
R2: The manuscript tested the hypothesis that 3H tracer provides information over longer transit times than
2H.  The  authors  calibrated  the  StorAge  Selection  (SAS)  function  model  for  each  tracer  and  examined
information gain using the posterior distributions of the model  parameters.  They rejected the hypothesis
based on their results.  Nevertheless, they concluded that  3H tracer is more informative and cost-efficient
compared to 2H.

The topic is timely and very interesting. However, the manuscript needs substantial revision. First, I do not
think that the results presented in this study support most of their conclusions. Their SAS function-based
model performed poorly even with 12 parameters, and it is not clear how much we can learn from the poorly
performing  and  not  well-constrained  model.  Second,  I  have  several  issues  with  their  analysis  and  the
hypothesis test. These points are described in more detail in what follows.

Authors:  We  thank  the  reviewer  (R2)  for  the  detailed  assessment  of  the  work  and  for  suggestions  of
improvement. Regarding the hypothesis testing, we were not clear in our writing. We did not intend to test
the statistical significance of the water age differences derived from different tracers, but rather wanted to
prove that the age differences are much smaller than previously shown (Stewart et al., 2010) and assumed in
most following tracer studies. As a consequence of the comments from Francesc Gallart (FG) and R2, also
written in more detail in our reply to FG, we will now also include a statistical test in the revised manuscript.

We note R2’s concerns about our model and data. We detailed below why we think that we can still derive
robust conclusions from the modelling exercise. We will modify the manuscript to clarify this and to address
R2’s comments.

R2: The model has an unusually large number of parameters (12 parameters; e.g., Line 249) compared to the
previous  SAS function-based  modeling  studies.  I  believe  that  the  authors  illustrated  the  need  for  more
parameters well in their previous study, which is now published in WRR. However, the model does not
perform well even with the 12 parameters (with the maximum NSE 0.24 for 2H), and I am not sure what we
can learn from the poorly-performed model.  The large number of parameters also causes several  issues
described below.

Authors: We understand R2’s concern that the model does not perform sufficiently well despite the large
number of parameters it has. We will rephrase parts of the discussion to stress that the model is of course not
in perfect agreement with the observations, and that a better model may change the interpretation of the
results  to  some extent.  We already proposed some suggestions of  improvement  of  the  model  for future
studies (section 4.4 and our answer to a comment further below). We agree with R2 that the NSE cannot be
considered  high,  but  we  disagree  with  R2’s  interpretation  that  the  model  is  performing  poorly.  In  our
previous study (Rodriguez and Klaus, 2019), we detailed why such a complex model structure is adequate
for  this  catchment,  even  if  the  NSE  appears  unusually  low.  We  also  emphasized  on  the  fact  that  12
parameters is a small number to constrain the vast array of time-varying processes leading to the selection of
particular water ages by Q and ET from anywhere in catchment storage (represented here in the Master
Equation  by  ~105 “age  control  volumes”  and  their  associated  age  fluxes).  We  previously  detailed  the
limitations of the NSE for evaluating model performance with such complex tracer time series (see also 4.4,
the  NSE  assumes  normally  distributed,  uncorrelated,  and  homoscedastic  errors).  Other  performance
measures have been proposed (e.g., Schoups and Vrugt, 2010; Ehret and Zehe, 2011), but they either require
more parameters, or they are not designed for tracer time series but only for hydrographs.

Furthermore, the evaluation of model performance usually involves expert knowledge (Gharari et al., 2015;
Hrachowitz et al., 2014) that cannot be expressed via the traditionally used objective functions (Seibert and
McDonnell, 2002). The Weierbach δ2H time series has unusually damped seasonal dynamics, while at the
same time unusually strong flashy events occur. A close look at the behavioral simulations (see figure 4)
reveals that some runs were actually able to match the flashy δ2H dynamics quite well. A zoom on figure 4
allows to see the short-term simulation capabilities of  the model  (the very thin peaks of the simulation
envelopes). We will add an inset with a zoom on particular peak in figure 4. We will add figures (see a few
examples below) in the supplement showing more details about the behavioral simulations. In these figures,
it  is  remarkable  that  only  several  dozen data  points  among the  more  than  1000 were  not  captured  by



behavioral simulations in deuterium. These points are almost all  during summer 2016 and summer 2017
(drier periods). The other interesting aspect is that behavioral simulations in tritium were able to match many
of  these extreme values.  We believe that  this  is  because the behavioral  simulations in  tritium were not
penalized by the limitations imposed by the NSE, and were thus allowed to have more extreme variations.

