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Abstract 23 

Vegetation plays a fundamental role not only in the energy and carbon cycles, but also in the global 24 

water balance by controlling surface evapotranspiration (ET). Thus, accurately estimating 25 

vegetation-related variables has the potential to improve our understanding and estimation of the 26 

dynamic interactions between the water, energy, and carbon cycle. This study aims to assess to 27 

what extent a land surface model (LSM) can be optimized through the assimilation of leaf area 28 

index (LAI) observations at the global scale. Two Observing System Simulation Experiments 29 

(OSSEs) are performed to evaluate the efficiency of assimilating LAI into an LSM through an 30 

Ensemble Kalman Filter (EnKF) to estimate LAI, ET, canopy interception evaporation (CIE), 31 

canopy water storage (CWS), surface soil moisture (SSM), and terrestrial water storage (TWS). 32 

Results show that the LAI data assimilation framework not only effectively reduces errors in LAI 33 

model simulations, but also improves all the modeled water flux and storage variables considered 34 

in this study (ET, CIE, CWS, SSM, and TWS), even when the forcing precipitation is strongly 35 

positively biased (extremely wet condition). However, it tends to worsen some of the modeled 36 

water-related variables (SSM and TWS) when the forcing precipitation is affected by a dry bias. 37 

This is attributed to the fact that the amount of water in the LSM is conservative and the LAI 38 

assimilation introduces more vegetation, which requires more water than what available within the 39 

soil.  40 

  41 
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1. Introduction 42 

Terrestrial vegetation plays a vital role in the global water cycle, as it controls the surface 43 

evapotranspiration (ET) and the state of the carbon cycle. As shown in past literature, there exists 44 

a strong relationship among vegetation, precipitation, and soil moisture (Di et al., 1994; Farrar et 45 

al., 1994; Richard and Poccard, 1998; Adegoke and Carleton, 2002). Nevertheless, the role that 46 

vegetation and its dynamics play in the water cycle (for instance on the variability of precipitation) 47 

is extremely complex (Wang and Eltahir 2000; Wang et al. 2011). In the past half-century, these 48 

land surface processes and feedbacks have been examined through numerical modeling 49 

experiments (Foley et al. 1996; Kim and Wang 2007; Druel et al. 2019). In early generation land 50 

surface models (LSMs), the development stage of vegetation was prescribed by regularly updating 51 

vegetation variables, based on fixed lookup tables to simplify the model computation (Foley et al. 52 

1996). This approach uses constant vegetation indices, e.g., the leaf area index (LAI), while in 53 

reality the growth of vegetation continuously changes in response to weather and climate 54 

conditions. To overcome this deficiency, new generation LSMs are coupled with dynamic 55 

vegetation modules that comprehensively simulate several biogeochemical processes (Woodward 56 

and Lomas 2004; Gibelin et al. 2006; Fisher et al. 2018) and that are able to capture more detailed 57 

variations in plant productivity than traditional methods (Kucharik et al. 2000; Arora 2002; 58 

Krinner et al. 2005). 59 

LAI can also be estimated through observations from satellite sensors, such as the 60 

Moderate Resolution Imaging Spectroradiometer (MODIS, Pagano and Durham 1993; Justice et 61 

al. 2002), the Système Probatoire d’Observation de la Terre VEGETATION (SPOT-VGT, Baret 62 

et al. 2007), and the National Oceanic and Atmospheric Administration (NOAA) Advanced Very 63 

High Resolution Radiometer (AVHRR, Cracknell 1997). LAI products retrieved from different 64 
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satellite missions and sensors provide spatially and temporally varying LAI fields on a routine 65 

basis at regional and global scales, including the MODIS LAI (Myneni et al. 2002), the Global 66 

Land Surface Satellite (GLASS) LAI (Xiao et al. 2013), and the GLOBMAP LAI dataset (Liu et 67 

al. 2012), among others. Satellite-derived LAI products were found to be affected by uncertainties 68 

due to the limitation of retrieval algorithms and vegetation type sampling issues (Cohen and Justice 69 

