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Interactive comment on “The Influence of Assimilating Leaf Area Index in a Land Surface 
Model on Global Water Fluxes and Storages” by Xinxuan Zhang et al. 
 
Anonymous Referee #1 
Received and published: 11 November 2019 
 
The authors would like to thank the reviewer for their time, effort, and detailed comments. All 
suggestions were incorporated into the manuscript and explained in this response to reviewer 
document. We also thoroughly proofread and revised the whole manuscript.  
 
General comments 
The authors aim to assess to what extent the Noah-MP model can be optimized through the 
assimilation of leaf area index (LAI) observations at global scale. By utilizing two observing system 
simulation experiments (OSSEs) and the EnKF algorithm, the efficiency of assimilating LAI and 
model performance for water related variables are discussed. At first in my opinion this 
manuscript needs to be proofread/revised carefully for academic writing. 
We would like to thank the reviewer. We have carefully proofread the revised manuscript.  
 
Something that I do not understand is that the authors use the simulated LAI from the nature run 
as the ’truth’ instead of observations. If nature run can achieve the “truth”, why did the authors 
conduct assimilation based on different conditions (wet or dry)?  
We chose to use an Observing System Simulation Experiment (OSSE) to quantify the potential 
impact of LAI assimilation on water variables simulated by the Noah-MP model while the forcing 
precipitation is affected by severe biases.  

The forcing precipitation is usually provided by either reanalysis or satellite products. Such 
products are often affected by large biases (and random errors), which consequently affect the 
accuracy of the modeled variables. The question we want to answer here is: When the forcing 
precipitation is biased, is LAI data assimilation able to improve the model estimates? A real case 
study would certainly be of interest but in-situ observations (taken as reference) would also be 
affected by uncertainty, making it difficult to draw meaningful conclusions regarding the 
methodology itself. The proposed OSSE should serve as a feasibility test to quantify the potential 
of the proposed framework.  

In an OSSE, i) the nature run (NR) intends to mimic the true input (including *unbiased* 
precipitation), LAI, and all water variables, ii) the open-loop run (OL) adds biases to the forcing 
precipitation (i.e., double or half the original value) to mimic the error in the precipitation product 
which will also produce biased model outputs of LAI and water variables; iii) the data assimilation 
(DA) run applies LAI DA to the OL run. We named the model run with double precipitation as wet 
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condition, and named the run with half precipitation as dry condition to describe the wet/dry 
bias that these two runs represent.  

We modified the manuscript to clarify the OSSE design in section 2.2:  
“First, the Noah-MP model is spun-up for a 10-year period (2001-2010) to ensure a physically 
realistic state of equilibrium. Second, the model is run for a 29-month period (January 2011 – May 
2013) to conduct the Nature Run (NR) with the same configuration as the spin-up one. By 
definition, an OSSE is a controlled experiment that does not assimilate any real observation. 
Instead, it treats all the model outputs from the NR as the “true” condition (denoted as the 
“synthetic truth”). The “true” LAI (i.e., the LAI output from NR) is then perturbed via a simple 
additive error model to produce the synthetic observations to be assimilated into the DA runs. The 
spin-up run and NR are forced by the original MERRA-2 precipitation data. Third, two Open Loop 
(OL) runs (no DA) are conducted for the same 29-month period under two conditions: i) “extremely 
dry” condition (the model is forced by halving the MERRA-2 precipitation data; OL-dry), and ii) 
“extremely wet” condition (the model is forced by doubling the MERRA-2 precipitation; OL-wet). 
The biased forcing precipitation data in OL mimic typical precipitation biases in current 
precipitation reanalysis and satellite products (e.g., Ghatak et al. 2018; Yoon et al. 2019).The two 
DA runs are then conducted under the two same conditions (DA-dry and DA-wet) using a one-
dimensional EnKF assimilation algorithm, which is a built-in DA method in LIS ……” 

 
Other important comment is that why did the authors use the precipitation which are extremely 
biased instead of using a more precise precipitation forcing. Furthermore, did the authors run 
the assimilation experiment using the MERRA-2 precipitation instead of halving or doubling the 
value? 
The 10-year spin-up run and the nature run are forced by the original MERRA-2 precipitation data. 
The OL and DA runs are forced by a perturbed (i.e., biased) version of the MERRA-2 precipitation. 
As described above, the OSSE uses this input in the OL and DA runs to mimic common biases in 
currently available precipitation products. 
 
In conclusion, the manuscript in its current form suffers from several issues that prevent it to be 
published as is. In my opinion the paper still worth to be published after addressing all these 
issues, and a major revision is asked. 
 
 
Specific comments 
1. P3L56-57: As far as I know, LSMs not only couple with dynamic vegetation models, but also 
involve some dynamic vegetation modules. So the statement is not appropriate. 
We changed “dynamic vegetation model” to “dynamic vegetation module” in the manuscript.  
 
2. Section 2.2: Why do you use the precipitation forcing data which are strongly biased. 
In the OSSE study, we use biased precipitation data in OL and DA runs to mimic precipitation 
biases that are very common in current precipitation reanalysis and satellite products (e.g., 
Ghatak et al. 2018, Yoon et al. 2019. These two references have been added to text in section 
2.2: 
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Ghatak, D., Zaitchik, B., Kumar, S., Matin, M. A., Bajracharya, B., Hain, C., & Anderson, M. (2018). Influence of 
Precipitation Forcing Uncertainty on Hydrological Simulations with the NASA South Asia Land Data Assimilation 
System. Hydrology, 5(4), 57. https://doi.org/10.3390/hydrology5040057 

Yoon, Y., Kumar, S. V., Forman, B. A., Zaitchik, B. F., Kwon, Y., Qian, Y., Rupper, S., Maggioni, V., Houser, P., 
Kirschbaum, D., Richey, A., Arendt, A., Mocko, D., Jacob, J., Bhanja, S., & Mukherjee, A. (2019). Evaluating the 
Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia. Frontiers in Earth Science, 7. 
https://doi.org/10.3389/feart.2019.00120 

 
3. Why did you choose the LAI simulations from the nature run as the “truth” instead of using the 
LAI observations? As you have described the reasons from P9L171 to L172, there are many other 
LAI products without missing data which can be used for assimilation. 
By definition, an OSSE is a controlled experiment that does not assimilate any real observation. 
Instead, it treats all the model output from the nature run as the “true” condition. The LAI from 
the nature run is also considered as the true. We then perturbed it with a simple additive error 
model to produce synthetic observations to be assimilated into the model (DA run). Some 
explanation was added in section 2.2: 
“Second, the model is run for a 29-month period (January 2011 – May 2013) to conduct the Nature 
Run (NR) with the same configuration as the spin-up one. By definition, an OSSE is a controlled 
experiment that does not assimilate any real observation. Instead, it treats all the model outputs 
from the NR as the “true” condition (denoted as the “synthetic truth”). The “true” LAI (i.e., the LAI 
output from NR) is then perturbed via a simple additive error model to produce the synthetic 
observations to be assimilated into the DA runs. The spin-up run and NR are forced by the original 
MERRA-2 precipitation data.” 
 
4. Did you evaluate the LAI or other variables from the natural run by using remote sensing LAI 
datasets or other kinds of observations? 
As mentioned above, The LAI from the nature run is considered as the truth in the OSSE 
framework. The same LAI is perturbed with a simple additive error model to produce synthetic 
observations of LAI that are assimilated in the DA experiment. The LAI from OL or DA run is 
evaluated against the synthetic LAI observation from the nature run.  
 
5. P9L178-P9L184: How did you determine the values of multiplicative perturbations (such as, 
the shortwave radiation and precipitation with a mean of 1 and standard deviations of 0.3 and 
0.5, the standard deviation for longwave radiation of 50 W/m2, the standard deviation for LAI of 
0.1)? 
The forcing data perturbation applied here used the same perturbations as found in the literature 
below. We mentioned these past studies in section 2.2 “Similar to previous work (Kumar et al. 
2014, 2019a, 2019b), the MERRA-2 forcing inputs such as shortwave/longwave radiations and 
precipitation are perturbed hourly……”. 
 
Kumar, S. V., Peters-Lidard, C. D., Mocko, D., Reichle, R., Liu, Y., Arsenault, K. R., Xia, Y., Ek, M., Riggs, G., Livneh, B. 

and Cosh, M.: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation, 
J. Hydrometeorol., 15, 2446-2469, https://doi.org/10.1175/JHM-D-13-0132.1, 2014. 

