
1 

 

The Influence of Assimilating Leaf Area Index in a Land Surface 

Model on Global Water Fluxes and Storages 

Xinxuan Zhang1, Viviana Maggioni1, Azbina Rahman1, Paul Houser1, Yuan Xue1, Timothy Sauer1, 

Sujay Kumar2 and David Mocko2 

1George Mason University, Fairfax, VA, 20771, USA 5 
2Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA 

Correspondence to: Xinxuan Zhang (xzhang37@gmu.edu) 

Abstract. Vegetation plays a fundamental role not only in the energy and carbon cycles, but also in the global water balance 

by controlling surface evapotranspiration (ET). Thus, accurately estimating vegetation-related variables has the potential to 

improve our understanding and estimation of the dynamic interactions between the water, energy, and carbon cycle. This 10 

study aims to assess to what extent a land surface model (LSM) can be optimized through the assimilation of leaf area index 

(LAI) observations at the global scale. Two Observing System Simulation Experiments (OSSEs) are performed to evaluate 

the efficiency of assimilating LAI into an LSM through an Ensemble Kalman Filter (EnKF) to estimate LAI, ET, canopy 

interception evaporation (CIE), canopy water storage (CWS), surface soil moisture (SSM), and terrestrial water storage 

(TWS). Results show that the LAI data assimilation framework not only effectively reduces errors in LAI model simulations, 15 

but also improves all the modeled water flux and storage variables considered in this study (ET, CIE, CWS, SSM, and 

TWS), even when the forcing precipitation is strongly positively biased (extremely wet condition). However, it tends to 

worsen some of the modeled water-related variables (SSM and TWS) when the forcing precipitation is affected by a dry 

bias. This is attributed to the fact that the amount of water in the LSM is conservative and the LAI assimilation introduces 

more vegetation, which requires more water than what available within the soil. 20 

1 Introduction 

Terrestrial vegetation plays a vital role in the global water cycle, as it controls the surface evapotranspiration (ET) and the 

state of the carbon cycle. As shown in past literature, there exists a strong relationship among vegetation, precipitation, and 

soil moisture (Di et al., 1994; Farrar et al., 1994; Richard and Poccard, 1998; Adegoke and Carleton, 2002). Nevertheless, 

the role that vegetation and its dynamics play in the water cycle (for instance on the variability of precipitation) is extremely 25 

complex (Wang and Eltahir 2000; Wang et al. 2011). In the past half-century, these land surface processes and feedbacks 

have been examined through numerical modeling experiments (Foley et al. 1996; Kim and Wang 2007; Druel et al. 2019). In 

early generation land surface models (LSMs), the development stage of vegetation was prescribed by regularly updating 

vegetation variables, based on fixed lookup tables to simplify the model computation (Foley et al. 1996). This approach uses 

constant vegetation indices, e.g., the leaf area index (LAI), while in reality the growth of vegetation continuously changes in 30 
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response to weather and climate conditions. To overcome this deficiency, new generation LSMs are coupled with dynamic 

vegetation modules that comprehensively simulate several biogeochemical processes (Woodward and Lomas 2004; Gibelin 

et al. 2006; Fisher et al. 2018) and that are able to capture more detailed variations in plant productivity than traditional 

methods (Kucharik et al. 2000; Arora 2002; Krinner et al. 2005). 

LAI can also be estimated through observations from satellite sensors, such as the Moderate Resolution Imaging 35 

Spectroradiometer (MODIS, Pagano and Durham 1993; Justice et al. 2002), the Système Probatoire d’Observation de la 

Terre VEGETATION (SPOT-VGT, Baret et al. 2007), and the National Oceanic and Atmospheric Administration (NOAA) 

Advanced Very High Resolution Radiometer (AVHRR, Cracknell 1997). LAI products retrieved from different satellite 

missions and sensors provide spatially and temporally varying LAI fields on a routine basis at regional and global scales, 

including the MODIS LAI (Myneni et al. 2002), the Global Land Surface Satellite (GLASS) LAI (Xiao et al. 2013), and the 40 

GLOBMAP LAI dataset (Liu et al. 2012), among others. Satellite-derived LAI products were found to be affected by 

uncertainties due to the limitation of retrieval algorithms and vegetation type sampling issues (Cohen and Justice 1999; 

Privette et al. 2002; Tian et al. 2002; Morisette et al. 2002). 