1999; Privette et al. 2002; Tian et al. 2002; Morisette et al. 2002). 70 

A method to combine the inherently incorrect estimates from satellite observations and 71 

model simulations is data assimilation (DA). One of the most common DA systems — the 72 

Ensemble Kalman Filter (EnKF; Evensen 2003) — dynamically updates the model error 73 

covariance information by producing an ensemble of model predictions, which are individual 74 

model realizations perturbed by the assumed model error (Reichle et al. 2007). The ensemble 75 

approach is widely used in hydrology because of its flexibility with respect to the type of model 76 

error (Crow and Wood 2003) and well suited to the nonlinear nature of land surface processes 77 

(Reichle et al. 2002a, 2002b; Andreadis and Lettenmaier 2006; Durand and Margulis 2008; Kumar 78 

et al. 2008; Pan and Wood 2006; Pauwels and De Lannoy 2006; Zhou et al. 2006). However, the 79 

use of an EnKF for the assimilation of LAI in LSMs has not been thoroughly investigated in the 80 

past. Pauwels et al. (2007) proposed an Observing System Simulation Experiment (OSSE) to 81 

evaluate the performance of assimilating LAI in a hydrology-crop growth model with an EnKF 82 

algorithm. Other studies have also tested simplified 1D-VAR and extended Kalman filter methods 83 

for LAI assimilation (e.g., Sabater et al. 2008; Barbu et al. 2011; Fairbairn et al. 2017). Recently, 84 

Kumar et al. (2019) assimilated GLASS LAI in a land surface model with an EnKF across the 85 

continental U.S. Some water budget variables were improved through the assimilation procedure, 86 

particularly in agricultural areas where the assimilation added harvesting information to the model. 87 
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Ling et al. (2019) assimilated global LAI information with an Ensemble Adjust Kalman Filter 88 

(EAKF) algorithm and found that the assimilation is more effective during the growing season. 89 

LAI assimilation also had a positive impact on gross primary production (GPP) and ET in low 90 

latitude regions.  91 

Nevertheless, most of the aforementioned studies mainly focused on the impact of LAI 92 

assimilation on the simulated LAI or vegetation biomass. Only a few studies discussed the 93 

influences of LAI assimilation on the estimation of water variables such as soil moisture or 94 

streamflow (Pauwels et al. 2007; Sabater et al. 2008) and most of them focused on limited regions. 95 

Most recently, Albergel et al. (2017) conducted a study on a much larger domain  ̶  Europe and the 96 

Mediterranean basin  ̶ and showed improvement in soil moisture at various depths thanks to LAI 97 

assimilation.  98 

This work leverages upon these studies but aims to assess to what extent a land surface 99 

model, especially the simulation of water-related variables, can be optimized through the 100 

assimilation of LAI observations at the global scale. As this study serves as a feasibility test to 101 

quantify the impact of LAI assimilation on water cycle variables, an OSSE is chosen to investigate 102 

the model’s behavior. This guarantees that reference variables (often referred to as the “truth”), 103 

which are synthetically produced, are available for quantifying the performance of the proposed 104 

framework. Specifically, two OSSEs that apply an EnKF algorithm to the Noah LSM with multi-105 

parameterization options (Noah-MP, Niu et al. 2011; Yang et al. 2011) are performed to evaluate 106 

the efficiency of assimilating LAI observations for estimating ET, canopy interception evaporation 107 

(CIE), canopy water storage (CWS), surface soil moisture (SSM), and terrestrial water storage 108 

(TWS).  109 

 110 
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 111 

2. Methods and materials 112 

2.1. Land surface model (Noah-MP) 113 

The Noah-MP 3.6 (Niu et al. 2011; Yang et al. 2011) is adopted in this study. Noah-MP contains 114 

a separate vegetation canopy defined by a canopy top and bottom, crown radius, and leaves with 115 

defined dimensions, orientation, density, and radiometric properties (Niu et al. 2011). Multiple 116 

options are available for surface water infiltration, runoff, groundwater transfer and storage 117 

including water table depth to an unconfined aquifer (Niu et al. 2007), dynamic vegetation, canopy 118 

resistance, and frozen soil physics. Specifically, the prognostic vegetation growth combines a Ball-119 