Kumar, S. V., Jasinski, M., Mocko, D. M., Rodell, M., Borak, J., Li, B., Beaudoing, H. K. and Peters-Lidard, C. D.: NCA-
LDAS land analysis: Development and performance of a multisensor, multivariate land data assimilation system 

https://doi.org/10.3390/hydrology5040057


- 4 - 
 

for the National Climate Assessment, J. Hydrometeorol., 20, 1571-1593, https://doi.org/10.1175/JHM-D-17-
0125.1, 2019. 

Kumar, S. V., Mocko, D. M., Wang, S., Peters-Lidard, C. D. and Borak, J.: Assimilation of remotely sensed Leaf Area 
Index into the Noah-MP land surface model: Impacts on water and carbon fluxes and states over the Continental 
US, J. Hydrometeorol., 20, 1359-1377, https://doi.org/10.1175/JHM-D-18-0237.1, 2019. 

 
6. Have the evaluation and error metrics been used in former studies? If so, please list at least 
one references. 
The equation for the Normalized Information Contribution (NIC) index is similar to the NIC used 
by Kumar et al. 2016. We added this reference to the text: 
Kumar, S.V., Zaitchik, B.F., Peters-Lidard, C.D., Rodell, M., Reichle, R., Li, B., Jasinski, M., Mocko, D., Getirana, A., De 

Lannoy, G. and Cosh, M.H.: Assimilation of gridded GRACE terrestrial water storage estimates in the North 
American Land Data Assimilation System, J. Hydrometeorol., 17, 1951-1972, https://doi.org/10.1175/JHM-D-
15-0157.1, 2016 

 
7. How did you determine the initial conditions? 
Initial conditions are obtained by a 10-year spin-up run. The spin-up run is described in the second 
paragraph of section 2.2. 
 
8. The discussion section should include the discussion of the results in the context of other 
papers dealing with the same of similar subjects. 
We added some discussion of past work on similar subjects: 
“Overall the improvement of water variables through LAI assimilation is not remarkable enough 
to compensate the model degradation caused by the biased precipitation forcing data. Previous 
studies (Pauwels et al. 2007; Sabater et al. 2007; Barbu et al. 2011; Fairbairn et al. 2017; Albergel 
et al. 2017) have tested the performance of the joint assimilation of LAI and soil moisture over 
regional domains and showed promising results. However, no experiment was performed at the 
global scale. Future work could investigate a multi-variate data assimilation system that 
concurrently merges both LAI and soil moisture (or TWS) observations globally.” 
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9. A more in-depth analysis of the results is necessary. In this paper the authors only talk about 
the statistical characteristic variables (such as the NCRMSE, NIC, etc) of LAI and water related 
variables. Why not focus on the LAI and water related variables themselves? 
Sections 3.1 and 3.2 have been modified to add more analyses. Time series of global averaged 
LAI and water variables (Figure 3) were also added to the manuscript to provide more information 
on the actual variables (rather than anomalies). The discussion section (3.3) was also modified to 
provide more in-depth interpretation of the results. 

 
Figure 3. Global averaged daily values of LAI and five water variables (2011-06-01 to 2013-05-30). 
 
10. Why only perturb the meteorological forcing and not the initial conditions and/or model 
parameters? 
We perturbed precipitation and radiation forcings because deemed dominant in water variable 
simulated by land surface models. Perturbing initial condition and model parameters is certainly 
an option that could be investigated in future studies. This recommendation has been added to 
the conclusion section. 
“Future research should focus on alternative DA methods, such as updating other related model 
states while assimilating LAI observations, perturbing the model initial condition and model 
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parameters, and/or assimilating actual satellite-based LAI observations (e.g., MODIS, GLASS) at 
the global scale to verify the efficiency of the proposed vegetation DA framework.” 
 
11. How sensitive is LAI with respect to the meteorological forcing?  
LAI is very sensitive to the forcing precipitation data. The wet and dry conditions have large 
impacts on the magnitude of LAI. The revised manuscript shows the time series of LAI values and 
anomalies. Below are the figures and description we added:  
Section 3.1 LAI 
“Figure 3a and Figure 4a show time series of global averaged LAI values and corresponding 
anomalies, respectively. As expected, LAI values are largely impacted by the extreme precipitation 
conditions. The wet condition introduces more vegetation, while the dry condition limits the 
vegetation growth throughout the two-year period. The DA procedure effectively corrects the LAI 
errors caused by the biased precipitation input.” 

 
Figure 3a (top) and Figure 4a (bottom): Global averaged daily values of LAI and LAI anomalies 
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Technical corrections 
1. P2L27-L28: Can you illustrate which land surface model you use here? And the same to P2L38, 
P5L104, and so on. 
We added “Noah-MP” to these three sentences. 
 
2. P2L28-L29: Remove “the” from the phrase of “at the global scale”, and the same to P5L100, 
P5L100, P22L361, and so on. 
“the” was removed from “at the global scale” phrases. 
 
3. P3L44: Do not need to leave two blank spaces here. 
This has been fixed. 
 
4. P3L46: It’s not appropriate to use “between” among vegetation, precipitation, and soil 
moisture. 
“between” was changed to “among”. 
 
5. P3L51: The related references cited here are not enough to illustrate the phenomenon that 
“these land surface processes and feedbacks have been examined through numerical modeling 
experiments”. List more ...... 
More references have been listed: “Foley et al. 1996; Kim and Wang 2007; Druel et al. 2019” 
 
6. P3L54: You needn’t capitalizes the first letter for leaf area index. 
This was fixed. 
 
7. P4L67: “the Moderate Resolution Imaging Spectroradiometer” has been abbreviated to 
“MODIS” before. 
This was removed. 
 
8. P4L88-P5L90: Please refine this sentence. 
The sentence was rewritten as “Some water budget variables were improved through the 
assimilation procedure. The improvement is remarkable in agricultural areas because the 
assimilation added harvesting information to the model.” 
 
9. P5L95: Change “model simulated LAI” to “simulated LAI”. 
Removed. 
 
10. P5L97: Please refine the statement of “focused on small regions”. 
Changed to “…… and most of them are small region studies”. 
 
11. P5L106-L107: Please define the abbreviation of all the water related variables when they first 
appear in this manuscript. Furthermore, “evapotranspiration” has been abbreviated to “ET” in 
P5L93. 
The revised manuscript defined the abbreviation of all the water variables when they first 
appeared. 
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12. P5L110: Please specify which land surface model. 
The title of section 2.1 was changed to “2.1. Land surface model (Noah-MP)”. 
 
13. P6L116-120: Please refine this sentence as it is too long. 
The long sentence was divided into two sentences. “Specifically, the prognostic vegetation 
growth combines a Ball-Berry photosynthesis-based stomatal resistance (Ball et al. 1987) with a 
dynamic vegetation model (Dickinson et al. 1998). The dynamic vegetation model calculates the 
carbon storages in various parts of the vegetation (leaf, stem, wood, and root) and the soil carbon 
pools.” 
 
14. P6L121: Please define “NASA”. 
Defined NASA as National Aeronautics and Space Administration. 
 
15. P6L126: Keep the tense consistent. 
Changed to “The …….. (MERRA-2 ……) dataset serves as the meteorological forcings for Noah-MP.” 
 
16. P6L133-P7L138: Please define the abbreviation of all the water related variables when they 
first appear in this manuscript. 
The revised manuscript defined the abbreviation of all the water variables when they first 
appeared.  
 
17. P7L150: I am not sure whether the state of “a LAI EnKF” is appropriate. 
Changed to “the EnKF LAI assimilation”. 
 
18. P7L153: The phase of “on a global scale” is not appropriate. 
Changed to “The proposed framework is evaluated through a global experiment (Antarctica 
excluded) at the 0.625° × 0.5° spatial resolution of the MERRA-2 forcing dataset (Figure 1).” 
 
19. P10L188-L189: Keep the tense consistent. 
The sentence was changed to “Thus, all the DA simulations are run for 20 members.” 
 
20. P10L194-L195: The water related variables have been defined before, and you 
can use their acronyms. 
The variable names were changed to their acronyms. 
 
