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Dear Dr. Nunzio Romano, 

We would like to thank you and three reviewers for the insightful comments and evaluation of this 

manuscript. We have carefully revised the manuscript and have addressed all reviewers’ comments one-

by-one accordingly. Specifically, we have addressed three major revisions to the manuscript as follows: 

(1) We have thoroughly improved the quality of figures in the manuscript. For instance, we have added 

the wind rose to Figure 1. Figure 4 on the model implementation has been added to illustrate the 

workflow of this study. We have changed the Figure 7 to boxplots. We have merged the daily, half-hourly 

and monthly validation results to Figure 8. (2) We have also improved the descriptions on the model 

implementation, structure and parameter abbreviation, and eddy covariance flux data processing. (3) We 

have added discussion on future improvement for the SVEN model and the potential challenges for the 

implementation of our approach with satellite Earth observation to the large scale.  

Our responses to all reviewers’ comments are in the section below. The original reviewer comments are 

in black and our responses are in red.  

Thanks for your assistance! 

Sincerely yours, 

Sheng Wang  
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Reviewer 1: 

Response to the review of Referee 1. We have copied the comments of the referee hereunder with our 

comments appearing after the referee’s comments. 

This study “Temporal interpolation of land surface fluxes derived from remote sensing results with an 

Unmanned Aerial System” developed a simple but operational land surface modeling framework, 

simulating energy balance, water and CO2 fluxes between the land surface and the. Unmanned aerial 

system (UAS) can be applied flexibly, and can have high spatial-temporal resolution data, which is used 

widely in recent decades. This study used UAS to provide optical and thermal data as model inputs for 

land surface-atmosphere fluxes monitoring. A dynamic soil vegetation atmosphere transfer model was 

developed here, together with the PT-JPL ET model and light use efficiency GPP model for simulating 

energy, water and CO2 cycles. The results showed that with using the data from UAS optical and thermal 

observations, the models were capable to simulate the energy, water and CO2 fluxes in a deciduous tree 

plantation area, indicating that the UAS observations could be served as “ground truth” to calibrate soil 

and vegetation parameters, highlighting the usage of multiple remote sensing data for land-atmosphere 

flux monitoring. I think this manuscript is well written and the logic is pretty clear. The results are 

supported by the data shown here, while the authors explained the results adequately and clearly, though I 

have several minor questions on the current manuscript.  

 

Reply: Thank you for the insightful comments and suggestions, which are very helpful to improve the 

manuscript. We totally agree that the great potential of utilizing UAS for monitoring land surface energy, 

water and CO2 processes. The proposed model in our study is capable of temporal interpolating the 

remote sensing based snapshot estimates into the continuous records. Here, we have addressed your 

comments point-by-point. 

 

(1) Introduction, why not introduce more about UAS? This is kind of a highlight of this study to use UAS 

data. Maybe include some introductions about recent studies using UAS data on GPP/ET simulations?  

Reply: Thank you for the comments and suggestions. We have revised the introduction to add more 

review contents about UAS, particularly on applying UAS data for GPP / ET estimation. Please see Line 

13-20 on P2 in the revised clean version. 

 

(2) Why there is no UAS observation in July, and between May 25th and June 24th? In Fig. 2(c), the 

fIPAR seems to change a lot during 25/May to 24/June, thus, no observation during this time period may 

induce simulation errors in the model.  

Reply: Thank you for the comments and suggestions. We totally agree with the reviewer’s opinion on the 

importance of collecting observations during the period from May 25th to June 24th. However, due to 

technical issues, we did not manage to fly UAS over that period. On the other side, this low frequency of 

collecting UAS observations provides an opportunity to demonstrate that the “ground truth” collected 

from sparse remote sensing observations can be utilized to be temporally interpolated to obtain the 

continuous estimates.  
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(3) Why ignore the observation on 24/June when interpolate the UAS data.  

Reply: Thank you for the comments and suggestions. We do incorporate the observation on June 24th into 

the temporal interpolation, but the observation on June 24th is not from UAS. The observations on that 

day are from the ground PAR sensors (Table 1). Due to technical issues, we did not manage to fly UAS 

over that period. However, to demonstrate the potential to use the proposed SVEN model to temporally 

interpolate the snapshot estimates, we have incorporated the ground IPAR observations on June 24th to 

simulate the process of vegetation growth in this period. To make the context clearer, we have revised the 

sentence on L10-15 on P6. 

 

(4) Page 16, Ln. 2-3, not fully understand “This demonstrates that SVEN is capable to : : :.”, syntax error?  

Reply: Thank you for the comments and suggestions. We have revised this sentence. It should be that 

“Such simulation accuracy demonstrates that SVEN is capable of temporal interpolating the snapshot 

estimates or observations between remote sensing acquisitions to form continuous daily records.” Please 

see L11-13 on P17. 

 

(5) Fig. 5(a), Ts, kind of systematic overestimation of Ts sim compared to Ts obs? So can the model 

parameters be calibrated to reduce the overestimation?  

Reply: Thank you for the comments and suggestions. Yes, we can try to reduce the systematic 

overestimation of Ts through calibration. However, this study used multi-objective calibration procedures 

to consider both Ts and soil moisture. As results shown in the Pareto Front of Figure 5, if we want to 

obtain better performance of simulating Ts, the performance of simulating soil moisture could be 

degraded. Thus, based on the Pareto front in Figure 4, we choose the parameter sets to achieve relatively 

good simulations for both Ts and soil moisture. To make this context clearer, we have revised the 

manuscript. Please find the revised sentences of L20-25 on P16. 

 

(6) Fig 5(c), the scatterplot of SM sim and SM obs is kind of wired, which is more obvious in Fig. 7, I am 

wondering why? And also why not show daily results together with the half-hourly and monthly results in 

Fig. 7. 

Reply: Thank you for the comments and suggestions. They are very helpful. There are several reasons for 

the moderate performance of simulating soil moisture in this study. Such model performance may be due 

to the uncertainty in the model parameters related to θ. As shown in supplemental Table S5, the effective 

parameter values of the infiltration rate for the saturated soil (Ks) and fitting parameter of the Mualem 

model (n) were taken as the mean values from the look-up table without considering ranges of variability 

(standard deviations in the table). In fact, only one parameter, SWSmax, among the three parameters 

related to θ dynamics was calibrated with UAS estimates of θ in the root zone. To keep the model simple 

and operational, the SVEN model only used one soil layer to simulate the dynamics of soil water storage 

(Figure 3). Such simplification could also contribute to the relatively moderate performance of simulating 

θ. Additionally, UAS derived θ estimates used for calibration have errors of around 13% (Wang et al., 

2018a), which can induce uncertainties in the simulated time series through error propagates in the 

parameter calibration. Furthermore, only seven snapshot estimates from UAS were used to calibrate the 

model with an average frequency of 25 days during the period of fast growth. It can be expected that 
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improving the UAS based estimates of θ and increasing the number of observations for model calibration 

can improve the simulation performance. To elaborate details on the simulation performance of soil 

moisture, we have added discussion in L3-13 on P19.  

Thank you for the suggestion on the figure. We agree that combining daily results together with the half-

hourly and monthly results could be better. We have revised Figure 7 and combined it with Figure 5 

according to the reviewer’s suggestions. 
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Reviewer 2: 

 

Response to the review of Referee 2. We have copied the comments of the referee hereunder with our 

comments appearing after the referee’s comments. 

This manuscript introduces a simple but effective coupled surface exchange model, with the goal to use it 

for gap filling of surface states and fluxes between measurements by remote sensing. The model requires 

higher resolution meteorological data as input for the forward simulation that serves as the gap filling 

procedure. The calibration is based on a very small number of snap shots of surface temperature and 

Normalized Difference Vegetation Index. As a proof of concept the method is applied using data obtained 

during seven flights of a drone, and continuous data from an eddy tower. The performance of the model 

es evaluated by comparing with independent eddy tower data of fluxes and states. 

The manuscript presents an intriguing approach tested in a well designed study. The results are impressive, 

especially given the deliberate simplicity of the applied exchange model. The manuscript is well written 

manuscript. While I have some comments on the manuscript, I also recommend its publication in HESS 

and expect that it will find strong interest in the readership. 

 

Reply: We appreciate the reviewer’s insightful comments and suggestions, which were very helpful to 

improve the manuscript. We totally agree that the great potential of utilizing the simple but effective land 

surface models to fill gaps between observed surface states and fluxes from remote sensing.  Here, we 

have addressed your comments point-by-point. 

 

Major comments 

(1) I found if very difficult to disentangle the different data sources used for the different application 

steps, which are: parameter estimation from literature and nearby observations calibration (UAS 

derived data, surface temperature and soil moisture) input for forward modeling (meteorological data 

from the eddy tower) validation of model output (independent eddy tower data) To make this more 

accessible I am missing an overview table systematically showing which data source was used for 

what purpose (as above). This would really help navigation, 

Reply: Thank you for your suggestions. To make the data and parameter sources clear, we have added 

one figure on the flow chart of this study. Please see Figure 4, which includes details on the model inputs, 

parameter, outputs and calibration procedures. We also have added the sources of parameter values into 

the figure. For details, please refer to L1-5 on P14 in the revised clean version. 
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Figure 4. Model implementation of this study. UAS and meteorological data were used as inputs of the 

SVEN model. Values of the SVEN parameters were obtained from the look-up table, other studies, or 

model calibration with UAS derived variables. In the model outputs, variables with the highlighted red 

colour (Ts and θ) refers to the variables calibrated with UAS derived observations or estimates. The 

variables with orange colours are retrievable from remote sensing techniques. For abbreviations, please 

refer to the list of abbreviations for model variables and parameters in the supplementary.  

 

(2) I would have liked to see some more discussion on the next challenges for the more widespread 

application of the proposed method with less ideal input data for the forward model. What are the 

expected limitations of the approach? Currently the discussion regarding this point is very short. For 

example, the discussion mentions that the method could be extended to larger scales by using online 

weather data. However, those have also higher uncertainty compared to the data from the tower. Also, 

the JPL-Priestley-Taylor-ET estimate is less reliable in more arid climates which probably requires 

additional adjustments in those conditions, etc. I recommend enhancing the discussion regarding this. 

Reply: Thank you for your suggestions. We agree that there are still challenges and limitations for the 

more widespread application of the proposed model, particularly when applying models to the large 

scales and data-scarcity regions. First of all, the SVEN model is a very simple and parsimonious process-

based model. For instance, the current soil moisture module in the SVEN model is a simple water balance 

model with considering one soil layer, which has limited capacity to simulate soil water dynamics 

particularly in regions with complex landforms. In addition, the soil layer depth refers to the maximum 

root water uptake depth, which can vary with time, but SVEN simplified this soil depth parameter to keep 

it consistent. Thus, in our study, SVEN only achieved moderate performance to simulate soil water 

dynamics and it can be expected that in water limited drylands, soil moisture simulation has a larger 

impact on the ET than in our site. Additionally, compared to the Penman-Monteith approach, the 

Priestley–Taylor approach may need adjustment of the aerodynamic term, when extending the study from 

radiation controlled sites to arid climates. Regarding the model-data integration, our study used a two-
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objective optimization scheme, there are more advanced algorithms e.g. data assimilation could enable the 

consideration of data and model uncertainties in the integration process. 

Moreover, when applying the model with satellite coarse resolution data to the large scale, there will be 

four major impacts. First, the space-borne remote sensing data have much coarser spatial resolution. If we 

move the simulation to the large scale with satellite data, we need to find accurate gridded meteorological 

data as forcing. UAS imagery has limited coverage and thus this study only used one meteorological 

station data as forcing. 

