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Editor Decision: Publish subject to minor revisions  
 
Comments to the Author: 
The reviews offer detailed points that require consideration, with appropriate clarifications in a 
revised manuscript.  

The authors' responses appear well thought out and convincing, and a revised manuscript 
reflecting the additional information and clarifications can fully address the reviews. Please 
proceed with a thorough revision.  

I note that some of the author responses (particularly to referee #2) consisted of a detailed 
commentary, but actual revision to the manuscript was not included. Please reconsider - in most 
cases, where a detailed response is needed, even to justify/clarify why something was or was 
not included in the analysis, at least a short additional explanation is helpful in the manuscript 
itself (if a referee had a question, it's reasonable to assume that other readers may have the 
same one). 

Thank you for your comments and for inviting us to submit a revised manuscript.  

Indeed, a few points discussed while answering the referee #2 deserved an additional 
clarification in the manuscript. We took in consideration your point, and all concerns of both 
reviewers are now addressed in the new version of the paper. These added sentences are 
listed in our point-by-point response to the reviews that you can find below. Changes made 
in the manuscript are listed in green. A marked-up manuscript version is also provided.  

 

 
  



Referee #1 Evaluations 
 
Overview 

This is an interesting work that brings together many contributions in the field of probabilistic risk 
assessment (PRA) in aquifers to investigate transport of non-point sources (NPS). The authors 
explore parameters such as recharge rates and contaminant loadings in the final model output. 
Furthermore, the authors attempt to reduce the complexity of the model by upscaling a set of 
spatially/temporally variable quantities, such as the hydraulic conductivity, on the management 
of NPS. Through the use of numerical simulations, the authors provide an analysis that couples 
vadose zone, aquifers and land use in a single framework. 

I enjoyed reading this paper given that it aims in bringing in elements of stochastic hydrogeology 
into decision making. The material is well written and organized. The illustrations are clear and 
well depicted. The referencing is also appropriate although some contributions in the PRA of 
contaminated aquifers are missing. This is not a big issue. Through the use of scaling 
arguments (i.e. compliance planes, source sizes etc) the authors make a compelling argument 
to evoke upscaling for the problem at hand. They claim that due to significant mixing in the 
compliance plane and the lack of significant variability in NPS solutes, the uncertainty in 
predictions are reduced thus leading more simplified approaches for modeling such complex 
systems. Results indicate that the mass arrival time distributions are not that sensitive to the 
spatial variability of recharge and solute loading whereas some sensitivity is observed for the 
concentration signal and capture zone estimation. The authors also show that homogenization 
of the conductivity affects the uncertainty of arrival times. 

Thank you for your overall positive evaluation of the manuscript and for your interest. We 
hope that our answers to your specific comments will clarify your concerns.  

Specific comments 

• The authors refer to the word ergodicity multiple times. Ergodicity in what? I think they are 
referring to ergodicity in the transport behavior. If so, provide a quantitative measure of what 
ergodicity is. For example, the ratio between the source zone dimension and correlation 
scale needs to be large. If this is the case, then why one would need to quantify uncertainty 
due to the conductivity field? The spatial statistics is representative of the ensemble 
statistics. This needs to be better discussed. 

See response after the next bullet. 

• I am not sure if I missed this in the text but it would be interesting to see if the upscaled 
dispersion reaches its Fickian limit. Looking at figure SM6, it seems that this is not the case 
and therefore, transport is still subject to uncertainty. To my understanding, based on the 
histograms, these upscaled dispersion coefficients reported in figure SM6 are not the ones 
in the Fickian limit and therefore ergodicity is not attained. So how is it that the authors claim 
“ergodicity” in this paper? 

Thank you for raising your concern about ergodicity in these two comments. The context in 
which the term was used in the manuscript was, indeed, unclear.  

The assumption of ergodicity is here employed NOT in the sense that we assume the NPS 
plume to be so large that there is no variability in plume moments between realizations. 
Instead, we here employ the ergodicity hypothesis in the same way as described, e.g., by 
Rajaram (2002) or Gelhar (1993).  There, a single large realization (spatially extending over 
many correlation scales) of the K field is used to compute sample moments (e.g., of head, 



concentration). The ergodic hypothesis is employed to justify comparing these sample 
moments to the theoretical ensemble moments obtained analytically. But the ensemble 
moments also characterize the uncertainty about, e.g., head or concentration at a single 
unmeasured location within the aquifer represented by the simulation. 

Analogous, we here use the ergodic hypothesis to postulate that the statistical sampling 
across the 150 well and 150 source areas simulated is representative of the ensemble 
moments (the stochastic management metrics) at an individual unmeasured well and its 
source area in the real-world aquifer represented. The 150 simulated wells and source 
areas are analogous to the single large realization in Rajaram (2002), since the K field is 
stationary. 

In other words, we must assume ergodicity and stationarity to be able to equate the 
stochastic NPS management metrics obtained from across 150 samples (wells, source 
areas) to their ensemble properties. The ensemble properties in turn apply to any 
(unmeasured) well and its source area in the aquifer system. They characterize the 
uncertainty about these metrics at each (unmeasured) location (well, source area). 

We propose to clarify this point in the manuscript (see below) and also refer to the 
histogram of the mean and variance of the K fields in supplementary material (Figure SM3, 
to be updated in the new version of the manuscript and shown below) showing stationarity 
in the moments of the K field, i.e., a very narrow range of values for the mean and variance, 
and therefore displaying that structural ergodicity can be assumed.  

“Then, stochastic management metrics quantify both, the mean and variability of pollution 
levels across a large sample of production wells encountered over a basin as well as the 
expected value and uncertainty about pollution levels at an individual well. This is done by 
simulating stationary random fields (Figure SM3) and assuming ergodic conditions [e.g., 
Gelhar, 1993; Rajaram, 2002].” (line 122) 

Reference:  Rajaram (2002), Perturbation theories for the estimation of macrodispersivities in heterogeneous 
aquifers, in Rao S. Govindaraju, Stochastic methods in subsurface contamination hydrology, p13-
62. 

 Gelhar, L. W. (1993), Stochastic subsurface hydrology: Englewood Cliffs, New Jersey, Prentice-
Hall, 390 p.  

 



 
Figure SM3: Histogram of the mean (top) and variance (bottom) of the log-
normal hydraulic conductivity. 

 

• It would be interesting to see how the conclusions regarding recharge reported in this paper 
compare with the ones reported in the works of Rubin and Bellin (1994) WRR and Li and 
Graham (1999) WRR. These authors investigate the impact of recharge and its randomness 
on travel time pdfs. 

Thank you for drawing our attention to these relevant papers. First, it might be interesting to 
note the differences between our simulation setup and the one used in Rubin and Bellin 
(1994) and Li and Graham (1999): The two aforementioned papers are (semi-) analytically 
analyzing 2D transport, with a point source and no pumping. Rubin and Bellin (1994) 
assumes uniform recharge and found that recharge increases longitudinal plume 
spreading. Li and Graham (1999) do account for spatial variability in recharge. In the 
chosen modeling conditions, the authors find that spatial variability in recharge further 
increases longitudinal spreading, and that uncertainty in the recharge spatial variability 
increases the uncertainty in solute concentrations.  

On the other hand, we here simulate 3D transport, with non-point source transport, and 
significant pumping. Our results show little effect of recharge spatial variability (correlated 
to the top of the K-field) on travel times, while homogenization of recharge leads to 
increased uncertainty in well concentrations.  

Results highlight that a potential superficial increase in lateral spreading is less (or non-) 
relevant in a 3D nonpoint source setting as indicated by our analysis of travel time 
statistics. 

Concerning concentration statistics, the difference in outputs between Li and Graham 
(1999) and our work could indicate that decorrelated spatial variability of the recharge rate 
adds uncertainty, while a r-K correlation increases the conditioning of the flow field, which 
leads to decreased uncertainty. We recall that in our setting, the existence of a r-K 
correlation is a result of the explicit simulation of water flow in the unsaturated area.  



In addition, considering three dimensions, as well as the presence of extraction wells adds 
some degree of complexity in transport and uncertainty propagation. Fully understanding 
these processes would require a significant effort of its own.  

We propose to discuss these two points in a new version of the manuscript: 

“Previously, Li and Graham (1998) investigated the impact of recharge spatial variability in 
a more theoretical and simplified 2D heterogeneous aquifer contaminated by a point source 
under non-pumping conditions. The work highlights that spatial variability in recharge 
increases spreading, especially in the transverse direction. In our 3D NPS setting, 
transverse spreading is less relevant (Figure 3) and we do not observe the increase in 
variability.” (line 327) 

“Li and Graham (1998) stochastically analyze the impact of spatially random recharge rate 
on transport in a 2D point source setting. Their work concluded that, for those conditions, 
large variability in – and therefore uncertainty about - recharge increases uncertainty in 
solute concentration. In our work, we observe the opposite. The difference may be partly 
due to the 3D non-point source transport, and partly caused by the implicit correlation 
between the hydraulic conductivity and the recharge rate  in our scenarios, which may 
increase the conditioning of the flow field that leads to the observed decrease of uncertainty 
relative to the homogenized scenario.” (line 401) 

• Line 460: “The results here confirm that..., but also put the macro-dispersive process. . .”. I 
could not understand the meaning of this sentence. Please revise its structure. Thanks. 

Thank you for pointing it out. This sentence has been changed to:  

“The results presented here confirm this observation for the case of non-point source 
contaminations, but also highlight the generation of a quasi-macro-dispersive process 
through the (vertical) well mixing process.” (line 460) 

  



Referee #2 Evaluations 

The present work deals with the feasibility of simplify the conceptual modelling of non- point 
source (NPS) contamination of an aquifer, in the presence of an active pumping well. The 
simplification consists of spatial homogenization of otherwise heterogeneous terms (recharge 
rate and contaminant concentration of the recharging water) and of the aquifer hydraulic 
properties (conductivity). I liked the general goal/purpose of the study (even though there is no 
theoretical/technical novelty in the employed method- ology) and its practically oriented nature. 
Nevertheless, it is my opinion that there are several unclear points and unstained observations 
that should be addressed before acceptance for HESS. I list my concerns below. I do see a very 
good paper after addressing these issues/confusions. I also hope that my comments help in 
making the paper shorter and clearer, it becomes quite hard to follow it from the beginning to 
the end. 

Thank you for your constructive and well-thought-out comments. We appreciate the 
attention to the details of our work. Please see below our answers (in blue) to your 
concerns. Proposed additions to, deletions from, or modification of the manuscript are 
written in green.  

• Line 5-9: ‘On the other hand, concentration levels of some key NPS contaminants (salinity, 
nitrate) vary within a limited range (<2 orders of magnitude); and significant mixing occurs 
across the aquifer profile along the most critical compliance surface: drinking water wells 
with their extended vertical screen length. Here, we investigate, whether these two unique 
NPS contamination conditions reduce uncertainty such that simplified spatiotemporal 
representation of recharge and contaminant leakage rates and of hydraulic conductivity are 
justified when modeling NPS pollution.’  
I don’t agree with the fact that the Authors tested that the two mentioned conditions imply a 
reduction in the uncertainty (they do not explore scenarios where these two conditions aren’t 
meet!). I would say that the Authors investigate, under these two peculiar NPS conditions, 
the possibility of introducing simplifying modelling hypotheses which do or do not affect the 
ensuing uncertainty about targeted quantity. Please consider revise the sentence, here and 
throughout the whole paper where needed.  

Thank you for making this excellent point. To clarify our approach, we propose to change 
this sentence to:  

“Given these two unique NPS contamination conditions, we here investigate the degree to 
which NPS travel time to wells and the NPS source area associated with an individual well 
can be appropriately captured, for practical applications, when spatiotemporally variable 
recharge, contaminant leakage rates, or hydraulic conductivity are represented through a 
sub-regionally homogenized parametrization.” (line 7) 

• Line 14-15: ‘Surprisingly, regional statistics of well concentration time series are fairly well 
reproduced by a series of equivalent homogeneous aquifers, highlighting the role of NPS 
solute mixing along well screens.’  
I have two comments here: (i) the term regional statistics is somewhat obscure; (ii) once 
clarify it in the section 6 (see also my comment 3), it is my understanding that the diverse 
homogenization here proposed work fine for low (i.e., 0.1) and middle (i.e.,0.5) probability of 
exceeding a given concentration in the well, while for high probability (i.e., 0.9) the 
homogenization-based results are unreliable (see e.g., the discrepancy between the curves 
in Figure 6a and Figure 10a, in Fig. 10a I don’t see the ‘regional’ counterpart (red dashed 
curve)).  



The term regional is not necessary here. We propose to delete that in a revised version. 
And indeed, the concentrations with a high probability to be exceeded are not well 
reproduced if K is homogenized. Yet, these lower concentrations are rarely relevant in 
nonpoint source contamination management. The last sentence of the abstract will be 
rewritten to clarify this point:  

“Surprisingly, the statistics of relevant NPS well concentrations (fast and intermediate travel 
times) are fairly well reproduced by a series of equivalent homogeneous aquifers, 
highlighting the role of NPS solute mixing along well screens.” (line 14) 

• Lines 90-92: ‘Assuming ergodicity (Dagan, 1990), stochastic management metrics are 
quantified both, for the pollution variability across an ensemble of production wells 
encountered over a basin, and for the uncertainty about pollution levels at an individual well.’ 
As a matter of fact the Author verified the validity of the ergodicity principle (here in the 
sense that the results of one single realization are representative of the results across the 
whole ensemble of realizations, or, in other words, there is no variability across the 
ensemble of realizations of the investigated output) only with respect to the soil crop 
arrangement (see Fig. 1), but ergodicity does not hold with respect to the (either 
heterogeneous or homogenized) aquifer conductivity (i.e., their results clearly show that 
there is a variability in the investigated NPS management metrics as the conductivity 
distribution varies among realizations)! Please clarify this point.  

We agree that indeed the paper shows ergodicity w.r.t. to crop coverage, that is, ergodicity 
in the sense that the crop variability across the source area is sufficiently large that any 
realization of crop produces the same outcome (for the stochastic management metric). 

But we consider ergodicity here also in a different context. The issue has been raised by 
reviewer #1. So, we here copy our response to reviewer #1 as this should address reviewer 
#2’s concern as well: 

Thank you for raising your concern about ergodicity in these two comments. The context in 
which the term was used in the manuscript was, indeed, unclear.  

The assumption of ergodicity is here employed NOT in the sense that we assume the NPS 
plume to be so large that there is no variability in plume moments between realizations. 
Instead, we here employ the ergodicity hypothesis in the same way as described, e.g., by 
Rajaram (2002) or Gelhar (1993).  There, a single large realization (spatially extending over 
many correlation scales) of the K field is used to compute sample moments (e.g., of head, 
concentration). The ergodic hypothesis is employed to justify comparing these sample 
moments to the theoretical ensemble moments obtained analytically. But the ensemble 
moments also characterize the uncertainty about, e.g., head or concentration at a single 
unmeasured location within the aquifer represented by the simulation. 