21. P10L203: What does i and N in Equation 1 mean? 
This explanation was added to the manuscript: “N is the total number of X values, and i represents 
the index of each X value.” 
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22. P10L208: the word “O” in the denominator looks like “zero” in Equation 2. 
The letter “O” in “OL” does look similar to “zero”, though “zero” is thinner. Hope the readers 
won’t get confused. 

 
 
23. P11L209: There are two periods. 
Removed. 
 
24. P12L220-L222: As Figure 3 shows the GLOBAL averaged LAI anomalies, it is better to use the 
statement of month (or JJA and SON seasons) instead of winter/summer season. 
Changed to “Moreover, the seasonality of LAI anomalies is evident, showing larger variations in 
DJF and JJA than during the transition periods (MAM and SON).” 
 
25. P12L229: Please refine this sentence. 
The sentence was rewritten as “Moreover, the DA runs show lower NCRMSEs than the 
corresponding OL runs across the globe (Figure 4) especially over shrublands and grasslands (refer 
to Figure 1 for land covers).” 
 
26. P12L241: Remove “the”. Furthermore, this sentence is a little too long in my opinion. 
Changed “In the summer” to “In JJA”.  
The long sentence was divided into two short ones. “In JJA, the vegetation leaves in the north 
hemisphere are fully developed and the plants can use stomatal closure to preserve water under 
water limited condition (dry condition). Thus, the NCRMSE of dry condition becomes smaller and 
does not show much difference from the wet condition.” 
 
27. P14L263: Please change the “has higher chance” into “is more likely to”. 
Modified.  
 
28. P14L268-269: I think this is the first appearance that positively biased is wet condition (or 
negatively biased is dry condition), or maybe earlier, and this statement does not need to be 
repeated each time it appears in this paper (see P14L277, P16L296-L297, P21L337, P21L339). 
Most of the repetitions were removed. We kept the “wet/dry” in the conclusion section in case 
some readers check the conclusion before going through the whole manuscript. 
 
29. P15L282-L287: It is better to use the statement of month instead of season. 
All the season names in the manuscript were substituted by month.  
 
30. Please add the description for the Y-coordinate for Figure 7, 8 and 9. 
The Y-axis titles are added to Figure 7, 8 and 9 in the revised manuscript.  
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31. P21L357: Please specify which land surface model. 
This was added to manuscript: “This study evaluates the efficiency of assimilating vegetation 
information (i.e., LAI synthetic observations) within a land surface model (Noah-MP 3.6) when the 
precipitation forcing data are strongly biased (either positively or negatively).” 
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Interactive comment on “The Influence of Assimilating Leaf Area Index in a Land Surface 
Model on Global Water Fluxes and Storages” by Xinxuan Zhang et al. 
 
Anonymous Referee #2 
Received and published: 5 December 2019 
 
The authors would like to thank the reviewer for their time, effort, and detailed comments. All 
suggestions have been incorporated into the manuscript and explained in this document. We 
also thoroughly proofread and revised the whole manuscript.  
 
General comments 
Synthetic observations are used to assess the impact of assimilating satellite-derived LAI 
estimates into the Noah land surface model. A major shortcoming of the assimilation system used 
in this study is that LAI assimilation has no direct impact on soil moisture. As a result, dry 
precipitation biases cannot be compensated for. This issue was at least partly solved in other 
assimilation systems. Unfortunately, the relevant literature is not completely cited. This paper is 
not well written, not complete for understanding, and cannot be published in the present form. 
Methods description is incomplete. Interpretation of results is made in the Result section instead 
of the Discussion section. 
 
In the dry condition simulation, the amount of vegetation is less than in the reference simulation 
(what we call synthetic truth), due to a decrease (or even lack) in precipitation. When assimilating 
observations of LAI, we introduce more vegetation into the model, bringing it closer to the 
synthetic truth and consequentially improving CIE (canopy interception evaporation) and CWS 
(canopy water storage), which are directly related to LAI. However, variables that are not directly 
impacted by LAI, such as SSM (surface soil moisture), can hardly be improved by LAI assimilation 
solely. The poor performance of SSM in the dry condition experiment is mainly attributed to the 
fact that the amount of water in the model is conservative. Specifically, LAI assimilation 
introduces more vegetation, which requires more water than what available in the system (i.e., 
soil). Past work attempted to solve this problem by jointly assimilating LAI and soil moisture 
(Pauwels et al. 2007; Sabater et al. 2007; Barbu et al. 2011; Fairbairn et al. 2017; Albergel et al. 
2017). We added some discussion on this topic and cited all these articles in discussion section 
of the revised manuscript (more detail is provided in our response to the Reviewer’s specific 
comments below).  
 
Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., ... & Le Moigne, P. (2017). Sequential 

assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8. 0: LDAS-Monde 
assessment over the Euro-Mediterranean area. Geoscientific Model Development, 10(10), 3889-3912. 
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Barbu, A. L., Calvet, J. C., Mahfouf, J. F., Albergel, C., & Lafont, S. (2011). Assimilation of Soil Wetness Index and Leaf 
Area Index into the ISBA-A-gs land surface model: grassland case study. Biogeosciences, 8(7), 1971-1986. 

Fairbairn, D., Barbu, A., Napoly, A., Albergel, C., Mahfouf, J. F., & Calvet, J. C. (2017). The effect of satellite-derived 
surface soil moisture and leaf area index land data assimilation on streamflow simulations over France. 
Hydrology and Earth System Sciences, 21(4), 2015-2033. 

Pauwels, V. R., Verhoest, N. E., De Lannoy, G. J., Guissard, V., Lucau, C., & Defourny, P. (2007). Optimization of a 
coupled hydrology–crop growth model through the assimilation of observed soil moisture and leaf area 
index values using an ensemble Kalman filter. Water Resources Research, 43(4). 

Sabater, J. M., Rüdiger, C., Calvet, J. C., Fritz, N., Jarlan, L., & Kerr, Y. (2008). Joint assimilation of surface soil moisture 
and LAI observations into a land surface model. Agricultural and forest meteorology, 148(8-9), 1362-1373. 

 
Recommendation: major revision. 
 
Particular comments: 
- L. 39-40: Examples of joint assimilation of LAI and soil moisture in a land surface model can be 
found in the literature. 
We have reviewed several studies that used LAI-soil moisture joint assimilation (Pauwels et al. 
2007; Sabater et al. 2007; Barbu et al. 2011; Fairbairn et al. 2017; Albergel et al. 2017) and cited 
them in the discussion section: 
“Overall the improvement of water variables through LAI assimilation is not remarkable enough 
to compensate the model degradation caused by the biased precipitation forcing data. Previous 
studies (Pauwels et al. 2007; Sabater et al. 2007; Barbu et al. 2011; Fairbairn et al. 2017; Albergel 
et al. 2017) have tested the performance of the joint assimilation of LAI and soil moisture over 
regional domains and showed promising results.” 
 
All the cited LAI-SM joint DA studies were conducted over regional domains. We emphasized our 
study is “at global scale” in the end of the discussion section to make the statement more 
accurate: “However, no experiment was performed at the global scale. Future work could 
investigate a multi-variate data assimilation system that concurrently merges both LAI and soil 
moisture (or TWS) observations globally.” 
 
- L. 95-97: In the same context and at the continental scale, Albergel et al. showed that sequential 
LAI assimilation can be used to analyse soil moisture at various depth, in addition to vegetation 
biomass (https://doi.org/10.5194/gmd-10-3889-2017). This property is particularly useful in dry 
conditions, when surface soil moisture tends to be decoupled from deeper soil layers. 
Thank you for pointing us to this reference. We added it to the manuscript: 
“Only a few studies discussed the influences of LAI assimilation on the estimation of water 
variables such as soil moisture or streamflow (Pauwels et al. 2007; Sabater et al. 2008) and most 
of them focused on limited regions. Most recently, Albergel et al. (2017) conducted a study on a 
much larger domain  ̶  Europe and the Mediterranean basin  ̶ and showed improvement in soil 
moisture at various depths thanks to LAI assimilation.” 
 
We also added this study to the discussion section as shown in the answer above.  
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Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., ... & Le Moigne, P. (2017). Sequential 
assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8. 0: LDAS-Monde 
assessment over the Euro-Mediterranean area. Geoscientific Model Development, 10(10), 3889-3912. 

