) 271 

where X is the model output (ET, I, SWE, or 𝜓) at a given point in space (i) at a time (t), and R is 272 

the spatial resolution of the forcing (1.5, 4.5, 13.5 or 40.5 km). Snap-shots in time of these errors 273 

highlight the sensitivity of each scale of forcing in space. Global (i.e. domain-wide) differences 274 

are also calculated for select parameters of interest and shown as a function of time. 275 

Because large-scale changes in storage are of interest from a water management 276 

perspective, total surface water (SW) storage is calculated via:  277 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒!" = ∆𝑥!×∆𝑦!×𝜓!
!!"
!!!               (7) 278 

where 𝑛!" is the total number of river cells (-), ∆𝑥! and ∆𝑦! are cell discretizations along 279 

the x and y directions (L), and i indicates the cell. Similarly, total groundwater (GW) storage is 280 

calculated via: 281 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒!" = ∆𝑥!×∆𝑦!×∆𝑧!×𝜓!× 𝑆!! 𝜙!
!!"
!!!             (8) 282 

where 𝑛!" is the total number of subsurface saturated cells (-) and ∆𝑧! is the 283 

discretization along the vertical direction the cell (L). 284 

 285 

4. Results and discussions 286 

4.1.Snow Water Equivalent, SWE 287 

Figure 3 shows the domain total SWE obtained with the five resolutions of forcing. Our 288 

results indicate that all four resolutions overestimate the SWE when compared to the results 289 

obtained with 0.5 km forcing. We note that the accumulation of SWE starts at the same time for 290 

all resolutions while the time of snowmelt peak varies considerably from one resolution to 291 

another, the coarser resolutions show a delay in ablation. For example, SWE results obtained 292 

with the 40.5 km resolution forcing exhibits low global error for the first half of the water year, 293 
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however during peak ablation the differences are very large both in terms of magnitude (PE = 90 294 

%) and timing (which is delayed by around 40 days). Our results show that an accurate 295 

representation of SWE requires forcing data with a resolution close to that of the hydrologic 296 

model. This conclusion is somewhat different from that drawn by Rasmussen et al., (2011), who 297 

found that the representation of SWE in mountainous systems can be accurate for spatial 298 

resolutions of forcing lower than 6 km. A possible explanation for this difference is the 299 

resolution of the physics-based model used in this study compared to that of Rasmussen and co-300 

authors, the integrated hydrologic model we used in addition to the climate model, or differences 301 

stemming from watershed locations of the studies.  302 
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Figure 3: Temporal variations of the total Snow Water Equivalent (SWE) obtained with 304 

meteorological forcing at spatial resolutions of 0.5, 1.5, 4.5, 13.5, and 40.5 km. 305 

 306 

Figure 4a shows the spatial distributions of SWE obtained with the five spatial resolutions 307 

at two selected days, which correspond to the beginning (January) and peak (March) of snow 308 

accumulation. The spatial distribution of SWE is more precise for results obtained with the 309 

higher resolution meteorological forcing. SWE distributions obtained with meteorological forcing 310 

of resultions at or above 13.5 km are not well estimated. Figure 4b shows the spatial distribution 311 

of the absolute error of SWE (AESWE). Over- and under- estimations of SWE with similar 312 

magnitudes are observed for all the four resolutions. Errors in SWE distribution increase (with 313 

AE greater than 100 mm) as the resolution of the forcing data decreases. We notice that over- and 314 

under- estimations of SWE depend both on the topography and the resolution of forcing as snow 315 

processes depend not only on the meteorological conditions but also on the slope and aspect of a 316 

given hillslope. Depending on the elevation, the orientation of the cell (north and south facing), 317 

the energy fluxes are different resulting in very different snow dynamics. This strengthens the 318 

conclusions drawn previously stating that the meteorological data should be at a resolution close 319 

to the one associated with the input data (e.g. topography) as well as the physics-based model to 320 

ensure a good precision and accuracy in the representativity of the snow dynamics. We further 321 

note that differences in SWE will lead to different snowmelt, ET, and infiltration rates which will 322 

have implications for other hydrologic variables such as streamflow and groundwtaer levels. 323 
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Figure 4: Spatial distributions of (a) the SWE obtained with the five spatial resolutions of 328 
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resolution of meteorological forcing (0.5 km). Results are shown at WY days 125 (January) and 330 