Figure: δ2H simulations in Nov-Dec 2015

Figure: δ2H simulations in Jul-Oct 2016



Figure: δ2H simulations in winter 2016

Although higher NSE values were reported in the past for other δ2H time series simulated with transient
TTDs (e.g. NSE > 0.5; Benettin et al., 2017; Harman, 2015; van der Velde et al., 2015), we disagree to state
that our model performs poorly simply because the NSE values are not as high. The NSE of the behavioral
simulations is not closer to 1 partly because of the underlying assumptions about model residuals in the NSE
(Rodriguez and Klaus, 2019). Care should be taken in interpreting the NSE values. The NSE does not allow
a reliable performance comparison between different studies and it  is not an absolute measure of model
performance, because it implicitly uses the mean observed value as a benchmark model. This benchmark
model is not always the best choice, as stressed in several studies (Seibert, 2001; Schaeffli and Gupta, 2007;
Criss and Winston, 2008). In our particular case, the mean observed value is particularly penalizing because
the δ2H time series has many more points corresponding to very damped seasonal fluctuations than points
corresponding to the large flashy fluctuations. Within tracer hydrology and modelling there is an urgent need
for better ways of summarizing model efficiency.  Yet,  this  is beyond the scope of this  study, especially
because it focuses the calibration task while our goal is to focus on what can be learned from the isotopic
data set in terms of water ages. We will add these points to section 4.4 in the discussion.

R2: Also, the dataset is very limited, and it is not clear if the limited number of samples and the limited
sampling period support their conclusions. First, it is not clear if the  3H dataset is enough. The number of
samples is too limited to constraint 12 parameters. 

Authors: The  3H data set has, with the study of Visser et al. (2019), one of the highest number of stream
samples analyzed for  3H and used for travel time analysis. We understand that this may appear as a small
number to constrain 12 parameters in the more general context of environmental modelling studies, but this
is  very  common  in  travel  time  studies  involving  tritium.  Many  previous  studies  had  about  as  many
parameters  as  tritium samples  or  a  just  a  few  samples  per  parameter  (Maloszewski  and  Zuber,  1993;
Uhlenbrook  et  al.,  2002;  Stewart  et  al.,  2007;  Stewart  and  Thomas,  2008;  Stewart  and  Fahey,  2010;
Morgenstern et al., 2010; Cartwright and Morgenstern, 2016a, 2016b; Duvert et al., 2016; Gallart  et al.,
2016; Gusyev et al., 2016; Gabrielli et al., 2018). We will cite some of these studies and mention this point in
sections 2.2, 2.6, and 4.4. Future studies may present a higher number of tritium samples if the analyses
become more affordable.

R2: I can easily guess that the parameters are not well-constrained. Thus, it is obscure how much information
we can extract from the time series, the posterior distributions of those parameters, the TTDs, and the SAS
functions,  which  were  used  to  test  the  hypothesis  and  examine  if  those  tracers  contain  non-redundant
information to each other. 



Authors: We will include the parameter posterior distributions (see below) in a supplementary file. Most
distributions are not flat (i.e. not uniform), indicating that the parameters are identifiable to some extent. We
also note that all the parameters directly related to the shape of the SAS functions hence the TTDs (μ 2, θ2, μ3,
θ3, μET, θET) are visually clearly not uniform. We initially used Shannon’s entropy H and the Kullback-Leibler
Divergence DKL concepts for parameter identifiability instead of these figures to have a more objective and
more quantifiable uncertainty assessment. We note that “how much information we can extract from time
series, the posterior distributions of those parameters...” is exactly quantified via equations 8 and 9. We will
explain these concepts in more detail in section 2.7 and add a line in table 2 corresponding to the DKL
between prior and posterior distributions for each parameter. 

Figure: Posterior distributions constrained by deuterium

Figure: Posterior distributions constrained by tritium

R2: For example, the authors stated that “stable and radioactive isotopes have information in common about
young  water”  in  Lines  472-475.  However,  the  argument  cannot  be  supported  by  those  24  samples.
Furthermore, how much information we can extract from the 2-years of  2H data set? Can we talk about
transit time longer than 2 years (at the maximum) based on the model results? 