As satellite data have coarser pixel sizes, we also need to consider the sub-grid heterogeneity and identify 

the effective values for model parameters. Note all parameter values of models were obtained from 

parameter calibration with remote sensing based estimates. For instance, in our study, we used the look-

up tables with soil texture information to identify soil parameter values. In the large-scale simulation with 

satellite data, the plant functional type and soil type parameterization scheme for different ecosystems and 

environmental conditions would be needed. However, the integration of accurate remote sensing 

estimates with land surface models would be beneficial to reduce the dependency of plant functional type 

parameterization schemes and achieve a higher accuracy to predict land surface variables.  

In addition, coarse resolution satellite data may have limited accuracy to predict land surface fluxes 

compared to the detailed UAS data. Applying SVEN with satellite data to large scale, we also need to be 

careful about the accuracy of remote sensing based estimates and the error propagation from the model 

inputs to the outputs.  

Satellite data in the optical and thermal ranges can only provide observations during the sunny weather 

conditions. However, the UAS data in this study were collected in both sunny and cloudy conditions. We 

envision that using satellite based data to calibrate model may lead the model estimates biased towards 

the sunny conditions.  

We also agree with the reviewer that compared to the Penman-Monteith approach, the Priestley–Taylor 

approach may need adjustment of the aerodynamic term, when extending the study from radiation 

controlled sites to arid climates. 

We have added these contents regarding the model improvement and challenges to the discussion part. 

For details, please refer to section 4.4 in the revised clean version.  

 

(3) I am confused about what is the underlying hypothesis motivating the comparison of the residuals 

across different stages of diffuse light conditions? The analysis is motivated by stating that remote 

sensing is typically biased towards collection in direct sunlight conditions. But this was probably not 

the case in your exercise, since you were collecting data from a drone. Therefore the calibration data 

set should not be affected by this bias? Why are you expecting the bias in the residuals? 

Reply: Thank you for your comments. We have revised Figure 7 to be boxplots to make the results clear. 

We agree that due to that UAS data collection happens on both sunny and cloudy weather conditions, we 

did not see significant differences of residuals in simulating surface temperature, net radiation, soil 

moisture, latent heat flux, and gross primary production for different sky conditions. We have revised the 

description and for details, please refer to L6-10 on P20.  
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(4) I find the equations of the manuscript difficult to read because the abbreviations of the variables are 

of several letters. I understand that in some instances this is done to adhere by the nomenclature in the 

discipline, e.g converting LAI to a one letter variable would probably cause confusion. But in most 

cases this is not an issue. For example, radiation can be abbreviated with R and the components by 

indices, fluxes with Q or J with indices. Also canopy storage, soil water storage etc. This would also 

increase consistency. I strongly recommend incorporating the one letter abbreviation paradigm as 

much as possible. See also HESS author guidelines (Mathematical requirements) 

https://www.hydrology-and-earth-systemsciences.net/for_authors/manuscript_preparation.html  

Reply: Thank you for your suggestions. We have revised the abbreviations of variables to be one letter 

abbreviation as much as possible. For instance, we used ALB to represent surface albedo in the previous 

version. In the revised version, we used one letter abbreviation A to stand for surface albedo. Please see 

L15 on P8. (Notably, most studies used the Greek letter α to represent surface albedo. However, α has 

already been used as the PT coefficient in Eq. 22.) We also have changed soil moisture (SM) to one 

Greek letter θ. We have changed the wind speed from WS to u. Furthermore, we have also summarized 

all abbreviations in the supplementary material. 

 

 

Detailed comments 

Abstract, Page 1 

Line 18: "SVEN interpolated the snapshot Ts, Rn, SM, ET and GPP to continuous records“ This phrase is 

confusing, as it sounds like measurements of each of those variables were used, when according to the 

methods section only Ts and NDVI were used for calibration. 

Reply: Thank you for your suggestions. We have revised this sentence to be clearer. Based on model 

parameter calibration with the snapshots of land surface variables at the time of flight, SVEN interpolated 

the UAS based snapshots to continuous records of Ts, Rn, θ, ET and GPP for the growing season of 2016 

with forcing from continuous climatic data and NDVI. Please see L17-19 on P1. 

 

Line 21-22 I would not mind, if the errors were not stated quantitatively here, but if this is desired: An 

indication of the errors in percent would be more meaningful. 

Reply: Thank you for your suggestions. In order to make clearer, we have added the statistics to be in 

percent (normalized root-mean squares deviations, NRMSD). The NRMSD was calculated as the ratio 

between root-mean squares deviations and the range (maximum minus minimum) of observations. Please 

see L20-21 on P1. 

 

 

Introduction 

Line 19/20: I think you mean "high persistence“ 

 

https://www.hydrology-and-earth-systemsciences.net/for_authors/manuscript_preparation.html
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Reply: Thank you for your suggestions. It is a mistake. We have changed the word to “high persistence”. 

Please see L25 on P2.  

 

Methods 

Page 9, Line 5 "low pass filter for T_s“: Can you be more specific about the cutoff frequency? Which 

interval does this roughly refer to?  

Reply: Thank you for your suggestions. The cutoff frequency is 24 hours. We have revised the sentence 

in L21 on P9. Td refers to the deep soil temperature (°C) calculated by applying a low-pass filter to Ts 
with the cut-off frequency of 24 hours.  

 

Page 9 Line 24 Wind speed seems to be one of the variables that need to be available continuously to 

apply the method. Is it reasonable to have such good knowledge of the wind speed? How sensitive is it? 

Reply: Thank you for your suggestion. Yes, the model needs the wind speed as inputs to calculate the 

aerodynamic resistance for estimating sensible heat fluxes. The accurate information about the wind 

speed is important for the model to estimate the aerodynamic resistance to the transfer of sensible heat 

flux. Wind speed, however, it is not used to estimate the transfer of vapor flux (evapotranspiration) as we 

used a Priestley-Taylor JPL equation. The PT-JPL model used the PT coefficient (α) with a fixed value to 

account for the ratio between aerodynamic term and radiation. Thus, the ET is not sensitive to wind speed 

in the model. The larger contribution to errors in H is actually from the soil, canopy, and air temperature 

(Chehbouni et al., 2001). After that, uncertainties in soil and canopy emissivity values, canopy height, and 

wind speed also have measurable effects on the accuracy of simulating H (Sánchez et al., 2008). In 

addition, the error in the sonic anemometer is very low. With traditional cup anemometers, a larger error, 

of about 10% of error in the wind speed will translate in an error in H of about 5-10% (depending on the 

temperature difference) for the type of vegetation in this paper. In SVEN the surface temperature 

estimates depend on the energy forcing which is constrained by three different energy variables (Rn, H, 

LE) and soil moisture, apart from the temperature from the previous time step. Therefore, errors in wind 

speed only affect H should not affect too much the temperature estimates. However, we also agree that 

without field measurements such as the sonic anemometer, the wind speed data could have large 

uncertainties from weather forecasting or climate reanalysis data. Applying the SVEN model to the large 

scale or other data-scarcity regions could have more uncertainties from wind speed data. Thus, we have 

added these discussions about the uncertainties from wind speed to model performance. Please see L28-

29 on P23. 

Chehbouni, A., Nouvellon, Y., Lhomme, J. P., Watts, C., Boulet, G., Kerr, Y. H., ... & Goodrich, D. C. 

(2001). Estimation of surface sensible heat flux using dual angle observations of radiative surface 

temperature. Agricultural and Forest Meteorology, 108(1), 55-65. 

Sánchez, J. M., Kustas, W. P., Caselles, V., & Anderson, M. C. (2008). Modelling surface energy fluxes 

over maize using a two-source patch model and radiometric soil and canopy temperature 

observations. Remote sensing of Environment, 112(3), 1130-1143. 
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Page 10, Line 15-20 The PF-JPL works much better in temperate then drier climate. Your appraisal does 

not mention this limitation, but I think it may be important for applying this method more generally. 

Could you add a note on this, either here or in the discussion? 

Reply: Thank you for your suggestion. We agree that PT-JPL works better in temperate than drier climate. 

We also agree that it is good to mention the limitation of this model. We have added this suggestion to  

L24-26 on P23. Compared to the Penman-Monteith approach, the Priestley–Taylor approach may need 

adjustment of the aerodynamic term, when extending the study from radiation controlled sites to arid 

climates (Tadesse et al., 2018; Xiaoying and Erda, 2005). 

Tadesse, H. K., Moriasi, D. N., Gowda, P. H., Marek, G., Steiner, J. L., Brauer, D., Talebizadeh, M., 

Nelson, A. and Starks, P.: Evaluating evapotranspiration estimation methods in APEX model for dryland 

cropping systems in a semi-arid region, Agric. Water Manag., doi:10.1016/j.agwat.2018.04.007, 2018. 

Xiaoying, L. and Erda, L.: Performance of the Priestley-Taylor equation in the semiarid climate of North 

China, Agric. Water Manag., doi:10.1016/j.agwat.2004.07.007, 2005. 

 

 

Page 11, Line 27 should probably be "equation 29“ instead of "equation 28“ 

Reply: Thank you for your suggestion. We have revised it. 

 

Page 12 Line 2 Soil water storage has different units here (m) and on page 9, Line 10 (mˆ3). I think it is 

fine to stick with m. 

Reply: Thank you for your suggestion. We have revised all units for soil and canopy water storage to be 

m. 

 

Page 12, Eq. 30-32, Page 13 Line 19-20 I am not sure how theta_r and theta_s are dealt with? They are 

not calibrated and not mentioned for the look-up table. Based on Table S5, where they are included, I am 

assuming they were looked up too. But please be more specific and include them in the list of parameters 

in Table 2. 

Reply: Thank you for your suggestion. theta_r and theta_s are from the look-up tables based on soil 

texture. I have revised Table 2 to include theta_r and theta_s. For details, please refer to Table 2 and 

Figure 4. 

 

Page 13 Table 2 It will help navigating the text, if in the table included a column indication of whether 

this parameter was looked up or calibrated in this study. I suggest adding this. 

Reply: Thank you for your suggestion. We have revised Table 2 and added one column to indicate the 

source of parameter values (model calibration or look-up table). Furthermore, we have added Figure 4 to 

show the model implementation of this study. 
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Page 13 Line 22 In my understanding calibrating SWS_max boils down to calibration the root water 

uptake depth?If yes, would be good to indicate this. While I have no objections against this procedure 

here, I conjecture that root water uptake depth may vary with time over the growing season. Thus, this 

may be a limitation of the model, which could be mentioned in the discussion. 

Reply: Thank you for your suggestion. We agree that the root water uptake depth vary with time over the 

growing season. Our paper aims to propose a simple but operational model for interpolation of land 

surface states/fluxes. So we did not consider such variations of root water uptake depth. To address this 

limitation, we have added discussion on the shortage of this model into the discussion part. Please find 

L18-19 on P23. In addition, the soil layer depth refers to the maximum root water uptake depth, which 

can vary with time (Guderle and Hildebrandt, 2015), but SVEN simplified this soil depth parameter to 

keep it consistent. 

Guderle, M. and Hildebrandt, A.: Using measured soil water contents to estimate evapotranspiration and 

root water uptake profiles-a comparative study, Hydrol. Earth Syst. Sci., doi:10.5194/hess-19-409-2015, 

2015. 

 

Page 13, Line 7-9, Supplement Table S3 Please add the values for each of the initial conditions. 

Reply: Thank you for your suggestion. We have added the values for the initial conditions into Table S3.  