Analogous, we here use the ergodic hypothesis to postulate that the statistical sampling 
across the 150 well and 150 source areas simulated is representative of the ensemble 
moments (the stochastic management metrics) at an individual unmeasured well and its 
source area in the real-world aquifer represented. The 150 simulated wells and source 
areas are analogous to the single large realization in Rajaram (2002), since the K field is 
stationary. 

In other words, we must assume ergodicity and stationarity to be able to equate the 
stochastic NPS management metrics obtained from across 150 samples (wells, source 
areas) to their ensemble properties. The ensemble properties in turn apply to any 



(unmeasured) well and its source area in the aquifer system. They characterize the 
uncertainty about these metrics at each (unmeasured) location (well, source area). 

We also refer to the histogram of the mean and variance of the K fields in supplementary 
material (Figure SM3, to be updated in the new version of the manuscript and shown 
below) showing stationarity in the moments of the K field, i.e., a very narrow range of 
values for the mean and variance, and therefore displaying that structural ergodicity can be 
assumed. 

These points have been clarified in the new version of the manuscript:  

“Then, stochastic management metrics quantify both, the mean and variability of pollution 
levels across a large sample of production wells encountered over a basin as well as the 
expected value and uncertainty about pollution levels at an individual well. This is done by 
simulating stationary random fields (Figure SM3) and assuming ergodic conditions [e.g., 
Gelhar, 1993; Rajaram, 2002].” (line 122) 

 
Figure SM3: Histogram of the mean (top) and variance (bottom) of the log-
normal hydraulic conductivity. 

 
Reference:  Rajaram (2002), Perturbation theories for the estimation of macrodispersivities in heterogeneous 

aquifers, in Rao S. Govindaraju, Stochastic methods in subsurface contamination hydrology, p13-
62. 

 Gelhar, L. W. (1993), Stochastic subsurface hydrology: Englewood Cliffs, New Jersey, Prentice-
Hall, 390 p.   

The Authors named the regional analysis (‘pollution variability across an ensemble of pro- 
duction wells encountered over a basin’) (see also Section 6) the scenario in which both the 
conductivity and the land crop usage varies between the Monte Carlo simulations. They 
referred to the single well analysis (‘uncertainty about pollution levels at an individual well’) 
when only the conductivity varies among the MC simulations (with the crop arrangement 
fixed). To me this distinction is not meaningful, since it implies that in the groundwater basin 
there are sub-portion (the simulated domain) subjected to the very same boundary 
conditions (aside from the infiltration rate) and that these sub-portions do not influence each 



other (they are far away from one another). In my vision the Authors have, given a domain 
of interest and deterministic initial and boundary conditions (aside from the infiltration rate), 
conducted the uncertainty analysis (i) for a given (i.e., conditional) to a crop arrangement 
and (ii) considering the uncertainty in the crop arrangement, proven then that the uncertainty 
in the latter is not an influential factor (i.e., there is ergodicity w.r.t. to the crop usage). 
Please consider this aspect, the regional and one-well distinction seems to me confusing 
and not well supported by the investigated set-up.  

Indeed, we assume that there are sub-portions of the aquifer that do not influence each 
other. The size of the simulation domain was chosen to fully accommodate the source area 
of three production wells. Since we show that their source areas do not overlap, each well’s 
area of capture can indeed be considered independent. This point is now explicitly 
mentioned in the manuscript: 

“To assess the spatial variability of NPS management metrics across an ensemble of well 
locations in a groundwater basin, the equiprobable realizations of the aquifer system 
represent the variety of locations across a basin with geostatistically similar geological 
features. This is true since the domain is designed to ensure that source areas of the three 
production wells are fully accommodated and that each well's area of capture can be 
considered independent. In the case of a regional analysis, land-use is simulated as a 
random process.” (line 120) 

The reviewer is also correct that we make a conceptual distinction between the case of 
assessing the uncertainty about an individual well’s source area and contaminant travel 
time, and the case of assessing the variability of source area and contaminant travel time of 
many wells in a region with a stationary hydraulic conductivity, recharge, NPS mass 
loading, and landuse pattern. We argue that this is an important theoretical distinction, for 
the same reason that the concept of ergodicity is relevant. 

From a theoretical standpoint, therefore, generating 50 realizations (each with 3 wells), 
without changing actual landuse is, in principal, only assessing the uncertainty about 
recharge, loading, and K under a given spatial configuration of landuse (which would be 
specific to each of the three wells). 

Then also making landuse spatial pattern a stochastic variable is conceptually consistent 
with the idea of simulating 150 different wells, each with its own spatial landuse 
arrangement. 

But the reviewer is correct in pointing out that there is negligible difference between these 
two, effectively proving ergodicity w.r.t. landuse. But we do not believe it is useful to say 
this explicitly (e.g., in a sentence at the end of section 6), because we don’t want to confuse 
the reader with the “other” (valid) interpretation of ergodicity that the reviewer is in fact 
employing here.  

We therefore propose to add the word “pattern” to the line 533, make a small change in line 
536 

“To adapt the simulation setup to the regional stochastic analysis, the spatial distribution 
pattern of crops….” (line 533) 

“…… interpretation of the stochastic results, the range OF individual travel times, capture 
zones, ….” (line 536, capitalized word to be inserted) 

 



• Line 115-117: ‘Assuming ergodicity (Dagan, 1990), stochastic analysis is applied to first 
quantify uncertainty about pollution outcomes at individual wells and to secondly quantify 
regional spatial variability in pollution outcomes across an ensemble of wells.’  
Please revise this sentence according with Comment 2-3. Furthermore, in the way it is 
written it means that ergodicity is needed in order to quantify uncertainty (this is the case for 
example in geostatistical approach where spatially distributed measure of conductivity in a 
field, i.e., in a single realization, are employed to describe the ensemble statistic of 
conductivity) in this study, i.e., that automatically a single realization is sufficient to describe 
the behavior of the ensemble, whereas, it is my understanding that the Author did the other 
way around: prove the validity of ergodicity (for the investigated quantity) w.r.t. to the crop 
usage. If ergodicity was originally assumed, no need to do many simulations.  

See our answer to the previous two comments. 

• Line 129-130: ‘The histograms of the mean and the variance of the logarithm of K are shown 
in Figure SM3. Fifty realizations were sufficient to converge the lower statistical moments of 
K and of the resulting mean velocities (Figure SM7)’.  
It is not clear at all that the Authors are referring to the spatial mean and spatial variance 
(this is my impression) evaluated for each field of K, and then doing the histogram of these 
quantity. Is it so? Why do we care about it? How do the Author prove the convergence of 
these spatial mean and spatial variance employing 50 realizations? To which values should 
these quantities converge? I am way more concerned about: are the 50 realizations enough 
to ensure the convergence of the statistics (e.g., pdf, CDF) of the output quantities of 
interest (i.e., travel time, breakthrough curves at the well and capture zone)? This is aspect 
is not investigated at all by the Authors and looking to the high spatial variance of K (from 10 
to 18 approximately) I am afraid that 50 realizations are not enough, even if the source is 
spatially distributed. Please analyze the convergence of the investigated results w.r.t. to the 
Monte Carlo simulations. Furthermore, regarding the histogram in SM3 and SM4 for the 
recharge rate and the concentration of pollutant in the recharge, why do we care about 
them? Please clarify.  

As mentioned before, the histogram of the mean and variance of the lnK fields were 
erroneous (they were considering the first layer of the domain only). Please apologize the 
mistake. Below are the corrected histograms, which provide a better measure of the high 
degree to which the entire range of K variability is captured in each of the 50 realizations.  

The convergence of the apparent velocities and of apparent dispersivities, which are 
derived from particle plumes, give an indication about convergence of transport metrics. 
The dataset used to compute statistics is composed of 150 values of well concentrations 
and of travel times (3 wells per realization). For the sake of clarity, we now also show in 
Figure SM6 and SM7 (see below) the convergence of the mean and variance of the travel 
times and of the 50% highest concentrations, respectively. We propose to add the following 
text to the manuscript:  

“Figure SM6 shows satisfactorily the convergence of the mean and variance of t50.” (line 
252) 

“Figure SM7 shows satisfactorily the convergence of the mean and variance of the 
concentration exceeded by 50% of wells.” (line 259) 

The histograms for the recharge rate (SM4) and the input concentrations (SM5) are given in 
supplementary material in case a reader may have a concern about the range of values 
used. The following text would be added to the manuscript:  



“For indications about the range of values and degree of variability, histograms of the mean 
and variance of the recharge rates applied in the 50 realizations of heterogeneous cases 
are shown in Figure SM4.” (line 211) 

“Histograms of the mean and variance of the initial concentration over the 50 realizations 
are shown in Figure SM5 if a visualization of the range of values and of the variability is 
needed.” (line 238) 

 
Figure SM6: Convergence of the mean and variance of the time required for 
50% of the total recorded mass to reach a well. 

 

Figure SM7: Convergence of the mean and variance of the concentration 
exceeded by 50% of the wells. 

 

• Line 151-195: I see the detailed description of the estimation of the recharge rate to better fit 
in an Appendix.  



We would be open to moving this section to an appendix and replacing it with a short 
paragraph describing the core concept, if the other reviewers and associate editor agree.  

• Line 230-233: ‘The detailed discretization of the velocity field described above is capturing 
the most relevant characteristics affecting the macro-dispersive transport behavior (LaBolle, 
1999; LaBolle and Fogg, 2001; Weissmann et al., 2002; Henri and Harter,2019). Therefore, 
effects of grid-scale dispersion are assumed to be negligible.’  
So, does the Author set the tensor D in (10) equal to zero? Please clarify.  

Yes, the dispersion tensor is equal to zero. We propose to clarify with the following text:  

“Therefore, effects of grid-scale dispersion are assumed to be negligible, i.e., D=0 and Eq. 
10 is simplified to !"($ + Δ$) = !"($) + Δ$. *(!"($)). This assumption, which potentially 

impacts NPS management metrics, is further evaluated in Appendix B.” (line 233) 

• Line 244-246: ‘Three relevant nonpoint source (NPS) pollution management metrics are 
considered to measure the stochastic simulation outcomes: the probability distribution of 
pollutant travel times to wells, the probability distribution of pollutant con- centration in wells, 
and the probability distribution of source locations.’  
These are the 3 quantities of interest, why do you introduce them in the 2.3.1 Pollutant travel 
times section? Better just before.  

Excellent observation. This sentence is now moved where you advised it should be.  

• Line 250-251: ‘Following a stochastic approach, probability density functions (pdfs) of travel 
times ti are obtained by determining the histogram of ti in 150 simulated wells’.  
Please note that the histogram is not a pdf, whereas the latter is associated with a 
continuous variable and the former to a discrete variable. I would limit to say to that the pdf 
are estimated on top of the 150 simulated wells. Furthermore, at lines 244-246 the 
probability distribution is mentioned, this is not the pdf. Also, at line 214 the authors say that 
they analyzed the probability distribution, but then in Figure 3 they depict the pdf. Please 
check for the consistency of the terminology/results through all the work.  

Thank you for point this out. The terminology has been made consistent. For clarification, 
we do not analyze the pdf of concentrations but of travel times only. Also, a histogram can 
be obtained for both, discrete and continuous variables (e.g., velocity, concentration). It is a 
binned representation of an (unknown) pdf. Among others, the aforementioned sentence 
has been changed to: 

“Following a stochastic approach, probability density functions (pdfs) of travel times ti are 
obtained using time series from 150 simulated wells (50 realizations, each with 3 wells).” 
(line 250) 

• Lines 262-263: ‘NPS pollution management may also require the assessment of the 
effective source area, i.e., the capture zone or contributing area of the pollution observed in 
a production well.’  
Please avoid to use source zone, this is typically used to indicate the area covered by the 
contaminant at the initial time (regardless if it reach the well or not), the capture zone of the 
well is way more clear as the wording in my opinion. 

This terminology is, indeed, often confusing. Barlow et al. (2018) provide some good 
thoughts and clarification about the different terms used in the literature under different 
contexts (water budget, transport, …). The authors define “capture zone” as “the three-



dimensional, volumetric portion of a groundwater flow field that discharges water to a well”. 
This is not what we show in our work. We analyze the 2D projection of this so-defined 
capture zone, which would correspond more to a source or contributing area. However, we 
do understand that both terms (source area and capture zone) has been used in the 
literature to designate this 2D projection. In order to avoid an eventual confusion, the new 
manuscript acknowledges this fact by providing the abovementioned reference and by 
explicitly mentioning that these terms have equivalent meaning throughout the paper:  

“Important aspects of NPS pollution are pollutant travel times, the location of well source 
areas (also known as capture zones; Barlow et al. 2018) to identify specific pollution 
sources, and the long-term evolution of contaminant levels in and across affected wells and 
streams.” (line 23) 

“The stochastic capture zone (or source area) is the area characterized by Pw(x,y)>0.” (line 
336) 

Reference: Barlow, P. M., Leake, S. A. and Fienen, M. N. (2018), Capture Versus Capture Zones: Clarifying 
Terminology Related to Sources of Water to Wells. Groundwater, 56: 694-704. doi:10.1111/gwat.12661. 

• Line 275-277: ‘The NPS metrics from fully heterogeneous simulations are compared to the 
NPS metrics obtained from a range of upscaled, homogenized simulations that employ 
effective homogeneous properties rather than the original heterogeneous distribution of the 
K, r, and c0 terms.’  
Please consider avoiding the word upscale/upscaling (here and in the whole text), since this 
inherently implies a change of scale (e.g., from pore to continuum or from continuum to 
continuum) and it is typically associated with a change of the governing equations used to 
describe the process (e.g., effective model for the solute transport involving non-local terms) 
whereas here the Author conducted a simple homogenization (with the arithmetic average 
as a rule) of the diverse terms.  

We, in fact, employ a change of scale here:  Instead of characterizing recharge, loading, or 
K at the local scale, we utilize a sub-regional scale “effective” value. Previous work refers to 
upscaling of the hydraulic conductivity as the estimation of effective parameters aimed to 
be used in regular flow equations (e.g., Fleckenstein and Fogg, 2008). In our work, we also 
estimated effective velocities and dispersivities in our homogenization. The terms upscaling 
and homogenization are both used regularly along the manuscript, which, we believe, 
makes our methodology clear.  

In order to clarify the meaning of this term, the new manuscript refers to the 
abovementioned paper:  

“The NPS metrics from fully heterogeneous simulations are compared to the NPS metrics 
obtained from a range of upscaled (e.g., Fleckenstein and Fogg, 2008), homogenized 
simulations that employ effective homogeneous properties rather than the original 
heterogenous distribution of the K...” (line 275) 

 
Reference: Fleckenstein, J.H., and Fogg, G.E. (2008). Efficient upscaling of hydraulic conductivity in 
heterogeneous alluvial aquifers. Hydrogeology Journal, 16:1239. https://doi.org/10.1007/s10040-008-0312-3. 