 
- L. 109 (Section 2): A section describing the DA method is needed. What are the analysed 
variables? Does LAI DA impacts soil moisture? 
The DA method in this study is implemented within the NASA Land Information System (LIS). The 
method has been applied in many sequential data assimilation studies. We added brief 
description and references for the DA method in section 2.2:  
“The two DA runs are then conducted under the two same conditions (DA-dry and DA-wet) using 
a one-dimensional EnKF assimilation algorithm, which is a built-in DA method in LIS. The EnKF DA 
algorithm is suitable for non-linear and intermittent land surface processes (Reichle et al. 2002a, 
2002b). Details of the algorithm can be found in numerous previous studies (Reichle et al. 2010; 
De Lannoy et al. 2012; Liu et al. 2015; Kumar et al. 2019a).” 
 
- L. 138: How are subsurface waters represented? Do you represent inundations plains? Lakes? 
TWS is the sum of snow water equivalent, surface water, soil moisture, and groundwater. So, 
subsurface water (i.e., groundwater) is included. Lakes and inundation plains are considered as 
surface water, which is also included in TWS. This information was added to Section 2.1 as follows: 
“…and TWS (defined as the sum of all water storage on the land surface and in the subsurface, 
including snow water equivalent, surface water, soil moisture, and groundwater [mm]).” 
 
- L. 188 (ensemble members): How is this ensemble generated? 
The model ensemble is generated by perturbing the meteorological forcing inputs (precipitation 
and shortwave/longwave radiations). Section 2.2 discusses all the details: 
“Similar to previous work (Kumar et al. 2014, 2019a, 2019b), the MERRA-2 forcing inputs such as 
shortwave/longwave radiations and precipitation are perturbed hourly. Multiplicative 
perturbations are applied to the shortwave radiation and precipitation with a mean of 1 and 
standard deviations of 0.3 and 0.5, respectively. The longwave radiation is perturbed via an 
additive perturbation with a standard deviation of 50 W/m2. The perturbations of the three 
meteorological forcing variables also include cross correlations: cross correlation between 
shortwave radiation and precipitation is -0.8, cross correlation between longwave radiation and 
precipitation is 0.5; and cross correlation between shortwave and longwave radiations is -0.5.” 
 
Kumar, S. V., Peters-Lidard, C. D., Mocko, D., Reichle, R., Liu, Y., Arsenault, K. R., Xia, Y., Ek, M., Riggs, G., Livneh, B. 

and Cosh, M.: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought 
estimation, J. Hydrometeorol., 15, 2446-2469, https://doi.org/10.1175/JHM-D-13-0132.1, 2014. 

Kumar, S. V., Jasinski, M., Mocko, D. M., Rodell, M., Borak, J., Li, B., Beaudoing, H. K. and Peters-Lidard, C. D.: NCA-
LDAS land analysis: Development and performance of a multisensor, multivariate land data assimilation 
system for the National Climate Assessment, J. Hydrometeorol., 20, 1571-1593, 
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Moreover, an ensemble size sensitivity test was conducted to choose the number of ensemble 
members needed in this study (please refer to the Figure below). We omitted this figure in the 
manuscript, but mentioned the sensitivity test in section 2.2: 
“To select the optimal ensemble size, a sensitivity test is performed for ensemble sizes spanning 
from 2 to 24 members. The number of ensemble members has a strong impact on the model 
results at small sizes, while the model performance tends to become steady when more than 20 
ensemble members are considered. Thus, all the DA simulations are run for 20 members.” 

 
 
- L. 196-197: Why are these instabilities generated by DA? 
The initial condition for the OL and DA runs is generated by a 10-year spin-up run that uses the 
original MERRA-2 precipitation. The OL and DA runs are forced by either doubled or halved 
precipitation that is not consistent with the spin-up run. So, the model needs to run for a certain 
time before stabilizing. The figure below shows the global averaged LAI time series from the 
beginning of the simulation (Jan. 1st, 2011) to Dec. 31st, 2011. The LAI simulated by OL and DA 
runs does not get stable until around May. Therefore, we decided to eliminate the first 5-month 
model outputs in the analyses. We added this explanation in the manuscript in section 2.3. 
“The initial condition for the OL and DA runs is generated by a spin-up run that uses the original 
MERRA-2 precipitation as input. However, the OL and DA runs are forced by either doubled or 
halved precipitation, which is not consistent with the spin-up run and the model needs some time 
to stabilize. The first 5-month model outputs are therefore eliminated from the evaluation to 
avoid the model systematic instability at the beginning of the OL and DA simulations and the 
evaluation, thus, focused only on model outputs from 2011-06-01 to 2013-05-31.” 
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- L. 203 (Eq. 1): Why do you use NCRMSE and not standard score metrics such as RMSE or ubRMSE 
(i.e. standard deviation of differences)? 
In the manuscript, we compared the result of LAI and five water related variables (ET, CIE, CWS, 
SSM, and TWS). Units of these variables are very different, which is why we decided to adopt 
unitless statistical metrics. UbRMSE is certainly another valid option.  
 
- L. 217 (Figure 3): Please change evaporation units. Since these time series are daily, should be 
per day instead of per second. It seems that CWS anomalies are 3 order of magnitude larger than 
ET anomalies. Why? Define here what you mean by "anomaly" (not defined in the text). NR 
anomalies: with respect to what? Is NR the benchmark or not? Real values have to be showed at 
some stage. Not only anomalies. 
The ET value shown in the figure refers to the model output, which is an average over the day 
with the unit “kg m-2 s-1”. CWS is the canopy water storage which include the water stored in 
the leaves and the intercepted water. So, it is much larger than the ET.  
 
We analyzed anomalies (rather than actual values) because they are unitless and this is good 
practice when comparing the impact DA has on different variables. The anomalies are defined in 
section 2.3. “Each of the anomaly time series is computed relative to the mean of its respective 
model run.” The NR anomalies are calculated with the respect to the mean of NR run. OL anomaly 
is calculated with the respect to the mean of OL. DA anomalies follow the same rule.  
 
Nevertheless, we understand the value of showing actual values and, in the revised manuscript, 
we added these time series as Figure 3. Please check below for the figures of variable actual 
values and anomalies and the related descriptions we added in the revised manuscript. 
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Figure 3. Global averaged daily values of LAI and five water variables (2011-06-01 to 2013-05-30). 
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Figure 4. Global averaged daily anomalies of LAI and five water variables (2011-06-01 to 2013-05-30). 

 
Section 3.1 LAI 
“Figure 3a and Figure 4a show time series of global averaged LAI values and corresponding 
anomalies, respectively. As expected, LAI values are largely impacted by the extreme precipitation 
conditions. The wet condition introduces more vegetation, while the dry condition limits the 
vegetation growth throughout the two-year period. The DA procedure effectively corrects the LAI 
errors caused by the biased precipitation input.” 

 
Section 3.2 Water fluxes and storages 
“Daily time series of global averaged values and corresponding anomalies of the five water 
variables are shown in Figure 3(b-f) and Figure 4(b-f), respectively. The model well simulates the 
seasonality of all water fluxes/storages considered here. The OL runs reveal that global average 
values of all five variables are impacted by the highly biased precipitation conditions.” 
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- L. 243 (“thus the NCRMSE . . . becomes smaller”): Why? 
In JJA, the stomatal closure can help to preserve water. So, the system does not lose too much 
water under the dry condition which result in smaller difference between DA-dry and the NR 
truth, and consequently shows smaller NCRMSE. 
 
- L. 276-277 (LAI assimilation unable to correct for dry precipitation bias): Why? 
A dry precipitation bias means that the system has (erroneously) has less water than in reality 
(NR in the synthetic experiment). Since no water is otherwise added to the system, LAI DA cannot 
fully correct water-related model states (such as soil moisture). The manuscript has been 
modified as below: 
“However, LAI assimilation is not able to correct the model when the input precipitation is 
negatively biased (dry condition). A dry precipitation bias means that the system has (erroneously) 
less water than in reality (NR in the synthetic experiment). Since no water is otherwise added to 
the system, LAI DA cannot fully correct water-related model states (such as soil moisture). The 
NCRMSEs of DA runs are either the same as in the OL runs (ET/CIE/CWS) or worse (SSM/TWS).” 
 