Authors: We are not sure what is meant exactly by “the argument cannot be supported by those 24 samples”
and thus how to cope with this comment. As indicated in the following sentences (lines 472-475) we believe
that  the  high  variability  of  stream  tritium  concentrations,  that  follow  the  variations  of  precipitation
concentrations, indicates that it is very likely the effect of young water contributions. This was unobserved
before due to a focus on baseflow sampling, except for rare studies showing high tritium variability during
short-term hydrological events (Hubert et al., 1969; Crouzet et al., 1970; Dinçer et al., 1970). Tritium has
therefore been generally considered to be informative only about old water (we will emphasize on this detail
in the corresponding paragraph). However, tritium can be used and has been used to detect young water
contributions, for example in the first studies using hydrograph separation (Klaus and McDonnell, 2013).

Moreover, as it can be seen in table 3, we have travel times above 2 years (e.g. mean > 2). We have travel
times up to about 100 years (see figure 6). This is possible due to the 100 year spin-up period (1915-2015)
that we systematically used before evaluating each simulation over 2015-2017. We will add a sentence to
clarify this in section 2.5. 

R2: Second, I think that their Latin hypercube sampling (Line 262) suffers the curse of dimensionality. They
sampled 12,096 parameter sets from the 12-dimensional parameter space. It can be easily guessed that those
samples are very sparsely distributed in the 12-dimensional parameter space (i.e., 124 >  12,096), and the
sparse sampling can potentially limit  their  ability to construct  well-constrained posterior distributions of
those parameters.

Authors: We understand that 12,096 parameter samples for a 12 dimensional space can be less than one may
hope for. We also understand that it would be ideal if we had several more orders of magnitudes in the
number of samples. However, we are currently limited by computational time (more than 1 hour) to run the
model with each parameter sample, despite the use of a highly parallelized code with a high performance
computer. This computational time is so large because of the need to spin-up the model for 100 years (see
above). Without this spin-up, a numerical truncation of the TTDs will occur. 

As suggested by R2, the parameter sets are thus likely to be sparsely distributed. The LHS technique was
thus employed to make sure that the samples are distributed as evenly as possible in this high-dimensional
space (each parameter range is divided in 12,096 equal intervals that each contain at least one point). This
technique has the advantages of a stratified sampling technique, while keeping the simplicity and objectivity
of a pure random sampling technique (Helton and Davis, 2003). We will emphasize on this aspect in section
2.6.

Finally, we want to point out that the posterior distributions from our approach using a simple Monte Carlo
technique and a Latin Hypercube Sampling scheme are naturally more likely to appear less constrained than
when using Markov-chain-based algorithms such as DREAM (Vrugt, 2016) or PEST (Doherty and Johnston,
2003). This is a visual effect. Our approach is similar to a global optimizer that tries to find the absolute
optimum point by exploring the widest space as evenly as possible (especially when using LHS), say [0, 1]
to  make  it  simple.  In  contrast,  Markov  Chain  Monte  Carlo  algorithms  tend  to  quickly  converge  on
“interesting areas” (say [0.05, 0.1]) and tend to stay confined there on several local optima. This means that
the resulting posteriors appear naturally more constrained with MCMC algorithms because they only show
values in the explored region of interest, say [0.05, 0.1], out of the total initial space ([0, 1]). We could not
use  MCMC  algorithms  for  numerical  reasons.  For  example,  MCMC  algorithms  are  poorly  suited  to
systematically enforce parameter constraints (such as the sum of SAS function weights λ being 1).

R2:  Lastly, the poor performance of the model leads me to think that maybe their model structure is not
adequate, and any discussion based on the model results should be conducted more carefully. It is clear that
the model fails to reproduce short time-scale dynamics. Figure 4 shows that their  2H-based model cannot
capture  the  observed  large  fluctuation.  It  seems  that  the  large  fluctuation  is,  in  part,  due  to  the  high
correlation between Cp,2 and CQ,2 especially when the system is dry, and It  implies that  short  time-scale
dynamics are not captured by the model (as they mentioned in Lines 512-513). The fluctuation seems much
more pronounced in the  2H time series. Thus, if we have a better model that captures the short time-scale



dynamics,  it  may  contradict  the  authors’ argument  in  Line  472:  “stable  and  radioactive  isotopes  have
information in common about young water.”