Berry photosynthesis-based stomatal resistance (Ball et al. 1987) with a dynamic vegetation model 120 

(Dickinson et al. 1998). The dynamic vegetation model calculates the carbon storages in various 121 

parts of the vegetation (leaf, stem, wood, and root) and the soil carbon pools.  122 

The Noah-MP 3.6 LSM has been implemented into the National Aeronautics and Space 123 

Administration (NASA) Land Information System (LIS; Peters-Lidard et al. 2007; Kumar et al. 124 

2006). LIS is a software that provides an interagency test bed for land surface modeling and data 125 

assimilation that allows customized systems to be built, assembled and reconfigured easily, using 126 

shared plugins and standard interfaces. All the experiments in this study are setup through LIS. 127 

The Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2; 128 

Gelaro et al. 2017) dataset serves as the meteorological forcings of Noah-MP. MERRA-2 is the 129 

latest atmospheric reanalysis produced by the NASA Global Modeling and Assimilation Office 130 

(GMAO) and includes updates from the Goddard Earth Observing System (GEOS). The 131 

meteorological variables selected from MERRA-2 include surface pressure, surface air 132 

temperature, surface specific humidity, incident radiations, wind speed, and precipitation rate.  133 



- 7 - 
 

Five model output variables that describe terrestrial water fluxes and storages are 134 

investigated in this work: ET (defined as the sum of evaporation and the plant transpiration 135 

[kg/m2s]), CIE (defined as the evaporation of the canopy intercepted water [kg/m2s]), CWS 136 

(defined as the amount of canopy intercepted water in both liquid and ice phases [kg/m2]), SSM 137 

(defined as the water content in the top 10 cm of the soil column [m3/m3]), and TWS (defined as 138 

the sum of all water storage on the land surface and in the subsurface [mm]).  139 

 140 

2.2. Experimental design 141 

An OSSE is designed to understand the efficiency of assimilating LAI within Noah-MP version 142 

3.6 using a one-dimensional EnKF algorithm (Reichle et al. 2010), when the precipitation forcing 143 

data are strongly biased. Being the major driving force of the hydrological cycle, the quality of 144 

input precipitation is critical for the accuracy of land surface model outputs. However, global 145 

precipitation datasets are far from being perfect and often affected by large regional biases. For 146 

example, the MERRA-2 precipitation dataset shows a widespread relative bias greater than 100% 147 

in South Asia (Ghatak et al. 2018). Although an  EnKF is optimal only under the assumption of 148 

unbiasedness (which is not met in the proposed experimental setup), we want to investigate here 149 

to what extent the EnKF LAI assimilation (even if sub-optimal) can improve water storages and 150 

fluxes under two extreme conditions, i.e., a very dry and a very wet precipitation bias, knowing 151 

that such biases are very plausible in the real world and often unknown (and therefore difficult to 152 

remove). The proposed framework is evaluated through a global experiment (Antarctica excluded) 153 

at the 0.625° × 0.5° spatial resolution of the MERRA-2 forcing dataset (Figure 1). 154 
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 155 

Figure 1. Study domain and land cover types (Hansen et al. 2000). 156 

 157 

Figure 2 shows a schematic diagram of the experiments. First, the Noah-MP model is spun-158 

up for a 10-year period (2001-2010) to ensure a physically realistic state of equilibrium. Second, 159 

the model is run for a 29-month period (January 2011 – May 2013) to conduct the Nature Run 160 

(NR) with the same configuration as the spin-up one. By definition, an OSSE is a controlled 161 

experiment that does not assimilate any real observation. Instead, it treats all the model outputs 162 

from the NR as the “true” condition (denoted as the “synthetic truth”). The “true” LAI (i.e., the 163 

LAI output from NR) is then perturbed via a simple additive error model to produce the synthetic 164 

observations to be assimilated into the DA runs. The spin-up run and NR are forced by the original 165 

MERRA-2 precipitation data. Third, two Open Loop (OL) runs (no DA) are conducted for the 166 

same 29-month period under two conditions: i) “extremely dry” condition (the model is forced by 167 

halving the MERRA-2 precipitation data; OL-dry), and ii) “extremely wet” condition (the model 168 

is forced by doubling the MERRA-2 precipitation; OL-wet). The biased forcing precipitation data 169 

in OL mimic typical precipitation biases in current precipitation reanalysis and satellite products 170 