- L. 320-322: I don’t see the logics. I would expect that large water-holding capacity would 
enhance the impact of LAI DA. 
Our thought is that the LAI can affect soil moisture by changing the model’s surface water 
condition. Over forest and woodland, the surface water condition is not changing much due to 
the large soil reservoir.  
 
- L. 323 (forests and woodlands): Is this because of large rooting depth? 
Large rooting depth is an important fact. Some discussion has been added to the manuscript: 
“In other words, forest and woodland tend to have lower sensitivity in response to the change of 
precipitation conditions because of their large rooting depth.” 
 
- L. 331: Water-holding? Do you mean interception reservoir or soil reservoir? 
It is soil reservoir. We changed it in the manuscript: 
“This is due to large soil reservoir of forests and woodlands ……” 
 
- L. 374-375: This could be because the used DA system is not able to analysed RZSM from LAI 
observations. Please explain. 
In the Noah-MP model, the relationship between LAI and soil moisture is very complex and 
indirect. So, the current LAI DA system is not able to have much of an effect on surface moisture 
at all depth. 
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Editorial comments: 
- L. 251 (Figure 4): Color scale is difficult to interpret. Please use several colors (e.g. blue in 
addition to red). 
We changed the color scale of Figure 4. 

 
Figure 5. Maps of LAI NCRMSE for the OL and DA runs. 
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- L. 289 (Figure 5): Time axis labels are not readable. Please improve! 
We enlarged the font size of the axis label and showed the time less frequently (every 3-month). 
Please check below. We also enlarged the axis font size of all figures in the manuscript. 

 
Figure 6. Monthly averaged NCRMSE for LAI and five water variables over the Northern hemisphere. 
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- L. 291 (Figure 6): Time axis labels are not readable. Please improve! 
We enlarged the font size of the axis label and showed the time less frequently (every 3-month). 
Please check below. 

 
Figure 7. Same as in Figure 6, but for the Southern hemisphere. 
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Abstract 

Vegetation plays a fundamental role not only in the energy and carbon cycles, but also in the global 

water balance by controlling surface evapotranspiration (ET). Thus, accurately estimating 

vegetation-related variables has the potential to improve our understanding and estimation of the 

dynamic interactions between the water, energy, and carbon cycles. This study aims to assess to 

what extent a land surface model (LSM) can be optimized through the assimilation of leaf area 

index (LAI) observations at the the global scale. Two Oobserving sSystem Ssimulation 

Eexperiments (OSSEs) are performed to evaluate the efficiency of assimilating LAI into Noahan 

LSM with multi-parameterization options (Noah-MP) through an Ensemble Kalman Filter (EnKF) 

to estimate LAI, evapotranspiration (ET), canopy interception evaporation (CIE), canopy water 

storage (CWS), surface soil moisture (SSM), and terrestrial water storage (TWS). Results show 

that the LAI data assimilation framework not only effectively reduces errors in LAI model 

simulations, but . LAI assimilation also improves the model estimates of all the modeled water 

flux and storage variables considered in this study (ET, CIE, CWS, SSM, and TWS), even when 

the forcing precipitation is strongly positively biased (extremely wet condition). However, it tends 

to worsen some of the modeled  estimated water-related variables (SSM and TWS) when the 

forcing precipitation is affected by a dry bias. This is attributed to the fact that the amount of water 

in Noah-MPthe LSM is conservative and the LAI assimilation introduces more vegetation, which 

requires more water than what available within the soil. Future work should could investigate a 

multi-variate data assimilation system that concurrently merges both LAI and soil moisture (or 

TWS) observations at global scale. 
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1. Introduction 

Terrestrial vegetation plays a vital role in the global water cycle, as it controls the surface 

evapotranspiration (ET) and the state of the carbon cycle. As shown in past literature, there exists 

a strong relationship between among vegetation, precipitation, and soil moisture (Di et al., 1994; 

Farrar et al., 1994; Richard and Poccard, 1998; Adegoke and Carleton, 2002). Nevertheless, the 

role that vegetation and its dynamics play in the water cycle (for instance on the variability of 

precipitation) is extremely complex (Wang and Eltahir 2000; Wang et al. 2011). In the past half-

century, these land surface processes and feedbacks have been examined through numerical 

modeling experiments (e.g., Foley et al. 1996; Kim and Wang 2007; Druel et al. 2019). In early 

generation land surface models (LSMs), the development stage of vegetation was prescribed by 

regularly updating vegetation variables, based on fixed lookup tables to simplify the model 

computation (Foley et al. 1996). This approach uses constant vegetation indices, e.g., the Lleaf 

Aarea Iindex (LAI), throughout a certain period, while in reality the growth of vegetation 

continuously changes in response to weather and climate conditions. To overcome this deficiency, 

new generation LSMs are coupled with dynamic vegetation models modules that comprehensively 

simulate several biogeochemical processes (Woodward and Lomas 2004; Gibelin et al. 2006; 

Fisher et al. 2018) and that. LSMs with a dynamic vegetation module are able to capture more 

detailed variations in plant productivity than traditional LAI methods (Kucharik et al. 2000; Arora 

2002; Krinner et al. 2005). 

LAI can also be estimated through observations from satellite sensors, such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS, Pagano and Durham 1993; Justice et 

al. 2002), the Système Probatoire d’Observation de la Terre VEGETATION (SPOT-VGT, Baret 

et al. 2007), and the National Oceanic and Atmospheric Administration (NOAA) Advanced Very 
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High Resolution Radiometer (AVHRR, Cracknell 1997). LAI products retrieved from different 

satellite missions and sensors provide spatially and temporally varying LAI fields on a routine 

basis at regional and global scales, including the Moderate Resolution Imaging Spectroradiometer 

(MODIS) LAI (Myneni et al. 2002), the Global Land Surface Satellite (GLASS) LAI (Xiao et al. 

2013), and the GLOBMAP LAI dataset (Liu et al. 2012), among others. Satellite-derived LAI 

products were found to be affected by uncertainties due to the limitation of retrieval algorithms 

and vegetation type sampling issues (Cohen and Justice 1999; Privette et al. 2002; Tian et al. 2002; 

Morisette et al. 2002). 

A method to combine the inherently incorrect estimates from satellite observations and 

model simulations is data assimilation (DA). One of the most common DA systems — the 

Ensemble Kalman Filter (EnKF; Evensen 2003) — dynamically updates the model error 

covariance information by producing an ensemble of model predictions, which are individual 

model realizations perturbed by the assumed model error (Reichle et al. 2007). The ensemble 

approach is widely used in hydrologyic DA because of its flexibility with respect to the type of 

model error (Crow and Wood 2003) and well suited to the nonlinear nature of land surface 

processes (Reichle et al. 2002a, 2002b; Andreadis and Lettenmaier 2006; Durand and Margulis 

2008; Kumar et al. 2008; Pan and Wood 2006; Pauwels and De Lannoy 2006; Zhou et al. 2006). 

However, the use of an EnKF for the assimilation of LAI in LSMs has not been thoroughly 

investigated in the past. Pauwels et al. (2007) proposed an observing Observing system System 

Ssimulation Eexperiment (OSSE) to evaluate the performance of assimilating LAI in a hydrology-

crop growth model by with an EnKF algorithm. Other studies have also tested simplified 1D-VAR 

and extended Kalman filter methods for LAI assimilation (e.g., Sabater et al. 2008; Barbu et al. 

2011; Fairbairn et al. 2017). Recently, Kumar et al. (2019) assimilated GLASS LAI assimilation 
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in a land surface model with an EnKF across the Continental continental U.S. Some model 

simulated water budget termsvariables were improved through the assimilation procedure, 

particularly. The improvement is , especiallyremarkable in agricultural areas because where the 

assimilation added harvesting information to the model. Ling et al. (2019) assimilated global LAI 

information at the global scale with an Ensemble Adjust Kalman Filter (EAKF) algorithm and 

found that the assimilation is more effective during the growing season. LAI assimilation also had 

a positive impact on gross primary production (GPP) and evapotranspiration (ET) in low latitude 

regions.  

Nevertheless, most of the aforementioned studies mainly focused on the impact of LAI 

assimilation on the model simulated LAI or vegetation biomass. Only a few studies discussed the 

influences of LAI assimilation on the estimation of water variables such as soil moisture or 

streamflow (Pauwels et al. 2007; Sabater et al. 2008) and most of them focused on small limited 

regions. Most recently, Albergel et al. (2017) conducted a study on a much larger domain  ̶  Europe 

and the Mediterranean basin  ̶ and showed that LAI assimilation can be used to improve 

improvement in soil moisture at various depths thanks to LAI assimilation.  