Authors: Please see our related answer about model performance above. We will stress in the discussion that
a better model may change the interpretation of the results to some extent. We don’t think that a model
performing better would change the conclusions of our study. Furthermore, in our model, the flashy events
(that  we  assume  to  be  young  water  contributions)  are  conceptualized  in  a  novel  way  via  λ 1 and  its
parameterization depending both on storage and a proxy of storage variations.  In the discussion of the
original manuscript, we proposed suggestions for improvement in future studies regarding this part of the
model (Lines 518-538). Yet,  we disagree with R2. Behavioral simulations were able to match the flashy
dynamics of δ2H to a degree. We will supply figures as a supplement (see above) that will allow the readers
to visually identify this aspect better (see one example below). As R2 points out, these flashy events occur
mostly during drier periods, but not only. During winter 2016, flashy variations in δ2H can also be observed
(figure 4 of the original manuscript). The flashy variations tend to follow the variations of precipitation δ 2H,
and  suggest  the  influence  of  young  water  contributions  to  the  stream.  However  there  is  not  a  perfect
correlation between CP,2 and CQ,2, even during dry periods (e.g. for Q < 0.02 mm/h) when the relationship
seems  visually  clearer.  This  is  most  likely  because  of  a  strong  annual  groundwater  contribution,
conceptualized with the two gamma components in the SAS function (Rodriguez and Klaus, 2019). CP,2 can
thus explain only about 45% of the variations of CQ,2 during dry periods. We will provide a figure showing
this in the supplement of a revised manuscript, and include these comments in the discussion, section 4.4.

Figure: Simulations of δ2H in May-June 2016

The flashy variations appear more pronounced for δ2H, because there are many more samples compared to
3H, and because the unit scaling is different. We think that these flashy events would be similar for tritium if
we had more than 1000 samples. One of such flashy events was already captured with the 24 samples and
can be observed in November 2016 for 3H. Re-scaling the time series to be able to include the precipitation
signal (as this was done for tritium in figure 5) makes the flashy events appear much less pronounced. For
instance,  compare the inset  of  figure  2  with figure  4 for  δ2H.  The  inset  in  figure  2  makes  the tritium
variations appear stronger than deuterium variations. Finally, as we detailed in the discussion (lines 515-
517), a model passing through all observation points would still not allow to draw firm conclusions of the
“own potentials” of each tracer in terms of water ages, because the number of samples for each tracer is not
comparable. We think that high-frequency tritium observations would unambiguously show that young water
contributions are as visible in tritium time series than in the δ2H plot (e.g. Crouzet et al., 1970). The point of
our work is to argue that there is only one streamflow TTD, and that an observed age difference between the



tracers can be due to sampling limitations in one or the other tracer or to erroneous assumptions (e.g. steady-
state). We will insist further on this point in section 4.4 of the discussion.

R2: The use of the Kullback-Leibler Divergence DKL in the hypothesis test seems inappropriate. Throughout
the manuscript, the authors stated that using both tracers together is valuable since DKL  > 0 (e.g., in Lines
435-436 and Lines 468-470). However, the criterion DKL > 0 cannot determine whether the criterion is met
because multiple tracers are used or because there is just any additional information. For example, DKL
between the model constrained by, let’s say, 100 2H data and the model constrained by the rest of the 2H data
will be greater than zero.

Authors: This is an interesting point. However, it is not only because DKL > 0 that we concluded that using
both tracers together is valuable. As stated lines 436-437, using both tracers together reduced the entropy of
the posterior distributions compared to prior distributions. Combining both tracers also allowed narrower
groups of TTD curves in figure 6 and 7,  and yielded lower standard deviations of the age and storage
measures in table 3 and 4 despite having fewer samples. Second, DKL is strictly positive if and only if the
compared probability distribution functions (pdfs) differ,  meaning that they contain different information
about the population(s) they describe. It does not matter for DKL whether the pdfs come from sampling
different populations (in our case the posteriors constrained either by one tracer or two tracers) or from
sampling  the  same  population  several  times  with  different  methods  (e.g.  using  two  distinct  objective
functions to constrain the parameters using only one tracer). In any case, DKL being strictly positive tells us
that the posteriors are not equal, thus we learned something about the parameters and the water ages. The
statement “DKL between the model constrained by, let’s say, 100 2H data and the model constrained by the
rest of the 2H data will be greater than zero” may unfortunately be wrong. If the additional δ2H data points do
not visibly change the posterior pdfs compared to the initial 100 points,  meaning that they do not bring
considerably more information about the parameters hence the water ages, DKL can be close or equal to 0.
We found DKL values  about  10  times  smaller  than  the  maximum Shannon entropies  corresponding to
uniform prior distributions (table 2). This roughly 10% additional knowledge gained by adding one tracer is
therefore not negligible. We will add these comments in section 4.3.