(e.g., Ghatak et al. 2018; Yoon et al. 2019). 171 
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 172 

Figure 2. Schematic diagram of the OSSE design. 173 

 174 

The two DA runs are then conducted under the two same conditions (DA-dry and DA-wet) 175 

using a one-dimensional EnKF assimilation algorithm, which is a built-in DA method in LIS. The 176 

EnKF DA algorithm is suitable for non-linear and intermittent land surface processes (Reichle et 177 

al. 2002a, 2002b). Details of the algorithm can be found in numerous previous studies (Reichle et 178 

al. 2010; De Lannoy et al. 2012; Liu et al. 2015; Kumar et al. 2019a). 179 

The model ensemble is generated by perturbing a set of meteorological forcing. To select 180 

the optimal ensemble size, a sensitivity test is performed for ensemble sizes spanning from 2 to 24 181 

members (not shown here). The number of ensemble members has a strong impact on the model 182 

results at small sizes, while the model performance tends to become steady when more than 20 183 

ensemble members are considered. Thus, all the DA simulations are run for 20 members.  184 

The synthetic LAI observations are obtained from the NR and assimilated to the DA system 185 

at 8-daily frequency. The synthetic LAI observation has the same temporal resolution as the 186 
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MODIS LAI product but with full coverage over the study domain. In real case studies, satellite 187 

LAI products contain a substantial amount of missing data, mainly due to the cloud obscuration 188 

gaps. Based on the vegetation type in the model, the leaf mass fields are also updated. Random 189 

perturbations of MERRA-2 meteorological forcings and synthetic LAI observations are applied to 190 

create an ensemble of land surface conditions that represent the uncertainties of in the LSM. 191 

Similar to previous work (Kumar et al. 2014, 2019a, 2019b), the MERRA-2 forcing inputs 192 

such as shortwave/longwave radiations and precipitation are perturbed hourly. Multiplicative 193 

perturbations are applied to the shortwave radiation and precipitation with a mean of 1 and standard 194 

deviations of 0.3 and 0.5, respectively. The longwave radiation is perturbed via an additive 195 

perturbation with a standard deviation of 50 W/m2. The perturbations of the three meteorological 196 

forcing variables also include cross correlations: cross correlation between shortwave radiation 197 

and precipitation is -0.8, cross correlation between longwave radiation and precipitation is 0.5; and 198 

cross correlation between shortwave and longwave radiations is -0.5. The synthetic LAI 199 

observations are perturbed via an additive model with a standard deviation of 0.1. 200 

 201 

2.3. Evaluation and error metrics  202 

Output variables from the OL and DA runs are evaluated against the “truth” from the NR at daily, 203 

monthly, and seasonal temporal scales. Besides LAI, five more water fluxes and storages are 204 

evaluated in the results section: ET, CIE, CWS, SSM, and TWS. 205 

The initial condition for the OL and DA runs is generated by a spin-up run that uses the 206 

original MERRA-2 precipitation as input. However, the OL and DA runs are forced by either 207 

doubled or halved precipitation, which is not consistent with the spin-up run and the model needs 208 

some time to stabilize. The first 5-month model outputs are therefore eliminated from the 209 
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evaluation to avoid the model systematic instability at the beginning of the OL and DA simulations 210 

and the evaluation, thus, focused only on model outputs from 2011-06-01 to 2013-05-31. Results 211 

are discussed using maps and time series of global averaged values and anomalies. Each of the 212 

anomaly time series is computed relative to the mean of its respective model run. Moreover, two 213 

error metrics are employed to quantify the difference between OL (and DA) with respect to the 214 

reference variables (from the NR). The first one is the Normalized and Centered Root Mean Square 215 

Error (NCRMSE), defined as follows: 216 

𝐸 =
{
1

𝑁
∑ [(𝑋𝑖−𝑚𝑒𝑎𝑛(𝑋))−(𝑂𝑖−𝑚𝑒𝑎𝑛(𝑂))]