Table S3. Information on model initial conditions 

Initial conditions Description Unit Initial value 

CWSin Initial canopy water storage m 0 

SWSin Initial soil water storage m 0.5 

Ts0 Initial surface temperature ℃ Ta 

Td0 Initial deep soil temperature ℃ Ta 

 

 

Results 

Page 15, Section 4.1 Not sure whether I overlooked this, but can you please indicate the values of the 

calibrated parameters? Also: I like Fig 4 showing the objective function. Near the pareto optimum plot a 

number of potentially very good model runs. Are they all roughly similar parameter values or do they 

differ substantially? This would give an indication of how well defined this model is in terms of the 

processes that are represented or/and the sensitivity of some of the parameters. Can you comment on this? 

Reply: Thank you for your suggestion. The values of calibrated parameters are shown in L25-26 on P16. 

But to make it clearer, we also added the calibrated values of parameters directly to the figure caption (L6 

on P17).  
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Regarding whether optimized parameter values are similar or different, we have added the analysis on the 

optimized parameter values in supplementary Figure S1. Cveg and SWSmax show low variation of 

coefficients (CVs), and this indicates the parsimony of the SVEN model. Meanwhile, Csat and b show 

relatively higher CVs. This may be due to equifinality between Csat and b, which relate to soil thermal 

properties (Eq. 8) and could compensate each other.  

 

Page 15 Lines 19-20, Page 18, Lines 16-20. I feel the numbers are crowding the text, and are difficult to 

take in. It is enough to refer to Fig 5, Fig 7 or alternatively collect them in a Table. 

Reply: Thank you for your suggestion. We have streamlined these texts. Here we only put the 

performance regarding RMSDs in the text. Other statistic indices have been moved to Table 3 and Figure 

8.  

 

Page 16, Line 5, Line 8 To me Ts does not appear to be underestimated only in high NDVI conditions. Ts 

is also underestimated in May, when GPP is still very low. I am not convinced of this distinction .. but in 

order to support your point, you could color the points in the top right panel of Fig 5 with shades 

indicating NDVI (or GPP). 

Reply: Thank you for your suggestion. We have revised Figure 7 to be the boxplot showing the 

simulation residuals and NDVI. We have also improved the interpretation of results. We agree that the 

model tends to overestimate Ts for most cases. For details, please refer to L14-16 on P17.   

 

Page 16, Line 24, Fig 5 Would be good to indicate the times of the seven snapshots in Fig 5 by vertical 

lines (solid for all UAS, dashed for augmented with tower data), so it is easier to see when the data was 

obtained for calibration. 

Reply: Thank you for your suggestion. We have revised Fig 6 (original Fig 5) by adding vertical lines to 

show the UAS observations. Please see L5 on P18 in the revised version. 

 

Page 16, Line 28 Do you mean "nearby“ instead of "nearly“? 

Reply: Thank you for your suggestion. We have revised this sentence. Please see L16 on P19 in the 

revised version. 

 

Page 18, Line 1 I think "be“ should be erased 

Reply: Thank you for your suggestion. We have erased “be” and revised this sentence.  

 

Page 18, Line 4-5, Fig 6 Can you please indicate in Fig 6 what the red lines refer to? I am at a loss, 

especially in panel (a). Also, I am not sure how the conclusion "GPP was underestimated under diffuse 

radiation conditions“ is seen from the Figure, I am assuming in panel (j). Does the point cloud show a 

trend? 
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Reply: Thank you for your suggestion. The red lines in Fig 6 refers to that the model simulation residuals 

are equal to 0. To make this clear, we have added detailed explanation to the caption. Please see L4 on 

P20. In addition, we have revised the original scatter plots to the boxplots, which could be clearer to 

identify how the model simulation performance changes with NDVI and radiation conditions.   

 

Page 18, Line 6 Add "of“ after enhancement 

Reply: Thank you for your suggestion. We have revised this sentence to make it clear. Please see L7 on 

P20 in the revised version. 

 

Fig 7 Fonts in the top and bottom panels are not the same. Fig 5 & Fig 7 I was confused at first about the 

difference of the Fig 7 to the right panels in Fig 5. I concluded they are the same, just showing different 

time intervals. Can you collect them in one Fig? It would be easier to compare. 

Reply: Thank you for your suggestion. To make figures clear, we have revised the figure to make fonts 

consistent. In addition, we have merged Fig 7 and Fig 5. Please see L1-6 on P21 in the revised version. 
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Reviewer 3: 

Response to the review of Referee 3. We have copied the comments of the referee hereunder with our 

comments appearing after the referee’s comments. 

1. General comments 

“Temporal interpolation of land surface fluxes derived from remote sensing – results with an Unmanned 

Aerial System” describes the use of a suite of simple models to interpolate surface fluxes and surface state 

variables between sporadically available land surface measurements. A model dubbed the SVEN was 

created by augmenting a Priestly Taylor model with new components to enable its use at timescales as 

short as 30-min. Instantaneous remotely sensed variables recorded mainly using a UAS were used to 

calibrate the model, and the model was then used to fill in the extensive gaps between measurements. 

This work introduces and demonstrates of the technique, which was designed to be used with both 

satellite and UAS remote sensing measurements. It is a solid manuscript, with room for some 

improvement. 

Because one of the primary stated goals of the paper is the development of an application to satellite 

remote sensing, the omission of actual satellite measurements is conspicuous. I suggest that more 

attention be given to the topic of using satellite data. For example, what might be the shortcomings of 

applying the model to satellite-based measurements? Were UAS measurements relied upon for this paper 

rather than space-based measurements due to the inadequate spatial resolution of satellite measurements? 

At this site in-situ and UAS measurements are available (and used), but how well will the model work for 

the rest of the Earth’s surface? Clarify the purpose of the model (including the parameter fitting) in the 

broadest sense, and develop, test, and describe the results accordingly. 

In addition, more care needs to be taken with the way remotely sensed measurements are handled. They 

are misleadingly referred to as “ground truth” or direct measurements throughout the manuscript, when 

most of the variables derived from remote sensing data were modeled or inferred, rather than measured 

directly. Uncertainties due to this also require more attention. 

The writing should be reviewed carefully by a native English speaker. Some examples are included in the 

specific comments below, but the manuscript includes many errors in writing and sentence structure. 

 

Reply: We appreciate the reviewer’s insightful comments and suggestions, which were very helpful to 

improve the manuscript. We totally agree that the great potential of utilizing the simple but effective land 

surface models to fill gaps between observed surface states and fluxes from remote sensing. We have 

thoroughly revised the manuscript to improve the presentation of this work. We have also added the 

discussion on the shortcomings of applying this model to satellite-based measurements and the rest of the 

Earth’s surface. For instance, the SVEN model is a very simple water balance model, which has limited 

capacity to simulate soil water dynamics particularly in regions with complex landforms. In our study, 

SVEN also achieved moderate performance to simulate soil water dynamics. In addition, the soil layer 

depth refers to the maximum root water uptake depth, which may vary with time, but the model 

simplified this soil depth parameter to keep it consistent. Thus, in our study, SVEN also achieved 

moderate performance to simulate soil water dynamics. Meanwhile, the PT-JPL model has the limited 

performance to simulate ET in the dryland regions. There also remain challenges to get the reliability of 

atmospheric forcing such as radiation, precipitation and wind speed, particularly for data-scarcity regions. 

Moreover, the remote sensing based estimates of land surface temperature and soil moisture have 
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uncertainties, which could be propagated to induce significant errors in the simulated continuous land 

surface variables. In addition, satellite based observations or estimates can have large uncertainties due to 

the coarse resolution. The integration of land surface model and satellite earth observation might be 

challenging than the integration with UAS derived variables. Please find the details in the discussion 4.4 

(P22-23).  

We have also revised the words on “ground truth”. We have changed the words to the UAS derived 

observations or estimates. We have also thoroughly revised the language and improve the manuscript 

writing.  

Here, we have also addressed your comments point-by-point. 

2. Specific comments 

P 1, ln 7-8. With the exception of Ts, all of these variables are determined using remote sensing products 

based on a suite of different models and assumptions. For example, different vegetation indices can be 

measured remotely, but GPP cannot. The same applies to ET, SM, and Rn – none of these variables are 

measured directly using remote sensing, but the first sentence misleadingly indicates otherwise. Without 

detracting from main point of this sentence, a word such as “inferred” or “derived” could easily be 

included for more accuracy. 

Reply: Thank you for your suggestion. We have revised the terminology to use “derived” to indicate that 

variables such as GPP, ET, SM (θ) and Rn were estimated from remote sensing data.   

 

3. P 1, ln 20. Delete the word, “well” from, “…SVEN can well estimate…”. Awkward as written. 

Reply: Thank you for your suggestion. We have deleted this word. Please see L20 on P1 in the revised 

clean version.  

 

4. P 2, ln 2-3. “Minimum parameterization” is awkward as written. 

Reply: Thank you for your suggestion. We have deleted these words. Please see L1 on P2. 

 

5. P 2, ln 7. “Mostly needed” is awkward as written. Also, replace “high frequency” with “prevalence.” 

Reply: Thank you. We have deleted “mostly” and have replaced “high frequency” with “prevalence”. 

Please see L6 on P2 in the revised clean version. 

 

6. P 2, ln 11. Replace “flexibly” and “favorable” with more precise descriptors. 

Reply: Thank you. We have revised “flexibly” with “favorably”. Please see L10 on P2. 

 

7. P 2, ln 14. Replace “still just provide” with “still only provide.” 

Reply: Thank you. We have revised “still just provide” with “still only provide”. Please see L20 on P2. 
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8. P 2, ln 16. Replace “uncovered” with “unknown.”  

Reply: Thank you. We have revised “uncovered” with “unknown”. Please see L22 on P2.  

 

9. P 2, ln 25. “using statistical interpolation could be challenging…” is awkward as written. 

Reply: Thank you. We have revised this sentence to be “the statistical method to interpolate for variables 

that change substantially at sub-daily or daily time scales in response to the surface energy dynamics, e.g. 

Ts, Rn, SM, ET and GPP, could be challenging”. Please see L30 on P2.  

 

10. P 2, ln 28-29. “can be better” is awkward as written. 

Reply: Thank you. We have revised this sentence to be “has great potential”. Please see L1-2 on P3. 

 

11. P 2, ln 30. Delete “a” in, “in a variable climate conditions.” 

Reply: Thank you. We have deleted “a”. 

 

12. P 3, ln 6. “as for example the turbulent fluxes are typically…” is awkward as written. 

Reply: Thank you. We have deleted the sentence.  

 

13. P 3, ln 7. “simpler but operational models based interpolation” is awkward as written. 

Reply: Thank you. We have revised the sentence to be “Simple model based interpolation can be utilized 

to interpolate snapshot remote sensing estimates of land surface variables.” Please see L12-13 on P3.  

 

14. P 3, ln 11. Delete “the” at the beginning of this line.  

Reply: Thank you. We have deleted that. Please see L14 on P3 in the revised version. 

 

 

15. P 3, ln 15. Rewrite as, “limited meteorological inputs, and parameters that…”. 

Reply: Thank you for your suggestion. We have revised this sentence to be “We aimed at using 

prescribed vegetation dynamics from EO based vegetation indices, limited meteorological inputs, and 

parameters optimized from remote sensing derived fluxes to estimate temporally continuous land surface 

variables”. Please see L19-21 on P3.   
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16. P3, ln 21-22. “now becomes” is awkward as written. 

Reply: Thank you. We have revised the words to be “serve as”. Please see L27 on P3 in the revised clean 

version. 

 

17. P4, ln 4. Add the word, “it” after “forcing”. 

Reply: Thank you. We have added “it” after “forcing”. Please see L10 on P4. 

 

18. P4, ln 17. Change, “onboard have been conducted” to, “onboard were conducted.” And “Details 

refer…” to, “For more details refer...”.  