R2: Moreover, different performance measures were used for their models (Lines 265-270), and it makes the
use of DKL even more inappropriate. The authors used the NSE for the 2H-based model and used the MAE
for  the  3H-based  model.  Thus,  the  difference  between  the  posterior  distributions  estimated  by  those
behavioral models can be, in part, explained by the choice of performance measure. For example, if the
authors estimate the posterior distributions using the 2H dataset based on the MAE, the posterior distributions
would differ from those estimated based on the NSE. Then, DKL would be greater than zero. Thus, it is not
hard to follow their argument that using both tracers together is valuable (e.g., in Lines 331-333, Lines 435-
436, Lines 478-470, and Lines 580-581).

Authors: This is also an interesting remark. We therefore conducted additional analyses. Before we answer
this  comment,  we want  to  mention that  these  additional  analyses  helped  us  realize  that  we  mistakenly
multiplied all the values in table 2 by log2(10). This means that we will correct all the values shown in table 2
and mentioned in the text by dividing them by log2(10). It is important to notice that this changes absolutely
nothing to all the reasoning we applied and to what we wrote in the manuscript, since the values are all
changed by exactly the same proportionality factor.

Following R2’s suggestions, we recalculated table 2, using the criteria MAE < 1.3‰ for δ2H and MAE < 0.5
T.U. for 3H. We used the threshold 1.3‰ for deuterium to obtain a similar number of behavioral simulations
(here, 149) than with NSE > 0 (148 solutions). We obtained similar results than for NSE > 0 and MAE < 0.5
T.U. Only minor differences can be observed for some parameters. We carefully checked and found that all
our reasoning and our conclusions based on table 2 remain intact (lines 321-328 and discussion section 4.3).
We will nevertheless include these additional results in the supplement. Following R2’s comment that DKL
would be greater than 0 if we used both MAE and NSE constraints on δ2H, we went further and calculated
the DKL between posteriors constrained by NSE > 0 or by MAE < 1.3‰ and posteriors constrained by the
combination {NSE > 0 and MAE < 1.3‰}.  All  the  DKL values  we found were below 0.02 bits.  This
information gain is negligible compared to what was learned by adding one tracer after another. It is not a



surprise because the NSE and the MAE are both based on minimizing a sum of residuals (squared or not),
making them almost equivalent. It would be very different if we used a measure based on residuals and
another based for example on a correlation measure (Legates and McCabe, 1999). Thus, in our case, the use
of the DKL clearly shows that the information gain is not due specifically to the choice of distinct objective
functions for 2H and 3H, but instead to the additional information contained in the other tracer.

R2: Furthermore, I disagree with their cost analysis (in Lines 445-451), which led them to conclude that 3H
tracer is more cost-effective (e.g., Line 17). As described in Lines 462-463, “The amount of information
learned from the isotopic data probably scales nonlinearly and probably reaches a plateau as the number of
observation points grows.” However, they assumed “linearity” in their cost analysis. Thus, the analysis is not
valid.

Authors: We thank R2 for this remark. The reviewer is right, that we would (most likely) not have concluded
that  tritium  is  more  cost-effective,  if  we  had  more  samples  and  if  these  samples  did  not  bring  more
information about parameters and water age. The lines above the quoted statement (lines 458-462) and the
conclusion (lines 574-575) also say that  2H could have been more cost-effective with a smarter sampling,
which could reduce the number of δ2H samples hence the total analytical price. We will anyway remove the
parts of the manuscript that mentioned cost-efficiency, to avoid misinterpretations.

Finally, we only hypothesized that  “The amount of information learned from the isotopic data  probably
scales nonlinearly and  probably reaches a plateau as the number of observation points grows”.  We will
rewrite this sentence to make this clearer. We do not know if there is linearity or not. The only thing we know
with our samples are the two points shown in the figure below (that we will include in the supplement). How
information  scales  with  the  number  of  samples  could  be  any of  the  dashed curves  that  represent  very
different scenarios. The other thing we are sure of is that the true curve can never decrease: there is no
information lost by adding new samples. In the worst case, nothing is learned, and the information gain is 0.
This means that no matter how many tritium samples we add in our case, tritium will always stay more
informative in the absolute sense (14.85 > 13.55) than deuterium. We will thus only keep our statement that
tritium was overall more informative. 