2𝑁
𝑖=1 }

1
2

𝑚𝑒𝑎𝑛(𝑂)
      Eq. 1 217 

where E is the NCRMSE, O is the NR output variable, and X is the output variable from the OL 218 

runs or DA runs. N is the total number of X values, and i represents the index of each X value. 219 

Second, to investigate the improvement (or degradation) due to the DA of LAI observations, we 220 

adopt the Normalized Information Contribution (NIC, similar to the NIC in Kumar et al. 2016) 221 

index based on NCRMSE and defined as: 222 

𝐶 =
𝐸𝐷𝐴−𝐸𝑂𝐿

0−𝐸𝑂𝐿
          Eq. 2 223 

where C represents the NIC index and E is the NCRMSE for OL or DA runs. NIC equals to 1 224 

means that DA realizes the maximum possible improvement over the OL; NIC equals to zero 225 

means that DA and OL show the same performance skills; and negative NIC indicates a model 226 

degradation through DA. 227 

 228 

3. Results and discussion 229 

3.1. LAI 230 



- 12 - 
 

 231 

Figure 3. Global averaged daily values of LAI and five water variables (2011-06-01 to 2013-05-30). 232 

 233 
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 234 

Figure 4. Global averaged daily anomalies of LAI and five water variables (2011-06-01 to 2013-05-30). 235 

 236 

Figure 3a and Figure 4a show time series of global averaged LAI values and corresponding 237 

anomalies, respectively. As expected, LAI values are largely impacted by the extreme precipitation 238 

conditions. The wet condition introduces more vegetation, while the dry condition limits the 239 

vegetation growth throughout the two-year period. The DA procedure effectively corrects the LAI 240 

errors caused by the biased precipitation input. The seasonality of LAI anomalies is evident, 241 

showing larger variations in DJF and JJA than during the transition periods (MAM and SON). The 242 

OL-wet condition simulation shows larger LAI anomalies than the NR reference, while the OL-243 
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dry condition has smaller LAI anomalies than NR. The LAI anomalies obtained from DA runs 244 

under both wet and dry conditions are closer to the reference anomalies than the corresponding 245 

OL runs. In general, DA performs better in the wet condition experiment than in the dry case. 246 

Moreover, the DA runs show lower NCRMSEs than the corresponding OL runs across the globe 247 

(Figure 5a), especially over shrublands and grasslands (refer to Figure 1 for land covers).  248 

In order to illustrate how LAI assimilation performs for different seasons, Figure 6a and 249 

Figure 7a show monthly averages of NCRMSE for LAI across the northern and southern 250 

hemispheres, respectively. In the northern hemisphere (Figure 6a), the NCRMSE time series 251 

follow clear seasonal patterns. First, the NCRMSE is higher in DJF/MAM and is lower in JJA/SON 252 

for both extreme precipitation conditions. The highest NCRMSE values are in March and April, 253 

and the lowest values are in July, August, and September. The differences of NCRMSE between 254 

OL and the corresponding DA runs tend to be much larger in MAM than in any other seasons, 255 

which means that LAI assimilation is more effective in the vegetation growth period. Moreover, 256 

the NCRMSE is constantly higher in the dry condition runs than the wet ones, which is due to the 257 

fact that the growth of vegetation is sensitive to the lack of water. Differences between wet and 258 

dry conditions are much smaller in JJA than in other seasons. In JJA, the vegetation leaves in the 259 

north hemisphere are fully developed and the plants can use stomatal closure to preserve water 260 

under water limited condition (dry condition). Thus, the NCRMSE of dry condition becomes 261 

smaller and does not show much difference from the wet condition. The southern hemisphere 262 

(Figure 7a), which does not have a strong climate seasonality, shows more modest seasonal 263 