Reply: Thank you. We have changed the sentence to be “were conducted” and “for details, please refer 

to”. Please see L22-23 on P4. 

 

19. Figure 1. This is exactly the same as Figure 1 from Wang et al. (2018b). I don’t know HESS’s rules 

regarding this type of thing, so I will refer to the Editor for guidance. I would never reuse a figure like 

this myself, but if this is actually acceptable, the original usage should certainly be referenced. In 

addition, a small wind rose would be a nice addition to the figure; at a measurement height of 10 m 

(Wang et al., 2018b), the flux footprint will extend well beyond the edges of the figure in some 

conditions. As an aside to be passed onto the site manager, if the eddy covariance instrumentation 

were closer to the top of the canopy, it would help alleviate this problem.” 

Reply: Thank you for the comment. We don’t want to reuse a figure from another paper. There are several 

differences between this figure and the one in Wang et al. (2018b). For instance, the new figure used the 

pseudo-color multispectral imagery (Red: 800 nm, Green: 670 nm, Blue: 530 nm) as the base map, while 

the one in another paper used a normal RGB photo as the base map. The new figure does not have 

markers to indicate the samples of soil moisture as Wang et al. (2018b). However, we admit that these 

two figures are similar. We have revised the figure to have more differences with Wang et al. (2018b). 

For instance, we have added the wind rose to Figure 1.  

Regarding the measurement height, Wang et al. (2018b) did not use CO2 and water vapor eddy covariance 

data and the measurement height of 10 m refers to the meteorological observations such as wind speed, 

solar radiation, and longwave radiation. To make this clear, we have added more explanation to the data 

section. The CO2 and water vapor eddy covariance system was adjusted to around 2 m above the 

maximum canopy height. This means that 2 m (before willow growing) to maximum 4 m (maximum 

canopy height of 6 m) above zero plane displacement. So, in most cases except for few stable conditions 

in night, the footprints of eddy covariance did extend beyond the edge of willow plantation. For details, 

please see L10-15 on P5. 

 

 

20. P5, ln 24. “Data of few UAS flight campaigns” is awkward as written. 
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Reply: Thank you for the comment. We have revised this sentence to be “UAS data on June 24th were 

missing as shown in Table 1”. Please see L10 on P6. 

 

21. P5, ln 26. Replace the word, “resemble” with more appropriate verbiage. 

Reply: Thank you. We have changed the word to be “simulate”. Please see L12 on P6. 

 

22. P5, ln 27. Clarify that the “ground truth” SM measurements were not actual SM measurements, and 

describe the uncertainty and shortcomings of the remotely sensed SM product in detail.  

Reply: Thank you for your suggestion. We have revised the “ground truth” words.  For model calibration, 

the instantaneous values of the Ts and θ estimated from the seven UAS flights were used as reference. 

 

23. P5, ln 29. “which corresponded to the willow emerging period with a high growth rate” is awkward as 

written. 

Reply: Thank you for your suggestion. We have revised this sentence. The minimum revisit time was 10 

days in the willow emerging period between May 2nd and May 12th. Please see L14-15 on P6. 

 

24. P7, ln3. “and can facilitates to temporally interpolate” is awkward as written. 

Reply: Thank you for your suggestion. We have revised the sentence to “can temporally interpolate the 

instantaneous land surface variables”. Please see L11 on P7. 

 

25. P8, ln 24-26. Clarify that this includes the existence of a canopy. As written, it reads like a simple soil 

diffusion-based approach, that neglects the existence of vegetation. There is a transfer coefficient for 

the canopy (Cveg) described on P9, along with LE etc., so I assume this all adds up correctly (I am 

not a modeler), but a more complete initial description is wanted on P8. 

Reply: Thank you for the comment. This model is proposed to simulate GPP and components of 

evapotranspiration (transpiration, evaporation from the intercepted water, and soil evaporation). Therefore, 

this model has the vegetation module to calculate the heat exchange between vegetation and ground. To 

make this clear, we have added more explanations at the beginning of the model description. Please see 

L16-17 on P7 in the revised clean version. 

 

26. P9, ln 24-25. Change to, “k is the von Karman constant.” 

Reply: Thank you. We have revised this sentence. Please see L13 on P10. 

 

27. P12, ln 20. “The rest of constraints,” is awkward as written. 
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Reply: Thank you. We have revised this sentence. Other constraints such as thermal regulation reflect 

changes in LUE due to environmental factors. Please see L9-10 on P13. 

 

 

28. P12, ln 21. “are the same modifying,” is awkward as written. 

Reply: Thank you. We have revised this sentence. “are the same for regulating ETc” Please see L10 on 

P13.  

 

29. P13, ln 6. Change to, “UAS-derived observations,” or otherwise clarify that many of these UAS 

variables were not measured directly. 

Reply: Thank you. We have revised the sentence. The model inputs of this study were obtained from 

meteorological data, UAS derived observations or estimates.  

 

30. P14, ln 1. Change, “facilitate,” to, “facilitates.” 

Reply: Thank you. We have revised the word. Please see L8 on P15. 

 

31. Eq 34 description. Clarify what time period (e.g. 30 min or 24 h) was used for this EC measurement 

adjustment, and how missing data were handled. 

Reply: Thank you. The EC data energy balance closure errors were corrected at 30 mins using the Bowen 

ratio approach. We have elaborated this in L18-19 on P15. Regarding the missing data, the data gaps were 

filled with based on the R-package REddyProc (Wutzler et al., 2018) using the meteorological data as 

inputs. For details, please refer to L13-15 on P5. 

 

32. P14, ln 25. “well represent” is awkward as written. 

Reply: Thank you. We have revised the words to be “the indicators of”. Please see L9 on P16. 

 

33. Validation at the daily time scale Section. Augment the discussion of uncertainty in the UAS-derived 

measurements (as compared to direct measurements).  

Reply: Thank you. We have added the discussion on the uncertainties of UAS derived estimates 

compared to the direct measurements. Please see L9 on P19. 

 

34. P16, ln 24. “that the better UAS based snapshot estimates of SM…” is awkward as written. Perhaps, 

“that improving the UAS-based estimates of SM…”. 

Reply: Thank you for the comment. We have revised this sentence. Please see L13 on P19. 
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35. P16, ln 34. “has a large coverage” is awkward as written. More accurately, it could be replaced with 

something like: “extended well-beyond the edges of the Willow forest of interest”. 

Reply: Thank you. We have revised this sentence. During the night time, the eddy covariance footprint 

extended well-beyond the edges of the willow forest of interest, due to the stable atmospheric conditions. 

Please see L22 on P19. 

 

 

36. P18, ln 1. “are be good” is awkward as written.  

Reply: Thank you. We have revised this sentence to be “To check the model simulation performance 

under cloudy conditions”. Please see L6 on P20. 

 

37. P18, ln 3. “do not show difference” is awkward as written. 

Reply: Thank you. We have revised this sentence. There were no significant differences for the residuals 

of the simulated Ts, Rn, SM and LE under low and high diffuse radiation fraction conditions. Please see 

L7-8 on P20. 

 

38. P18, ln 5. “do to that the model” is awkward as written. 

Reply: Thank you. We have revised this sentence to make it clearer. Please see L6-10 on P20. 

 

39. P18, ln 6. “enhancement diffuse radiation effects” is awkward as written. 

Reply: Thank you. We have revised this sentence. Please see L6-10 on P20. 

 

40. P18, ln 19. Perhaps change, “R2 for Ts…” to, “R2 for monthly Ts…” 

Reply: Thank you. We have revised the sentence to be monthly Ts.  

 

41. P20, ln 10. Change, “understanding on the” to, “understand of the”. 

Reply: Thank you. We have revised the words. Please see L7 on P24. 

 

42. Conclusions. What would the effects of using space-based remote sensing measurements be, rather 

that UAS measurements? Also discuss how well this method will work in areas where in-situ 

measurements are unavailable to better parameterize the UAS and SVEN measurements. 
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Reply: Thank you for your comments. We think there would be four major effects of using space-borne 

remote sensing measurements rather than UAS measurements. First of all, the space-borne remote sensing 

data have much coarser spatial resolution. If we move the simulation to the large scale with satellite data, 

we need to find accurate gridded meteorological data as forcing. UAS imagery has limited coverage and 

thus this study only used one meteorological station data as forcing. 

As satellite data have coarser pixel sizes, we also need to consider the sub-grid heterogeneity and identify 

the effective values for model parameters. Note all parameter values of models were obtained from 

parameter calibration with remote sensing based estimates. For instance, in our study, we used the look-

up tables with soil texture information to identify soil parameter values. In the large-scale simulation with 

satellite data, the plant functional type and soil type parameterization scheme for different ecosystems and 

environmental conditions would be needed. However, the integration of accurate remote sensing 

estimates with land surface models would be beneficial to reduce the dependency of plant functional type 

parameterization scheme and achieve a higher accuracy to predict land surface variables.  

In addition, coarse resolution satellite data may have limited accuracy to predict land surface fluxes 

compared to the detailed UAS data. Applying SVEN with satellite data to large scale, we also need to be 

careful about the accuracy of remote sensing based estimates and the error propagation from the model 

inputs to the outputs.  

Satellite data in the optical and thermal ranges can only provide observations during the sunny weather 

conditions. However, the UAS data in this study were collected in both sunny and cloudy conditions. We 

envision that using satellite based data to calibrate model may lead the model estimates biased towards 

the sunny conditions.  

Regarding the second question on applying this method in areas where in-situ measurements are 

unavailable to parameterize SVEN, there could be challenges to get reliable estimates of land surface 

fluxes. As shown in the model implementation of Fig. 4, the major challenges in data-scarcity regions 

would be lacking meteorological inputs and soil information. Such meteorological variables could be 

obtained from the online weather forecasting, although these data might not be as good as the standard 

weather station measurements. Soil parameters (e.g. hydraulic conductance, soil wilting point, and 

saturated soil moisture) could be obtained from soil texture maps or using model calibration with remote 

sensing based soil moisture estimates. For example, the soil moisture with high frequency across the 

entire growing season could be very helpful to identify the soil wilting point and saturated soil moisture, 

which could be close to the minimum and maximum values of soil moisture time series respectively. We 

also admit that estimating land surface fluxes in the data-scarcity regions is challenging and our proposed 

approach could potentially have more uncertainties compared to the performance in the regions with rich 

in-situ measurements. But we believe using the remote sensing data from satellites or UAS can facilitate 

the prediction of land surface fluxes in data-scarcity regions.  

We want to keep the conclusion streamlined, so we have added the content into the discussion part to 

address the potential challenges for applying such methodology to satellite data and data-scarcity regions. 

Please see L8-34 on P23 in the revised version. 

 

43. Equation and variable abbreviations. I cheated and read the other Reviewer Comments. I disagree 

with Referee #2 regarding their objection to the use of multiple letter abbreviations; I am already 

familiar with LUE, PAR, GPP, ET, etc., so their usage made it easier for me to follow the manuscript. 

In addition (this may have more to with my background than what is most suitable for HESS), I am 
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more accustomed to ϴ than SM for soil moisture, and R (surface runoff) could easily be confused for 

respiration (although honestly I am not sure if there is a more widely used abbreviation for runoff). 