This work leverages upon these studies but aims to assess to what extent a land surface 

model, especially the model estimationssimulation of water-related variables, can be optimized 

through the assimilation of LAI observations at the the global scale. As this study serves as a 

feasibility test to quantify the impact of LAI assimilation on water cycle variables, an OSSE is 

chosen to investigate the model’s behavior. This guarantees that reference variables (often referred 

to as the “truth”), which are synthetically produced, are available for quantifying the performance 

of the proposed framework. Specifically, two OSSEs that apply an EnKF algorithm to anthe Noah 

LSM with multi-parameterization options model (Noah-MP, Niu et al. 2011; Yang et al. 2011) are 
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performed to evaluate the efficiency of assimilating LAI observations for estimating 

evapotranspirationET, canopy interception evaporation (CIE), canopy water storage (CWS), 

surface soil moisture (SSM), and terrestrial water storage (TWS).  

 

 

2. Methods and materials 

2.1. Land surface model (Noah-MP) 

The Noah LSM with multi-parameterization options (Noah-MP 3.6, (Niu et al. 2011; Yang et al. 

2011) is adopted in this study. Noah-MP contains a separate vegetation canopy defined by a canopy 

top and bottom, crown radius, and leaves with defined dimensions, orientation, density, and 

radiometric properties (Niu et al. 2011). Multiple options are available for surface water infiltration, 

runoff, groundwater transfer and storage including water table depth to an unconfined aquifer (Niu 

et al. 2007), dynamic vegetation, canopy resistance, and frozen soil physics. Specifically, the 

prognostic vegetation growth combines a Ball-Berry photosynthesis-based stomatal resistance 

(Ball et al. 1987) with a dynamic vegetation model (Dickinson et al. 1998). The dynamic 

vegetation model which calculates the carbon storages in various parts of the vegetation (leaf, stem, 

wood, and root) and the soil carbon pools.  

The Noah-MP 3.6 LSM has been implemented into the National Aeronautics and Space 

Administration (NASA) Land Information System (LIS; Peters-Lidard et al. 2007; Kumar et al. 

2006). LIS is a software that provides an interagency test bed for land surface modeling and data 

assimilation that allows customized systems to be built, assembled and reconfigured easily, using 

shared plugins and standard interfaces. All the experiments of Noah-MP in this study are setup 

through LIS. The Modern-Era Retrospective analysis for Research and Applications Version 2 
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(MERRA-2; Gelaro et al. 2017) dataset servesd as the meteorological forcings for of Noah-MP. 

MERRA-2 is the latest atmospheric reanalysis produced by the NASA Global Modeling and 

Assimilation Office (GMAO) and includes updates from the Goddard Earth Observing System 

(GEOS). The meteorological forcing variables selected from MERRA-2 include surface pressure, 

surface air temperature, surface specific humidity, incident radiations, wind speed, and 

precipitation rate.  

Five model output variables that describe terrestrial water fluxes and storages are 

investigated in this work: Evapotranspiration ET (ET, defined as the sum of evaporation and the 

plant transpiration [kg/m2s]), Canopy Interception EvaporationCIE (CIE, defined as the 

evaporation of the canopy intercepted water [kg/m2s]), Canopy Water StorageCWS (CWS, defined 

as the amount of canopy intercepted water in both liquid and ice phases [kg/m2]), Surface Soil 

MoistureSSM (SSM, defined as the water content in the top 10 cm of the soil column [m3/m3]), 

and Terrestrial Water StorageTWS (TWS, defined as the sum of all water storage on the land 

surface and in the subsurface [mm]).  

 

2.2. Experimental design 

An OSSE is designed to understand the efficiency of assimilating LAI within Noah-MP version 

3.6 using a one-dimensional EnKF algorithm (Reichle et al. 2010), when the precipitation forcing 

data are strongly biased. Being the major driving force of the hydrological cycle, the quality of 

input precipitation is critical for the accuracy of a land surface model outputs. However, global 

precipitation datasets are far from being perfect and often affected by large regional biases. For 

example, the MERRA-2 precipitation dataset shows a widespread relative bias greater than 100% 

in South Asia (Ghatak et al. 2018). Although an  an the EnKF data assimilation is optimal only 
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under the assumption of unbiasedness (which is not met in the proposed experimental setup), we 

want to investigate here to what extent the a LAI EnKF LAI assimilation (even if sub-optimal) can 

improve water storages and fluxes under two extreme conditions, i.e., a very dry and a very wet 

precipitation bias, knowing that such biases are very plausible in the real world and often unknown 

(and therefore difficult to remove). The proposed framework is evaluated byon athrough a global 

scale experiments (Antarctica excluded) at the 0.625° × 0.5° spatial resolution of the MERRA-2 

forcing dataset (Figure 1). 

 

Figure 1. Study domain and land cover types (Hansen et al. 2000). 

 

Figure 2 shows a schematic diagram of the experiments. First, the Noah-MP model is spun-

up for a 10-year period (2001-2010) to ensure a physically realistic state of equilibrium. Second, 

the model is run for a 29-month period (January 2011 – May 2013) to conduct the Nature Run 

(NR) with the same configuration as the spin-up one. By definition, an OSSE is a controlled 

experiment that does not assimilate any real observation. Instead, it treats all the model outputs 

from the NR as the “true” condition (denoted as the “synthetic truth”).. Thus, the output LAI from 

NR is considered as tThe “truthe”, LAI (i.e., the LAI output from NR) which is then perturbed via 

a simple additive error model to produce the synthetic observations to be assimilated into the DA 
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runs. The spin-up run and NR are forced by the original MERRA-2 precipitation data. Third, two 

Open Loop (OL) runs (no DA) are conducted for the same 29-month period under two conditions: 

i) “extremely dry” condition (the model is forced by halving the MERRA-2 precipitation data; OL-

dry), and ii) “extremely wet” condition (the model is forced by doubling the MERRA-2 

precipitation; OL-wet). The biased forcing precipitation data in OL mimic typical precipitation 

biases in current precipitation reanalysis and satellite products (e.g., Ghatak et al. 2018; Yoon et 

al. 2019). 

 

Figure 2. Schematic diagram of the OSSE design. 

 

The two DA runs are then produced conducted under the two same conditions (DA-dry 

and DA-wet) using an one-dimensional EnKF assimilation algorithm, which is a built-in DA 

method in LIS. The EnKF DA algorithm is suitable for non-linear and intermittent land surface 

processes (Reichle et al. 2002a, 2002b). Details of the algorithm have been illustrated can be found 
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in numerous previous studies (Reichle et al. 2010; De Lannoy et al. 2012; Liu et al. 2015; Kumar 

et al. 2019a). 

The model ensemble is generated by perturbing a set of meteorological forcing. To select 

the optimal ensemble size, a sensitivity test is performed for ensemble sizes spanning from 2 to 24 

members (not shown here). The number of ensemble members has a strong impact on the model 

results at small sizes, while the model performance tends to become steady when more than 20 

ensemble members are considered. Thus, all the DA simulations are run for 20 members.  

The synthetic LAI observations are obtained from the NR and assimilated to the DA system 

at 8-daily frequency. The synthetic LAI observation has the same temporal resolution as the 

MODIS LAI product but with full coverage over the entire study domain. In real case studies, 

satellite LAI products contain a substantial amount of missing data, mainly due to the cloud 

obscuration gaps. Based on the vegetation type in the model, the leaf mass fields are also updated. 

Random perturbations of MERRA-2 meteorological forcings and synthetic LAI observations are 

applied to create an ensemble of land surface conditions that represent the uncertainties of in the 

LSM. 

Similar to previous work (Kumar et al. 2014, 2019a, 2019b), the MERRA-2 forcing inputs 

such as shortwave/ and longwave radiations andas well as precipitation are perturbed hourly. 

Multiplicative perturbations are applied to the shortwave radiation and precipitation with a mean 

of 1 and standard deviations of 0.3 and 0.5, respectively. The longwave radiation is perturbed via 

an additive perturbation with a standard deviation of 50 W/m2. The perturbations of the three 

meteorological forcing variables also include cross correlations: cross correlation between 

shortwave radiation and precipitation is -0.8, cross correlation between longwave radiation and 
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precipitation is 0.5; and cross correlation between shortwave and longwave radiations is -0.5. The 

synthetic LAI observations are perturbed via an additive model with a standard deviation of 0.1. 