NCRMSE patterns than the northern regions. In general, the NCRMSEs in the southern 264 

hemisphere are smaller than the ones in the northern hemisphere all year around. Specifically, 265 
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NCRMSEs in the southern hemisphere are slightly higher in October, November, and December, 266 

when the differences between OL and DA runs are also larger.  267 

 268 

 269 

Figure 5. Maps of LAI NCRMSE for the OL and DA runs. 270 

 271 

3.2. Water fluxes and storages 272 

As mentioned in section 2.3, we focus on five water-related variables from the Noah-MP output 273 

to evaluate the impact of LAI assimilation on simulating the water cycle (ET, CIE, CWS, SSM, 274 

and TWS). Daily time series of global averaged values and corresponding anomalies of the five 275 

water variables are shown in Figure 3(b-f) and Figure 4(b-f), respectively. The model well 276 

simulates the seasonality of all water fluxes/storages considered here. The OL runs reveal that 277 

global average values of all five variables are impacted by the highly biased precipitation 278 

conditions. The variations of anomalies for ET, CIE, CWS, and TWS tend to be amplified by the 279 

wet condition and tend to be dampened by the dry condition. On the contrary, the anomalies of 280 

SSM become larger in dry conditions and become smaller in wet conditions, which is probably 281 
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due to the limited soil water capacity. The surface soil is more likely to get saturated in wet 282 

conditions when the precipitation doubles the original amount, but SSM cannot get larger once the 283 

soil is saturated, even if there is more precipitation added to the system. Thus, the range of SSM 284 

anomalies in the wet experiment is limited and narrower than in the dry condition. The green and 285 

yellow shaded areas represent the ensemble of the DA runs. The anomaly ensembles of the five 286 

water variables show slight improvements through DA when precipitation is severely positively 287 

biased (wet condition). However, none of these variables shows improvement when the 288 

precipitation is severely negatively biased (dry condition) – the anomalies either have no change 289 

through the LAI DA (ET, CIE, and CWS) or worsen the OL-dry run (SSM and TWS). 290 

To further investigate the efficiency of assimilating LAI in Noah-MP, time series of 291 

monthly NCRMSE averages are shown in Figure 6(b-f) and Figure 7(b-f) for all five water 292 

variables. The five variables can be divided into two main groups based on their performances: 293 

ET/CIE/CWS and SSM/TWS. For the wet bias experiment, DA improves the NCRMSE for all 294 

variables. However, LAI assimilation is not able to correct the model when the input precipitation 295 

is negatively biased (dry condition). A dry precipitation bias means that the system has 296 

(erroneously) less water than in reality (NR in the synthetic experiment). Since no water is 297 

otherwise added to the system, LAI DA cannot fully correct water-related model states (such as 298 

soil moisture). The NCRMSEs of DA runs are either the same as in the OL runs (ET/CIE/CWS) 299 

or worse (SSM/TWS). Specifically, ET/CIE/CWS have larger NCRMSE in the northern 300 

hemisphere and much smaller NCRMSEs in the southern hemisphere, but SSM/TWS do not show 301 

large differences between north and south. Moreover, ET/CIE/CWS in the northern hemisphere 302 

follow a seasonal pattern: NCRMSEs are lower in warm season (JJA) and higher in the colder 303 

season (DJF and March). In the southern hemisphere the three variables also have relative higher 304 
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NCRMSE in the colder season (JJA). On the contrary, SSM/TWS show a different seasonal pattern 305 

that NCRMSEs are larger in the warmer season (April, May, and June) over northern hemisphere. 306 

In southern hemisphere, TWS also has larger NCRMSEs in warmer season (October to April), but 307 

SSM shows higher NCRMSEs in colder season (similar to the ET/CIE/CWS group). 308 

 309 

Figure 6. Monthly averaged NCRMSE for LAI and five water variables over the Northern hemisphere. 310 
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 311 

Figure 7. Same as in Figure 6, but for the Southern hemisphere. 312 

 313 

The improvements in the model water fluxes and storages through LAI DA are also 314 

quantified by the NIC index (defined in Eq. 2). Figure 8 presents comparisons among NIC indices 315 

for each water variable analyzed in this study across areas with four different land cover types: 316 
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forest & woodland, grassland, shrubland, and cropland. In general, LAI DA improves the NIC 317 

indices with positively biased input precipitation (DA-wet) but worsens the NIC when negatively 318 

biased input precipitation (DA-dry) is considered. Specifically, in wet condition, ET, CIE, and 319 