A method to combine the inherently incorrect estimates from satellite observations and model simulations is data 

assimilation (DA). One of the most common DA systems — the Ensemble Kalman Filter (EnKF; Evensen 2003) — 45 

dynamically updates the model error covariance information by producing an ensemble of model predictions, which are 

individual model realizations perturbed by the assumed model error (Reichle et al. 2007). The ensemble approach is widely 

used in hydrology because of its flexibility with respect to the type of model error (Crow and Wood 2003) and well suited to 

the nonlinear nature of land surface processes (Reichle et al. 2002a, 2002b; Andreadis and Lettenmaier 2006; Durand and 

Margulis 2008; Kumar et al. 2008; Pan and Wood 2006; Pauwels and De Lannoy 2006; Zhou et al. 2006). However, the use 50 

of an EnKF for the assimilation of LAI in LSMs has not been thoroughly investigated in the past. Pauwels et al. (2007) 

proposed an Observing System Simulation Experiment (OSSE) to evaluate the performance of assimilating LAI in a 

hydrology-crop growth model with an EnKF algorithm. Other studies have also tested simplified 1D-VAR and extended 

Kalman filter methods for LAI assimilation (e.g., Sabater et al. 2008; Barbu et al. 2011; Fairbairn et al. 2017). Recently, 

Kumar et al. (2019) assimilated GLASS LAI in a land surface model with an EnKF across the continental U.S. Some water 55 

budget variables were improved through the assimilation procedure, particularly in agricultural areas where the assimilation 

added harvesting information to the model. Ling et al. (2019) assimilated global LAI information with an Ensemble Adjust 

Kalman Filter (EAKF) algorithm and found that the assimilation is more effective during the growing season. LAI 

assimilation also had a positive impact on gross primary production (GPP) and ET in low latitude regions.  

Nevertheless, most of the aforementioned studies mainly focused on the impact of LAI assimilation on the simulated LAI or 60 

vegetation biomass. Only a few studies discussed the influences of LAI assimilation on the estimation of water variables 

such as soil moisture or streamflow (Pauwels et al. 2007; Sabater et al. 2008) and most of them focused on limited regions. 

Most recently, Albergel et al. (2017) conducted a study on a much larger domain   ̶ Europe and the Mediterranean basin   ̶and 

showed improvement in soil moisture at various depths thanks to LAI assimilation.  
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This work leverages upon these studies but aims to assess to what extent a land surface model, especially the simulation of 65 

water-related variables, can be optimized through the assimilation of LAI observations at the global scale. As this study 

serves as a feasibility test to quantify the impact of LAI assimilation on water cycle variables, an OSSE is chosen to 

investigate the model’s behavior. This guarantees that reference variables (often referred to as the “truth”), which are 

synthetically produced, are available for quantifying the performance of the proposed framework. Specifically, two OSSEs 

that apply an EnKF algorithm to the Noah LSM with multi-parameterization options (Noah-MP, Niu et al. 2011; Yang et al. 70 

2011) are performed to evaluate the efficiency of assimilating LAI observations for estimating ET, canopy interception 

evaporation (CIE), canopy water storage (CWS), surface soil moisture (SSM), and terrestrial water storage (TWS). 