166 (March). 331 
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 332 

4.2.Evapotranspiration, ET 333 

Figure 5 shows the temporal variation of the percent error in the domain-average ET 334 

(PEET) flux as calculated with equation (6). We note that the percent error has large values due to 335 

the low values of ET; thus small changes in ET are relatively large. While in general, the coarsest 336 

spatial resolution of forcing (i.e. 40.5 km) shows the highest errors, for some time steps the 337 

percent errors obtained with the second coarsest meteorological forcing (13.5 km) are actually 338 

the largest. A possible explanation is the aggregated nature of the domain-average ET. 339 

Depending on the time step, the coarser forcing resolutions can lead to either an over or under- 340 

estimation of ET. Results do not show a systematic trend with regards to the over- or under- 341 

estimation of ET. It is therefore difficult to establish a clear relationship between the spatial 342 

resolution of forcing and the directionality of ET error at a watershed scale. Note, however, that 343 

these errors do not increase over time. This can be related to the fast-changing nature of ET that 344 

is strongly linked to short-lived weather patterns and the diurnal cycle. 345 
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 346 

Figure 5: Temporal variation of the percent error of evapotranspiration, PEET, obtained with 347 

meteorological forcing at spatial resolutions of 1.5, 4.5, 13.5, and 40.5 km relative to the highest 348 

spatial resolution of meteorological forcing (0.5 km)  349 

 350 

Figure 6a shows the spatial distributions of ET for the five resolutions at two selected 351 

time steps characterizing periods with and without precipitation events. Day 0 corresponds to a 352 

dry day in October and day 167 corresponds to a wet day in March. The spatial patterns of ET at 353 

these two time steps are different. Furthermore, spatial patterns between the different scales of 354 

forcing also reveal distinct ET patterns. As expected, the most accurate ET distribution is 355 

obtained with the highest resolution of the meteorological data, the coarser a resolution of 356 

meteorological data is the less accurate the spatial distribution of ET. Because the highest 357 
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resolution forcing is close to the resolution of the integrated hydrologic model (and thus the 358 

resolution of input data such as topography, geology, and land use and land cover), it allows us 359 

to better understand the relationships between ET and these different characteristics of the 360 

watershed. Such analyses are difficult to undertake for coarser resolutions.  361 

(a) 362 

 0.5 km 1.5 km 4.5 km 13.5 km 40.5 km 

WY 

day 

0      

WY 

day 

167      

 363 

(b) 364 

 1.5 km 4.5 km 13.5 km 40.5 km 

WY 

day 

0 
    

WY 

day 

167     

 

0.0 1.25 10-5 2.5 10-5 3.75 10-5 5 10-5 

ET (mm/s) 



 23 

  365 

Figure 6: Spatial distributions of (a) the ET obtained with the five spatial resolutions of 366 

meteorological forcing and (b) percent error of ET (PEET) with respect to the highest spatial 367 

resolution of meteorological forcing (0.5 km). Results are shown at the first day of the simulation 368 

(WY day 0, in October) and during the time at which peak differences are observed (WY day 369 

167, in March). 370 

 371 

Seasonality and location affect the degree to which forcing scales impact ET. Note that 372 

for the spatial distributions of ET associated with the second time step considered (day 167), the 373 

results obtained with the five resolutions are very similar in the Central Valley. At this time 374 

spatial patterns of ET only differ in the Sierra Nevada Mountains and the intrusion. The geology, 375 

as well as, the land cover and the topography are more or less uniform in this valley, whereas 376 

these parameters notably topography vary significantly in the Sierra Nevada Mountains. For the 377 

first time step, the differences observed in the Central Valley are due to the fact that for very 378 