CWS have higher variability over areas with different land cover types, while SSM and TWS have 320 

similar NIC values across different land covers. Shrubland and cropland tend to perform better in 321 

wet condition except for TWS. In dry condition, the NICs of ET, CIE, and TWS have higher 322 

variability than the ones of CWS and SSM. SSM and TWS show very low NIC values in dry 323 

condition for almost all land covers. Overall the NIC values of ET, CIE, and CWS are better than 324 

the ones of SSM and TWS for all land cover types, though the NICs of ET and CIE over forest & 325 

woodland perform very poorly.  326 

 327 



- 20 - 
 

 328 

Figure 8. NIC for different variables and different land cover types for the two DA runs. 329 

 330 
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 331 
Figure 9. NIC of five water variables under wet precipitation conditions over northern and southern hemispheres 332 

(NH and SH) during different seasons (MAM, JJA, SON, and DJF) 333 
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 334 

Figure 10. Same as in Figure 9, but for the dry precipitation experiment. 335 
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 336 

The effectiveness of LAI DA therefore varies across the northern and southern hemispheres, 337 

different land cover types, as well as different input precipitation biases. To further investigate the 338 

influence of LAI assimilation, Figures 8 and 9 present NIC values for each hemisphere, each 339 

season, and each of the input precipitation conditions – wet and dry, respectively. For the wet case 340 

(Figure 9), NIC is positive in most cases, which means that the five water variables benefit from 341 

the LAI assimilation in all seasons and in both hemispheres. The only exception is CWS which 342 

has negative NIC values in the southern hemisphere over grassland (in MAM season) and over 343 

forest & woodland (in all seasons). In fact, the forest & woodland region tends to have the least 344 

improvement through the LAI assimilation among all land cover types. This is probably because 345 

forests and woodlands have large water-holding capacity; thus, the change of water amount caused 346 

by LAI DA is not enough to improve the water-related variables. In other words, forest and 347 

woodland tend to have lower sensitivity in response to the change of precipitation conditions 348 

because of their large rooting depth. On the contrary, cropland is very sensitive to precipitation 349 

and it benefits the most from the assimilation of LAI for most of the variables. Moreover, NICs of 350 

ET/CIE/CWS tend to be smaller than the NICs of SSM and TWS. There is no clear seasonality in 351 

the NIC values, though it has a weak tendency to be lower in warm seasons.  352 

For the dry condition case (Figure 10), NIC values are much lower than in the wet bias 353 

case. Nearly half of the NIC values for the five water-related variables are negative, meaning that 354 

DA degrades the OL estimates. Nevertheless, the forest & woodland regions tend to perform better 355 

than other land covers in dry condition for SSM and TWS. This is due to large soil reservoir of 356 

forests and woodlands, which keeps the model water storage more stable when the input 357 

precipitation is affected by large negative biases. 358 
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 359 

3.3. Discussion 360 

As a key factor in land surface processes, precipitation greatly affects surface water fluxes and 361 

states and, consequently, affects the vegetation development. Furthermore, changes in vegetation 362 

also have considerable impact on the surface water condition. Sections 3.1 and 3.2 quantified 363 

changes in five water variables (ET, CIE, CWS, SSM, and TWS) due to the LAI assimilation in 364 

Noah-MP. Among the five variables, CIE and CWS are directly related to LAI, while the 365 

relationships between LAI and ET, SSM, and TWS are more complex (and indirect) and involve 366 

several other factors. For example, ET counts the water losses via both vegetation and soil; SSM 367 

is impacted by precipitation, temperature, soil characteristics, etc.; TWS considers all the water 368 

storage in the land surface and subsurface, including CWS and SSM. 369 

The performance of the proposed LAI assimilation largely varies depending on the 370 

modeled variable, land cover type, errors in the model input (e.g., wet or dry bias in the forcing 371 

precipitation), and season. This is due to the complex relationships between vegetation and land 372 

water condition. Specifically, results in this study indicate that assimilating LAI in Noah-MP 373 

improves the model estimates of water fluxes and storages under positively biased precipitation 374 

input, but does not benefit most of the selected water variables when the precipitation input is 375 

characterized by a negative bias.  376 

In the dry condition runs, Noah-MP is fed by only half of the original MERRA-2 377 

precipitation used in the NR. Considering that the amount of water in Noah-MP is conservative 378 