• Line 286-292: ‘To simulate flow and transport in an equivalent homogeneous, upscaled K 
conditions, we estimate the effective longitudinal and transverse vertical hydraulic 
conductivity, K*x and K*z , and dispersion, alpha*L and alpha*T. Effective parameters in the 



longitudinal direction (K*x and alpha*L) are determined from the first and second spatial 
moments of a plume resulting from an injection of mass in a vertical plane of width 3000.0 m 
and depth 50.0 m. The same approach is adopted to estimate the effective parameters in 
the transverse vertical direction (K*z and alpha*T) by injecting particles in a horizontal plane 
covering the entire top of the domain. No extraction is considered in both cases in order to 
capture the natural behavior of the plume.’  
What about the K*y and dispersivity in the y direction? Furthermore, ‘No extraction is 
considered in both cases in order to capture the natural behavior of the plume’, but the 
ensuing macro-dispersion of a plume is influenced by the presence of pumping well (e.g., 
radial versus uniform flow conditions), please clarify/justify this aspect.  

Transverse longitudinal (y-direction) transport is negligible in our simulation setting 
(nonpoint source and no gradient in y).  

We estimate apparent parameters (velocity and dispersion) under “natural” conditions in 
order to only capture the impact of K heterogeneity on transport. Scenarios accounting for 
homogenized K simulate explicitly extractions.  

“The transverse horizontal (y-direction) component of transport is considered negligible 
given the size of the NPS plume and given that no gradient in y was applied.” (line 288) 

• Lines 317-316: ‘For all simulations, early mass travel times are within a range of 10 to 100 
years with an expected value (highest probability) of 50 years (Figure 3a).’  
For a continuous variable is not possible to define the value with the highest probability (it is 
possible for a discrete variable). Furthermore, the expected value of a pdf does not always 
coincide with the value where the value of the pdf is the highest. Clarify.  

Thank you for the concern and clarification. The sentence has been changed to:  

“For all simulations, early mass travel times are within a range of 10 to 100 years with a 
peak of probability of 50 years (Figure 3a).” (line 317) 

• Lines 346-347: ‘Spatial variability in the recharge is responsible for somewhat more 
uncertainty in the exact delineation of the capture zone along its margins than what is 
captured by the homogenization of r.’  
Is not r the symbol to indicate the recharge? I think r should be replaced with C0 or vice-
versa. Furthermore, focusing on the impact of the homogenization of the recharge (compare 
Fig. 4a with Fig. 4c) I would say that the homogenization of the latter is associated with a 
less spatially extended capture zone w.r.t. to the case in which the recharge is treated as 
heterogeneous, this does not mean that the there is more uncertainty in the delineation of 
the capture zone. Furthermore, looking to the Fig. 4 I would say that capture zone is not 
well-delineated along its border, due to the low number of Monte Carlo realizations. Please 
check it and revise the sentence.  

Yes, it should have been c_0, sorry for the typo. The dark blue area in Figure 4 is 
associated with very low probability to reach a well (Pw). In our setting, it may seem 
complex to reach a “smoother” delineation of the area defined by Pw values tending to 0.  

Furthermore, despite that Pw>0 in these locations, we do not believe that it should be 
interpreted as an indicator of the extend of the capture zone in a management effort. On 
the other hand, we interpret a decrease of probability in the “hot spot”, i.e., the source area 
characterized by the highest Pw values as an increase of uncertainty. It is now made 
clearer:  



“Spatial variability in the recharge is responsible for somewhat more uncertainty (i.e., a 
decrease of the highest Pw values) in the exact delineation of the capture zone along its 
margins than what is captured by the homogenization of c0.” (line 346) 

• Lines 379-380: ‘For an individual well, the results indicate that there is a 10% chance for 
nitrate concentrations to start to rise before 30 years, a 50% chance to rise no later than 50 
years, and a 90% chance to rise before 70 years.’  
Should not be after X years?  

We do believe that before is right. In Figure 6, P90 represents the concentrations exceeded 
with a 90% probability. These concentrations rise at t=70 years, while the concentrations 
exceeded with a 10% probability (P10) rise earlier, at t=30 years. Since we analyze 
probabilities of exceedance, there is a 90% chance for well concentrations to rise before 70 
years, and a 10% chance to rise earlier, before 30 years. 

• Lines 402-404: ‘Homogenizing only concentration also leads to an underprediction, by about 
20%, of concentrations exceeded by either 90%, 50%, or 10% of well, relative to the fully 
stochastic land use treatment (green lines in Figure 6).’  
Is green correct?  

Thank for pointing out this typo. It is not green but blue.  

“Homogenizing only concentration also leads to an underprediction, by about 20%, of 
concentrations exceeded by either 90%, 50%, or 10% of well, relative to the fully stochastic 
land use treatment (compare blue and red lines in Figure 6).” (line 402) 

• Lines 471-472: ‘... only adds a moderate degree of uncertainty to the capture zone 
delineation...’  
see Comment 15.  

Here again, we associate uncertainty to a decrease of the highest probabilities to reach a 
well (Pw), and not with an increase of the surface covered by very low Pw values. It is now 
made clearer earlier in the paper (line 346).  

• Line 480: ‘The observed gradient of travel times’  
I don’t see any gradient (i.e.,â ́LG ̆) of the travel times evaluated by the Authors. There is a 
spatial variation of the mean travel time in Fig. 9, but this is different from a proper 
evaluation of the gradient. Please revise the sentence  

The sentence has been modified to: 

“The observed spatial variation of the mean travel times, increasing with the distance from 
a well, is overestimated when K-fields are homogenized.” (line 480) 

• Lines 487-489: ‘Thus, contaminant mass reaching the top of the well has little variability – 
here only to the degree that the homogenization is done individually for each realization, 
leading to some minor variability in the homogenized K between realizations.’  
Why does the fact that the mass reaching the top of the well exhibits a low variability (note 
that the Authors do not provide a quantification of it) lead to have minor variability in the 
homogenized K? Please clarify.  

This sentence has been reworked in light of your following remark. Please see below. 

• Lines 489-491: ‘More uncertainty is observed on the upstream side of the capture zone 
since it represents mass reaching the bottom of the screen, the vertical position of which is 



realization dependent’  
I suppose this comment is related to Fig. 9, which depicts the expected value of the travel 
time to the well. The latter gradually increases as we move upstream w.r.t. to the well 
location. I don’t see this as a measure of an increasing level of uncertainty! It could be that 
the expected value of the travel time increases, but it can also be that spread (e.g., 
measured through the variance) of the pdf decreases. Please consider evaluating at least 
the variance of the pdf of travel times as a quantification of the degree of uncertainty.  

Thank you for the comment. Indeed, Figure 9 does not display an estimation of travel time 
uncertainty. This paragraph discussing variability focused more on Figure 8 displaying the 
probabilities to reach a well. The phrase has been reworked and the appropriate Figure has 
been referred to in order to avoid confusion.  

“Thus, contaminant mass reaching the top of the well has little variability - here only to the 
degree that the homogenization is done individually for each realization - leading to some 
minor realization-to-realization variability at the downstream side of the capture zone for the 
homogenized K (Figure 8). More uncertainty is observed on the upstream side of the 
capture zone since it represents mass reaching the bottom of the screen, the vertical 
position of which is realization dependent.” (line 486) 

Given the already extensive length of the manuscript, we believe that it is not necessary to 
add a more detailed discussion about the uncertainty of travel times associated to any 
location of the capture zone. Here, we focus more a more practical aspect of the problem, 
i.e., the assessment of the performance of a homogenization of K in reproducing expected 
travel times. 

For your information, our previous paper (Henri and Harter, 2019) discusses the uncertainty 
of travel times associated to any location of the capture zone in similar conditions.  
Reference: Henri, C., & Harter, T. (2019). Stochastic assessment of nonpoint source contamination: Joint 
impact of aquifer heterogeneity and well characteristics on management metrics. Water Resources Research, 
55. https://doi.org/10.1029/ 2018WR024230. 

• Lines 520-521: ‘Results show that homogenized K-fields perform more poorly to predict the 
lowest concentrations (P90) than the highest ones (P50 and P10).’  
Why P90 is associated with low concentrations? P90 is a probability, looking at Fig. 10a I 
see that for a given concentration (either high or low) there is a time necessary to exceed 
this level of concentration in the well with a probability of 0.9. The way I interpret Fig. 10 is 
that homogenized solutions are in good agreement with the heterogeneous case, when it is 
a matter of evaluating low (P10) and middle (P50) probability of exceedance of a given 
concentration, but the homogenized solutions do not work well for high (P90) probability of 
exceedance of whatever concentration.  

Thank you for raising out this point. This paragraph was more intended to be an 
interpretation of what we call a “regional” analysis.   

P90 represents, indeed, a high (90%) probability of exceedance. In other words, only there 
is only 10% of chance that a well will present a lower concentration. In what we describe as 
a regional analysis, this means that 10% of wells present concentration lower than the one 
shown in P90. We believe that it a fair assessment to qualify these concentrations as the 
lowest concentrations.  

The paragraph has been moved into the appropriate section.  



“For instance, results show that homogenized K-fields perform more poorly to predict the 
lowest concentrations (P90) than the highest ones (P50 and P10). From a NPS pollution 
management perspective, the accuracy of the higher concentrations exceeded by half of 
wells or even by just 10% of wells is most critical, since they are more likely to exceed the 
MCL. The homogenized predictions are least accurate during the transition (breakthrough) 
period when concentrations in the vertically mixed sample obtained from a well are strongly 
controlled by travel time pdfs, which in turn are affected by the heterogeneity in the land 
use and aquifer dynamics.” (line 552) 

• Conclusion: I note a change of style in the conclusion, whereas there is a more consistent 
and proper use of the terminology with respect to the rest of the work.  

Thank you. 
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Abstract. Non-point source (NPS) pollution has degraded groundwater quality of unconsolidated sedimentary basins over

many decades. Properly conceptualizing NPS pollution from the well scale to the regional scale leads to complex and ex-

pensive numerical models: Key controlling factors of NPS pollution - recharge rate, leakage of pollutants, and soil and aquifer

hydraulic properties - are spatially and, for recharge and pollutant leakage, temporally variable. This leads to high uncertainty in

predicting well pollution. On the other hand, concentration levels of some key NPS contaminants (salinity, nitrate) vary within5

a limited range (<2 orders of magnitude); and significant mixing occurs across the aquifer profile along the most critical com-

pliance surface: drinking water wells with their extended vertical screen length. Here, we investigate, whether
:::::
Given these two

unique NPS contamination conditionsreduce uncertainty such that simplified spatiotemporal representation of recharge and
:
,

::
we

::::
here

:::::::::
investigate

:::
the

::::::
degree

::
to

:::::
which

::::
NPS

:::::
travel

::::
time

::
to

:::::
wells

:::
and

:::
the

::::
NPS

::::::
source

:::
area

:::::::::
associated

::::
with

::
an

:::::::::
individual

::::
well

:::
can

::
be

:::::::::::
appropriately

::::::::
captured,

:::
for

::::::::
practical

::::::::::
applications,

:::::
when

::::::::::::::
spatiotemporally

:::::::
variable

::::::::
recharge,

:
contaminant leakage ratesand10

of
:
,
::
or

:
hydraulic conductivity are justified when modeling NPS pollution

::::::::::
represented

:::::::
through

:
a
::::::::::::
sub-regionally

::::::::::::
homogenized

:::::::::::::
parametrization. We employ a Monte Carlo-based stochastic framework to assess the impact of model homogenization on key

management metrics for NPS contamination. Results indicate that travel time distributions are relatively insensitive to the spa-

tial variability of recharge and contaminant loading, while capture zone and contaminant time series exhibit some sensitivity to

source variability. In contrast, homogenization of aquifer heterogeneity significantly affects the uncertainty assessment of travel15

times and capture zone delineation. Surprisingly, regional statistics of well concentration time series
::
the

::::::::
statistics

::
of

:::::::
relevant

::::
NPS

::::
well

::::::::::::
concentrations

::::
(fast

:::
and

:::::::::::
intermediate

:::::
travel

:::::
times)

:
are fairly well reproduced by a series of equivalent homogeneous

aquifers, highlighting the
:::::::
dominant

:
role of NPS solute mixing along well screens.

1 Introduction

The use of agrochemicals to address an ever growing food demand has led to the contamination of many sedimentary ground-20

water basins underlying intensively farmed regions (Nolan et al., 2002; Zektser and Everett, 2004; Rockstrom et al., 2009).

Given the broad, continuous expanse of agricultural pollution sources across affected groundwater basins, this type of large

scale pollution is often referred to as non-point source (NPS) pollution (Ritter and Shirmohammadi, 2000). The development

of effective protection or remediation strategies in groundwater bodies affected by NPS pollution will require understanding

1



of the dynamics of NPS pollution in groundwater systems. Important aspects of NPS pollution are pollutant travel times, the25

location of well source areas (capture zones
:::
also

::::::
known

::
as

:::::::
capture

::::::
zones;

::::::::::::::::
Barlow et al. (2018)) to identify specific pollution

sources, and the long-term evolution of contaminant levels in and across affected wells and streams. The predictive modeling of

these processes and associated management metrics is challenged by the inherent complexity of NPS pollution in groundwater

systems.

Spatial variability represents a key source of complexity to be considered in understanding pollutant transport in the subsur-30

face. Decades of investigation at contaminated industrial sites have highlighted the critical role that aquifer heterogeneity (e.g.,

the hydraulic conductivity) has in accurately understanding the solute transport behavior, to identify polluters, and to design

effective remediation schemes and assess associated risk (e.g., Dagan and Nguyen, 1989; Cvetkovic et al., 1992; de Barros and

Nowak, 2010; Henri et al., 2016). Large aquifer heterogeneity significantly affects the macro-dispersive behavior of contam-

inant plumes emanating from point sources. Lacking data to characterize subsurface properties in sufficient detail introduces35

significant uncertainty in the prediction of solute transport, the design of remediation measures, and the prediction of future

concentrations at wells of interest (e.g., Dagan, 1984; Rubin, 2003). The prediction of solute transport from the NPS to a com-

pliance area of interest (e.g., extraction or observation wells) has been shown to be critically impacted by aquifer heterogeneity,

but also by mixing along the screen of production wells: contaminant mass arrivals in extraction wells can occur over
:::
may

::::
take

decades to centuries and are characterized by significant uncertainty (Hua and Harter, 2006; Henri and Harter, 2019).40

Unique to nonpoint sources, the spatial (and temporal) variability of the source itself across a groundwater basin introduces

an additional level of system complexity. NPS pollution of groundwater is typically associated with dissolved solutes associated

with groundwater recharge across the landscape. Both, recharge rates and contaminant concentrations in nonpoint sources are

subject to large spatial and temporal variability. The variability is partly due to spatially variable soil properties (e.g., Nielsen

et al., 1973). These properties control infiltration, recharge to groundwater, and the fate and transport of contaminants in the45

unsaturated zone (Hillel, 1980). Landscape management that leads to NPS pollution releases, e.g., irrigation, fertilization,

construction and maintenance of urban, domestic, and other distributed waste systems leaking incidentally or intentionally

into groundwater, is also subject to large spatial and temporal variability (Jordan et al., 1997). As with aquifer properties, the

minutia of such spatial and temporal variability cannot be measured (or estimated) except at larger scales. For example, to

the degree that differences exist in average recharge and pollutant loading between mappable landscape management systems,50

these may be explicitly represented in space and time (e.g., Loague and Corwin, 1998; Nolan et al., 2018). This includes NPS

differences between different farming systems (Kladivko et al., 2004) or between crops (Logsdon et al., 2002). Similarly, the

degree to which mappable soil units affect recharge and pollutant fate and transport to the water table can also be explicitly

represented (Biggar and Nielsen, 1976). However, spatial variability at smaller spatial scales or between individual units of the

same mappable class are subject to stochastic variability (Sisson and Wierenga, 1981; Vereecken et al., 2007). Furthermore,55

both, the timing and the spatial distribution of mappable and smaller scale unknown landscape processes is a stochastic process

from a regional management perspective, which is concerned with pollution dynamics across an ensemble of wells.