2 Methods and materials 

2.1 Land surface model (Noah-MP) 

The Noah-MP 3.6 (Niu et al. 2011; Yang et al. 2011) is adopted in this study. Noah-MP contains a separate vegetation 75 

canopy defined by a canopy top and bottom, crown radius, and leaves with defined dimensions, orientation, density, and 

radiometric properties (Niu et al. 2011). Multiple options are available for surface water infiltration, runoff, groundwater 

transfer and storage including water table depth to an unconfined aquifer (Niu et al. 2007), dynamic vegetation, canopy 

resistance, and frozen soil physics. Specifically, the prognostic vegetation growth combines a Ball-Berry photosynthesis-

based stomatal resistance (Ball et al. 1987) with a dynamic vegetation model (Dickinson et al. 1998). The dynamic 80 

vegetation model calculates the carbon storages in various parts of the vegetation (leaf, stem, wood, and root) and the soil 

carbon pools.  

The Noah-MP 3.6 LSM has been implemented into the National Aeronautics and Space Administration (NASA) Land 

Information System (LIS; Peters-Lidard et al. 2007; Kumar et al. 2006). LIS is a software that provides an interagency test 

bed for land surface modeling and data assimilation that allows customized systems to be built, assembled and reconfigured 85 

easily, using shared plugins and standard interfaces. All the experiments in this study are setup through LIS. The Modern-

Era Retrospective analysis for Research and Applications Version 2 (MERRA-2; Gelaro et al. 2017) dataset serves as the 

meteorological forcings of Noah-MP. MERRA-2 is the latest atmospheric reanalysis produced by the NASA Global 

Modeling and Assimilation Office (GMAO) and includes updates from the Goddard Earth Observing System (GEOS). The 

meteorological variables selected from MERRA-2 include surface pressure, surface air temperature, surface specific 90 

humidity, incident radiations, wind speed, and precipitation rate.  

Five model output variables that describe terrestrial water fluxes and storages are investigated in this work: ET (defined as 

the sum of evaporation and the plant transpiration [kg/m2s]), CIE (defined as the evaporation of the canopy intercepted water 

[kg/m2s]), CWS (defined as the amount of canopy intercepted water in both liquid and ice phases [kg/m2]), SSM (defined as 

the water content in the top 10 cm of the soil column [m3/m3]), and TWS (defined as the sum of all water storage on the land 95 

surface and in the subsurface [mm]). 
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2.2 Experimental design 

An OSSE is designed to understand the efficiency of assimilating LAI within Noah-MP version 3.6 using a one-dimensional 

EnKF algorithm (Reichle et al. 2010), when the precipitation forcing data are strongly biased. Being the major driving force 

of the hydrological cycle, the quality of input precipitation is critical for the accuracy of land surface model outputs. 100 

However, global precipitation datasets are far from being perfect and often affected by large regional biases. For example, 

the MERRA-2 precipitation dataset shows a widespread relative bias greater than 100% in South Asia (Ghatak et al. 2018). 

Although an  EnKF is optimal only under the assumption of unbiasedness (which is not met in the proposed experimental 

setup), we want to investigate here to what extent the EnKF LAI assimilation (even if sub-optimal) can improve water 

storages and fluxes under two extreme conditions, i.e., a very dry and a very wet precipitation bias, knowing that such biases 105 

are very plausible in the real world and often unknown (and therefore difficult to remove). The proposed framework is 

evaluated through a global experiment (Antarctica excluded) at the 0.625° × 0.5° spatial resolution of the MERRA-2 forcing 

dataset (Figure 1). 

Figure 2 shows a schematic diagram of the experiments. First, the Noah-MP model is spun-up for a 10-year period (2001-

2010) to ensure a physically realistic state of equilibrium. Second, the model is run for a 29-month period (January 2011 – 110 

May 2013) to conduct the Nature Run (NR) with the same configuration as the spin-up one. By definition, an OSSE is a 

controlled experiment that does not assimilate any real observation. Instead, it treats all the model outputs from the NR as the 

“true” condition (denoted as the “synthetic truth”). The “true” LAI (i.e., the LAI output from NR) is then perturbed via a 

simple additive error model to produce the synthetic observations to be assimilated into the DA runs. The spin-up run and 

NR are forced by the original MERRA-2 precipitation data. Third, two Open Loop (OL) runs (no DA) are conducted for the 115 

same 29-month period under two conditions: i) “extremely dry” condition (the model is forced by halving the MERRA-2 

precipitation data; OL-dry), and ii) “extremely wet” condition (the model is forced by doubling the MERRA-2 precipitation; 

OL-wet). The biased forcing precipitation data in OL mimic typical precipitation biases in current precipitation reanalysis 

and satellite products (e.g., Ghatak et al. 2018; Yoon et al. 2019). 