Reply: Thank you for your suggestions. We agree that using abbreviations such as LUE, PAR, GPP and 

ET would be better for the readers. We have revised some variable abbreviations to make them easier for 

readers. For instance, in the revised version, we have used Qs to stand for surface runoff. We have used θ 

to represent soil moisture. Furthermore, we have also summarized all abbreviations in the supplementary 

material. 
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Temporal interpolation of land surface fluxes derived from remote 
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Abstract. Remote sensing imagery can provide snapshots of rapidly changing land surface variables, e.g. evapotranspiration 

(ET), land surface temperature (Ts), net radiation (Rn), soil moisture (SMθ) and gross primary productivity (GPP), for the 

time of sensor overpass. However, discontinuous data acquisitions limit the applicability of remote sensing for water 

resources and ecosystem management. Methods to interpolate between remote sensing snapshot data and to upscale them 10 

from instantaneous to daily time scale are needed. We developed a dynamic Soil Vegetation Atmosphere Transfer model to 

interpolate land surface state variables that change rapidly between remote sensing observations. The Soil-Vegetation, 

Energy, water and CO2 traNsfer model (SVEN), which combines the snapshot version of the remote sensing Priestley Taylor 

Jet Propulsion Laboratory ET model and light use efficiency GPP models, incorporates now a dynamic component for the 

ground heat flux based on the ‘force-restore’ method and a water balance bucket model to estimate SMθ and canopy wetness 15 

at a half-hourly time step. A case study was conducted to demonstrate the method using optical and thermal data from an 

Unmanned Aerial System in a willow plantation flux site (Risoe, Denmark). Based on model parameter calibration with the 

snapshots of land surface variables at the time of flight, SVEN interpolated the UAS based snapshots Ts, Rn, SM, ET and 

GPP to continuous records of Ts, Rn, θ, ET and GPP for the growing season of 2016 with forcing from continuous climatic 

data and NDVI. Validation with eddy covariance and other in-situ observations indicates that SVEN can well estimate daily 20 

land surface fluxes between remote sensing acquisitions with root mean square deviationsnormalized root mean square 

deviations of the simulated daily Ts, Rn, SMθ, LE and GPP equal to 2.35 °C11.77%, 14.49 W∙m-2,6.65%, 1.98% m3∙m-

3,19.53%, 16.62 W∙m-2 14.77%, and 3.01 g∙C∙m-2∙d-1,12.97%, respectively. This study demonstrates that, in this deciduous 

tree plantation, temporally sparse optical and thermal remote sensing observations can be used as “ground truth” to calibrate 

soil and vegetation parameters of a simple land surface modelling scheme to estimate “low persistence” or rapidly changing 25 

land surface variables with the use of few forcing variables. This approach can also be applied with remotely sensed data 

from other platforms to fill temporal gaps, e.g. cloud induced data gaps in satellite observation. 
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1 Introduction 

Continuous estimates of the coupled exchanges of energy, water and CO2 between the land surface and the atmosphere are 

essential to understand ecohydrological processes (Jung et al., 2011), to improve agricultural water management (Fisher et 

al., 2017), and to inform policy decisions for societal applications (Denis et al., 2017). Earth observation (EO) data have 

been increasingly used to estimate the land surface-atmosphere flux exchanges at the time of sensor overpass with minimum 5 

parameterization, particularly for regions with scarce ground observations. Optical and thermal remote sensing can provide 

snapshots of these fluxes such as soil moisture (SMθ) (Carlson et al., 1995; Sandholt et al., 2002), evapotranspiration (ET) 

(Fisher et al., 2008; Mu et al., 2013) or gross primary productivity (GPP) (Running et al., 2004) using land surface 

reflectance or temperature. However, both optical and thermal satellite observations present gaps during cloudy periods, and 

those gaps may coincide with the time when such information is mostly needed (Westermann et al., 2011), for instance, the 10 

high frequencyprevalence of cloudy weather during the crop growing season in monsoonal regimes (García et al., 2013) and 

high latitude regions (Wang et al., 2018a). Methods are needed to temporally interpolate and upscale the instantaneous 

records into continuous daily, monthly or annual valuesestimates (Alfieri et al., 2017; Huang et al., 2016).  

As one of the most exciting recent advances in near-Earth observation, Unmanned Aerial Systems (UAS) can 

flexiblyfavourably fly at a low altitude (< 100-200 m) with favourableflexible revisit times and low cost (Berni et al., 2009; 15 

McCabe et al., 2017). Compared to satellites, UAS provide opportunities to acquire high temporal and spatial resolution data 

under cloudy weather conditions to monitor and understand the surface-atmosphere energy, water and CO2 fluxes (Vivoni et 

al., 2014). For instance, the two-source energy balance models have been extensively applied with UAS thermal imagery for 

mapping spatial variability of ET (Hoffmann et al., 2015; Kustas et al., 2018; Nieto et al., 2019). Zarco-Tejada et al. (2013, 

2016) applied UAS based hyperspectral and solar-induced fluorescence techniques to infer crop physiological and 20 

photosynthesis information. Wang et al. . However, UAS observations still just(2018b) utilized the vegetation temperature 

triangle approach with UAS thermal imagery, multispectral imagery and digital elevation model to derive high spatial 

resolution information of root-zone soil moisture. Wang et al. (2019a) demonstrated the ability of UAS multispectral and 

thermal imagery for mapping high spatial resolution ecosystem water use efficiency in a willow fieldplantation. However, 

UAS observations still only provide snapshots of the land surface status at the time of the flight, while conditions such as 25 

land surface temperature (Ts), net radiation (Rn), SMθ, ET and GPP between image acquisitions remain uncoveredunknown.  

To continuously estimate land surface-atmosphere energy, water and CO2 fluxes, remote sensing based observations or 

simulations require either statistical or process-model based approaches to be interpolated into continuous records. The 

statistical approach is often used to interpolate those land surface variables with lowhigh persistence, e.g., which do not 

change rapidly and can be assumed to be static duringfor several days. For instance, to exclude cloud influence for proxies of 30 

vegetation structure e.g. vegetation indices (VI), satellite products use pixel composites to take the maximum value of VI 

from a given period between 8 and 16 days. To fill the gaps for this period, these 8 or 16 day maximum VI can be 

statistically interpolated into daily or sub-daily time series data, as the vegetation growth does not change significantly 
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during such a short period. However, forthe statistical method to interpolate variables that change substantially at sub-daily 

or daily time scales in response to changes in the surface energy balancedynamics, e.g. Ts, Rn, SMθ, ET and GPP, using 

statistical interpolation could be challenging with low revisit frequency. For instance, Alfieri et al. (2017) found that a return 

interval of EO observations of no less than 5 days was necessary to statistically interpolate daily ET with relative errors 

smaller than 20%. To interpolate low persistence variables between remote sensing acquisitions, a dynamic model based 5 

interpolation approach considering the dynamics of the land surface energy balance can be betterhas great potential.  

Ecosystem and land surface models, which can be used to diagnose and predict ecosystem functioning in a variable climatic 

conditions, such as BIOME-BGC (Running and Coughlan, 1988) and Simple Interactive Biosphere Model (SiB2, Sellers et 

al., 1996), can be used to temporally interpolate the land surface fluxes between EO snapshots with available model drivers 

and parameter values. Djamai et al. (2016) combined Soil Moisture Ocean Salinity (SMOS) Disaggregation, which is based 10 

on the Physical and Theoretical Scale Change (DisPATCh) downscaling algorithm, with the Canadian Land Surface Scheme 

(CLASS) to temporally interpolate SMθ at very high spatial and temporal resolutions. Malbéteau et al. (2018) used the 

ensemble Kalman filter approach to assimilate DisPATCh into a simple dynamic model to temporally interpolate SMθ. Jin et 

al. (2018) temporally interpolated AMSR-E based SMθ estimates with the China Soil Moisture Dataset (SCMD) from the 

Microwave Data Assimilation system. However, temporal interpolation using complex land surface models requires large 15 

data inputs and complicated parameterization schemes, as for example the turbulent fluxes are typically modelled using 

mass-transfer approaches.. In view of these challenges, simpler but operational models simple model-based interpolation can 

be derived forutilized to interpolate snapshot remote sensing modelsestimates of land surface variables. For instance, using a 

one-dimensional heat transfer equation, Zhang et al. (2015) interpolated the daily Ts on cloudy days. Based on surface 

energy balance (SEB), Huang et al. (2014) proposed a generic framework with two to twelve parameters to temporally 20 

interpolate satellite based instantaneous Ts to diurnal temperatures for the clear sky conditions with mean absolute errors 

from 1.71 to 0.33 °C, respectively. However, model based approaches to temporally interpolate various land surface fluxes 

such as ET and GPP are rare.   

This study aims at developing a simple but operational land surface modeling scheme, which simulates the land surface 

energy balance and water and CO2 fluxes between the land surface and the atmosphere. We aimed at using EO based 25 

prescribed vegetation dynamics from EO based vegetation indices, limited meteorological inputs, and parameters which can 

be optimized from remote sensing derived fluxes. to estimate the temporally continuous land surface variables. It can be used 

for various conditions even in data -scarce regions by performing parameter calibration with snapshot remote sensing 

estimates of Ts, SMθ, ET or GPP at the time of overpass. A Soil-Vegetation water and CO2 flux Exchange, eNergy balance 

model (SVEN) was developed to continuously estimate Ts, SMθ, GPP and ET. The SVEN model is based on a joint ET and 30 

GPP model, which combines a light use efficiency GPP model and the Priestley–Taylor Jet Propulsion Laboratory ET model 

(Wang et al., 2018a). This joint ET and GPP diagnostic model can simulate canopy photosynthesis, evaporation of 

intercepted water, transpiration and soil evaporation with EO data as inputs. This model now becomesserves as a part of the 
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transient surface energy balance scheme, SVEN, which incorporates additional processes and interactions between soil, 

vegetation and atmosphere, e.g. surface energy balance, sensible heat flux, and SMθ dynamics, to be able to simulate the 

land surface fluxes when EO data are not available. Compared to most traditional land surface models, which couple 

processes of transpiration and CO2 exchange through stomata behaviour and use a ‘bottom-up’ approach to upscale 

processes from the leaf scale to the canopy scale (Choudhury and Monteith, 1988; Shuttleworth and Wallace, 1985), SVEN 5 

uses a ‘top-down’ approach to directly simulate water and CO2 fluxes at the canopy scale. SVEN estimates GPP and ET 

under potential or optimum conditions and then the potential values are down-regulated by the same biophysical constraints 

reflecting multiple limitations or stresses. These constraints can be derived from remote sensing and atmospheric data 

(García et al., 2013; McCallum et al., 2009). In this way, SVEN avoids detailed descriptions and parameterization of 

complex radiation transfer processes at the leaf level and the scaling process to the canopy level. It maintains a level of 10 

complexity comparable to that of operational remote sensing based GPP and ET instantaneous models while being able to 

predict the fluxes in periods without EO data.  

The main objective of this study was to demonstrate a methodology to temporally interpolate sparse snapshot estimates of 

land surface variables into daily time steps relying on UAS observations. Specific objectives were (1) to develop an 

operational ‘top-down’ model to simulate rapidly changed variables e.g. Ts, Rn, SM.θ, ET and GPP to interpolate between 15 

remote sensing snapshot estimates; (2) to demonstrate the application of this model with UAS observations, calibrating the 

model with UAS snapshot estimates and forcing it with meteorological data and statistically interpolated VI. 