The dual complexity of aquifer heterogeneity and spatio-temporal source variability represent a largely unexplored chal-

lenge in the assessment and management of NPS pollution in aquifers. Yet, conceptually simplified approaches have been

2



successfully employed to predict general trends and expected (average) contaminant behavior across ensembles of pollutant60

receptors of interest (wells, stream reaches) (e.g., Conan et al., 2003). Typically, these assessments lack any measures to also

assess predictive uncertainties.

Some key characteristics of NPS contamination on the other hand make the NPS pollution system in groundwater well suited

for upscaling without loss of information relevant to understanding the range of impacts on receptors: First, the individual

compliance surface of interest (the groundwater-well interface, the groundwater-stream reach interface) is subject to complete65

mixing prior to exposure (extracted well water, stream reach baseflow contribution). For example, production wells for urban

water supplies are typically screened over dozens of meters (Henri and Harter, 2019). Even domestic wells are typically

screened vertically over several meters of an aquifer system (Horn and Harter, 2009; Perrone and Jasechko, 2019). Similarly,

stream reaches mix across an aquifer area of several tens to tens of thousands of square meters. The source area associated with

such significantly sized compliance surfaces typically has length scales exceeding 100 m and frequently exceeding 1km (Horn70

and Harter, 2009; Henri and Harter, 2019). As a result, extracted water will be a mixture of groundwater age and source water

quality (Weissmann et al., 2002; Koh et al., 2018).

Secondly, while the source is wide-spread, compliance levels of key NPS contaminants (e.g., salt, nitrate) are commonly

much less than one order of magnitude lower than the concentration in NPS recharge. This is characteristically different

from most point-source contamination, where concentrations at the source may exceed compliance levels by many orders of75

magnitude (e.g., Frind et al., 1999). With the smaller difference between compliance and NPS recharge concentration, mixing

at the compliance surface (i.e., in the well screen, at the stream reach scale) acts to homogenize the NPS recharge signature

both, in space and time, thus reducing the need to accurately characterize the variability in space or in time to determine the

mixed concentration at an individual compliance surface (Kourakos et al., 2012). In contrast to assessing point sources of

industrial pollution, significant simplification in the spatiotemporal representation of, both or either, water and contaminant80

leakage rates and hydraulic conductivity may be possible without loss of accuracy. Bastani and Harter (submitted) explored

the homogenization of temporal variability in NPS behavior. Yet, little work has been done to better understand and quantify

the degree to which spatio-temporal variability in NPS representation or spatial variability in aquifer representation can be

homogenized in NPS simulation tools while still accurately predicting NPS management metrics, including concentrations at

compliance surfaces.85

In this paper, we assess the degree to which detailed spatial representation of both, the aquifer hydraulic conductivity and

of contaminant source parameters - recharge rate of water and contaminant loading from the NPS to the groundwater table -

can be homogenized in NPS models without reducing model accuracy. We consider three NPS management metrics and use a

comparative simulation approach for our assessment.

Our starting point is a set of simulations that predict the long term contamination of an aquifer from NPS pollution under90

highly resolved heterogeneous aquifer and NPS source conditions. Results are compared against various simulation scenarios

with homogenized representations of the aquifer and source heterogeneity. We compare results from various homogenization

scenarios by focusing on three stochastic management metrics: the travel time distribution to production wells, the stochas-

tic capture zone, and the stochastic contaminant time series in well water. Assuming ergodicity (Dagan, 1990), stochastic
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Table 1. Proportion and hydraulic conductivity of the four categories (g: gravel; s: sand; ms: muddy sand; m: mud)

g s ms m

proportion [%] 0.10 0.35 0.25 0.3

hydraulic conductivity [m/d] 200.0 50.0 0.5 0.01

::::::::
Stochastic

:
management metrics are quantified both, for the pollution variability across an ensemble of production wells encoun-95

tered over a basin, and for the uncertainty about pollution levels at an individual well.
:::
The

::::
later

:::::::
assumes

::::::::
structural

:::::::::
ergodicity

::::::::::::
(Dagan, 1990),

::::
i.e.,

:::
that

:::
the

:::::
mean

:::
and

::::::::
variance

::
of

:
a
::::::
single

:::::::::
realization

::
of

:::
the

::::::::
hydraulic

::::::::::
conductivity

::::
field

:::
are

:::::
close

::
to

:::
the

:::::
same

:::::::
statistics

::
of

:::
the

::::::::
ensemble

::::::::::
distribution

:::
(see

::::::::::
histograms

::
in

::::::
Figure

:::::
SM1).

:

2 Methodology

2.1 Reference case100

We consider an unconsolidated sedimentary aquifer sytem typical of the Central Valley (California, USA), initially uncon-

taminated (e.g., pre-development state) and subject to nitrate pollution from agricultural NPS sources. The sub-region is char-

acterized by a semi-arid Mediterranean climate, with dry summers and significant winter precipitation occurring mostly via

the surrounding mountain ranges. The Central Valley groundwater basin is subject to intensive irrigated agricultural activities

supported by reservoirs managing surface water inflows from surrounding mountain ranges and by groundwater. Over the past105

eight decades, irrigation and groundwater pumping added a significant vertical flow component: Lateral groundwater flow,

fed by mountain front recharge and discharged along the thalweg used to dominate the groundwater system dynamic. Modern

groundwater discharge is mostly due to groundwater extraction. Recharge from intensive irrigation is superimposed on a weak

lateral gradient, significantly increasing the importance of downward flows (Faunt, 2009). Water recharged from the irrigated

landscape to groundwater bodies carries significant loading of agricultural NPS pollutants, such as salt or nitrate (e.g., Baram110

et al., 2016).

The simulated soil and aquifer contamination setting represents conditions typically encountered in Central Valley’s agri-

cultural basins, but are not specific to a particular location. We represent heterogeneity in the hydraulic conductivity as well as

the spatial variability in soil types and land use. The latter two are key characteristics that control spatial variability in recharge

and contaminant leakage rates. The transfer of water and nitrate from the soil surface to the aquifer is estimated through the115

modeling of flow and transport in the unsaturated zone for a series of typical soil types and crops found in the Central Valley.
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Figure 1. Illustration of the methodology used in the study, considering a representative quadri-lateral subsystem of a highly heterogeneous

alluvial aquifer system, 19.2 x 6 x 0.25 km3 (12 miles x 3.75 miles x 820 feet). A land use map is randomly generated (top-left). Each color

represents a different crop. A soil map (top-right) is extracted from the top layer of each geostatistical realization of the hydraulic conductivity

(K). For each combination soil-type/crop, effective leakage rates of water and nitrate are numerically estimated. White particles represent a

snapshot of the NPS pollution (particles) eighty years after a single year of contaminant loading. In each simulation, three extraction wells

are explicitly represented at downstream location of the domain. The lower part of each well (in red) represent its screen from where water is

extracted and from where mass arrival is recorded. Other wells are implicitly represented by the flux into the lower boundary of the domain.

2.1.1 Representation of aquifer and soil heterogeneity

2.1.2 Stochastic analysis

Uncertainty in the representation of the spatial variability of the aquifer and soil hydraulic conductivity is systematically ac-

counted for through the use of a geostatistical model in a Monte Carlo framework (Rubin, 2003). The propagation of variability120

and uncertainty into management metrics is assessed across an ensemble of production wells. Assuming ergodicity (Dagan,

1990), stochastic analysis is applied to first quantify uncertainty about pollution outcomes at individual wells and to secondly

quantify regional spatial variability in pollution outcomes across an ensemble of wells: To characterize the uncertainty at an

individual well, a large number of realizations of individual wells with equiprobable aquifer and soil realizations is generated.

Flow and transport processes across each are solved using a specified (fixed), mappable land use representation. To assess the125

spatial variability of NPS management metrics across an ensemble of well locations in a groundwater basin, the equiprobable
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realizations of the aquifer system represent the variety of locations across a basin with geostatistically similar geological fea-

tures. In this case
:::
This

::
is

::::
true

::::
since

:::
the

:::::::
domain

::
is

::::::::
designed

::
to

::::::
ensure

:::
that

::::::
source

:::::
areas

::
of

:::
the

::::
three

::::::::::
production

::::
wells

:::
are

:::::
fully

::::::::::::
accommodated

:::
and

::::
that

::::
each

:::::
well’s

::::
area

::
of

:::::::
capture

:::
can

::
be

::::::::::
considered

::::::::::
independent.

:::
In

::
the

::::
case

:::
of

:
a
:::::::
regional

:::::::
analysis, land-use

is simulated as a random process.130

:::::
Then,

::::::::
stochastic

:::::::::::
management

:::::::
metrics

:::::::
quantify

:::::
both,

:::
the

:::::
mean

:::
and

:::::::::
variability

::
of

::::::::
pollution

:::::
levels

::::::
across

::
a

::::
large

::::::
sample

:::
of

:::::::::
production

::::
wells

:::::::::::
encountered

::::
over

:
a
:::::
basin

::
as

::::
well

::
as

:::
the

:::::::
expected

:::::
value

::::
and

:::::::::
uncertainty

:::::
about

::::::::
pollution

:::::
levels

::
at

::
an

:::::::::
individual

::::
well.

::::
This

::
is

::::
done

:::
by

:::::::::
simulating

::::::::
stationary

:::::::
random

:::::
fields

::::::
(Figure

::::::
SM3)

:::
and

::::::::
assuming

:::::::
ergodic

:::::::::
conditions [

:::
e.g.,

:::::::
Gelhar,

:::::
1993;

:::::::
Rajaram,

:::::
2002]

:
.

2.1.3 Aquifer135

Spatial variability in the aquifer hydraulic conductivity (K) is represented using the transition probability/Markov chain method

(Carle, 1999) for generating random realizations of the hydrofacies field (Carle and Fogg, 1996, 1998). Here, we consider 4

hydrofacies: gravel, sand, muddy sand and mud. The geostatistical model requires the characterization of the proportion,

mean length and hydraulic conductivity of each facies, and of the facies-to-facies transition probability rates. We set these

parameters to be representative of Central Valley aquifer conditions (Weissmann and Fogg, 1999a, b) (Table 1 and 2). A total140

of 50 realizations of the K-field were generated. An example of K-field can be observed in Figure 1. The histograms of the

mean and the variance of the logarithm of K are shown in Figure SM3. Fifty realizations were sufficient to converge the lower

statistical moments of K and of the resulting mean velocities (Figure SM7
::::
SM9).

2.1.4 Soil map

The top layer of each K-field realization is here considered to represent the (unmapped) spatial variability of the soil type.145

Thus, a soil map, displaying the spatial distribution of the 4 hydrofacies at the land surface, is geostatistically consistent with

each realization of the aquifer K-field underlying the soil horizon.

2.1.5 Land-use

The landscape of the simulated sub-basin is considered to be exclusively occupied by agricultural activities. Six different crop

types are randomly distributed over a domain of 19200.0 m ⇥ 6000.0 m. The crops are: almond, citrus, corn, cotton, grain and150

grapes. All fields are of the same rectangular dimension, 360 m ⇥ 300 m (11 ha, 27 acres). The spatial distribution of crop

types is generated randomly and fulfills the following proportions of the 6 crop types: 24% of Almond, 24% of Citrus, 18% of

Corn, 12% of Cotton, 12% of Grain, 10% of Grapes (Table 3). Crop types and proportion are representative of what may be

encountered in the southeastern Central Valley (Harter et al., 2012).
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Table 2. Mean length (diagonal values) of each categories (g: gravel; s: sand; ms: muddy sand; m: mud) and embedded transition probability

(non-diagonal values) in the longitudinal (x), the horizontal transverse (y), and the vertical transverse (z) directions. Matrices reads as

transition probability from the row facies to the column facies. The background category is designated by the letter b.

(x) g s ms m

g L̄g,x = 800.0m 0.7 0.15 b

s 0.7 L̄s,x = 1500.0m 0.28 b

ms 0.15 0.28 L̄ms,x = 1000.0m b

m b b b b

(y) g s ms m

g L̄g,y = 500.0m 0.7 0.15 b

s 0.7 L̄s,y = 850.0m 0.28 b

ms 0.15 0.28 L̄ms,y = 900.0m b

m b b b b

(z) g s ms m

g L̄g,z = 2.0m 0.7 0.15 b

s 0.7 L̄s,z = 3.5m 0.28 b

ms 0.15 0.28 L̄ms,z = 2.0m b

m b b b b

2.1.6 Estimation of recharge and contaminant leakage155

Numerical simulations were conducted to simulate the vadose zone flow and transport processes across all possible crop and

soil type combinations. Here, the gravel category in a soil layer was assumed to represent the same sandy soil as the sand

category. Hence, a total of 18 vadose zone profiles represent all possible combinations of the 6 different land types (crops)

and 3 different hydraulic soil profiles (sand, muddy sand, and mud). Simulations provide time-varying recharge and pollutant

leakage rates for each of the 18 possible land-use and soil combinations at the water table of the respective underlying aquifer160

system. The time-series of the 18 simulations are computed a priori and then applied to define the water table boundary

conditions of the groundwater flow and transport simulations.

Governing equations

One dimensional water flow in soils is described by the Richards equation (Diamantopoulos and Durner, 2012):

@✓

@t
=

@

@z


K 0( )

✓
@

@z
+1

◆�
�S, (1)165

where ✓ [-] is the volumetric water content, t [d] is time, z [m] is the vertical spatial coordinate, positive upward,  [m] is the

pressure head, K 0( ) [m2d�1] is the saturated/unsaturated hydraulic conductivity as a function of  and S is the sink term,

representing root water uptake [d�1]. The water retention curve ✓( ) and the hydraulic conductivity curve are required. The

7



two function are described by the van Genuchten-Mualem (van Genuchten, 1980) model:

✓( ) =

8
<

:
✓r +(✓s � ✓r)⇥ (1+ | ↵ |n)�m  < 0

✓s  � 0
(2)170

Se =
✓( )� ✓r
✓s � ✓r

(3)

K 0(Se) =Ks ⇥Sl
e ⇥

h
1�

⇣
1�S1/m

e

⌘mi2
(4)

where ✓s and ✓r [-] are the saturated and residual water contents, respectively, ↵ [m�1 ], n [-], m [-], and l [-] are shape

parameters, m= 1� 1/n,n > 1, and Se [-] is the effective saturation.