(since based on a water balance equation), the model has no additional water source in the system, 379 

even though the LAI assimilation pushes the model towards more vegetation (that should result in 380 

more water). As a matter of fact, introducing more vegetation in the system results in more ET and 381 
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more root water uptake from the soil, which is most likely the cause for the poor performance of 382 

most water fluxes and storages in the DA-dry experiment.  383 

On the other hand, the LAI assimilation is found to improve the original OL runs when the 384 

input precipitation is positively biased. This is because LAI assimilation is able to help constrain 385 

the partitioning of model water storage when there is abundant water in the system, thus, improving 386 

the performance of water-related variables. In summary, although the EnKF is run here in a sub-387 

optimal mode (not satisfying the unbiasedness assumption), the assimilation of LAI is shown to 388 

have a positive impact on multiple variables and in several regions of the world. 389 

Overall the improvement of water variables through LAI assimilation is not remarkable 390 

enough to compensate the model degradation caused by the biased precipitation forcing data. 391 

Previous studies (Pauwels et al. 2007; Sabater et al. 2007; Barbu et al. 2011; Fairbairn et al. 2017; 392 

Albergel et al. 2017) have tested the performance of the joint assimilation of LAI and soil moisture 393 

over regional domains and showed promising results. However, no experiment was performed at 394 

the global scale. Future work could investigate a multi-variate data assimilation system that 395 

concurrently merges both LAI and soil moisture (or TWS) observations globally. 396 

 397 

4. Conclusions 398 

This study evaluates the efficiency of assimilating vegetation information (i.e., LAI synthetic 399 

observations) within a land surface model (Noah-MP 3.6) when the precipitation forcing data are 400 

strongly biased (either positively or negatively). Two OSSEs that use an EnKF algorithm for LAI 401 

assimilation are performed at global scale during June 2011 – May 2013. The experiments use 402 

MERRA-2 as meteorological forcing data. The OL and DA runs are evaluated against a synthetic 403 

“truth” from a nature run, in which the MERRA-2 precipitation is neither perturbed nor biased. 404 



- 26 - 
 

The performance of the proposed framework is evaluated for several model output, including LAI 405 

estimates and five water-related variables (ET, CIE, CWS, SSM, and TWS). 406 

Overall the EnKF LAI assimilation procedure effectively reduces the LAI error under 407 

positively (wet case) and the negatively (dry case) biased precipitation conditions. For the five 408 

selected water flux or storage variables, LAI DA improves the model estimates when the model 409 

input precipitation is positively biased, but tends to worsen the OL estimates for some of those 410 

variables when the input precipitation is negatively biased. Specifically, SSM and TWS estimates 411 

are degraded in the DA-dry run with respect to the OL-dry run, while ET, CIE, and CWS do not 412 

present large changes when LAI is assimilated in the dry bias run. The poor performance of LAI 413 

DA under dry condition is mainly attributed to the fact that the amount of water in Noah-MP is 414 

conservative. The LAI assimilation in dry condition introduces more vegetation, which requires 415 

more water in the system to replenish the soil water supply. However, the model has no additional 416 

source of water, since the input precipitation is negatively biased. 417 

Although a blind bias case (e.g., unknown biases in the precipitation forcing dataset) is 418 

presented here in which the EnKF is run in a sub-optimal mode, the assimilation of LAI 419 

observations is proven useful to improve several model output variables. Future research should 420 

focus on alternative DA methods, such as updating other related model states while assimilating 421 

LAI observations, perturbing the model initial condition and model parameters, and/or assimilating  422 

actual satellite-based LAI observations (e.g., MODIS, GLASS) at the global scale to verify the 423 

efficiency of the proposed vegetation DA framework. This may be particularly useful in 424 

agricultural areas, where the vegetation conditions are largely impacted by cropping schedules 425 

(Kumar et al. 2019b). Moreover, future work could investigate multi-variate DA techniques that 426 
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combine the assimilation of several variables (such as LAI, soil moisture, and TWS) at the global 427 

scale. 428 

 429 
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