The two DA runs are then conducted under the two same conditions (DA-dry and DA-wet) using a one-dimensional EnKF 120 

assimilation algorithm, which is a built-in DA method in LIS. The EnKF DA algorithm is suitable for non-linear and 

intermittent land surface processes (Reichle et al. 2002a, 2002b). Details of the algorithm can be found in numerous previous 

studies (Reichle et al. 2010; De Lannoy et al. 2012; Liu et al. 2015; Kumar et al. 2019a). 

The model ensemble is generated by perturbing a set of meteorological forcing. To select the optimal ensemble size, a 

sensitivity test is performed for ensemble sizes spanning from 2 to 24 members (not shown here). The number of ensemble 125 

members has a strong impact on the model results at small sizes, while the model performance tends to become steady when 

more than 20 ensemble members are considered. Thus, all the DA simulations are run for 20 members.  

The synthetic LAI observations are obtained from the NR and assimilated to the DA system at 8-daily frequency. The 

synthetic LAI observation has the same temporal resolution as the MODIS LAI product but with full coverage over the study 
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domain. In real case studies, satellite LAI products contain a substantial amount of missing data, mainly due to the cloud 130 

obscuration gaps. Based on the vegetation type in the model, the leaf mass fields are also updated. Random perturbations of 

MERRA-2 meteorological forcings and synthetic LAI observations are applied to create an ensemble of land surface 

conditions that represent the uncertainties of in the LSM. 

Similar to previous work (Kumar et al. 2014, 2019a, 2019b), the MERRA-2 forcing inputs such as shortwave/longwave 

radiations and precipitation are perturbed hourly. Multiplicative perturbations are applied to the shortwave radiation and 135 

precipitation with a mean of 1 and standard deviations of 0.3 and 0.5, respectively. The longwave radiation is perturbed via 

an additive perturbation with a standard deviation of 50 W/m2. The perturbations of the three meteorological forcing 

variables also include cross correlations: cross correlation between shortwave radiation and precipitation is -0.8, cross 

correlation between longwave radiation and precipitation is 0.5; and cross correlation between shortwave and longwave 

radiations is -0.5. The synthetic LAI observations are perturbed via an additive model with a standard deviation of 0.1. 140 

2.3 Evaluation and error metrics 

Output variables from the OL and DA runs are evaluated against the “truth” from the NR at daily, monthly, and seasonal 

temporal scales. Besides LAI, five more water fluxes and storages are evaluated in the results section: ET, CIE, CWS, SSM, 

and TWS. 

The initial condition for the OL and DA runs is generated by a spin-up run that uses the original MERRA-2 precipitation as 145 

input. However, the OL and DA runs are forced by either doubled or halved precipitation, which is not consistent with the 

spin-up run and the model needs some time to stabilize. The first 5-month model outputs are therefore eliminated from the 

evaluation to avoid the model systematic instability at the beginning of the OL and DA simulations and the evaluation, thus, 

focused only on model outputs from 2011-06-01 to 2013-05-31. Results are discussed using maps and time series of global 

averaged values and anomalies. Each of the anomaly time series is computed relative to the mean of its respective model run. 150 

Moreover, two error metrics are employed to quantify the difference between OL (and DA) with respect to the reference 

variables (from the NR). The first one is the Normalized and Centered Root Mean Square Error (NCRMSE), defined as 

follows: 