Solute transport for a conservative tracer is described using standard advection-dispersion equation of the form:175

@✓c

@t
=

@

@z

✓
✓D

@c

@z

◆
� @qc

@z
�S⇥ c (5)

where c [g m�3] is the concentration of the solute in the liquid phase, D [m2d�1] is the dispersion coefficient, q is the

volumetric water flux density (m d�1) evaluated with the flow equation and S⇥ c [g m�3d�1] is the root nutrient uptake for

the case of passive uptake. By focusing on hydrodynamic dispersion, D is defined as

D = �q/✓ (6)180

where � is the dispersivity [m].

Parametrization of Hydrus 1D

For the numerical solution of equations 1 and 5, we used the Hydrus 1D software (Šimunek et al., 2016). Root water uptake

for the six different crops was simulated by assuming a macroscopic root water uptake approach (Feddes et al., 1978). The

parameters for equations 2 and 5 were estimated by using Rosetta pedotransfer function (Scaap et al., 2004) and are shown in185

Table 4. For each soil horizon, dispersivity values were calculated by using the pedotransfer function of Perfect et al. (2002).

The simulation time was 21 years, from January 1, 1995 until December 31, 2015. Of the 21 years, the first 11 were used

as a warm-up period and the remaining 10 were used to represent temporally variable boundary conditions at the top of the

groundwater system. For an initial condition of equations 1 and 5, we assumed a uniform distribution of the pressure head

and a solute free profile, respectively. The upper boundary condition for the flow problem accounts for precipitation, irriga-190

tion, and crop evapotranspiration. Daily reference (grass) evapotranspiration (ET0) and precipitation (P ) from the Stratford

Meteorological station (California Irrigation Management Information System (CIMIS)) are used to represent southeastern

Central Valley climate conditions. For each crop, ET0 values were converted to potential crop evapotranspiration (ETc) by

using the single crop coefficient method (Allen et al., 1998). Daily time series of boundary conditions are used in Hydrus 1D.
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Table 3. Area distribution, fertilization application and root zone depth for the 5 crops considered in this study.

Crop Areaa (%) Fertilization applicationb [kg/ha/year] Root zone [cm]

Almond 24.0 246.0 137.0

Citrus 24.0 157.0 107.0

Corn 18.0 239.0 91.0

Cotton 12.0 195.0 122.0

Grain 12.0 198.0 91.0

Grapes 10.0 39.0 91.0

a from Harter et al. (2012)
b from United States Department of Agriculture (1997)

Table 4. Horizon depth, soil hydraulic properties and dispersity of each horizon, for the three different soil profiles assumed in this study.

Soil type Horizons [cm] ✓r [cm3cm�3] ✓s [cm3cm�3] ↵ [cm�1] n [�] Ks [cm d�1] l [�] � [cm]

0-20 0.036 0.389 0.033 1.41 20.30 -1.03 2.0

20-56 0.035 0.389 0.036 1.43 23.44 -1.06 3.6

S1 56-86 0.038 0.388 0.034 1.42 20.39 -1.07 3.0

86-147 0.035 0.389 0.038 1.44 25.49 -1.06 6.1

147-1000 0.033 0.391 0.040 1.47 29.72 -1.03 3.0

0-30 0.039 0.376 0.057 1.66 50.17 -1.08 3.0

S2 30-107 0.048 0.370 0.055 1.86 46.55 -1.07 7.7

107-1000 0.032 0.343 0.056 1.66 46.66 -1.07 4.3

0-23 0.091 0.4988 0.022 1.19 7.86 -3.01 2.3

S3 23-94 0.084 0.4978 0.014 1.22 0.09 -1.58 7.1

94-1000 0.094 0.4740 0.018 1.27 4.28 -1.52 5.6

Based on calculated ETc and P values, we created an irrigation schedule for each combination of crop-soil type, using the195

so-called evapotranspiration method (Allen et al., 1998). Irrigation was assumed to take place only during the crop period and

not through the winter period (Figure 2). For all crop-soil combinations, we assume three fertilization events per year with the

total amount of fertilizer application given in Table 3.

Preparing Water Table Boundary Conditions from Unsatured Zone Simulation Results

Simulations led to an estimation of the temporal evolution of water and nitrate leakage rate at the bottom of the 1D profile200

(Figure SM1 and SM2) for each crop - soil type combination, at daily time-steps. For the sake of simplicity, our groundwater

simulation are conducted for steady state flow (but transient transport) conditions. Following Bastani and Harter (submitted),

we homogenize both, recharge and pollutant flux in time and compute average, effective recharge and nitrate leakage rates over
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Figure 2. Illustration example of daily values of potential crop evapotranspiration (orange points) used for the description of the upper bound-

ary condition. The blue bars represent rainfall events and the light blue bars irrigation events. The red bar defines fertilization application for

an amount equal to 65 Kg/ha (195 Kg/ha/year). Crop is cotton.

Table 5. Recharge rate and nitrate mass flux applied for each crop - soil type combination

r [m/m2/d] almond citrus corn cotton grain grapes

S1 2.3⇥10�3 1.7⇥10�3 1.5⇥10�3 1.7⇥10�3 4.1⇥10�4 1.8⇥10�3

S2 1.7⇥10�3 1.4⇥10�3 1.3⇥10�3 1.4⇥10�3 5.0⇥10�4 1.4⇥10�3

S3 2.9⇥10�5 2.3⇥10�4 2.6⇥10�4 2.0⇥10�4 2.0⇥10�5 1.5⇥10�4

mf [g/m2/d] almond citrus corn cotton grain grapes

S1 2.8⇥10�2 2.5⇥10�2 2.0⇥10�2 2.1⇥10�2 1.4⇥10�2 4.6⇥10�3

S2 2.8⇥10�2 2.1⇥10�2 1.5⇥10�2 1.4⇥10�2 1.8⇥10�2 4.3⇥10�3

S3 0.0 1.9⇥10�10 3.3⇥10�9 0.0 0.0 0.0

a 10 year time series (illustration in Figure SM1 and SM2 and average values in Table 5). For each of the 50 K-field (and,

therefore, soil map) realization, the temporally homogenized results for each crop-soil combination are then used to describe205

the spatial distribution of the effective recharge (r(x,y)) and nitrate mass flux (m0(x,y)). Histograms of the mean and the

variance of recharge rate (r) and initial concentrations (c0) are shows in Figure SM4 and SM5, respectively.
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2.2 Groundwater flow and transport

2.2.1 Flow

Groundwater flow and nitrate transport are numerically simulated. We consider a 3-dimensional aquifer with a length (Lx) of210

19200.0 m, a width (Ly) of 6000.0 m, and a depth (Lz) of 250.0 m (Table 6). Average steady-state groundwater flow conditions

are governed by (Rushton and Redshaw, 1979):

@

@x

✓
Kxx

@h

@x

◆
+

@

@y

✓
Kyy

@h

@y

◆
+

@

@z

✓
Kzz

@h

@z

◆
+Q0

s = 0, (7)

where h (m) is the hydraulic head, and Q0
s is a volumetric flux per unit volume representing sources and sinks of water.

Groundwater fluxes are simulated by solving numerically the Darcy’s law:215

q(x) =�K(x)rh(x), (8)

where q (m d�1) is the specific discharge in the 3 dimensions x={x,y,z}. The longitudinal flow is defined by a regional gradient

of 1.0⇥10�3. The vertical flow is impacted by recharge and by a downward flux from the bottom of the domain. The spatially

distributed fixed flux boundary condition across the bottom of the domain represents water flux to pumping wells in the deeper

part of the aquifer and the effect of implied, non-simulated groundwater extraction by wells distributed throughout the lower220

part of the simulated aquifer sub-basin. Domestic wells are not considered to significantly affect flow and transport processes

and are not simulated. Recharge is considered spatially variable to account for realistic spatial distribution of crop and soil

types (see Section 2.1.6). Histograms of
:::
For

:::::::::
indications

:::::
about

:::
the

:::::
range

::
of

::::::
values

:::
and

::::::
degree

::
of

:::::::::
variability,

::::::::::
histograms

::
of the

mean and variance of the recharge rates applied in the 50 realizations of heterogeneous cases are shown in Figure SM4..
:

Three extraction wells are located near the downstream edge of the domain. The extraction rate, Qout, is set to 3000 m3d�1225

(551 gpm), corresponding to an actual irrigation pumping rate of 6000 m3d�1 (1102 gpm) or 9000 m3d�1 (1653 gpm) during

a six month or four month annual irrigation season, respectively. The length of the well screen is location and realization

dependent, depending on the vertical distribution of highly conductive material (gravel, sand) (Appendix A). The total outflow

(downward flux at the domain bottom plus extraction at the three wells) is set to be equal to the inflow of water by recharge.

The resulting water flow system representation is solved using MODFLOW (Harbaugh et al., 2000) for each realization of the230

K-field and the upper boundary.

2.2.2 Transport

Nitrate transport is modeled using the advection-dispersion equation (ADE) given by:

�
@c

@t
=r · (�Drc)+r · (qc) (9)

where c is the solute concentration, D is the 3-dimensional dispersion tensor, and � is the porosity. The ADE is solved by the235

random walk particle tracking (RWPT) method implemented in the Fortran code RW3D (Fernàndez-Garcia et al., 2005; Henri
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Table 6. Domain discretization and physical parameters used in all simulations

Parameter Value

Domain discretization:

Number of cells, nx ⇥ny ⇥nz 120 ⇥ 60 ⇥ 625

Cell dimension, �x ⇥�y ⇥�z [m⇥m⇥m] 160.0 ⇥ 100.0 ⇥ 0.4

Domain length, Lx ⇥Ly ⇥Lz [m⇥m⇥m] 19200.0 ⇥ 6000.0 ⇥ 250.0

Flow and transport problem:

Porosity, � [-] 0.3

Average longitudinal hydraulic gradient, ix [-] 1⇥10�3

Extraction rate, Qout [m3d�1] 3⇥103

and Fernàndez-Garcia, 2014, 2015). RWPT solves the ADE by moving a large number of particles in successive jumps given

by: (e.g., Salamon et al., 2006).

xp(t+�t) = xp(t)+�t[v(xp(t))+r ·D(xp(t))] +
q

D(xp(t))�t · ⇠(t), (10)

where xp is the particle position, v is the velocity vector, and ⇠ is a normally distributed random variable with zero mean and240

unit variance.

The detailed discretization of the velocity field described above is capturing the most relevant characteristics affecting

the macro-dispersive transport behavior (LaBolle, 1999; LaBolle and Fogg, 2001; Weissmann et al., 2002; Henri and Har-

ter, 2019). Therefore, effects of grid-scale dispersion are assumed to be negligible
:
,
:::::::
i.e.,D=0

::::
and

::::
Eq.

::
10

:::
is

::::::::
simplified

:::
to

::::::::::::::::::::::::::::::
xp(t+�t) = xp(t)+�t⇥v(xp(t)). This assumption, which potentially impacts NPS management metrics, is further evalu-245

ated in Appendix B.

Nitrate transport originating from the water table is simulated using an instantaneous injection of 500,000 particles over

the entire top of the domain. Particle transport is tracked using the RWPT algorithm (Eq. 10) for a simulation time of 350

years. In simulations with spatially variable initial contaminant mass loading, the local density of particles reproduces the local

initial concentration (c0(x,y)) in recharge water at the groundwater table. Histograms of the mean and variance of the initial250

concentration over the 50 realizations are shown in Figure SM5
:
if
::
a

::::::::::
visualization

:::
of

:::
the

:::::
range

::
of

:::::
values

::::
and

::
of

:::
the

:::::::::
variability

:
is
::::::
needed. Following the superposition principle, the cumulative mass arrival at wells resulting from an instantaneous injection

of mass m0 can be interpreted as ṁ(t), the simulated mass flux at wells resulting from a continuous and temporally constant

release of mass m0. Well concentrations are computed as cw(t) = ṁ(t)/Qout. Flow and transport are simulated for each

realization of the K-field and water table boundary condition.255
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2.3 Nonpoint source pollution management metrics

2.3.1 Pollutant travel times

Three relevant nonpoint source (NPS) pollution management metrics are considered to measure the stochastic simulation

outcomes: the probability distribution
::::::
density

:::::::
function

:
of pollutant travel times to wells, the probability distribution of pollutant

concentration in wells, and the probability distribution of source locations. The probability distribution260

2.3.2
::::::::
Pollutant

:::::
travel

:::::
times

:::
The

:::::::::
probability

:::::::
density

:::::::
function

:
of travel times is obtained by recording travel times of particles to the compliance area, that

is, the screen of the extraction well, for each particle. We obtain normalized travel times ti by computing the time required

to observe a specified fraction i of the total mass that reaches a well over the total 350 year simulation period. For instance,

t5
::
t5 represents the travel time from the water table to the well for the fifth percentile of the total mass reaching the well in265

350 years. Following a stochastic approach, probability density functions (pdfs) of travel times ti are obtained by determining

the histogram of ti in
::::
using

::::
time

:::::
series

:::::
from

:
150 simulated wells (50 realizations, each with 3 wells).

:::::
Figure

:::::
SM6

::::::
shows

::::::::::
satisfactorily

:::
the

:::::::::::
convergence

::
of

:::
the

:::::
mean

:::
and

::::::::
variance

::
of

:::
t50.

:
Travel time pdfs can represent a useful tool to assess both the

expected time of solute arrival at the compliance area and the propagation of uncertainty from the hydraulic conductivity field

to pollutant transport (e.g. Dagan and Nguyen, 1989; Cvetkovic et al., 1992; de Barros and Rubin, 2008; Henri et al., 2016).270

2.3.3 Pollutant concentrations in wells (breakthrough curves)

The assessment of potential contaminant levels in extraction wells represents a key step in NPS pollution management. Under

uncertain flow conditions, managers would benefit from knowing the probability to exceed a threshold concentration such as the

maximum contaminant level (MCL) in a given well or in a series of wells. For each of the 150 simulated wells, breakthrough

curves c(t) are obtained.
:::::
Figure

:::::
SM7

::::::
shows

:::::::::::
satisfactorily

:::
the

:::::::::::
convergence

::
of

:::
the

:::::
mean

::::
and

:::::::
variance

:::
of

:::
the

::::::::::::
concentration275

:::::::
exceeded

:::
by

::::
50%

::
of

::::::
wells. Their probability distribution Pi(c, t) is obtained as a sample distribution of c(t), where Pi(c, t) is

the probability for i% of wells to exceed the contaminant level c at time t.

2.3.4 Capture zones

NPS pollution management may also require the assessment of the effective source area, i.e., the capture zone or contributing

area of the pollution observed in a production well. The spatial variability of hydraulic properties leads to uncertainty about and280

spatial variability of the source area (e.g. Varljen and Shafer, 1991; Franzetti and Guadagnini, 1996; Riva et al., 1999; Stauffer

et al., 2002). In the stochastic framework, the capture zone is assessed by defining the spatial distribution of the probability that

a contaminant leaking from the NPS will reach a well (Pw), i.e.