precise resolutions of the forcing, the evolution of the storm is accurate (see Appendix A) and so 379 

is the ET. Thus, for relatively homogeneous areas such as the Central Valley, high-resolution 380 

forcing data is required only if the storm shows a strong spatial variation within the areas 381 

whereas for highly heterogeneities associated with geology, topography, and land-cover, high-382 

resolution forcing data are always required if one is interested in analyzing accurately the spatial 383 

distribution of ET.  384 

Figure 6b shows the spatial distributions of percent error of ET (PEET) relative to the 385 

results of the 0.5 km meteorological forcing. Whatever the resolution considered, we note both 386 
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an over- and under- estimation of ET on the same scale of error (+/- 3000%), but with more 387 

localized and less wide-scale differences at the finest scale of meteorological forcing. We also 388 

observe that error is higher in the Sierra Nevada Mountains characterized by complex 389 

topography and geology than in the Central Valley for all resolutions. This reinforces the 390 

conclusions drawn previously, namely that for complex environments a precision in the 391 

meteorological data is strongly required. 392 

 393 

4.3.Infiltration 394 

Figure 7 shows the spatial distributions of infiltration obtained with the five spatial 395 

resolutions (Figure 7 a) and their corresponding percent errors (Figure 7 b) at two selected times 396 

corresponding to winter (WY day 83, December, presence of precipitation event) and summer 397 

(WY day 291, June, absence of precipitation event). The first time step corresponds to the snow 398 

accumulation period while the second one characterizes the snowmelt period. The spatial 399 

resolution of forcing data strongly impacts the spatial distribution of infiltration. Indeed, for 400 

coarse resolutions (i.e. 40.5 km), it is almost impossible to determine the position of the storm 401 

and its impact on infiltration, the results obtained at this scale are strongly dependent on the 402 

resolution of the forcing. However, for more precise resolution (i.e. 0.5 km), we can exactly see 403 

the location of the storm, this resolution allows distinguishing areas characterized by a very weak 404 

infiltration as the upper part of the catchment corresponding to the Sierra Nevada Mountains. 405 

Indeed, in this area, due to the accumulation of snow (precipitation is in the form of snow unlike 406 

in the Central Valley), the resulting infiltration is zero. The spatial extension of the area subject 407 

to the snow accumulation is only accurate for high-resolution meteorological forcing results. 408 

(a) 409 
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Figure 7: Spatial distributions of (a) infiltration I obtained with the five spatial resolutions of 413 

meteorological and the (b) percent error of infiltration (PEI) with respect to the highest spatial 414 
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resolution of meteorological forcing (0.5 km). Results are shown in winter (WY day 83) and 415 

summer (WY  day 291). 416 

 417 

To better understand how the quality and precision of the spatial distribution of 418 

infiltration deteriorates by decreasing the resolution of the input data, Figure 7b shows the spatial 419 

distribution of the PEI of the four resolutions at the same two time steps. For the first time step, 420 

the errors are null in the Sierra Mountains which is not the case for the second time step. 421 

Whatever the resolution considered, and as previously discussed, we note that depending on the 422 

point considered there may be over- and under- estimation of the infiltration with percent error 423 

close to 10-3. Note that these differences are observed over the entire watershed except in the 424 

Sierra Mountains for the first time step, while for the second time step, these errors are only 425 

observed along the river and its tributaries as well as in the Sierra Nevada Mountains. This 426 

second time step corresponds to the summer, a snowmelt period and without rain. As such, 427 

differences of infiltration in the Sierra Nevada Mountains are due to the snowmelt. As for the 428 

differences observed close to the areas subject to the overland flow, these are due to the 429 

exchanges between the surface flow and the subsurface. Because the amount of snow 430 

accumulated as well as the spatial extent of the area subject to snow dynamics is different for the 431 

five resolutions considered, the resulting snowmelt is different. Thus, the runoff controlled by 432 

this snowmelt will also be different and so is the infiltration of the quantities of water coming 433 

from the overland flow. This indicates that the effects of the spatial resolution of forcing data can 434 

be delayed in time. 435 

 436 

4.4. Surface and subsurface flow  437 
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4.4.1.  Surface water storage and river stage 438 