Figure:  Information learned about water ages from each tracer (points) and potential relationships
between the number of samples and the (necessarily) growing information content (dashed lines).



By simply dividing the total amount of information by the number of samples or by the total analytical price,
we only applied some sort  of  normalization that  does  not  assume linearity  or  nonlinearity.  It  would be
different if we used a normalized value (e.g. 0.619 bits per sample for tritium) to extrapolate how much
information we could learn in the future by gathering more samples. This would correspond to drawing the
unknown curves towards the right-hand side of the points in the figure above. We did not test in what way
the amount of information grows with increasing number of samples, as detailed lines 463-467. We will
rewrite this part to make sure this is clear, and so that future studies may look into this aspect. As we also
detailed in our reply to FG, this test would introduce some subjectivity because not only the number of
samples that is used would matter for this analysis, but also the way those samples would be selected among
all that we have.

R2:  Lastly, it seems that the ET SAS functions are very important in this study but rarely explained. One of
its parameters, µET is the most valuable parameter in terms of the information gain in this study (see Table 2).
However, no explanation is provided why it is the most valuable and how it affects their interpretation of the
results.  For example, Figure 5 is one of the most important figures that clearly illustrates the difference
between the  2H-based model and the  3H-based model. The simulated  3H concentration using the  2H-based
model,  in  general,  is  higher  than  that  simulated  using  the  3H-based  model.  It  means  that  tracer  mass
partitioned into discharge is smaller in the 3H-based model during the period. Since there is no explanation
on the difference, I had to guess that either more 3H tracer mass is stored in the system in the 3H-based model
or more 3H tracer was partitioned into evapotranspiration in the model. Overall, it seems that the partitioning
is one of the most important differences between the two models. Thus, the partitioning should be explained
in more detail

Authors: We thank R2 for this excellent remark. ET is critical for travel time studies. The water mass balance
reads:

dS /dt=J −Q − ET

In the study we only have one water partitioning condition in the model and that is to decrease ET from PET
to 0 when storage S drops below a certain threshold (Sroot) (see appendix A2). This threshold conceptualizes
the strongly increasing capillary forces that prevent water from being taken up by plant roots or directly
evaporated at lower soil water contents (Rodriguez and Klaus, 2019). A similar strategy was employed for
instance by Fenicia et al. (2016) and Pfister et al. (2017) in the Weierbach and neighboring Luxembourgish
catchments.  The  choice  of  the  SAS functions  ΩQ and  ΩET has  only  an  indirect  link  with  the  isotopic
partitioning of J between Q and ET. The SAS functions represent only a preference of a given outflow for
certain stored water ages. Since there is no one-to-one relationship between the stored water age at a given
moment and the past tracer concentrations in the input (e.g. the age ambiguity of tritium, see figure 2), there
is no explicit partitioning of isotopic concentrations in the model based on the SAS functions. We will add
these details to the methods (2.4) and to appendix A2. 

We did not focus on the parameters of the SAS function of ET because our study deals with streamflow
travel times, and because we do not have tracer data representative of the ET flux that could be used to
directly constrain its SAS function parameters. Instead, we indirectly constrained these parameters to the
tracer data in streamflow. Similar to Van der Velde et al. (2015) and Visser et al. (2019), we found that the
parameters of the ET SAS function have a non-negligible influence on the simulations of stream isotopic
tracers. We agree with R2 that this relative importance of µET was observed because of the long term isotopic
partitioning of precipitation between streamflow and ET. We will include the figure below in the supplement.
It shows, as suggested by R2, that the simulations constrained by 2H generally yielded more tritium mass in
streamflow over 2015-2017 than the simulations constrained by 3H.



Figure: Simulated flow-weighted concentrations in the stream for the behavioral model runs constrained by
deuterium samples or by tritium samples.

As R2 points out, this means that for the  3H-based model, more tritium was stored, or ET removed more
tritium  from  storage  compared  to  the  2H-based  model  (or  both  effects  together).  We  do  not  have  the
necessary tracer observations (such as isotope samples in ET or isotope samples representative of storage) to
say what mechanism happened in the catchment. In that instance, we cannot determine if the model used the
correct mechanism or not. However, we can discriminate the solution based on the long term isotopic mass
balance.