2 Study site and data 

2.1 Study site 

This study was conducted in an eddy covariance flux site, Risoe (DK-RCW), which is an 11-hectare willow bioenergy 20 

plantation adjacent to the DTU Risoe campus, Zealand, Denmark (55.68°N, 12.11°E), as shown in Figure 1. This site has a 

temperate maritime climate with the mean annual temperature aroundof about 8.5°C and precipitation of around 600 mm∙yr-

1. The soil texture of this site is loam. The stand consists of two clones (‘Inger’ and ‘Tordis’) from crossing of Salix 

viminalis, Salix schwerinii x Salix triandra. In February of 2016, the aboveground parts were harvested following the regular 

management cycle. Then willow trees grew to a height of approximately 3.5m during the growing season of 2016 (May to 25 

October). Rapeseed (Brassica napus) was grown in the nearby field. A grass bypass is between the willow plantation and the 

rapeseed field. An eddy covariance observation system (DK-RCW) has been operated since 2012. Regular UAS flight 

campaigns with a multispectral camera (MCA, Multispectral Camera Array, Tetracam, Chatsworth, CA, USA) and a thermal 

infrared camera (FLIR Tau2 324, Wilsonville, OR, USA) onboard have beenwere conducted in this site during the growing 

seasons of 2016. DetailsFor more details, please refer to Wang et al. (2018b). 30 
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Figure 1. Overview of the Risoe willow plantation eddy covariance flux site. The flux tower is the red triangle in the middle 

of the willow plantation. The green dashed line shows the typical flying path of UAS. Green diamonds indicate the location 

of the understory PAR sensors. The yellow star isrefers to the location of soil moisture sensor. The blue circle indicates the 5 

CNR4 field of view. The wind rose refers to the wind conditions in 2016. The base map is a multispectral pseudo-colour 

image collected on August 1st, 2016 with 800, 670 and 530 nm as red, green and blue channels, respectively.  

Willow

Rapeseed



6 

 

2.2 Data 

In-situ data used in this study include standard eddy covariance and micrometeorological observations, such as GPP, ET, Rn, 

incoming longwave radiation (LWin), outgoing longwave radiation (LWout) and incoming shortwave radiation (SWin), air 

temperature (Ta), vapor pressure deficit (VPD) and SMθ. These meteorological variables were measured at the height of 10 

m above the ground. Meanwhile, the CO2 and water vapor eddy covariance system was adjusted to around 2 m above the 5 

maximum canopy height. The eddy covariance data processing followed the same procedures as in Pilegaard et al. (2011), 

Ibrom et al. (2007) and Fratini et al. (2012), i.e. the standard ICOS processing method. The raw data were aggregated into 

half -hourly records. The flux partitioning to separate GPP and respiration was done by the look-up table approach 

(Reichstein et al., 2005) based on the R-package REddyProc (Wutzler et al., 2018) with the half-hourly net ecosystem 

exchange, Ta and SWin as inputs. 10 

AnA UAS equipped with MCA and FLIR cameras was used to collect the Normalized Difference Vegetation Index (NDVI) 

and land surface temperature (Ts) (Wang et al., 2019). For each flight campaign, the digital surface model (DSM), 

multispectral reflectance and thermal infrared orthophotos were generated. For details on the UAS, sensors and image 

processing, refer to Wang et al. (2018b). To continuously estimate the land surface fluxes from UAS, the collected mean 

NDVI for the willow patch was temporally statistically interpolated into half-hour continuous records by the Catmull-Rom 15 

spline method (Catmull and Rom, 1974). The interpolated NDVI was converted into the fraction of intercepted 

photosynthetically active radiation (fIPAR), which can also be assumed equal to the fraction of vegetation cover, based on 

Fisher et al. (2008). The canopy height hc  was obtained from the DSM generated from RGB images and then was 

statistically interpolated into the continuous half-hourly record based on in-situ fIPAR. The collected Ts and NDVI from UAS 

were used to estimate the volumetric SMθ based on the modified temperature-vegetation triangle approach as Wang et al. 20 

(2018b). Values of the observed NDVI, Ts and the estimated SMθ from each UAS flight campaign are shown in Table 1. The 

statistically interpolated NDVI and hc were used as model inputs/forcing. 

Due to technical issues,As technical issues, parts of UAS data of few UAS flight campaignson June 24th and August 1st  were 

missing (as shown in TTable 1) and. The observed data from the in-situ measurements were used to represent these missing 

values. For instance, Tto fill a prolonged gap for UAS observations in June of 2016 and resemblesimulate the growth process 25 

of willow trees, a data point based on in-situ observations wereas added to June 24th. For model calibration, the instantaneous 

values of the Ts and SMθ estimated from the seven UAS flights were used as “ground truth” or observationsreference. The 

seven UAS flights resulted in an average frequency of 25 days for this growing season. The minimum revisit time was 10 

days in the willow emerging period between May 2nd and May 12th, which corresponded to the willow emerging period with 

a high growth rate. The maximum revisit time was 67 days between August 1st to October 7th when the willow canopy was 30 

dense and stable.  
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Figure 2. (a) Daily precipitation (P, mm∙d-1), (b) Daily air temperature (Ta, °C), and (c) Daily fraction of the intercepted 

PAR (fIPAR) interpolated from UAS based NDVI during the growing season of 2016. 

 

Table 1. NDVI, LST surface temperature and SMsoil moisture information from UAS and in-situ data. * indicates that no 5 

available data from UAS due to technical issues and the in-situ data were used to represent the UAS snapshots. fIPAR is the 

fraction of the intercepted PAR. Ts is the land surface temperature (°C). θ is the volumetric SMsoil moisture (m3∙m-3). For 

methods on SMof θ estimation and detailed weather conditions, please refer to Wang et al. (2019b). 

Date 
Acquisition 

time 
Weather fIPAR UAS fIPAR obs Ts UAS Ts obs θ UAS θ obs Growth stage 

11-Apr-16 11:13-11:26 Cloudy 0.22 0.03 14.98 15.95 0.27 0.28 Early growth 

2-May-16 14:40-14:55 Cloudy 0.22 0.03 18.29 19.13 0.27 0.30 Early growth 

12-May-16 10:44-11:55 Sunny 0.3 0.04 24.84 23.57 0.25 0.27 Early growth 

25-May-16 10:11-10:23 Sunny 0.43 0.20 28.08 28.31 0.26 0.26 Early growth 

24-Jun-16 12:00-12:30 Sunny 0.84* 0.84 26.60* 26.60 0.21* 0.21 
Dense 

vegetation 

1-Aug-16 10:06-10:14 Cloudy 0.95 0.95 18.33* 18.33 0.20* 0.20 
Dense 

vegetation 

7-Oct-16 11:41-11:55 Sunny 0.94 0.91 11.10 10.41 0.16 0.19 
Dense 

vegetation 

(a)

(b)

(c)
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3 Method 

The SVEN model is an operational and parsimonious remote sensing based land surface modeling scheme expanding the 

capabilities of the remote sensing GPP and PT JPL-ET model (Wang et al., 2018a) to be dynamic. It runs at half-hourly time 

steps and can facilitates to temporally interpolate the simulated instantaneous land surface variables, such as Ts, Rn, SMθ, 

ET and GPP, into continuous records.  5 

3.1 Model description 

SVEN consists of a surface energy balance module, a water balance module and a CO2 flux module. In the energy balance 

module, SVEN estimates the surface temperature and ground heat flux relying on the land surface energy balance equations 

and the ‘force-restore’ method (Noilhan and Mahfouf, 1996; Noilhan and Planton, 1989) to consider the energy exchange 

between ground and soil/vegetation on surface. The water balance module includes the Priestley–Taylor Jet Propulsion 10 

Laboratory (PT-JPL) model for ET estimation and a simple ‘bucket’ model representing the upper soil column to simulate 

soil water dynamics and runoff generation. The CO2 flux module uses a light use efficiency (LUE) model for GPP 

estimation, which is connected to ET via the same canopy biophysical constraints. Figure 3 shows the major processes 

simulated in SVEN. Detailed information on these three modules is outlined below. 

 15 

Figure 3. Major land surface processes simulated in SVEN. These processes include land surface energy balance, water 

fluxes and CO2 assimilation (SWin: incoming shortwave radiation; SWout: outgoing shortwave radiation; LWin: incoming 

longwave radiation; LWout: outgoing longwave radiation; Rn: net radiation; G: ground heat flux; Ts: the surface temperature; 
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Td: the deep soil temperature; H: sensible heat flux; P: precipitation; λE: latent heat flux; λEi: latent heat flux of the 

intercepted water; λEc: latent heat flux of transpiration; λEs: latent heat flux of soil evaporation; CWS: canopy water 

storage; SWS: soil water storage; Qinf: infiltration; Qper: percolation; R: surface runoff; GPP: gross primary productivity. 

3.1.1 Surface Energy Balance Module 

The instantaneous net radiation is estimated based on the surface energy balance, as shown in Eq. (1). The surface emissivity 5 

is approximated according to an empirical relation with NDVI as Eq. (2) (Van de Griend  and  M.Owe., 1993). The surface 

albedo (ALBA) is estimated from the simple ratio vegetation index (SR) and it shows that albedo generally decreases as 

vegetation greenness increases as Eq. (3 and 4) (Gao, 1995). 

Rn = (1 − ALB)(1 − A)SWin + (1 − ε)LWin − εσTs
4                                                                                                    (1) 

ε = {

0.986                                   (NDVI > 0.608)

1.0094 + 0.047 ∙ ln(NDVI)    (0.131 < NDVI < 0.608)

0.914                                   (NDVI < 0.131)
                                                                           (2) 10 

ALBA = 0.28 − 0.14e(−6.08/SR2)                                                                                                                            (3) 

SR = (1 + NDVI)/(1 − NDVI)                                                                                                                            (4) 

Where Rn is the instantaneous net radiation (W∙m-2). SWin is the instantaneous incoming shortwave radiation (W∙m-2). LWin 

is the instantaneous incoming longwave radiation (W∙m-2). σ is the Stefan-Boltzmann constant (5.670367×10-8 W∙m-2∙K-4).  

At the surface, Rn is dissipated as latent, sensible and ground heat fluxes, as Eq. (5). The latent heat flux is estimated from 15 

the PT-JPL ET model and the sensible heat flux, H, is calculated based on the temperature gradient between the surface and 

air and a bulk aerodynamic resistance. The instantaneous ground heat flux G is estimated from the ´force-restore´ method 

(Noilhan and Planton, 1989). 

dS

dt
= SWin − SWout + LWin − LWout − H − λE − G                                                                                           (5) 

Where 
dS

dt
 is the heat storage change over time (W∙m-2). SW is shortwave radiation (W∙m-2) and LW is longwave radiation 20 

(W∙m-2). The subscripts in and out refer to incoming and outgoing, respectively. λE represents the latent heat flux (W∙m-2). H 

refers to the sensible heat flux (W∙m-2). G is the ground heat flux (W∙m-2). 

The surface temperature was estimated by the ‘force-restore’ method, which considers two opposite effects on surface 

temperature variabilities, as shown in Eq. (6). The first term (Rn − λE − H)  represents the forcing from the surface-

atmosphere interface. The second term (Ts − Td) is the gradient between the surface temperature and deep soil temperature. 25 

It indicates the tendency from the deep soil to restore Ts (responding to surface energy forcing) to the Td value, which is 

more stable over time.  
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dTs

dt
= CT(Rn − λE − H) − Cd(Ts − Td)                                                                                                              (6) 

dTd

dt
= ω(Ts − Td)                                                                                                                                                 (7) 

1

CT
=

1−𝑓c

Csat(
SWSmax

SWS
)

b
2ln (10)

+
𝑓c

Cveg
                                                                                                                             (8) 

Cd = 2πω                                                                                                                                                             (9) 

Where Ts is the land surface temperature (°C). Td isrefers to the deep soil temperature (°C) calculated by applying a low-pass 5 

filter to Ts. with the cut-off frequency of 24 hours. ω is the frequency of oscillation 1/24 (h-1). CT is a force-restore thermal 

coefficient for the surface heat transfer (K∙m2∙J-1) and is influenced by the effective relative SMθ. Csat is the force-restore 

thermal coefficient for saturated soil (K∙m2∙J-1). The parameter b is the slope of the retention curve for the force-restore 

thermal coefficient. Cveg  is the force-restore thermal coefficient for vegetation (K∙m2∙J-1). 𝑓c  is the fractional cover of 

vegetation and is assumed equal to 𝑓IPAR as the supplemental Table S1 (Fisher et al., 2008). SWSmax is the maximum soil 10 

water storage (m3m) and SWS is the actual one (m3m). Cd is diurnal periodicity based on ω (h-1).  