Figure 8 illustrates the percent error of surface water storage PESW. In general, the percent 439 

error of the surface water storage is small (< 5%) regardless of the time of the year, and these 440 

differences are almost zero for the results obtained with 1.5 and 4.5 km forcing resolutions for 441 

the entire water year. As shown in Figure 9 illustrating the spatial distributions of the absolute 442 

error of surface pressure-head (AEΨs), these errors are relatively small given that some regions in 443 

the domain over-estimate the pressure-head and other regions under-estimate the pressure-head. 444 

In contrast, while the error is negligible at the beginning of the simulation for results obtained 445 

with forcing at 13.5 and 40.5 km, the PESW increases over time, eventually reaching a near-446 

maximum at the end of the water year. This suggests that PESW may be cumulative and that 447 

longer simulations with overly coarse scales of forcing will compound through time. It’s 448 

interesting to also note that while the results obtained with the 13.5 km resolution forcing 449 

overestimates the surface water storage at any time, those obtained with the 40.5 km resolution 450 

forcing show over-estimates of PESW at the beginning of the simulation and under-estimates of 451 

PESW at the end of the simulation. Moreover, the errors obtained with the 13.5 and 40.5 km 452 

resolution are of the same order but opposite signs. This suggests that although the total water 453 

budget is nearly equivalent for each scale of forcing considered here (see Appendix A1), an 454 

inaccurate spatial distribution of forcing can lead to an inaccurate redistribution (and possibly a 455 

delay) of water and energy, and hence different signals of surface water storage. 456 
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 457 

Figure 8: Temporal variations of the percent error of surface water storage (PESW) obtained with 458 

meteorological forcing at spatial resolutions of 1.5, 4.5, 13.5, and 40.5 km with respect to the 459 

highest spatial resolution of meteorological forcing (0.5 km) 460 

 461 

Figure 9 shows the spatial distributions of the absolute error of pressure-head for the first 462 

layer (AEΨs) at two selected time steps corresponding to winter (WY day 83, in December) and 463 

summer (WY day 333, in August). Similar to PESW, this error increases with time. In December, 464 

the error is nearly zero for forcing spatial resolutions of 1.5 and 4.5 km whereas it is non-zero 465 

(with values close to 1 m) in August. Although the spatial resolutions of 13.5 and 40.5 km have 466 

non-zero errors at the first time step, the error increases considerably as the simulation proceeds. 467 
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We note that the areas sensitive to the spatial resolution of the meteorological forcing data are 468 

approximately the same for all four resolutions. Indeed, the absolute error is null at the intrusion 469 

on contrary to the Central Valley and in the Sierra Nevada Mountains. Interestingly, these two 470 

zones have different areas of influence, in the Central Valley, the errors are non-zero everywhere 471 

except close to the river, which is contrary to the trend observed in the Sierras. This is related to 472 

the geological nature of these environments. Due to the very low permeability and low surface 473 

roughness of Sierra Nevada Mountains, any water from precipitation will quickly contribute to 474 

surface runoff, which is highly sensitive to the spatial resolution of forcing, on contrary to the 475 

Central Valley characterized by high permeability and low manning coefficient and therefore 476 

low overland flow.  477 
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Figure 9: Absolute error of surface pressure-head (AEΨs) with respect to the highest spatial 479 

resolution of meteorological forcing (0.5 km). Results are shown in winter (WY  day 83, in 480 

December) and summer (WY  day 333, in August).  481 
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 482 

Within the water year, the maximum absolute error of surface water levels, max(AEΨs), is 483 

an important metric for understanding where, and to what degree, forcing resolution impacts the 484 

prediction of river dynamics. Figure 10 shows the spatial distribution of max(AEΨs), which is 485 

obtained by an analysis of the maximum difference in surface water levels between the results 486 

obtained with the highest spatial resolution of forcing (0.5 km) and the four other resolutions for 487 

all time steps. Maximum differences in surface water levels are shown in absolute values (in 488 

units of meters) and are at any point in time in the simulated water year. Differences in surface 489 

water levels at a given time are as high as 3 m. High values of differences are mainly located in 490 

the headwater region of the watershed, although some lower regions of the model such as one 491 

tributary of the main stem of the Cosumnes near the river outlet also show max(AEΨs) as high as 492 