𝐸 =
{
1

𝑁
∑ [(𝑋𝑖−𝑚𝑒𝑎𝑛(𝑋))−(𝑂𝑖−𝑚𝑒𝑎𝑛(𝑂))]

2𝑁
𝑖=1 }

1
2

𝑚𝑒𝑎𝑛(𝑂)
 ,        (1) 

where 𝐸 is the NCRMSE, 𝑂 is the NR output variable, and 𝑋 is the output variable from the OL runs or DA runs. 𝑁 is the 155 

total number of 𝑋  values, and 𝑖  represents the index of each 𝑋  value. Second, to investigate the improvement (or 

degradation) due to the DA of LAI observations, we adopt the Normalized Information Contribution (NIC, similar to the 

NIC in Kumar et al. 2016) index based on NCRMSE and defined as: 

𝐶 =
𝐸𝐷𝐴−𝐸𝑂𝐿

0−𝐸𝑂𝐿
 ,           (2) 
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where 𝐶 represents the NIC index and 𝐸 is the NCRMSE for OL or DA runs. NIC equals to 1 means that DA realizes the 160 

maximum possible improvement over the OL; NIC equals to zero means that DA and OL show the same performance skills; 

and negative NIC indicates a model degradation through DA. 

3 Results and discussion 

3.1 LAI 

Figure 3a and Figure 4a show time series of global averaged LAI values and corresponding anomalies, respectively. As 165 

expected, LAI values are largely impacted by the extreme precipitation conditions. The wet condition introduces more 

vegetation, while the dry condition limits the vegetation growth throughout the two-year period. The DA procedure 

effectively corrects the LAI errors caused by the biased precipitation input. The seasonality of LAI anomalies is evident, 

showing larger variations in DJF and JJA than during the transition periods (MAM and SON). The OL-wet condition 

simulation shows larger LAI anomalies than the NR reference, while the OL-dry condition has smaller LAI anomalies than 170 

NR. The LAI anomalies obtained from DA runs under both wet and dry conditions are closer to the reference anomalies than 

the corresponding OL runs. In general, DA performs better in the wet condition experiment than in the dry case. Moreover, 

the DA runs show lower NCRMSEs than the corresponding OL runs across the globe (Figure 5a), especially over shrublands 

and grasslands (refer to Figure 1 for land covers).  

In order to illustrate how LAI assimilation performs for different seasons, Figure 6a and Figure 7a show monthly averages of 175 

NCRMSE for LAI across the northern and southern hemispheres, respectively. In the northern hemisphere (Figure 6a), the 

NCRMSE time series follow clear seasonal patterns. First, the NCRMSE is higher in DJF/MAM and is lower in JJA/SON 

for both extreme precipitation conditions. The highest NCRMSE values are in March and April, and the lowest values are in 

July, August, and September. The differences of NCRMSE between OL and the corresponding DA runs tend to be much 

larger in MAM than in any other seasons, which means that LAI assimilation is more effective in the vegetation growth 180 

period. Moreover, the NCRMSE is constantly higher in the dry condition runs than the wet ones, which is due to the fact that 

the growth of vegetation is sensitive to the lack of water. Differences between wet and dry conditions are much smaller in 

JJA than in other seasons. In JJA, the vegetation leaves in the north hemisphere are fully developed and the plants can use 

stomatal closure to preserve water under water limited condition (dry condition). Thus, the NCRMSE of dry condition 

becomes smaller and does not show much difference from the wet condition. The southern hemisphere (Figure 7a), which 185 

does not have a strong climate seasonality, shows more modest seasonal NCRMSE patterns than the northern regions. In 

general, the NCRMSEs in the southern hemisphere are smaller than the ones in the northern hemisphere all year around. 

Specifically, NCRMSEs in the southern hemisphere are slightly higher in October, November, and December, when the 

differences between OL and DA runs are also larger. 