Pw(xNPS) = Prob(xp(t 2 [0, tend]) = xw | xp(t= 0) = xNPS), (11)
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where xp is the 3-dimensional location (in the Cartesian coordinate system given by x= (x,y,z)) of a portion of the plume285

(represented by a particle in this study), xw is a location shared with a well screen, and xNPS is a given location of the NPS.

The spatial extension of non-zero probabilities forms then a probabilistic capture zone. The time required for a contaminant

leaving a given location of the contributing area to reach the extraction well (or so-called time-related capture zone) is also

stochastically analyzed.

3 Upscaling and test cases290

3.1 Homogenization of source terms

The NPS metrics from fully heterogeneous simulations are compared to the NPS metrics obtained from a range of upscaled

::::::::::::::::::::::::::::
(e.g., Fleckenstein and Fogg, 2008), homogenized simulations that employ effective homogeneous properties rather than the

original heterogenous distribution of the K, r, and c0 terms. The source terms (r(x,y), c0(x,y)) are homogenized separately

for each realization by spatial averaging to obtain hri and hc0i. Histograms of hri and hc0i show significant variability of the295

homogenized source terms between realizations (Figures SM3 and SM4). Homogenized recharge rates and source concentra-

tions range from 0.9 to 1.4 m d�1 m�2 and from 5.0 to 8.5 g m�3, respectively. A number of different homogenized models

are considered and compared against the reference case:

– a heterogeneous r and heterogeneous c0 (reference case);

– a heterogeneous r and homogeneous c0;300

– a homogeneous r and heterogeneous c0;

– a homogeneous r and homogeneous c0;

3.2 Homogenization of the hydraulic conductivity and transport upscaling

To simulate flow and transport in an equivalent homogeneous, upscaled K conditions, we estimate the effective longitudinal

and transverse vertical hydraulic conductivity, K⇤
x and K⇤

z , and dispersion, ↵⇤
L and ↵⇤

TV .
:::
The

:::::::::
transverse

::::::::
horizontal

:::::::::::
(y-direction)305

:::::::::
component

::
of

::::::::
transport

::
is

:::::::::
considered

::::::::
negligible

:::::
given

:::
the

::::
size

::
of

:::
the

::::
NPS

::::::
plume

:::
and

:::::
given

::::
that

::
no

:::::::
gradient

:::
in

:
y
::::
was

:::::::
applied.

Effective parameters in the longitudinal direction (K⇤
x and ↵⇤

L) are determined from the first and second spatial moments of

a plume resulting from an injection of mass in a vertical plane of width 3000.0 m and depth 50.0 m. The same approach

is adopted to estimate the effective parameters in the transverse vertical direction (K⇤
z and ↵⇤

TV ) by injecting particles in a

horizontal plane covering the entire top of the domain. No extraction is considered in both cases in order to capture the natural310

behavior of the plume. For each realization of the K-field, the slope of the temporal evolution of the first spatial moment, i.e.

the plume center of mass, is used to evaluate the apparent velocities, v⇤x and v⇤z . After estimation of the gradients from simulated

head differentials in the x- and z-directions, Darcy’s law is applied to evaluate effective hydraulic conductivities K⇤
x and K⇤

z

(Eq. 8). Effective dispersion values (↵⇤
L and ↵⇤

TV ) are similarly obtained by analyzing the slope of the normalized second
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spatial moment of particle plume. The importance of representing upscaled dispersion is independently tested. Histograms315

of resulting of upscaled K⇤
x , K⇤

z , ↵⇤
L, and ↵⇤

TV values as well as the satisfactorily convergence of the mean of the apparent

parameters after 50 realizations are shown in Figures SM6 and SM7
::::
SM8

::::
and

:::::
SM9,

::::::::::
respectively.

Furthermore, the cumulative implication of homogenization in aquifer properties and in the source terms c0 and r is tested.

The series of scenarios considered are:

– a heterogeneous K, a heterogeneous r and a heterogeneous c0 (reference case);320

– an upscaled K, r and c0, considering advection only;

– an upscaled K, a heterogeneous r and c0, considering advection only;

– an upscaled K, a heterogeneous r and c0, considering advection and upscaled dispersion.

4 Results and Discussion: Homogenization of source terms

The effect of conceptually simplifying recharge, contaminant input concentration, and aquifer heterogeneity on the stochastic325

description of travel times, well concentrations, and capture zones is here illustrated specifically for the case of quantifying

uncertainty about these NPS pollution management metrics at a particular well surrounded by a spatially distributed, but fixed

(known) distribution of land use across all realizations (scenario “LU 1"). Alternatively, the effects of homogenization on the

analysis of spatial variability across an ensemble of wells in a groundwater basin, where land use is different in each realization

(scenario “LU 50"), is further discussed in Section 6.330

4.1 Travel time

We analyze the probability distribution
::::
pdfs of travel time for the 5%ile (t5), 50%ile (t50) and 95%ile (t95) mass reaching a

well within the 350 year simulation period (Figure 3). These metrics characterize the temporal variability of the early, median,

and late mass travel time from of a one-year pollutant (e.g., nitrate) input to the aquifer system. For all simulations, early mass

travel times are within a range of 10 to 100 years with an expected value (highest probability )
:
a
::::
peak

::
of

:::::::::
probability

:
of 50 years335

(Figure 3a). Late mass travel times are likely to be in the range of 50 to 300 years (Figure 3c), with an expected travel time of

:
a
::::
peak

:::::::::
probability

::
at
:
about 120 years. These results are roughly consistent with the estimation of groundwater age distribution

made by Weissmann et al. (2002) in the San Joaquin Valley from detailed modeling and from chlorofluorocarbon (CFC) age

data (mean groundwater ages of 10 to 50 years in twice to three times shallower wells than the ones simulated in this study).

The homogenization of recharge spatial variability directly affects the flow field in the uppermost part of the aquifer. While340

the effect is larger than the homogenization of the concentration (see next paragraph), it also has no significant impact on travel

time pdfs (Figure 3): The distributions are slightly less spread out over the time axis, with slightly higher and earlier mode

(peak of the pdf ) and lower probabilities in the tails of the pdf (probability differences at all times < 5%), especially of the

late travel time (probability differences at all times around 10%).
:::::::::
Previously,

:::::::::::::::::::
Li and Graham (1998)

::::::::::
investigated

:::
the

::::::
impact
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Figure 3. Probability density function of the time required for 5% (a), 50% (b), and 95% (c) of the total recorded mass to reach a well con-

sidering a heterogeneous r and heterogeneous c0 (reference case, red line); a homogeneous r and heterogeneous c0 (yellow line); a heteroge-

neous r and homogeneous c0 (light blue line); a homogeneous r and homogeneous c0 (green line). Plain lines refers to the consideration of

an identical land-use map for all realizations. For comparison, the red dash lines shows outputs from simulations with a realization-dependent

land-use maps.

::
of

:::::::
recharge

::::::
spatial

:::::::::
variability

::
in

:
a
:::::
more

:::::::::
theoretical

::::
and

::::::::
simplified

:::
2D

::::::::::::
heterogeneous

:::::::
aquifer

:::::::::::
contaminated

:::
by

:
a
:::::
point

::::::
source345

:::::
under

:::::::::::
non-pumping

:::::::::
conditions.

::::
The

:::::
work

::::::::
highlights

::::
that

::::::
spatial

:::::::::
variability

::
in

:::::::
recharge

::::::::
increases

:::::::::
spreading,

:::::::::
especially

::
in

:::
the

::::::::
transverse

::::::::
direction.

::
In

:::
our

:::
3D

:::::
NPS

::::::
setting,

::::::::
transverse

:::::::::
spreading

::
is

:::
less

:::::::
relevant

::::::
(Figure

::
3)

::::
and

:::
we

::
do

:::
not

:::::::
observe

:::
the

:::::::
increase

::
in

:::::::::
variability.

The homogenization of initial concentrations has no physical impact on travel times since it does not affect the velocity field

in the groundwater system. However, the difference in input concentration changes the distribution of the initial mass across350

the water table. Hence, there are small but discernible differences in the travel time pdfs of variable and homogeneous c both,

in the case of spatially variable r (red and blue lines in 3) and in the case of homogeneous r (yellow and green lines in 3).

Importantly, the homogenized representation of r and c has nearly no effect on the time span between early and late arrival

times at the well screen (the contrast in the position of the travel time pdfs for t5 and t95), which represents the age difference

16



between the youngest and the oldest water captured by the well screen and then mixed during the pumping process (Weissmann355

et al., 2002; Koh et al., 2018; Henri and Harter, 2019).

4.2 Stochastic capture zone

The stochastic capture zone
:::
(or

:::::
source

:::::
area) is the area characterized by Pw(x,y)> 0. Simulation results for the fully stochastic

representation of source heterogeneity show that the stochastic capture zone covers an area of about 8000 by 4000 m (about

30% of the simulated domain, containing approximately 300 individual fields), while the zone from where mass is the most360

likely to reach a well (critical zone, Pw(x,y)> 0.5) is more spatially focused (about 3% of the simulated domain, the size of

about 30 individual fields, see Figure 4).

As explained above, homogenizing the input concentration does not affect the velocity field and transport processes, and

only slightly reduces Pw values of the critical zone (Figure 4b). On the other hand, not accounting for spatial variability in

recharge leads to an overestimation of Pw values inside the critical zone (Figure 4c). The same observation is made when365

both r and c0 are considered homogeneous (Figure 4d). The location of the critical zone, being controlled by regional flow

conditions and well characteristics (extraction rate, depth and length of the screen), is not impacted by the spatial description

of source terms. Spatial variability in the recharge is responsible for somewhat more uncertainty
::::
(i.e.,

:
a
:::::::
decrease

:::
of

::
the

:::::::
highest

:::
Pw ::::::

values) in the exact delineation of the capture zone along its margins than what is captured by the homogenization of r
::
c0.

Recharge rates, if considered heterogeneous, are by design correlated to the hydraulic conductivity. Highly conductive ma-370

terial are associated with high recharge rates, which may increase the channeling effect through preferential paths. Accounting

for spatial variability in the recharge rate will, therefore, exacerbate the impact of the heterogeneity in the K-field, especially

near the water table (where recharge is applied), thus increasing the uncertainty about delineating the source area.

Just as travel time pdfs are little affected (Figure 3), the overall location of the stochastic capture zone is approximated quite

well with the homogenized parametrization of concentration and recharge. Consequently, the average travel times required for375

a particle leaving a given location of the NPS to reach a well also are not dramatically impacted by the spatial representation

of the two source terms (Figure 5). The average flow condition is common to all simulations. Since the top of well screens is

100 m deep, the solute transport from the source to the compliance areas occurs mostly at depths far away from the spatially

variable top boundary condition, where local change of flow condition at the surface does not impact significantly groundwater

fluxes.380

4.3 Well NPS pollution concentration

A common characteristic of NPS pollution different from many point source cases is the temporal continuity and consistency

in NPS inputs. For example, significant nitrate loading to groundwater began with the introduction of commercial fertilizer just

before World War II and has continued since then (Rockstrom et al., 2009; Harter et al., 2017). The long-term consequence of

such continuous NPS loading, year-after-year, can be obtained from our simulations by superpositioning breakthrough curves385

obtained for NPS output in a single year at t = 0. If we neglect long-term trends or year-to-year variations in NPS and assume

a constant input of nitrate to the water table, then the stochastic breakthrough curve at the well screen is simply obtained by
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Figure 4. Probability of a particle leaving a given grid-cell to reach a well accounting for a heterogeneous r and heterogeneous c0 (reference

case, a); a heterogeneous r and homogeneous c0 (b); a homogeneous r and heterogeneous c0 (c); a homogeneous r and homogeneous c0 (d);

a lnK-weighted r and lnK-weighted c0 (e).
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Figure 5. Expected travel time [years] of a particle leaving a given grid-cell and reaching a well for a heterogeneous r and heterogeneous

c0 (reference case, a); a heterogeneous r and homogeneous c0 (b); a homogeneous r and heterogeneous c0 (c); a homogeneous r and

homogeneous c0 (d); a lnK-weighted r and lnK-weighted c0 (e).
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computing the cumulative distribution function (CDF) of the concentration pdf (Henri and Harter, 2019) (Figure 6). The CDF

plots provide a measure of the expected time at which a given threshold contaminant level (in the x-axis) such as the MCL

(10 mg/L for nitrate as nitrogen in the U.S.) will be exceeded with a probability of 90% (P90, left), 50% (P50, center), or 10%390

(P10, right). In a regional context, these graphs can be interpreted as the time (x-axis) after which at least 90%, 50%, and 10%

of all wells in the aquifer region exceed a concentration of interest (y-axis), respectively.

For the reference scenario (red curve in Figure 6), we observe that the concentration eventually exceeded by 90% of wells

is about 4.5 mg N/L, after about 250 years (left graph in Figure 6). Half of the wells will have a concentration exceeding 11

mg N/L (again, after about 250 years). Also in at least half of wells, the onset of rising nitrate levels (to above background395

levels) will occur no later than 50 years after the start of nitrate loading, reaching levels corresponding to half of the MCL (5

mg N/L) after about 70 years, and reaching the MCL (10 mg N/L) no later than about 150 years (middle graph in Figure 6).

The 10% most nitrate contaminated wells will show an onset of nitrate contamination no later than 30 years after the start of

NPS pollution, exceed the MCL in less than 70 years, and reach concentrations exceeding 14.5 mg N/L no later than about 150

years (right graph in Figure 6).400

For an individual well, the results indicate that there is a 10% chance for nitrate concentrations to start to rise before 30

years, a 50% chance to rise no later than 50 years, and a 90% chance to rise before 70 years. Similarly, results suggests that the

MCL will be exceeded with 10% probability after 70 years and with 50% probability after 140 years.

These results are consistent with observations of nitrate concentrations in drinking water and irrigation wells in the San

Joaquin Valley, the southern half of the Central Valley. In Merced, Stanislaus, Tulare, and Kings County, about 40% of domestic405

wells (with screen depths not exceeding 100 m) exceed the drinking water standard (Ransom et al., 2013), but only about 10%

of the large production wells in the southeastern San Joaquin Valley (the wells represented in this study) exceed the nitrate

MCL (10 mg N/L) (Survey et al., 2012, 2013), approximately 70 years after the beginning of extensive fertilizer use in the

region. We note that the time scale for these concentration increases is very sensitive to two aquifer parameters: the hydraulic

conductivity and the average effective porosity. If the regional average K was twice as large as assumed in our model, all times410

would be half as long. Similarly, if the average regional effective aquifer porosity was 20% larger, travel times would be 20%

shorter.