3 m. These results suggest that although the impact of forcing spatial resolutions on the global 493 

(i.e watershed-scale) surface water storage is small to insignificant (see Figure 8), at a given 494 

point in space and time, differences may be considerable. This can be especially problematic for 495 

calibration and validation purposes where input parameters of the model are adjusted to 496 

reproduce the observed surface water levels with the model. In this case, differences between 497 

measured and simulated hydrologic variables are assumed to be due to parametric uncertainties, 498 

when in reality the source of the error is the scale of the meteorological forcing. Adjusting the 499 

model parameters may potentially cause the model to inaccurately simulate the physics of the 500 

system. 501 
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 502 

 503 

Figure 10: Spatial distributions of the maximum of Absolute Error of river height 504 

max(AEΨs) with respect to the highest spatial resolution of meteorological forcing (0.5 km). 505 

 506 

4.4.2. Groundwater storage and water table depth 507 

Figure 11 depicts the percent error of groundwater storage PEGW. For the cases 508 

considered here, the different spatial resolutions of forcing have very little impact on the total 509 

groundwater storage of the watershed. 510 
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 511 
 512 

Figure 11: Temporal variations of the percent error of groundwater storage (PEGW) 513 

obtained with meteorological forcing at spatial resolutions of 1.5, 4.5, 13.5, and 40.5 km with 514 

respect to the highest spatial resolution of meteorological forcing (0.5 km) 515 

 516 

With the exception of the coarsest scale of forcing resolution towards the end of the 517 

simulation, the error in groundwater  storage for the different spatial resolutions of forcing yield 518 

very similar results. Groundwater storage obtained with a forcing resolution of 13.5 km 519 

overestimates the storage, however, this overestimation remains very low, on the order of 1% at 520 

most times. In contrast, the groundwater storage results obtained with the 40.5 km forcing 521 
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resolution are close to the storage obtained with the finest scale of forcing resolution at the 522 

beginning of the simulation, yet these errors reach 10% at the end of the simulation.  523 

Figure 12a shows the maps of Water Table Depth (WTD) absolute error (AEWTD) for the 524 

four scales of forcing resolution relative to the results obtained with the 0.5 km forcing. Water 525 

year day 333 (August) corresponding to baseflow conditions is used here because differences in 526 

water table depth at the beginning of the simulation are too small for interpretation. Results show 527 

both an over- and under- estimation of the water table depth as a function of the forcing 528 

resolution (Figure 12a). Thus, while the global groundwater storage error is low as indicated in 529 

Figure 11, an examination of the spatial trends shows that this is predominantly due to the 530 

counterbalancing of positive and negative error in space. For all the spatial resolutions 531 

considered, the Sierra Nevada Mountains are the most sensitive areas to the spatial resolution of 532 

meteorological data, while the intrusion remains insensitive with almost zero errors. This is due 533 

to the characteristics of the Sierra Nevada Mountains which include strong variations of 534 

topography, snow dynamics, and low permeability rocks. The intrusive zone is composed of 535 

extremely low permeability materials so it has no groundwater dynamics, as such the errors are 536 

zero. The spatial resolutions of 1.5 and 4.5 km have generally little impact on the water table 537 

depth in the Central Valley alluvial aquifers. Larger errors in water table depths are mostly 538 

observed for the results obtained with the 13.5 and 40.5 km forcing. These errors are not uniform 539 

and are most significant along the Cosumnes River, its tributaries, and outside urban areas. The 540 

connection between the upper and lower point of the watershed, as well as the integrated nature 541 

of the system, is apparent in the maps of AEWTD. As already discussed, because the spatial 542 

resolution of forcing impacts snowpack dynamics, evapotranspiration and infiltration rates and 543 

patterns, streamflow distributions, it, therefore, impacts groundwater dynamics and the exchange 544 
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of groundwater and surface water. We highlight here that these differences accumulate over time 545 

as indicated by the errors that increase as the simulation progresses. 546 
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Figure 12: Spatial distributions of (a) the absolute error of Water Table Depth (WTD) (AEWTD) 551 

with respect to the highest spatial resolution of meteorological forcing (0.5 km) at WY day 333, 552 

and (b) the max(AEWTD), with respect to the highest spatial resolution of meteorological forcing 553 