Tritium accumulation in modelled storage to momentarily decrease CQ is only a short-term solution, because
the  stored  tritium concentration  cannot  continuously  increase  in  a  physically  realistic  model.  The  only
solution to reduce the stream tritium content in the long term (e.g. over 2 years like here, or longer) is to
evacuate the excess tritium by ET. The posterior distribution of μET constrained by tritium observations (see
above) tends to lower values, indicating a stronger preference for younger water in ET compared to μ ET

constrained by deuterium observations. If we restrict our point of view from years 2000 to 2017, current
precipitation generally has a higher tritium content than the water recharged before (see figure 2). Thus, by
preferentially removing younger water, ET partly contributes to removing tritium from the system and to
keeping the simulated stream tritium concentrations low over 2015-2017. This is why the information gain
about μET is so high with tritium data. It is interesting to see that the same mechanism must be occurring with
stable isotopes because the information gain about μET is also high with stable isotopes, and the figure above
shows  that  behavioral  solutions  for  deuterium  also  have  a  lower  stream  tritium  content  than  current
precipitation.

We think that the lack of high-resolution tritium data explains why the simulations constrained by tritium
observations tend to have a lower stream tritium content than simulations constrained by stable isotopes. On
the one hand, with only monthly measurements of precipitation taken 60 km away from the study site, our
knowledge of the true tritium content  of  local  precipitation has some uncertainty.  It  is  possible that  we
overestimate the flux-weighted tritium concentration of precipitation (see the red cross in the figure above).
The same remark applies to the stream tritium content. The 24 samples probably do not fully represent the
flux-weighted tritium concentration in the stream. It is thus possible that we underestimate the true value,
and that more samples during hydrological events (such as flashy peaks) would increase the estimated value.
We will condense and add this information to the results, section 3.1. We also think that this really points to a



critical limitation in many hydrological studies: the lack of appropriate sampling schemes for tracers in ET in
space and time. 

R2:  Line 375: Typo in “[0,∞[“

Authors: We think that R2 means that the open squared bracket “[“ should be a parenthesis “(“. If that is the
case, we observed that both notations exist, and we prefer to keep the one already used. If that is not the case,
we are sorry but we do not see the typo.

R2: Line 224: It is stated that λ1(t) is the smallest weight. However, it is not clear how that was constrained in
the model calibration.

Authors: Essentially, λ1(t)< λ1* and λ1* is sampled between 0 and 1-λ2 (hence between 0 and 1) to have
λ1+λ2+λ3=1 (table 1 footnotes). This means that λ1* is sampled more often close to 0 than close to 1, and λ1(t)
is generally the smallest weight. We did this because large values of λ1(t) generally corresponded to poor
simulation fits in initial tests, and because it is necessary to impose at least one relationship between two λ
coefficients to be able to randomly select three λ verifying λ 1+λ2+λ3=1. We will add more details about this
and rephrase the sentence to avoid misinterpretations.

R2: Lines 236-237: Sref is chosen not calibrated, so probably introducing the chosen value here would be
better, rather than introducing it in the next section, 2.6 Model calibration.

Authors: We will do as suggested.

R2:  The initial condition for the SAS function model is not described. If there was a spin-up for the SAS
function model (like the storage estimation), what tracer time series were used?
 
Authors: We will add this information to the paragraph.
We detailed in section 2.2 that we periodically looped back the 2010-2015 input data to create the spin-up
time series (1915-2015). The initial condition corresponds to an exponential distribution of residence times
(RTD) with a mean of 1.7 years. The initial SAS functions and TTDs are then calculated based on their
chosen functional form and their parameters, using this initial RTD. 

R2: Lines 404-405: How this comparison between 2016 finding and 2017 finding helps readers to understand
the higher age estimated using the 3H-based model?

Authors: We will rewrite this sentence to make it clearer.

R2: Lines 437-439: Those parameters are not independent. Thus, those were not independently constrained.

Authors: What we really meant is that the shapes of the components of the streamflow SAS function were
constrained independently. The only imposed relationship between the parameters of three components is
λ1+λ2+λ3=1. This does not affect their shape, nor their location on the age axis (or age-ranked storage axis).
We will rewrite the sentence to reflect this better.

Authors: We noticed a typo in figures 4 and 6, where we wrote 141 behavioral simulations in deuterium
instead of 148 (correct value, as stated in the text). We will correct this.
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