 

2.3. Evaluation and error metrics  

Output variables from the OL and DA runs are evaluated against the “truth” from the NR at daily, 

monthly, and seasonal temporal scales. Besides LAI, five more water fluxes and storages are 

evaluated in the results section: evapotranspirationET, CIEinterception evaporation, CWScanopy 

water storage, SSMsurface soil moisture, and TWSterrestrial water storage. 

The initial condition for the OL and DA runs is generated by a spin-up run that uses the 

original MERRA-2 precipitation as input. However, the OL and DA runs are forced by either 

doubled or halved precipitation, which is not consistent with the spin-up run and the model needs 

some time to stabilize. The first 5-month model outputs are therefore eliminated from the 

evaluation to avoid the model systematic instability at the beginning of the OL and DA simulations 

and the evaluation, thus, focused only on model outputs from 2011-06-01 to 2013-05-31. Results 

are discussed using both maps and anomaly time series of global averaged values and anomalies. 

Each of the anomaly time series is computed relative to the mean of its respective model run. 

Moreover, two error metrics are employed to quantify the difference between OL (and DA) with 

respect to the reference variables (from the NR). The first one is the Normalized and Centered 

Root Mean Square Error (NCRMSE), defined as follows: 

𝐸 =
{
1

𝑁
∑ [(𝑋𝑖−𝑚𝑒𝑎𝑛(𝑋))−(𝑂𝑖−𝑚𝑒𝑎𝑛(𝑂))]

2𝑁
𝑖=1 }

1
2

𝑚𝑒𝑎𝑛(𝑂)
      Eq. 1 

where E is the NCRMSE, O is the NR output variable, and X is the output variable from the OL 

runs or DA runs. N is the total number of X values, and i represents the index of each X value. 

Second, to investigate the improvement (or degradation) due to the DA of LAI observations, we 
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adopt the Normalized Information Contribution (NIC, similar to the NIC in Kumar et al. 2016) 

index based on NCRMSE and defined as: 

𝐶 =
𝐸𝐷𝐴−𝐸𝑂𝐿

0−𝐸𝑂𝐿
          Eq. 2 

where C represents the NIC index and E is the NCRMSE for OL or DA runs.. NIC equals to 1 

means that DA realizes the maximum possible improvement over the OL; NIC equals to zero 

means that DA and OL show the same performance skills; and negative NIC indicates a model 

degradation through DA. 

 

3. Results and discussion 

3.1. LAI 
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Figure 3. Global averaged daily values of LAI and five water variables (2011-06-01 to 2013-05-30). 
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Figure 43. Global averaged daily anomalies of LAI and five water variables (2011-06-01 to 2013-05-30). 

 

Figure 3a and Figure 4a show time series of global averaged LAI values and corresponding 

anomalies, respectively. As expected, LAI values are largely impacted by the extreme precipitation 

conditions. The wet condition introduces more vegetation, while the dry condition limits the 

vegetation growth throughout the two-year period. The DA procedure effectively corrects the LAI 

errors caused by the biased precipitation input. Figure 3a shows time series of global averaged LAI 

anomalies. The seasonality of LAI anomalies is evident, showing larger variations in winterDJF 

and summerJJA than during the transition periods (springMAM and fallSON). The OL-wet 
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condition simulation (blue line) shows larger LAI anomalies than the NR reference (black line), 

while the OL-dry condition (purple line) has smaller LAI anomalies than NR. The green and 

yellow shaded areas represent the 20 ensemble members of the DA runs. The LAI anomalies 

obtained from DA runs The LAI DA procedure under both wet and dry conditions are closer 

effectively corrects the LAI anomalies comparing to the reference anomalies than the 

corresponding OL runs. In general, DA performs better in the wet condition experiment than in 

the DA-dry case.  

Moreover, the DA runs show lower NCRMSEs than the corresponding OL runs in several regions 

across the globe (Figure 54a),, especiallywith larger over shrublands and grasslands areas (refer to 

Figure 1 for land covers).  

In order to illustrate how LAI assimilation performs for different seasons, Figure 65a and 

Figure 76a show monthly averages of NCRMSE for LAI across the northern and southern 

hemispheres, respectively. In the northern hemisphere (Figure 65a), the NCRMSE time series 

follow clear seasonal patterns. First, the NCRMSE is higher in DJF/MAMwinter/spring and is 

lower in summerJJA/SON/fall for both extreme precipitation conditions. The highest NCRMSE 

values are in March and April (spring), and the lowest values are in July, August, and September. 

The differences of NCRMSE between OL and the corresponding DA runs tend to be much larger 

in springMAM than in any other seasons, which means that LAI assimilation is more effective in 

the vegetation growth period. Moreover, the NCRMSE is constantly higher in the dry condition 

runs than the wet ones, which is due to the fact that the growth of vegetation is sensitive to the lack 

of water. Differences between wet and dry conditions are much smaller in summerJJA than in 

other seasons. In the summerJJA, the vegetation leaves in the north hemisphere are fully developed 

and the plants can use stomatal closure to preserve water under water limited condition (dry 
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condition)., tThus, the NCRMSE of dry condition becomes smaller and does not show much 

difference from the wet condition. The southern hemisphere (Figure 76a), which does not have a 

strong climate seasonality, shows more modest seasonal NCRMSE patterns than the northern 

regions. In general, the NCRMSEs in the southern hemisphere are smaller than the ones in the 

northern hemisphere all year around. Specifically, NCRMSEs in the southern hemisphere are 

slightly higher in October, November, and December, when the differences between OL and DA 

runs are also larger.  

 

 

Figure 54. Maps of LAI NCRMSE for the OL and DA runs. 

 

3.2. Water fluxes and storages 

As mentioned in section 2.3, we focus on five water-related variables from the Noah-MP output 

to evaluate the impact of LAI assimilation on simulating the water cycle (ET, CIE, CWS, SSM, 

and TWS). Daily time series of global averaged values and corresponding anomalies of the five 

water variables are shown in Figure 3(b-f) and Figure 4(b-f), respectively. The model well 
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simulates the seasonality of anomalies forall water fluxes/storages considered here. The OL runs 

reveal that global average values of all the five variables are impacted by the highly biased 

precipitation conditions (dry and wet). Specifically, tThe variations of anomalies forof ET, CIE, 

CWS, and TWS tend to be amplified by the wet condition and tend to be dampened by the dry 

condition. On the contrary, the anomalies of SSM become larger in dry conditions and become 

smaller in wet conditions, which is probably due to the limited soil water capacity. The surface 

soil has higher chanceis more likely to get saturated in wet conditions when the precipitation 

doubles the original amount, but SSM cannot get larger once the soil is saturated, even if there is 

more precipitation added to the system. Thus, the range of SSM anomalies in the wet experiment 

is limited and narrower than in the dry condition. The green and yellow shaded areas represent the 

ensemble of the DA runs. The anomaly ensembles of the five water variables show slight 

improvements through DA when precipitation is severely positively biased (wet condition). 

However, none of these variables shows improvement when the precipitation is severely 

negatively biased (dry condition) – the anomalies either have no change through the LAI DA (ET, 

CIE, and CWS) or worsen the OL-dry run (SSM and TWS). 