(0.5 km). 554 
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Figure 12b depicts the maximum differences (for all time steps) of the water table depth 556 

in absolute value between the results obtained with the highest spatial resolution and the other 557 

four spatial resolutions. As previously stated, due to the almost zero permeability of the 558 

intrusion, the latter is insensitive to the spatial resolution of the meteorological data. The water 559 

table depth differences are as high as 5 m in several places, particularly in the Sierra Nevada 560 

Mountains, following mostly trends in topography. In the Central Valley, noticeable differences 561 

are mainly observed in the areas near the rivers and close to the pumping wells. 562 

Figure 13 shows the temporal variations of the difference in the water table depth 563 

between the highest resolution and the four other resolutions at 6 selected points. We selected 564 

points located in the Central Valley as this zone hosts an alluvium aquifer (see their location in 565 

Figure 1). For all these points, we note that the differences are almost zero for the spatial 566 

resolution of 1.5 km indicating that this spatial resolution is sufficient to represent the 567 

groundwater dynamics of this region. The spatial resolution of 4.5 km also shows relatively low 568 

differences, the latter is indeed zero at three points and only points 2, 4 and 5 have non-zero 569 

differences, but these remain less than 50 cm. The strongest differences are observed for results 570 

obtained with forcing spatial resolutions of 13.5 and 40.5 km; note that the coarsest resolution 571 

does not necessarily give the highest differences. In fact, at points 4 and 5, the highest 572 

differences are obtained with the resolution of 13.5 km, indicative of the complex over- and 573 

under- estimation patterns of bias observed at these coarser resolutions of forcing. In general, the 574 

use of these large-scale spatial resolutions of forcing can lead to an over- or under -estimation of 575 

the pressure-head between 50 cm and 10 m. Thus, while our results indicate that the spatial 576 

resolution of meteorological forcing has little impact on the total groundwater storage, at discrete 577 

points within the watershed the spatial resolution of forcing is very important, especially for 578 
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resolutions greater than 4.5 km. Again, this is particularly an issue for model calibration 579 

purposes given that hydrologic numerical models are typically validated/calibrated by comparing 580 

the groundwater measurements with the model outputs. In this case, our results indicate that 581 

careful attention must be given to the spatial resolutions of forcing, as some errors are only due 582 

to the latter not to any model parameterization.  583 

 584 

 585 

Figure 13: Absolute Error of the Water Table Depth (AEWTD) with respect to the highest spatial 586 

resolution of meteorological forcing (0.5 km) at six selected points. 587 

 588 
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5. Conclusions 590 

Numerical methods that solve integrated hydrologic models are becoming increasingly 591 

precise and spatially resolved. They thus require high-resolution and accurate input data such as 592 

meteorological forcing. However, while integrated hydrologic models increase in precision, the 593 
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meteorological data used are most often of coarse resolution whereas these data are strongly 594 

heterogeneous in space. It is, therefore, important to better understand not only how the 595 

uncertainties associated with the spatial distribution of meteorological data affect hydrologic 596 

model outputs, but also the meteorological forcing spatial resolution required to minimize these 597 

uncertainties. Moreover, thanks to the advancement of atmospheric models, it is now possible to 598 

obtain meteorological data closer to that of the resolution of hydrologic models. 599 