 190 
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3.2 Water fluxes and storages 

As mentioned in section 2.3, we focus on five water-related variables from the Noah-MP output to evaluate the impact of 

LAI assimilation on simulating the water cycle (ET, CIE, CWS, SSM, and TWS). Daily time series of global averaged 

values and corresponding anomalies of the five water variables are shown in Figure 3(b-f) and Figure 4(b-f), respectively. 

The model well simulates the seasonality of all water fluxes/storages considered here. The OL runs reveal that global 195 

average values of all five variables are impacted by the highly biased precipitation conditions. The variations of anomalies 

for ET, CIE, CWS, and TWS tend to be amplified by the wet condition and tend to be dampened by the dry condition. On 

the contrary, the anomalies of SSM become larger in dry conditions and become smaller in wet conditions, which is 

probably due to the limited soil water capacity. The surface soil is more likely to get saturated in wet conditions when the 

precipitation doubles the original amount, but SSM cannot get larger once the soil is saturated, even if there is more 200 

precipitation added to the system. Thus, the range of SSM anomalies in the wet experiment is limited and narrower than in 

the dry condition. The green and yellow shaded areas represent the ensemble of the DA runs. The anomaly ensembles of the 

five water variables show slight improvements through DA when precipitation is severely positively biased (wet condition). 

However, none of these variables shows improvement when the precipitation is severely negatively biased (dry condition) – 

the anomalies either have no change through the LAI DA (ET, CIE, and CWS) or worsen the OL-dry run (SSM and TWS). 205 

To further investigate the efficiency of assimilating LAI in Noah-MP, time series of monthly NCRMSE averages are shown 

in Figure 6(b-f) and Figure 7(b-f) for all five water variables. The five variables can be divided into two main groups based 

on their performances: ET/CIE/CWS and SSM/TWS. For the wet bias experiment, DA improves the NCRMSE for all 

variables. However, LAI assimilation is not able to correct the model when the input precipitation is negatively biased (dry 

condition). A dry precipitation bias means that the system has (erroneously) less water than in reality (NR in the synthetic 210 

experiment). Since no water is otherwise added to the system, LAI DA cannot fully correct water-related model states (such 

as soil moisture). The NCRMSEs of DA runs are either the same as in the OL runs (ET/CIE/CWS) or worse (SSM/TWS). 

Specifically, ET/CIE/CWS have larger NCRMSE in the northern hemisphere and much smaller NCRMSEs in the southern 

hemisphere, but SSM/TWS do not show large differences between north and south. Moreover, ET/CIE/CWS in the northern 

hemisphere follow a seasonal pattern: NCRMSEs are lower in warm season (JJA) and higher in the colder season (DJF and 215 

March). In the southern hemisphere the three variables also have relative higher NCRMSE in the colder season (JJA). On the 

contrary, SSM/TWS show a different seasonal pattern that NCRMSEs are larger in the warmer season (April, May, and 

June) over northern hemisphere. In southern hemisphere, TWS also has larger NCRMSEs in warmer season (October to 

April), but SSM shows higher NCRMSEs in colder season (similar to the ET/CIE/CWS group). 

The improvements in the model water fluxes and storages through LAI DA are also quantified by the NIC index (defined in 220 

Eq. 2). Figure 8 presents comparisons among NIC indices for each water variable analyzed in this study across areas with 

four different land cover types: forest & woodland, grassland, shrubland, and cropland. In general, LAI DA improves the 

NIC indices with positively biased input precipitation (DA-wet) but worsens the NIC when negatively biased input 
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precipitation (DA-dry) is considered. Specifically, in wet condition, ET, CIE, and CWS have higher variability over areas 

with different land cover types, while SSM and TWS have similar NIC values across different land covers. Shrubland and 225 

cropland tend to perform better in wet condition except for TWS. In dry condition, the NICs of ET, CIE, and TWS have 

higher variability than the ones of CWS and SSM. SSM and TWS show very low NIC values in dry condition for almost all 

land covers. Overall the NIC values of ET, CIE, and CWS are better than the ones of SSM and TWS for all land cover types, 

though the NICs of ET and CIE over forest & woodland perform very poorly. 