To further investigate the efficiency of assimilating LAI in Noah-MP, time series of 

monthly NCRMSE averages are shown in Figure 65(b-f) and Figure 76(b-f) for all five water 

variables. The five variables can be divided into two main groups based on their performances: 

ET/CIE/CWS and SSM/TWS. For the wet bias experiment, DA improves the NCRMSE for all 

variables. However, LAI assimilation is not able to correct the model when the input precipitation 

is negatively biased (dry condition). A dry precipitation bias means that the system has 

(erroneously) less water than in reality (NR in the synthetic experiment). Since no water is 

otherwise added to the system, LAI DA cannot fully correct water-related model states (such as 
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soil moisture). and tThe NCRMSEs of DA runs are either the same as in the OL runs 

(ET/CIE/CWS) or worse (SSM/TWS). Specifically, ET/CIE/CWS have larger NCRMSE in the 

northern hemisphere and much smaller NCRMSEs in the southern hemisphere, but SSM/TWS do 

not show large differences between north and south. Moreover, ET/CIE/CWS in the northern 

hemisphere follow a seasonal pattern: NCRMSEs are lower in summerwarm season (JJA) and 

higher in the colder seasons (DJF and MarchDecember, January, February, and March). In the 

southern hemisphere the three variables also have relative higher NCRMSE in the colder season 

(JJAJune, July, and August). On the contrary, SSM/TWS show a different seasonal pattern that 

NCRMSEs are larger in the warmer season (April, May, and June) over northern hemisphere. In 

southern hemisphere, TWS also has larger NCRMSEs in warmer season (October to April), but 

SSM shows higher NCRMSEs in colder season (similar to the ET/CIE/CWS group). 
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Figure 65. Monthly averaged NCRMSE for LAI and five water variables over the Northern hemisphere. 
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Figure 76. Same as in Figure 65, but for the Southern hemisphere. 

 

The improvements in the model water fluxes and storages through LAI DA are also 

quantified by the NIC index (defined in Eq. 2). Figure 87 presents comparisons among NIC indices 

for each water variable analyzed in this study across areas with four different land cover types: 
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forest & woodland, grassland, shrubland, and cropland. In general, LAI DA improves the NIC 

indices with positively biased input precipitation (DA-wet condition) but worsens the NIC when 

negatively biased input precipitation (DA-dry condition) is considered. Specifically, in wet 

condition, ET, CIE, and CWS have higher variability over areas with different land cover types, 

while SSM and TWS have similar NIC values across different land covers. Shrubland and cropland 

tend to perform better in wet condition except for TWS. In dry condition, the NICs of ET, CIE, 

and TWS have higher variability than the ones of CWS and SSM. SSM and TWS show very low 

NIC values in dry condition for almost all land covers. Overall the NIC values of ET, CIE, and 

CWS are better than the ones of SSM and TWS for all land cover types, though the NICs of ET 

and CIE over forest & woodland perform very poorly.  
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Figure 87. NIC for different variables and different land cover types for the two DA runs. 
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Figure 98. NIC of five water variables under wet precipitation conditions over northern and southern hemispheres 

(NH and SH) during different seasons (MAM, JJA, SON, and DJF) 
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Figure 109. Same as in Figure 98, but for the dry precipitation experiment. 
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The effectiveness of LAI DA therefore varies across the northern and southern hemispheres, 

different land cover types, as well as different input precipitation biases. To further investigate the 

influence of LAI assimilation, Figures 8 and 9 present NIC values for each hemisphere, each 

season, and each of the input precipitation conditions – wet and dry, respectively. For the wet case 

(Figure 98), NIC is positive in most cases, which means that the five water variables benefit from 

the LAI assimilation in all seasons and in both hemispheres. The only exception is CWS which 

has negative NIC values in the southern hemisphere over grassland (in MAM season) and over 

forest & woodland (in all seasons). In fact, the forest & woodland region tends to have the least 

improvement through the LAI assimilation among all land cover types. This is probably because 

forests and woodlands have large water-holding capacity; thus, the change of water amount caused 

by LAI DA is not enough to improve the water-related variables. In other words, forest and 

woodland areas tend to have lower sensitivity in response to the change of precipitation conditions 

because of their large rooting depth. On the contrary, cropland is very sensitive to precipitation 

and it benefits the most from the assimilation of LAI for most of the variables. Moreover, NICs of 

ET/CIE/CWS tend to be smaller than the NICs of SSM and TWS. There is no clear seasonality in 

the NIC values, though it has a weak tendency to be lower in warm seasons.  

For the dry condition case (Figure 109), NIC values are much lower than in the wet bias 

case. Nearly half of the NIC values for the five water-related variables are negative, meaning that 

DA degrades the OL estimates. Nevertheless, the forest & woodland regions tend to perform better 

than other land covers in dry condition for SSM and TWS. This is due to large soil reservoirwater-

holder capacity of forests and woodlands, which keeps the model water storage more stable when 

the input precipitation is affected by large negative biases. 
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3.3. Discussion 

Results presented in sections 3.1 and 3.2 indicate that assimilating LAI in Noah-MP improves the 

model estimates of water fluxes and storages under positively biased precipitation input (wet case), 

but does not benefit most of the selected water variables when the precipitation input is 

characterized by a negative bias (dry case).  

In the dry condition runs, Noah-MP is fed by only half of the original MERRA-2 

precipitation used in the NR. Considering that the amount of water in Noah-MP is conservative 

(since based on a water balance equation), the model has no additional water source in the system, 

even though the LAI assimilation pushes the model towards more vegetation (that should result in 

more water). As a matter of fact, introducing more vegetation in the system results in more 

evapotranspirationET and more root water uptake from the soil, which is most likely the cause for 

the poor performance of most water fluxes and storages in the DA-dry experiment.  

On the other hand, the LAI assimilation is found to improve the original OL runs when the 

input precipitation is positively biased (DA-wet vs. OL-wet). This is because LAI assimilation is 

able to help constrain the partitioning of model water storage when there is abundant water in the 

system, thus, improving the performance of water-related variables. In summary, although the 

EnKF is run here in a sub-optimal mode (not satisfying the unbiasedness assumption), the 

assimilation of LAI is shown to have a positive impact on multiple variables and in several regions 

of the world. 

Overall the improvement of water variables through LAI assimilation is not remarkable 

enough to compensate the model degradation caused by the biased precipitation forcing data. 

Previous studies (Pauwels et al. 2007; Sabater et al. 2007; Barbu et al. 2011; Fairbairn et al. 2017; 
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Albergel et al. 2017) have tested the performance of the joint assimilation of LAI and soil moisture 

over regional domains and showed promising results. However, no experiment was performed at 

the global scale. Future work could investigate a multi-variate data assimilation system that 

concurrently merges both LAI and soil moisture (or TWS) observations globally. 

 

4. Conclusions 

This study evaluates the efficiency of assimilating vegetation information (i.e., LAI synthetic 

observations) within a land surface model (Noah-MP 3.6) when the precipitation forcing data are 

strongly biased (either positively or negatively). Two OSSEs that use an EnKF algorithm for LAI 

assimilation are performed at the global scale during June 2011 – May 2013. The experiments use 

Noah-MP as a land surface model and MERRA-2 as meteorological forcing data. The OL and DA 

runs are evaluated against a synthetic “truth” from a nature run, in which the MERRA-2 

precipitation is neither perturbed nor biased. The performance of the proposed framework is 

evaluated for several model output, including LAI estimates and five water-related variables (ET, 

CIE, CWS, SSM, and TWS). 

Overall the EnKF LAI assimilation procedure effectively reduces the LAI error under 

positively (wet case) and the negatively (dry case) biased precipitation conditions. For the five 

selected water flux or storage variables, LAI DA improves the model estimates when the model 

input precipitation is positively biased (wet), but tends to worsen the OL estimates for some of 

those variables when the input precipitation is negatively biased (dry). Specifically, SSM and TWS 

estimates are degraded in the DA-dry run with respect to the OL-dry run, while ET, CIE, and CWS 

do not present large changes when LAI is assimilated in the dry bias run. The poor performance 

of LAI DA under dry condition is mainly attributed to the fact that the amount of water in Noah-
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MP is conservative. The LAI assimilation in dry condition introduces more vegetation, which 

requires more water in the system to replenish the soil water supply. However, the model has no 

additional source of water, since the input precipitation is negatively biased. 

Although a blind bias case (e.g., unknown biases in the precipitation forcing dataset) is 

presented here in which the EnKF is run in a sub-optimal mode, the assimilation of LAI 

observations is proven useful to improve several model output variables. Future research should 

focus on alternative DA methods to run the DA system in a more optimal way, such as updating 

other related model states while assimilating LAI observations, perturbing the model initial 

condition and model parameters, and/or assimilating  actual satellite-based LAI observations (e.g., 

MODIS, GLASS) at the global scale to verify the efficiency of the proposed vegetation DA 

framework. This may be particularly useful in agricultural areas, where the vegetation conditions 

are largely impacted by cropping schedules (Kumar et al. 2019b). Moreover, future work should 

could investigate multi-variate DA techniques that combine the assimilation of several variables 

(such as LAI, soil moisture, and TWS) at the global scaleonce. 
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