In this study, we utilized the integrated hydrological model ParFlow-CLM to simulate the 600 

hydrodynamics of a representative Californian watershed spanning the Sierra Nevada Mountains 601 

and the Central Valley interface. The Cosumnes offers a unique opportunity to study semi-602 

natural flow conditions given its rare un-dammed river, one of the last in the state. Five different 603 

spatial resolutions of meteorological data were obtained via the dynamical downscaling approach 604 

of the Weather Research Forecasting (WRF) model. Both models were simulated in a high-605 

performance computing environment to accommodate the high spatio-temporal resolution of the 606 

study. The Cosumnes watershed is characterized by strong variations of topography, geology, 607 

land use and land cover leading to highly heterogeneous and complex atmospheric and 608 

hydrologic dynamics, and is, therefore, an excellent candidate to better understand how the 609 

different spatial resolutions of forcing affect the results of an integrated hydrologic model of a 610 

watershed which include snow water equivalent, evapotranspiration, infiltration, surface and 611 

groundwater levels. 612 

Our results show that the impact of the spatial resolution of meteorological data depends 613 

on the hydrologic component of interest, as well as the temporal and spatial scale.  614 

• Snow accumulation and snowmelt are considerably impacted by forcing 615 

resolution, even at the watershed scale. The results obtained with the different 616 
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spatial distributions suggest that meteorological data with a resolution close to the 617 

one of the hydrologic model is needed to accurately reproduce the Snow Water 618 

Equivalent (SWE) distribution as well as the total volume of SWE. Our results 619 

show that the errors of SWE depend on both the spatial resolution of forcing and 620 

topography and can be greater than 100 mm for a single point in time. 621 

• At the watershed scale, global estimates of total evapotranspiration fluxes are 622 

more or less insensitive to the spatial resolution of forcing. However, to obtain an 623 

accurate spatial distribution of evapotranspiration which shows impacts of land 624 

use, geology, and topography, higher resolutions of forcing are needed.  625 

• The results obtained with infiltration are quite similar to those of 626 

evapotranspiration. Note that for these two processes, the percent errors induce by 627 

a coarser resolution obtained are most often significant after a precipitation event, 628 

and that these errors quickly subside once the precipitation ends. 629 

• Forcing spatial resolution does not impact total surface water storage at the 630 

watershed scale. Even for the coarsest resolution of forcing (40.5 km), the error, 631 

increasing with time, is approximately 5%. However, we emphasize that for the 632 

surface water levels at one point and at a given time, the differences between the 633 

highest spatial resolution of the forcing data and the four other resolutions can 634 

exceed 3 m. Regions within the Sierra Nevada Mountains are the most sensitive to 635 

the spatial resolution of forcing data. 636 

• Similar to surface water storage, the five different spatial resolutions of forcing 637 

considered in this study led to similar groundwater storages. Therefore, the spatial 638 

resolution of forcing has very small impacts on the hydrology simulated at a 639 
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watershed scale or hydrologic unit, hence non-grid based hydrologic models are 640 

likely to be less sensitive to the spatial resolution of forcing than numerical 641 

models. However, at a local scale, the variations of pressure head in the 642 

subsurface obtained with the different resolutions can differ considerably, with 643 

error as high as 9 m, especially in the Central Valley alluvium aquifers. 644 

Groundwater level variations are the result of the aggregated impacts of land 645 

surface processes. As such, the spatial resolutions of forcing affecting land 646 

surface processes also impact groundwater levels. Our results show that these 647 

impacts on groundwater are delayed in time due to the timing of the transfer of 648 

water from the land surface to the subsurface.  649 

Although the total water balance of the five spatial-resolutions of the meteorological 650 

forcing is the same, the different spatial resolutions lead to different hydrological processes that 651 

change both in time and space. For a good representation of the land surface processes 652 