The sensible heat flux, H, is estimated based on the temperature gradient between the surface and air, as shown in Eq. (10).  

H = ρcp(Ts − Ta)/ra                                                                                                                              (10) 

Where ρ is the air density (kg∙m-3). cp is the specific heat capacity of air (J∙kg-1∙K-1). Ts is the land surface temperature (°C). 

Ta is the air temperature (°C). ra is the aerodynamic resistance for heat transfer (s∙m-1). 15 

Aerodynamic resistance to turbulent transport under neutral conditions (raN) can be expressed as Eq. (11) (Brutsaert, 1982). 

raN =
ln(

z−d

z0m
) ln(

z−d

z0h
)

k2u
                                                                                                                                  (11) 

d = 0.67hc                                                                                                                                               (12) 

zom = 0.1hc                                                                                                                                             (13) 

zoh =
z0m

ekB−1                                                                                                                                              (14) 20 

Where hc is the canopy height (m). The parameter d is the zero displacement height (m) and z is the velocity reference height 

(m). zom is the aerodynamic roughness length for momentum (m). zoh is the aerodynamic roughness length for the heat 

transfer (m).  u is the horizontal wind velocity at reference height (m∙s-1). kB-1 is a parameter to account for the difference 

between the aerodynamic and radiometric temperatures and a constant value of 2.3 is adopted in this study (Garratt and 

Hicks, 1973). k is the von Karman constant (0.4).  25 
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The aerodynamic resistance is corrected for the atmospheric stability as shown in Eq. (15) (Huning and Margulis, 2015). Ψm 

is the stability correction factor for momentum. Ψh is the stability correction factor for sensible heat flux. For unstable 

conditions (negative temperature gradient), the stability correction factors are less than 1.0 and the correction reduces the 

resistance and enhances turbulence, while for stable conditions they are greater than 1.0 and the correction increases the 

resistance and suppresses turbulence. 5 

ra = raNΨmΨh                                                                                                                                            (15) 

When the atmospheric condition is unstable (RiB ≤ 0), Ψm and Ψh are estimated from Eq. (16). 

Ψh = Ψm
2 = (1 − 15RiB)−1/2                                                                                                                   (16) 

When atmospheric condition is stable (0 ≤ RiB < 0.2), Ψm and Ψh are estimated from Eq. (17). 

Ψh = Ψm = (1 − 5RiB)−1                                                                                                                          (17) 10 

RiB =
(

g

Ts
) ∂Ts/∂z

(
∂u

∂z
)2

                                                                                                                                          (18) 

Where RiB is the bulk Richardson number, g is the gravitational acceleration.  

3.1.2 Water balance module 

The water balance module simulates evaporation of intercepted water, plant transpiration, soil evaporation, soil infiltration 

and percolation. The evapotranspiration is estimated based on a modified PT-JPL ET model (Wang et al., 2018a). The PT-15 

JPL ET model has been demonstrated as one of best-performing global remote sensing ET algorithms (Chen et al., 2014; 

Ershadi et al., 2014; Miralles et al., 2016; Vinukollu et al., 2011). Thus, it was selected for ET estimation. The PT-JPL model 

(Fisher et al., 2008) uses the Priestley-Taylor (1972) equation to calculate the potential evapotranspiration, and then 

incorporates eco-physiological variables to down -regulate potential evapotranspiration to actual evapotranspiration. PT-JPL 

is a three-source evapotranspiration model to simulate evaporation of intercepted water (Ei), transpiration (Ec) and soil 20 

evaporation (Es) as following equations.  

λET = λEi + λEc + λEs                                                                                                                            (19) 

λEi = 𝑓wet ∙ α∆/(∆ + γ) ∙ Rnc                                                                                                                  (20) 

λEc = (1 − 𝑓wet ) ∙ 𝑓g ∙ 𝑓M ∙ 𝑓Ta ∙ αc∆/(∆ + γ) ∙ Rnc                                                                                 (21) 

λEs =  𝑓SM𝑓θ ∙ α∆/(∆ + γ) ∙ (Rns − G)                                                                                                       (22) 25 

Where λET is the latent heat flux for total evapotranspiration (W∙m-2), λEi is the latent heat flux due to evaporation of 

intercepted water (W∙m-2), λEc is the latent heat flux due to transpiration (W∙m-2), and λEs is the latent heat flux due to 
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evaporation of soil water (W∙m-2). The quantity 𝑓wet is the relative surface wetness to partition the evapotranspiration from 

the intercepted water and canopy transpiration. 𝑓g is the green canopy fraction indicating the proportion of active canopy. 𝑓M 

is the plant moisture constraint. 𝑓Ta  is the plant temperature constraint reflecting the temperature limitation of 

photosynthesis. 𝑓SM𝑓θ is the SMθ constraint. These constraints vary from 0 to 1 to account for the relative reduction of 

potential λET under limiting environmental conditions. Rnc and Rns are the net radiation for canopy and soil, respectively. 5 

The partitioning of PAR and net radiation between canopy and soil is calculated following the Beer-Lambert law 

(Supplemental Table S1). G is the ground heat flux. Δ is the slope of saturation vapor pressure versus temperature curve. γ is 

the psychrometric constant. α is an empirical ratio of potential evapotranspiration to equilibrium potential evapotranspiration 

(PTPriestley-Taylor coefficient). The suggested value for α is 1.26 in the PT-JPL model (Fisher et al., 2008). 

In the original model, 𝑓wet was estimated from air relative humidity (Fisher et al., 2008). In this study, 𝑓wet is modified to be 10 

defined as a ratio between the actual canopy water storage (CWS) and the maximum canopy water storage (CWSmax) as Eq. 

(23) (Noilhan and Planton, 1989). CWS is the amount of intercepted water and CWSmax is the maximum possible amount of 

intercepted water (mm), taken as 0.2LAI kg∙m-2 (Dickinson, 1984). 𝑓wet depends on both the precipitation rate and LAI, 

which is more reasonable than only depending on air relative humidity in the original model.  

𝑓wet =
CWS

CWSmax
                                                                                                                                                        (23)  15 

In this study, we determined CWS with a prognostic equation (24) with the constraint that CWS is smaller than CWSmax. 

dCWS

dt
= 𝑓c ∙ P − Ei                                                                                                                                                   (24) 

Where 𝑓c is the fraction of vegetation cover and here it is assumed to be equal to 𝑓IPAR (Fisher et al., 2008). P and Ei are the 

rainfall rates and evaporation from the intercepted water, respectively (m∙s-1). 

The effective precipitation rate is estimated as the residual of the rainfall rate and change of CWS as Eq. (25). 20 

Pe = P − dCWS                                                                                                                                                      (25) 

To simulate the dynamics of water storage in the soil, SVEN uses a simple ‘bucket’ model. Here the infiltration rate (Q inf) is 

equal to the effective rainfall rate (Pe), when the soil water is not saturated. Thus, SWS is calculated based on a prognostic 

equation with a constraint that SWS is smaller than SWSmax. 

Qinf = Pe                                                                                                                                                               (26)  25 

dSWS

dt
= Qinf − Ec − Es − Qper                                                                                                                             (27) 

When soil water is saturated, SWS is equal to SWSmax and surface runoff (RQs) occurs as Eq. 2829.  

Qinf = Ec + Es + Qper                                                                                                                                           (28) 
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R = PeQs = Pe − Qinf                                                                                                                                                         (29) 

Where SWS  is soil water storage (m). Pe , Ec , Es , Qper  and R Qs  are the effective rainfall rates, transpiration rates, 

evapotranspiration rates from soil, percolation rates and surface runoff (m∙s-1), respectively. 

Percolation is estimated  by assuming uniform vertical hydraulic gradient and using the Mualem model for hydraulic 

conductivity of unsaturated soils (Mualem, 1976) as Eq. (30): 5 

Qper = Ks√θe(1 − (1 − θe
1/(1−1/n))1−1/n)2                                                                                                     (30) 

θe =
θ−θr

θs−θr
                                                                                                                                                             (31) 

θ =
SWS

SWSmax
θs                                                                                                                                                       (32) 

Where Ks  is the saturated hydraulic conductivity (m∙s-1). n is a fitting parameter depending on the pore size.  θ  is the 

volumetric soil moisture (m3∙m-3). θe is the effective soil moisture (m3∙m-3). θs is the saturated soil moisture (m3∙m-3). θr is 10 

the residual soil moisture (m3∙m-3). 

3.1.3 CO2 flux module 

The photosynthesis in the CO2 flux module is calculated from a modified light use efficiency (LUE) model (Wang et al., 

2018a) linked to the biophysical constraints for canopy transpiration of the PT-JPL model. The LUE GPP model is a robust 

and widely used method to estimate GPP across various ecosystems and climate regimes (McCallum et al., 2009). The LUE 15 

models, e.g. CASA (Potter et al., 1993) or the MODIS algorithm (Running et al., 2004), are based on the assumption that 

plants optimize canopy LUE or whole canopy carbon gain per total PAR absorbed as originally suggested by (Monteith, 

1972) for net primary productivity. The formula of the LUE GPP model used in this study is shown in Eq. (33) and it is 

partly based on the Carnegie-Ames-Stanford-Approach model (Potter et al., 1993) with modification to include an additional 

constraint accounting for the fraction of the canopy that is photosynthetically active (Fisher et al., 2008). The rest ofOther 20 

constraints reflects changes in LUE due to environmental factors such as thermal regulation (Wang et al., 2018a) reflect 

changes in LUE due to environmental factors and are the same modifying thefor regulating ETc (Eq. 21).  

GPP = LUEmax ∙ PARc ∙ 𝑓g ∙ 𝑓M ∙ 𝑓Ta ∙ 𝑓VPD                                                                                                                  (33) 

Where LUEmax is the maximum LUE (g∙C∙MJ-1). PARc is the daily photosynthetically active radiation (PAR) (MJ∙m-2∙d-1) 

intercepted by the canopy and it is calculated based on the extinction of PAR within the canopy using the Beer -Lambert law 25 

(Supplemental Table S1). 𝑓g is the green canopy fraction indicating the proportion of active canopy. 𝑓M is the plant moisture 

constraint. 𝑓Ta  is the air temperature constraint reflecting the temperature limitation of photosynthesis. 𝑓VPD  is the VPD 

constraint reflecting the stomatal response to the atmospheric water saturation deficit. All these constraints range from 0 and 
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1 and represent the reduction of maximum GPP under limiting environmental conditions. For more details, please refer to the 

supplemental Table S1. 

3.2 Model parameter estimationimplementation 

The SVEN model requires shortwave incoming (SWin), longwave incoming (LWin), air temperature (Ta), air pressure (Ps), 

relative humidity (RH), wind speed (WSu), precipitation (P), canopy height (z), and vegetation information (NDVI) as inputs 5 

(Supplemental Table S2). The model inputs of this study were obtained from meteorological data and, UAS derived 

observations or estimates. The simulation outputs of this model are shown in Supplemental Table S4. The initial conditions 

for the model include an initial canopy water storage (CWSin), an initial soil water storage (SWSin), initial surface 

temperature (Ts0) and initial deep soil temperature (Td0) as shown in Supplemental Table S3. The initial conditions to run the 

model (11-April-2016 to 7-October-2016) were obtained by performing spin-up simulations from 11-March-2016 to 11-10 

April-2016. The details of model implementation are shown in Figure 4.  