The homogenization of spatial variability in the recharge rate and in the source concentration, while of limited consequence

to travel time estimates and to estimates of source area extent, has measurable implications for stochastic well concentration

predictions, particularly at the lower margin: Homogenizing the recharge rate only leads to significantly (>40%) underesti-415

mating the maximum concentration exceeded by 90% of wells in the intermediate and long term. Homogenization leads to

somewhat (⇡10%) overestimating the concentration exceeded by 10% of wells over the long term, but reproduces well the

concentration exceeded by 50% of wells at all time (yellow vs red in Figure 6).

Homogenizing both, recharge and contaminant loading does not affect the predictions quite as much, and in the opposite

direction: The (lower) concentrations exceeded by 90% of wells are overestimated and the (higher) concentrations exceeded420

by only 10% of wells are underestimated, while the concentrations exceed by 50% of wells are less than 5% different from the

fully stochastic prediction.
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Figure 6. Time (y-axis) required for a well to exceed a given concentration (x-axis) with a probability of 90% (left), 50% (middle) and 10%

(right) considering a heterogeneous r and heterogeneous c0 (reference case, red line); a homogeneous r and heterogeneous c0 (yellow line);

a heterogeneous r and homogeneous c0 (light blue line); a homogeneous r and homogeneous c0 (green line). For comparison, the red dash

lines shows outputs from simulations with a realization-dependent land-use maps.

::::::::::::::::::
Li and Graham (1998)

:::::::::::
stochastically

:::::::
analyze

:::
the

::::::
impact

::
of

:::::::
spatially

:::::::
random

:::::::
recharge

::::
rate

::
on

::::::::
transport

::
in

:
a
:::
2D

:::::
point

::::::
source

::::::
setting.

:::::
Their

:::::
work

:::::::::
concluded

::::
that,

:::
for

:::::
those

::::::::::
conditions,

:::::
large

:::::::::
variability

::
in

::
–
::::
and

::::::::
therefore

:::::::::
uncertainty

::::::
about

:
-
::::::::
recharge

:::::::
increases

::::::::::
uncertainty

::
in
::::::

solute
::::::::::::
concentration.

:::
In

:::
our

:::::
work,

:::
we

:::::::
observe

::::
the

::::::::
opposite.

::::
The

::::::::
difference

:::::
may

::
be

::::::
partly

:::
due

:::
to425

::
the

::::
3D

::::::::
non-point

::::::
source

::::::::
transport,

::::
and

:::::
partly

::::::
caused

:::
by

:::
the

:::::::
implicit

:::::::::
correlation

:::::::
between

:::
the

:::::::::
hydraulic

::::::::::
conductivity

::::
and

:::
the

:::::::
recharge

::::
rate

::
in

:::
our

:::::::::
scenarios,

:::::
which

::::
may

::::::::
increase

:::
the

::::::::::
conditioning

:::
of

:::
the

::::
flow

::::
field

::::
that

:::::
leads

::
to

:::
the

::::::::
observed

:::::::
decrease

:::
of

:::::::::
uncertainty

::::::
relative

::
to
:::
the

::::::::::::
homogenized

:::::::
scenario.

:

Results are also sensitive to a homogenization of only the initial concentrations, which would underestimate all concen-

trations by about 10% (blue lines in Figure 6). Homogenizing only concentration also leads to an underprediction, by about430

20%, of concentrations exceeded by either 90%, 50%, or 10% of well, relative to the fully stochastic land use treatment (green

:::::::
compare

::::
blue

:::
and

:::
red

:
lines in Figure 6).

The results of the homogenization and the differences to treating land use in fully stochastic mode (“50 LUs") are driven

directly by three factors: the distribution of land use, including the size of fields relative to the source area, and the distribution

of recharge and nitrate leaching among different land uses. As shown in Section 4.2., the extent of the capture zone encompasses435

hundreds of fields, while the critical capture zone – the core contribution area – encompasses at least 30 fields. For field size

much larger than those simulated here, or for a more spatially correlated distribution of crops among fields, homogenization

across all land uses in a basin may lead to larger errors due to the smaller number of land use “samples” intersected by the

capture zone (Gibbons, 1994). Furthermore, unsaturated zone flow and transport simulations have led to highest contaminant
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leakage rates in areas of high recharge (almonds, citrus, see Table 5). Homogenizing mass leakage therefore decreases the440

amount of contaminant in high recharge areas and consequently globally underestimates well concentrations. Outcomes would

be different if the highest concentration is associated with the lower recharge rate.

The examples shown here indicate that there may be significant errors in predicting future concentrations exceeded by 90%

of wells and by 10% of wells, i.e., the distribution of exceedance probabilities among the ensemble of wells, whereas the

concentration exceeded by half of the wells is characterized quite accurately under homogenized land use treatment. Overall,445

the homogenization of recharge in particular leads to the largest potential errors of NPS pollution management metrics, less so

for predicting travel times and capture zone, but significantly so for predicting the distribution of exceedance concentrations

across an ensemble of wells.

5 Results and Discussion: Homogenization of K

5.1 Travel time450

In a second step, the implications of upscaling aquifer heterogeneity on the stochastic description of travel times, capture zones

and well concentrations are assessed. Probability density functions of early, medium and late travel times are significantly

impacted by the full homogenization of the hydraulic conductivity field (Figure 7). A homogenization of both, aquifer and land

use random processes (K, r, c0) drastically reduces the spread of all mass percentile travel times (yellow lines in Figure 7).

But the homogenized prediction of modes is quite accurate: The mode of the early mass and median mass travel times (t5 and455

t50) are predicted with about 10% accuracy relative to the fully stochastic solution (Figure 7a and b). For the late mass travel

times, the mode in the homogenized prediction occurs later than for the case of a fully heterogeneous system (Figure 7c).

Aquifer heterogeneity generates a complex network of well-connected channels but also zones of near-stagnation, all of

which controls the spatio-temporal behavior of contaminant plumes across all scales. The effective solute path architecture

is, therefore, specific to the K-field realization and highly uncertain. In the stochastic solution, this generates a large range460

of probable solute travel times (travel time pdfs with large variance) to the well screen that cannot be capture by simulating

transport in a homogenized K architecture (Figure 7).

However, the global motion of the plume, characterized by its first spatial moment and the downward movement of the

first moment along the the depth interval of the well screen over time would be approximately similar for all realizations,

given the geostatistical parameters and regional gradients. Thus, accounting for upscaled advective motion only (obtained465

from the estimation of the first spatial moment) preserves the large mixing in the well screen (Figure A1), but underestimates

the uncertainty on travel times arising from the macro-dispersive effects of heterogeneity. This is captured by the fact that

the modes of the early, median, and late mass arrivals are spread over similar time periods (45 years to 140 years), even the

prediction based on a completely homogenized representation of both, aquifer and land use processes captures a significant

fraction of the age distribution of mass arriving at the well screen. This is due to the significant mixing that occurs in the well470

screen when the well is being pumped (Weissmann et al., 2002; Henri and Harter, 2019).
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Figure 7. Probability density function of the time required for 5% (a), 50% (b), and 95% (c) of the total recorded mass to reach a well

considering a heterogeneous K field, heterogeneous r and heterogeneous c0 (reference case, red solid line); an upscaled K values, averaged r

and averaged c0 accounting for advection only (yellow dashed line); an upscaled K values, heterogeneous r and heterogeneous c0 accounting

for advection only (blue dashed line); an upscaled K values, heterogeneous r and heterogeneous c0 accounting for advection and dispersion

(green dashed line).

Similar results to those for a fully homogenized representation are found when only the K-field is homogenized, but land

use is represented with heterogeneous r and c0. The spread of each mass percentile travel time pdf is slightly larger than in the

fully homogenized case, but is relatively far from capturing the full extent of the travel time pdfs for the fully heterogeneous

simulations (compare blue and red lines in Figure 7).475

While the homogenization of K removes the controlling process of the macro-dispersive pollutant behavior, the macro-

dispersive behavior can be approximated by including an upscaled, homogenized dispersion process (Eq. 9) into the simulation

(Eq. 10). Using both, homogenized K and a representative, effective macro-dispersion much improves the accuracy of the

homogenized prediction and captures significant features of the fully stochastic prediction (green lines in Figure 7). Early mass

travel times are slightly underestimated while median and especially late mass travel times are slightly overestimated.480
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Applying second spatial moments from heterogeneous simulations to estimate the macrodispersion of an upscaled homo-

geneous model, however, assumes that the macro-dispersion process follows a Gaussian process (Dagan, 1990). It has been

shown here and in other work (e.g., Dagan, 1984; Cvetkovic et al., 1992) that solute transport in heterogeneous media instead

produces significantly skewed plume distributions, with early peak of mass and a long tail. Approximating such a skewed

distribution with a Gaussian curve that is located at the same center of mass travel time and has the same second spatial mo-485

ment is know to generate earlier first travel times, a later peak of mass, and later late travel times, consistent with our results.

This complexity of upscaling transport from heterogeneous conditions to a simplified homogeneous aquifer using lower spatial

moments only has been highlighted before. The results here confirm that for
:::::::
presented

::::
here

:::::::
confirm

::::
this

::::::::::
observation

:::
for

:::
the

case of non-point source contaminations, but also put the macro-dispersive process in relation to the
::::::::
highlight

:::
the

:::::::::
generation

::
of

:
a
:::::::::::::::::::
quasi-macro-dispersive

:::::::
process

::::::
through

:::
the

::::::::
(vertical)

:
well mixing process.490

5.2 Time related capture zone

Analogous to the travel time pdfs, the spatial distribution of the stochastic capture zone, i.e., probability for a particle leaving a

given location of the NPS to reach a well, is highly impacted by the homogenization of the hydraulic conductivity, much more

so than by homogenization of land use processes alone (Figure 8).

In fully heterogeneous conditions, a wide range of Pw values are distributed over a large portion of the domain surface.495

However, most of the probabilistic capture zone is characterized by very low Pw values. The critical zone (area of highest

probability) is characterized by Pw values of ⇡0.6 and is centered at a longitudinal distance of about ⇡2000 meters from the

well. In the solution to the equivalent homogeneous parameter and boundary conditions, the uncertainty of the capture zone

location is significantly underestimated, with most of the capture zone being characterized by high probability to reach a well

(Figure 8b). Describing the spatial variability of nitrate mass loading and recharge (with an homogeneous K-field) only adds a500

moderate degree of uncertainty to the capture zone delineation ,
:::
(i.e,

:::::
lower

::::::
highest

:::
Pw:::::::

values), as expected from travel time pdf

results above. Utilizing the alternative homogenized transport modeling approach with a homogenized K and an equivalent

macro-dispersion term, unlike for travel time pdfs, does not substantially improve the stochastic prediction of the capture zone

(compare Figure 8c and 8d). Furthermore, homogenizing the hydraulic conductivity seems, independently of the description of

the source terms or of the consideration of dispersion, to mispredict the location of the capture zone: the critical zone is slightly505

moved downstream, closer to the wells, and the capture zone extends to a small portion of the downstream edge of wells. The

most distant part of the critical zone in the homogenized prediction of the capture zone overlaps with the actual location of the

critical zone in the fully stochastic solution.

Consistent with these results, the spatial distribution of mean travel time required for the contaminant to reach a well is

similarly contracted to a much smaller area that extends downstream from the well, unlike in the fully stochastic representation510

(Figure 9). The observed gradient of travel times, increasing with the distance from a well, is overestimated when K-fields are

upscaled. This leads to higher predicted mean travel times over the entire capture zone for all tested aquifer simplifications.

Expected travel time yearsof a particle leaving a given grid-cell and reaching a well for a heterogeneous K field, heterogeneous

r and heterogeneous c0 (reference case, a); an upscaled K values, averaged r and averaged c0 accounting for advection only
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Figure 8. Probability of a particle leaving a given grid-cell to reach a well accounting for a heterogeneous K field, heterogeneous r and

heterogeneous c0 (reference case, a); an upscaled K values, averaged r and averaged c0 accounting for advection only (b); an upscaled K

values, heterogeneous r and heterogeneous c0 accounting for advection only (c); an upscaled K values, heterogeneous r and heterogeneous

c0 accounting for advection and dispersion (d).
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(b); an upscaled K values, heterogeneous r and heterogeneous c0 accounting for advection only (c); an upscaled K values,515

heterogeneous r and heterogeneous c0 accounting for advection and dispersion (d).

Simulation outcomes highlight that the set of upscaled K values among the 50 realizations does not cover a range large

enough to reproduce the high variability of original contaminant location expected in heterogeneous situation. This indicates

that regional hydraulic vertical and longitudinal gradients, common to all simulations, control mostly the behavior of first

spatial moments of heterogeneous plumes used here to estimate apparent velocities. Thus, contaminant mass reaching the top520

of the well has little variability – -
:
here only to the degree that the homogenization is done individually for each realization ,

:
-

leading to some minor variability in the
::::::::::::::::::::
realization-to-realization

::::::::
variability

::
at
:::
the

:::::::::::
downstream

:::
side

::
of

:::
the

:::::::
capture

::::
zone

:::
for

:::
the

homogenized K between realizations
::::::
(Figure

::
8). More uncertainty is observed on the upstream side of the capture zone since

it represents mass reaching the bottom of the screen, the vertical position of which is realization dependent.

Interestingly, the critical zone (high Pw) is predicted to be more downstream than its actual location if K is homogenized525

using apparent velocities
::::::
(Figure

::
8). In case of heterogeneous K, a strong layering effect is observed, due to the superposition

of relatively thin layers of highly and poorly conductive materials that stretch the plume longitudinally at large scale and move

the capture zone upstream.

::::::::
Consistent

:::::
with

::::
these

:::::::
results,

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::::
mean

:::::
travel

:::::
time

:::::::
required

:::
for

:::
the

:::::::::::
contaminant

::
to

:::::
reach

::
a

::::
well

::
is

:::::::
similarly

:::::::::
contracted

::
to

:
a
:::::
much

::::::
smaller

::::
area

::::
that

::::::
extends

::::::::::
downstream

:::::
from

:::
the

::::
well,

:::::
unlike

::
in
:::
the

:::::
fully

::::::::
stochastic

::::::::::::
representation530

::::::
(Figure

:::
9).

:::
The

::::::::
observed

::::::
spatial

:::::::
variation

:::
of

:::
the

::::
mean

:::::
travel

::::::
times,

:::::::::
increasing

::::
with

:::
the

:::::::
distance

::::
from

::
a

::::
well,

::
is

::::::::::::
overestimated

::::
when

::::::::
K-fields

:::
are

::::::::::::
homogenized.

::::
This

:::::
leads

::
to

::::::
higher

::::::::
predicted

:::::
mean

:::::
travel

:::::
times

::::
over

:::
the

:::::
entire

::::::
capture

:::::
zone

:::
for

::
all

::::::
tested

::::::
aquifer

::::::::::::
simplifications.

:

5.3 Contaminant levels

Future concentrations exceeded by only 10% of wells (P10) and those exceeded by half of wells (P50) are captured to within a535

factor 2 for the transition period between 20 years and 150 years, but agree to within 10% with the fully stochastic simulation

results at late time, under near steady-state pollution conditions. The (low) concentration levels exceeded by 90% of wells (P90)

differs by a factor 2 or more, at all times, from the fully stochastic solution (Figure 10). Representing the spatial variability of

source terms, but using a homogenized K-field improves the prediction of the P90 evolution.