(infiltration, evapotranspiration and snow dynamics), a spatial resolution of the meteorological 653 

data which is close to that of the hydrologic model is required due to the instantaneity and 654 

complexities of these phenomena. For the surface and subsurface processes, we demonstrated 655 

that for this watershed and those with similar characteristics, a spatial resolution of 4.5 km is 656 

sufficient to reproduce the general physical trends of the hydrology. As a result, satellite-based 657 

products such as NLDAS (with a resolution of around 14 km)  may induce errors that may limit 658 

the use of their products if spatially accurate studies are needed. Because coarse spatial 659 

resolutions of forcing may lead to very different groundwater and streamflow variations, 660 

particular attention must be paid to the spatial resolution of meteorological data, especially in the 661 

calibration and/or validation processes of numerical models. Indeed, the differences between the 662 



 40 

measured and simulated hydrologic variables are not only due to the hydrodynamic parameters 663 

of the model but may also be related to the parameterization of the meteorological data.  664 

While in this study our focus is on the spatial distribution of meteorological data, future 665 

studies will assess the propagation of uncertainties related to the temporal resolution of 666 

meteorological forcing. Climate models are also used to predict the future weather conditions, it 667 

would also be important to determine the ideal spatial-resolution of forcing in the context of a 668 

warming climate.  669 

 670 

 671 

Code and Data availability 672 

Simulations inputs, models and data are available from the authors upon request. 673 

 674 

 675 

 676 

 677 

  678 
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Appendix A 679 

A.1 Mass Balance Validation  680 

The physics represented for the four WRF domains are identical, except for cumulus 681 

parameterization which is used for domains d01 (resolution of 13.5 km) and d02 (resolution of 682 

13.5 km) and not for domains d03 (resolution of 1.5 km) and d04 (resolution of 0.5 km). This is 683 

due to the fact that WRF can resolve convection explicitly at resolutions higher than around 4 km 684 

(Gilliland and Rowe, 2007). To assess the sensitiviy of the WRF simulated forcings to this 685 

inevitable incosistancy between the domains, we compare watershed-wide daily precipitation 686 

and air tempeature in Figure A1. Our results show that there are minimal differences (RMSE of 687 

less than 0.002 m and 0.01°C for precipitation and temperature, respcetivly) between the four 688 

WRF domains, when averaged over the watershed. This shows that the only difference between 689 

the forcings from WRF domains are due to different resolutions and the effects of described 690 

difference in physics representations are limited.      691 
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 692 

Figure A1: Daily variations of WRF simulated precipitation (a) and air temperature (b), averaged 693 

over the entire watershed for spatial resolutions of 0.5, 1.5, 4.5, 13.5, and 40.5 km. 694 

 695 
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A.2 Spatial distributions of precipitation and temperature over the domain d04 696 
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Figure A2: Spatial distributions of precipitation associated with the five spatial resolutions of 697 

meteorological at three selected times corresponding to periods where the storm has high (day 1) 698 

and low (day 83) intensity and a time a very located and low intensity (day 125). 699 
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Figure A3: Spatial distributions of temperature associated with the five spatial resolutions of 702 

meteorological at three selected times corresponding to periods where the storm has high (day 1) 703 

and low (day 83) intensity and a time a very located and low intensity (day 125). 704 
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A.3 Comparisons with ground measurements 707 

We compared simulated precipitation and temperature with ground measurements. We 708 

selected four stations, which continuously measure precipitation and temperature. The Figure 709 

below shows the location of these stations as well as the comparisons. We only show 710 

comparisons with the results obtained with the highest resolution (i.e. d04) for graphical 711 

purposes.  712 

 713 

Figure A4a: location of the four selected stations. These stations allow comparing the simulated 714 

precipitation and temperature with measurements in the Sierra Nevada mountains (BVE and 715 

MTZ), the volcanic intrusion (BLT), and the Central Valley (ELG). 716 
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 719 

Figure A4b: Comparisons between simulated and measured precipitation at the four selected 720 

stations. The reasonable match between measurements and simulations at different locations 721 

allows gaining confidence in the WRF simulations to reproduce the atmospheric dynamics at 722 

different elevations 723 
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 724 

Figure A4c: Comparisons between the simulated and measured temperature at three selected 725 

stations. The station ELG does not have measurements of temperature. Like the precipitations 726 

results, our comparisons indicate a reasonable match between measurements and simulations. 727 
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