The effectiveness of LAI DA therefore varies across the northern and southern hemispheres, different land cover types, as 230 

well as different input precipitation biases. To further investigate the influence of LAI assimilation, Figures 8 and 9 present 

NIC values for each hemisphere, each season, and each of the input precipitation conditions – wet and dry, respectively. For 

the wet case (Figure 9), NIC is positive in most cases, which means that the five water variables benefit from the LAI 

assimilation in all seasons and in both hemispheres. The only exception is CWS which has negative NIC values in the 

southern hemisphere over grassland (in MAM season) and over forest & woodland (in all seasons). In fact, the forest & 235 

woodland region tends to have the least improvement through the LAI assimilation among all land cover types. This is 

probably because forests and woodlands have large water-holding capacity; thus, the change of water amount caused by LAI 

DA is not enough to improve the water-related variables. In other words, forest and woodland tend to have lower sensitivity 

in response to the change of precipitation conditions because of their large rooting depth. On the contrary, cropland is very 

sensitive to precipitation and it benefits the most from the assimilation of LAI for most of the variables. Moreover, NICs of 240 

ET/CIE/CWS tend to be smaller than the NICs of SSM and TWS. There is no clear seasonality in the NIC values, though it 

has a weak tendency to be lower in warm seasons.  

For the dry condition case (Figure 10), NIC values are much lower than in the wet bias case. Nearly half of the NIC values 

for the five water-related variables are negative, meaning that DA degrades the OL estimates. Nevertheless, the forest & 

woodland regions tend to perform better than other land covers in dry condition for SSM and TWS. This is due to large soil 245 

reservoir of forests and woodlands, which keeps the model water storage more stable when the input precipitation is affected 

by large negative biases. 

3.3 Discussion 

As a key factor in land surface processes, precipitation greatly affects surface water fluxes and states and, consequently, 

affects the vegetation development. Furthermore, changes in vegetation also have considerable impact on the surface water 250 

condition. Sections 3.1 and 3.2 quantified changes in five water variables (ET, CIE, CWS, SSM, and TWS) due to the LAI 

assimilation in Noah-MP. Among the five variables, CIE and CWS are directly related to LAI, while the relationships 

between LAI and ET, SSM, and TWS are more complex (and indirect) and involve several other factors. For example, ET 

counts the water losses via both vegetation and soil; SSM is impacted by precipitation, temperature, soil characteristics, etc.; 

TWS considers all the water storage in the land surface and subsurface, including CWS and SSM. 255 
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The performance of the proposed LAI assimilation largely varies depending on the modeled variable, land cover type, errors 

in the model input (e.g., wet or dry bias in the forcing precipitation), and season. This is due to the complex relationships 

between vegetation and land water condition. Specifically, results in this study indicate that assimilating LAI in Noah-MP 

improves the model estimates of water fluxes and storages under positively biased precipitation input, but does not benefit 

most of the selected water variables when the precipitation input is characterized by a negative bias.  260 

In the dry condition runs, Noah-MP is fed by only half of the original MERRA-2 precipitation used in the NR. Considering 

that the amount of water in Noah-MP is conservative (since based on a water balance equation), the model has no additional 

water source in the system, even though the LAI assimilation pushes the model towards more vegetation (that should result 

in more water). As a matter of fact, introducing more vegetation in the system results in more ET and more root water uptake 

from the soil, which is most likely the cause for the poor performance of most water fluxes and storages in the DA-dry 265 

experiment.  

On the other hand, the LAI assimilation is found to improve the original OL runs when the input precipitation is positively 

biased. This is because LAI assimilation is able to help constrain the partitioning of model water storage when there is 

abundant water in the system, thus, improving the performance of water-related variables. In summary, although the EnKF is 

run here in a sub-optimal mode (not satisfying the unbiasedness assumption), the assimilation of LAI is shown to have a 270 

positive impact on multiple variables and in several regions of the world. 