Using the alternative homogenized representation with an equivalent macro-dispersion improves the prediction only at late540

time (> 150 years) and predicts long-term concentrations for P50 and P10 very accurately (green lines in Figure 10). But it

underestimates the concentrations for all of P90 and during the transition time for P50 and P90.

The agreement between fully stochastic solutions and the homogenized solutions is in contrast to the seemingly significant

differences between homogenized and fully stochastic results observed for travel time distributions of the individual mass

percentiles and the capture zone location. That the homogenized prediction is still capable of producing useful results is due to545

the unique properties of nonpoint source pollution listed earlier: First, the NPS pollution is a continuous process rather than a

one-time event, with some interannual variability and slow long-term trends (Hansen et al., 2012; Harter et al., 2017). Second,

the mixing of water quality occurring in the well screen greatly controls the observed pollutant levels because of the continuous
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Figure 9.
:::::::
Expected

::::
travel

::::
time [

::::
years]

:
of

:
a
::::::
particle

::::::
leaving

:
a
::::
given

:::::::
grid-cell

:::
and

::::::
reaching

::
a

:::
well

:::
for

:
a
:::::::::::
heterogeneous

::
K

::::
field,

::::::::::
heterogeneous

::
r

:::
and

::::::::::
heterogeneous

::
c0::::::::

(reference
::::
case,

::
a);

::
an

:::::::
upscaled

::
K

:::::
values,

:::::::
averaged

:
r
:::
and

:::::::
averaged

::
c0:::::::::

accounting
::
for

:::::::
advection

::::
only

:::
(b);

::
an

:::::::
upscaled

::
K

:::::
values,

:::::::::::
heterogeneous

:
r
:::
and

:::::::::::
heterogeneous

::
c0:::::::::

accounting
::
for

::::::::
advection

:::
only

:::
(c);

::
an

:::::::
upscaled

::
K

::::::
values,

::::::::::
heterogeneous

::
r
:::
and

:::::::::::
heterogeneous

::
c0 ::::::::

accounting
:::
for

:::::::
advection

:::
and

::::::::
dispersion

:::
(d).
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Figure 10. Time (y-axis) required for a well to exceed a given concentration (x-axis) with a probability of 90% (left), 50% (middle) and 10%

(right) considering a heterogeneous K field, heterogeneous r and heterogeneous c0 (reference case, red solid line); an upscaled K values,

averaged r and averaged c0 accounting for advection only (yellow dashed line); an upscaled K values, heterogeneous r and heterogeneous

c0 accounting for advection only (blue dashed line); an upscaled K values, heterogeneous r and heterogeneous c0 accounting for advection

and dispersion (green dashed line).

loading and because differences in pollutant loading rates for the more permeable soils, across all crops (Table 5) vary within

less then one order of magnitude. Third, the composition of the land use and therefore the recharge and mass loading rates vary550

at a scale that is much smaller than the source area of the well. Hence, any location of the source area will capture a similar

overall mass of NPS pollutant over time. Third, the amount of water quality mixing in the well is strongly controlled by the

vertical location and length of the well screen and, for typical municipal production wells or agricultural wells, as simulated

here, well construction will dominate the range of travel time distributions water and solutes entering the well screen over

effects of macro-dispersion. Reproducing the range of average regional gradients potentially observed in a region, and average555

loading therefore provides critical and important information to reproduce in-well mixing of age and, hence, recorded water

quality.

Results show that homogenized K-fields perform more poorly to predict the lowest concentrations (P90) than the highest

ones (P50 and P10). From a NPS pollution management perspective, the accuracy of the higher concentrations exceeded by

half of wells or even by just 10% of wells is most critical, since they are more likely to exceed the MCL. The homogenized560

predictions are least accurate during the transition (breakthrough) period when concentrations in the vertically mixed sample

obtained from a well are strongly controlled by travel time pdfs, which in turn are affected by the heterogeneity in the land use

and aquifer dynamics.
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6 Results and Discussion: Regional stochastic analysis

Results and discussion thus far have focused on the uncertainty about predicting concentrations and source area associated with565

a single well, where land use distribution is heterogeneous, but deterministic (mappable). In the simulations discussed, the land

use (but not the soil) was the same across all realizations. In NPS pollution management, an understanding of the variability

in concentration evolution over time across the ensemble of wells in a basin, region, or management zone is of equal or more

importance than understanding the uncertainty of future pollution dynamics at a particular well. For the regional analysis, the

conceptual modeling approach is identical to the stochastic analysis of an individual well, except that the land use distribution570

is also a random variable. To adapt the simulation setup to the regional stochastic analysis, the spatial distribution
::::::
pattern

of crops (i.e., land-use map) across the fixed grid of fields was randomly generated for each realization (“50 LUs"). Thus

each realization represents an equi-probable location within a basin that is much larger in extent then the simulation domain.

In the regional interpretation of the stochastic results, the range
::
of

:
individual travel times, capture zones, and concentration

breakthrough curves observed represent the variability across the ensemble of wells in the region, rather than the uncertainty575

about the outcome at a particular well (ergodicity principle, (Dagan, 1990)
:::::::::::
Dagan (1990)).

Adding random land use to the simulations leads to nearly identical travel time pdfs for early and median mass travel

times appear and somewhat earlier late mass travel times (compare dashed and plain red lines in Figure 3). Travel times are

therefore largely insensitive to the stochastic conceptualization of the land-use spatial variability (“1 LU" compared to “50

LU"). Similarly, the capture zone area is not sensitive to whether a fixed heterogeneous (“1 LU") or random heterogeneous580

(“50 LU") stochastic concept is employed (Figure 11). As a result, lowest and highest contaminant levels (P90 and P10) are

only slightly lower at late times, while P50 are similar at any times for both analysis (compare dashed and plain red lines in

Figure 6). The similarity in results here is due to the spatial scale of the land use variability, set by the size of the fields, with

several dozen of fields occupying the critical area of the capture zone (see above). Given the mixing in the well screen and the

continuity of NPS pollution, the number of fields in the capture zone is therefore sufficiently large, and the contrast in loading585

rates sufficiently small, that a single sample of the heterogeneous land use representation (“1 LU") becomes representative of

an ensemble of land use patterns. That said, the advantages and disadvantages of the homogenization methods for land use

and aquifer properties highlighted above apply equally to the depiction of regional variability in nitrate contamination of large

production wells and to the uncertainty of nitrate dynamics in an individual well.

:::
For

:::::::
instance,

::::::
results

:::::
show

:::
that

::::::::::::
homogenized

:::::::
K-fields

:::::::
perform

:::::
more

::::::
poorly

::
to

::::::
predict

:::
the

::::::
lowest

::::::::::::
concentrations

:::::
(P90)

::::
than590

::
the

:::::::
highest

::::
ones

:::::
(P50 :::

and
:::::
P10).

:::::
From

::
a

::::
NPS

::::::::
pollution

:::::::::::
management

::::::::::
perspective,

:::
the

::::::::
accuracy

::
of

::::
the

:::::
higher

:::::::::::::
concentrations

:::::::
exceeded

:::
by

::::
half

::
of

:::::
wells

::
or

:::::
even

::
by

::::
just

::::
10%

::
of

:::::
wells

::
is

:::::
most

::::::
critical,

:::::
since

::::
they

:::
are

:::::
more

:::::
likely

::
to

::::::
exceed

::::
the

:::::
MCL.

::::
The

:::::::::::
homogenized

:::::::::
predictions

:::
are

:::::
least

:::::::
accurate

::::::
during

:::
the

::::::::
transition

::::::::::::
(breakthrough)

::::::
period

:::::
when

::::::::::::
concentrations

:::
in

:::
the

::::::::
vertically

:::::
mixed

::::::
sample

::::::::
obtained

::::
from

:
a
::::
well

:::
are

:::::::
strongly

:::::::::
controlled

::
by

:::::
travel

::::
time

:::::
pdfs,

:::::
which

::
in
::::
turn

:::
are

:::::::
affected

::
by

:::
the

::::::::::::
heterogeneity

::
in

:::
the

::::
land

::::
use

:::
and

::::::
aquifer

:::::::::
dynamics.595
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Figure 11. Probability of (left) and mean travel time required for (left) a particle leaving a given grid-cell to reach a well accounting for a

single randomly generated land-use map for all realizations (top) and for a different randomly generated land-use map for each realization

(bottom).

7 Conclusions

A significant body of groundwater flow and transport literature has focused on upscaling flow and transport processes asso-

ciated with industrial point source pollution. For accidental pollution with pollutants exceeding compliance levels by orders

of magnitude, field research has shown that large uncertainties exist in predicting the fate of such contaminant plumes and

the inability of upscaled methods to capture site-specific plume behavior. Stochastic methods have been used to characterize600

such large uncertainties. Here we explore the ability to which homogenized, effective representations of aquifer structure and

landscape spatial variability in flow and transport simulations of NPS pollution are capable of accurately predicting pollution

management metrics. We use three metrics typically of interest to NPS pollution management: travel time pdfs, stochastic

capture zones, and stochastic breakthrough curves. We compare solutions of these metrics for a fully heterogeneous aquifer

structure and landscape system with those of a homogenized, upscaled landscape system, those of a homogenized, upscaled605

aquifer system, and those of a completely homogenized aquifer and landscape system. Within the landscape system, we further

distinguish between homogenizing recharge flux and homogenizing pollutant mass flux. The analysis is performed for a typical

intensive, irrigated Mediterranean agricultural landscape of orchards, vineyards, and field crops overlying an alluvial aquifer

system polluted with nitrate from fertilizer applications. Based on the simulation results presented, we make the following key

conclusions:610

– Land use, soil, and aquifer heterogeneity lead to large variability in groundwater travel paths, travel times, source lo-

cation, and therefore well nitrate concentrations across a regional set of wells and, hence, significant uncertainty about

pollution dynamics at any one well.
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– The impact of continuous landscape pollutant loading to a typical high capacity production well with top of screen at

100 m below the water table is first seen a couple of decades after pollution initiation but is not fully reflected across all615

wells of a region after one to two centuries
:::
until

::::
one

::
or

:::
two

::::::::
centuries

::::
later.

– With the capture zone of an individual well typically stretching across a diverse sub-set of land use in a region, the

homogenization of the recharge and mass loading across the landscape to simulate NPS pollution management metrics

can be appropriate, especially for simulating travel time pdfs and stochastic capture zones. In this case, nitrate variability

between wells is much more affected by aquifer and soil heterogeneity than the heterogeneity in crop patterns across620

the landscape. This finding may not apply to cases where land use units (fields, orchards) occupy a much larger area or

many fields of one crop type are clustered, or for wells with small pumping rates and, hence, small capture zones – in

those cases the variability in capture zone loading across an ensemble of wells may be ill-represented by a homogenized,

regionally averaged recharge and nitrate mass loading.

– Homogenization of the aquifer hydraulic property significantly degrades travel time statistics as well as the stochastic625

delineation of the capture zone. Accounting for aquifer heterogeneity by utilizing an upscaled macrodispersion only

slightly improves predictions of travel time pdfs or stochastic capture zones.

– During the transition period (20 years to 170 years after pollution initialization), simulations using a homogenized

representation of the aquifer structure provide aggregated concentration predictions, such as the concentration exceeded

by half of wells, that are as much as a factor 2 different from predictions that fully represent aquifer heterogeneity.630

– On the other hand, due to the strong effect of vertical groundwater mixing during the well pumping process and due

to the continuity of NPS pollution, an upscaled, homogenized representation of aquifer heterogeneity using an effective

hydraulic conductivity produces reliable and useful predictions for the concentration levels exceeded by half of wells

and even the higher concentrations exceeded by only 10% of wells, especially in the long-term. These are the wells of

most concern in NPS pollution of groundwater.635

– Homogenized approaches may be most useful to predict whether long-term outcomes meet management goals across a

regional ensemble of wells, but may be less accurate in specifying how quickly such goals may be achievable.

Future work is needed to further understand the role of crop type clustering on landscape homogenization, and the effect of

interannual and seasonal loading variability on NPS pollution management metrics. More work is also needed to investigate

other forms of partial or full homogenization of aquifer structure on prediction metrics considered here.640

Code availability. The online resources located in GitHub (see this link) include the Matlab scripts necessary to reproduce the results.
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Figure A1. Probability histogram of the simulated screen lengths.

Appendix A: Well screen design

For each realization of the hydraulic conductivity field, 3 extraction wells are implemented. The pumping rate of each well is

fixed to 3000 m3/d and the top of the screen is fixed to 100 m. As in real settings, the length of this screen is dependent on the

local aquifer properties in order to sustain the total extraction rate. Indeed, pumping effectively occurs through portions of well645

located in highly conductive aquifer material. To simulate this local K dependence of the well screen length, we are using a rule

of thumb stating that 10 cumulative foot (3.05 m) of gravel and sand has to be crossed for each 100 gallon-per-minute (545.1

m3/d) of extraction. The probability histogram (over all realizations) of the simulated screen lengths for each tested extraction

rates is shown in Figure A.1.

Appendix B: Impact of dispersion650

Former studies (LaBolle, 1999; LaBolle and Fogg, 2001; Weissmann et al., 2002) highlighted the insensitivity of transport

simulations to local scale dispersivity (↵i, where i indicates the transport direction) if aquifer heterogeneity is representing in

a finely detailed manner by means of the transition probability method (TPROGS). This insensitivity is explained by the large

macrodispersion caused by the well represented facies scale heterogeneity, which renders spreading from local dispersivity

insignificant. As a result, fairly small values of ↵L are, in this setting, usually adopted. For instance, Weissmann et al. (2002)655

applied to their transport model (with computational grid similar to the one used in our study) a grid scale longitudinal disper-

sivity of 0.04 m, which appeared to have a insignificant impact on transport and resulting groundwater age distribution. Values

of ↵L were chosen to fulfill the magnitude of dispersivity values reported at field sites of scale similar to the computation cells

(references in previously cited work). Here, we test the impact of much larger values of dispersivity (1.5 m and 15.0 m) on

breakthrough curves recorded at a well. The simulation setup is identical to the one described in the manuscript. Results are660

shown for a single realization of the hydraulic conductivity field.
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Figure B1. Breakthrough curve recorded at a well accounting for advection only (red cruve), for advection and dispersion with a longitudinal

dispersivity of 1.5 m (yellow curve), and for advection and dispersion with a longitudinal dispersivity of 15.0 m (blue curve). Transverse

horizontal and transverse vertical dispersivities are always, respectively, 1/10 and 1/100 of the longitudinal dispersivity.

Our outputs displays no significant impact on transport of a ↵L coefficient of 1.5 m . Increasing grid-scale dispersivity to

15.0 m leads to slightly earlier first travel times, later late travel times and lower contaminant levels observed at intermediate

and late times (Figure B1). Therefore, no implications can be expected when accounting exclusively for advection when grid-

dispersivity is lower than 1.5 m, as always used in previously cited studies.665
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