Overall the improvement of water variables through LAI assimilation is not remarkable enough to compensate the model 

degradation caused by the biased precipitation forcing data. Previous studies (Pauwels et al. 2007; Sabater et al. 2007; Barbu 

et al. 2011; Fairbairn et al. 2017; Albergel et al. 2017) have tested the performance of the joint assimilation of LAI and soil 

moisture over regional domains and showed promising results. However, no experiment was performed at the global scale. 275 

Future work could investigate a multi-variate data assimilation system that concurrently merges both LAI and soil moisture 

(or TWS) observations globally. 

4 Conclusions 

This study evaluates the efficiency of assimilating vegetation information (i.e., LAI synthetic observations) within a land 

surface model (Noah-MP 3.6) when the precipitation forcing data are strongly biased (either positively or negatively). Two 280 

OSSEs that use an EnKF algorithm for LAI assimilation are performed at global scale during June 2011 – May 2013. The 

experiments use MERRA-2 as meteorological forcing data. The OL and DA runs are evaluated against a synthetic “truth” 

from a nature run, in which the MERRA-2 precipitation is neither perturbed nor biased. The performance of the proposed 

framework is evaluated for several model output, including LAI estimates and five water-related variables (ET, CIE, CWS, 

SSM, and TWS). 285 

Overall the EnKF LAI assimilation procedure effectively reduces the LAI error under positively (wet case) and the 

negatively (dry case) biased precipitation conditions. For the five selected water flux or storage variables, LAI DA improves 
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the model estimates when the model input precipitation is positively biased, but tends to worsen the OL estimates for some 

of those variables when the input precipitation is negatively biased. Specifically, SSM and TWS estimates are degraded in 

the DA-dry run with respect to the OL-dry run, while ET, CIE, and CWS do not present large changes when LAI is 290 

assimilated in the dry bias run. The poor performance of LAI DA under dry condition is mainly attributed to the fact that the 

amount of water in Noah-MP is conservative. The LAI assimilation in dry condition introduces more vegetation, which 

requires more water in the system to replenish the soil water supply. However, the model has no additional source of water, 

since the input precipitation is negatively biased. 

Although a blind bias case (e.g., unknown biases in the precipitation forcing dataset) is presented here in which the EnKF is 295 

run in a sub-optimal mode, the assimilation of LAI observations is proven useful to improve several model output variables. 

Future research should focus on alternative DA methods, such as updating other related model states while assimilating LAI 

observations, perturbing the model initial condition and model parameters, and/or assimilating  actual satellite-based LAI 

observations (e.g., MODIS, GLASS) at the global scale to verify the efficiency of the proposed vegetation DA framework. 

This may be particularly useful in agricultural areas, where the vegetation conditions are largely impacted by cropping 300 

schedules (Kumar et al. 2019b). Moreover, future work could investigate multi-variate DA techniques that combine the 

assimilation of several variables (such as LAI, soil moisture, and TWS) at the global scale. 
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Figure 1: Study domain and land cover types (Hansen et al. 2000). 

Figure 2. Schematic diagram of the OSSE design. 475 

Figure 3. Global averaged daily values of LAI and five water variables (2011-06-01 to 2013-05-30). 

Figure 4. Global averaged daily anomalies of LAI and five water variables (2011-06-01 to 2013-05-30). 

Figure 5. Maps of LAI NCRMSE for the OL and DA runs. 

Figure 6. Monthly averaged NCRMSE for LAI and five water variables over the Northern hemisphere. 

Figure 7. Same as in Figure 6, but for the Southern hemisphere. 480 
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Figure 8. NIC for different variables and different land cover types for the two DA runs. 

Figure 9. NIC of five water variables under wet precipitation conditions over northern and southern hemispheres (NH and SH) 

during different seasons (MAM, JJA, SON, and DJF) 

Figure 10. Same as in Figure 9, but for the dry precipitation experiment. 

 485 