 

Figure 4. Model implementation of this study. UAS and meteorological data were used as inputs of the SVEN model. 

Values of the SVEN parameters were obtained from the look-up table, other studies, or model calibration with UAS derived 

variables. In the model outputs, variables with the highlighted red colour (Ts and θ) refers to the variables calibrated with 15 

UAS derived observations or estimates. The variables with orange colours are retrievable from remote sensing techniques. 
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The SVEN model has six parameters, which are mostly related to physical soil properties for heat transfer and infiltration 

(Table 2). The parameter values can be obtained from several approaches including look-up tables based on soil texture, 

parameter values of the similar biome or soil types in other studies, field measurements, or model parameter optimization 

with in-situ measurements or with remote sensing data. The parameters, for instance maximum light use efficiency 

(LUEmax), to run the snapshot version of SVEN are described in Wang et al., (2018a). As this willow plantation is a 5 

deciduous temperate forest, the parameter values obtained from the nearby similar ecosystem (Wang et al., 2018a) were used 

for this study. 

Table 2. Information on the model parameters of SVEN and their ranges for all soil or biome types 

Paramet

ers 
Description Unit Range Reference 

Source for this 

study 

LUEmax Maximum light use efficiency g∙C∙m-2∙MJ−1 0-5 Wang et al. (2018a) Other studies 

α Priestley-Taylor coefficient [-] 1-3 Fisher et al. (2018) Other studies 

Csat 
The force-restore thermal coefficient 

for saturated soil 
10-6 K∙m2∙J-1 [3, 15] 

Noilhan and Planton 

(1989) 

Model calibration 

b 
The slope of the retention curve for 

the force-restore thermal coefficient 
[-] [4.05, 11.4] 

Noilhan and Planton 

(1989) 

Model calibration 

Cveg 
The force-restore thermal coefficient 

for vegetated surface 

10-6 

K∙m2∙J-1 
[1, 10] Calvet et al. (1998) 

Model calibration 

SWSmax Maximum soil water storage m [0, 1] Boegh et al. (2009) Model calibration 

Ks 
The infiltration rate for the saturated 

soil 
mm∙h-1 [0.01, 25] 

Dettmann et al. 

(2014) 

Look-up table 

n 
Fitting parameter of the Mualem 

model 
\ [1, 3] 

Dettmann et al. 

(2014) 

Look-up table 

θs Soil wilting point m3∙m-3 [0.38, 0.43] 
(Carsel and Parrish, 

1988) 

Look-up table 

θs Saturated soil moisture m3∙m-3 [0.045, 0.068] 
(Carsel and Parrish, 

1988) 

Look-up table 

 

In this study, we used a combination of these approaches to obtain model parameter values. The fitting parameter of the 10 

Mualem model (n) and the infiltration rate for the saturated soil (Ks) were obtained from a look-up table (Carsel and Parrish, 

1988). The values for loamy soil as shown in the supplemental Table S5 were used, according to the soil texture of this site. 

The rest of parameters related with soil and vegetation physical properties, Csat, b, Cveg and SWSmax, were obtained by 

calibrating models with instantaneous Ts and SMθ from seven UAS flight campaigns (Table 1) rather than calibration with 

in-situ measurements of ET or GPP (e.g. eddy covariance data) as in other studies. Calibrating the model with the remotely 15 

sensed instantaneous estimates instead of ground measurements facilitatefacilitates the application of this approach to data -

scarce regions.  The calibration of Csat, b, Cveg and SWSmax was conducted using the Monte Carlo optimization. The 

parameter values were sampled 20,000 times with a uniform distribution and the corresponding parameter ranges as shown 

in Table 2. The objective function for optimization is the root mean square deviation (RMSD) between the observed and 
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simulated values. With two objective functions for Ts and SMθ respectively, a the multiple objective optimization method 

(Pareto front) as Yapo et al. (1998) was used to identify the optimized parameter values.    

3.3 Model assessment 

We used independent eddy covariance data to validate model outputs. However, due to the energy balance closure issue 

(Wilson et al., 2002), the sum of sensible heat (H) and latent heat (LE) as measured by the eddy covariance method is 5 

generally not equal to the available energy (net radiation minus ground heat flux, Rn − G). This study used the Bowen ratio 

approach to correct energy balance closure errors of eddy covariance data. UsingAssuming that the ratio of 30 min sensible 

heat to ET (Bowen ratio) is correct, LE measurements can be corrected as follows (Twine et al., 2000). The LE data with the 

30 min energy balance closure error larger than 20% were excluded in the validation.  

LE =
Rn−G

H_EC_raw +LE_EC_raw 
LE_EC_raw                                                                                                                     (34) 10 

Where LE is the corrected latent heat by assuming that the Bowen ratio is constant (W∙m-2). Rn is the net radiation (W∙m-2). 

G is the ground heat flux (W∙m-2). H_EC_raw is the uncorrected sensible heat (W∙m-2) and LE_EC_raw is the uncorrected 

latent heat (W∙m-2).  

The SVEN model was developed to interpolate between remote sensing data acquisitions and to produce continuous daily 

records. Thus, the observed Ts, Rn, LE and GPP are from the eddy covariance system and the in-situ SMθ measurements at 15 

the depth of 15 cm (the sensor locations shownlocation in Figure 1) were used to validate the simulated variables at the daily 

time scale. Statistics including RMSD, correlation coefficientthe coefficient of determination (R2), and relative errors (RE) 

and normalized RMSD (NRMSD, the ratio between RMSD and the range of observations) were used in validation.  

We also analyzed how the model skill changes depending on vegetation cover and overcast (diffuse radiation) conditions by 

looking at model residuals as typically remote sensing models may be biased to sunny conditions.  Scatterplots between 20 

model residuals and NDVI and the diffuse radiation fraction were examined. As the ratio between the actual (SW in) and 

potential (SWinpot) can well representbe the indicator of the diffuse radiation fraction (Wang et al., 2018a), we used this ratio 

to indicate the diffuse radiation fraction. This analysis can help to understand possible methods to improve the SVEN model. 

To check the capability of the SVEN model to interpolate half-hourly and monthly time series fluxes, the simulated land 

surface variables were also validated at half-hourly and monthly time scales, in addition to the daily time scale.  25 

4 Results and discussion 

4.1 Model parameter estimation 

Figure 4 5 illustrates the results of model parameter calibration with UAS basedderived snapshot SMθ and Ts (Table 1). With 

twoRMSDs of θ and Ts as objective functions, RMSDs of SM and Ts, a significant trade-off between the performance of the 
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SMθ and Ts simulations is observed as a Pareto front (the red curve) in Figure 4. The x-axis shows the performance of 

simulating SMθ. The smaller the RMSD values are, the better the model performance with respect to this variable. The 

minimum, however, lies in a range, where the model performance of the other variable, Ts, is highest (y-axis). From the 

viewpoint of multi-objective optimization, the solutions at the Pareto front are equally good. By considering RMSDs of Ts 

less than 2 °C and RMSDs of SM estimatesθ as small as possible, we selected the point close to the red arrow of Figure 4, 5 

which corresponds to the RMSDs of SMθ and Ts equal to 2.99% m3∙m-3 and 1.92 °C, respectively. The values of Csat, b, Cveg 

and SWSmax at this Pareto front point are equal to 6.94×10-6 K∙m2∙J-1, 5.20, 2.18×10-6 K∙m2∙J-1 and 554.52 mm, respectively. 

Furthermore, we also analysed the variability of optimized parameter values as shown in supplementary Figure S1. Cveg and 

SWSmax show low variation of coefficients (CVs), and this indicates the parsimony of the SVEN model. Meanwhile, Csat and 

b show relatively higher CVs. This may be due to equifinality between Csat and b, which relate to soil thermal properties (Eq. 10 

8) and could compensate each other.  

 

Figure 45. Objective function values of evaluated parameter sets and corresponding Pareto front. The x-axis is the objective 

function for simulating SMθ. The y-axis is the objective function for simulating Ts. Each dot corresponds to one simulation 

performance. Each of the simulations represents a different combination of candidate parameter sets. The dot closest to the 15 

red arrow is chosen to be the optimal parameter set for SVEN continuous simulation. Csat, b, Cveg and SWSmax at the Pareto 

front point are 6.94×10-6 K∙m2∙J-1, 5.20, 2.18×10-6 K∙m2∙J-1 and 554.52 mm, respectively. 

4.2 Validation at the daily time scale  

Figure 5 6 shows the time -series data of the interpolated daily Ts, Rn, SMθ, LE and GPP and their validation. It can be seen 

that the The simulated daily Ts, Rn, SMθ, LE and GPP fitscapture well with observationsthe observed temporal dynamics of 20 

2.99, 1.92

θ
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land surface variables at this site. R2 for daily Ts, Rn, θ, LE and GPP are 0.90, 0.92, 0.50, 0.70 and 0.79, respectively. 

RMSDs for the simulated daily Ts, Rn, SMθ, LE and GPP are 2.35 °C, 14.49 W∙m-2, 1.98% m3∙m-3, 16.62 W∙m-2 and 3.01 

g∙C∙m-2∙d-1, respectively. R2 for Ts, Rn, SM, LE and GPP are 0.90, 0.92, 0.50, 0.70 and 0.79, respectively. RE for Ts, Rn, SM, 

LE and GPP are 10.47%, -2.96%, -1.05%, 9.23% and -14.53%, respectively. ThisSuch simulation accuracy demonstrates 

that SVEN is capable to temporally interpolate between the remote sensing data acquisitions and interpolateof temporal 5 

interpolating the snapshot estimates or observations between remote sensing acquisitions to form continuous daily records. 

For the simulated Ts, it can be seen that during the early growth stage (before June), the SVEN model simulated quite 

accurately the temporal dynamics. However, during the dense vegetation stage (high NDVI), the model generally tends to 

overestimate Ts. Similarly, forSVEN underestimated Rn, during the early growth stage, the model underestimated Rn, while 

itbut overestimated Rn for the dense vegetation stage. These biases can also be identified from the scatterplots 10 

betweenboxplots of model residuals and NDVI.  As shown in Figure 6 (a-b), with low NDVI, (Fig. 7b), which shows that the 

model underestimates Rn in low NDVI and vice-versa. With high NDVI the simulated Ts shows overestimation. One of the 

reasons for this error could be the uncertainty in the estimated surface albedo. The albedo in the SVEN model was 

determined by the simple empirical formula as Eq. (3) with a high value in the early growth stage and a low value for dense 

vegetation. Another possible source for errors is from uncertainties in Cveg, which reflects the thermal storage property of 15 

vegetated surface in the force-restore method. Cveg was obtained fromthrough model calibration with UAS observed Ts. As 

shown in Figure 12, only three UAS data sets were available in the vegetated period. The insufficient model calibration may 

lead to the uncertainties in Cveg. 
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Figure 56. Simulated continuous daily land surface variables from 11th April to 7th October 2016 in the willow plantation. 

(a) Land surface temperature Ts, (b) Net radiation Rn, (c) Soil moisture θ, (d) Latent heat flux LE, and (e) Gross primary 

productivity GPP. The dashed area indicates the time of acquired data for model calibration. The blue and red curves 

represent simulations and observations, respectively.  5 

 

Figure 5 (c) shows that tThe estimated SMθ from the SVEN model achieved a moderate performance in terms of errorerrors 

and correlation. The model underestimates SMθ when NDVI is low, andbut overestimates SM when NDVI isθ with high 

NDVI as shown in Figure 6 7 (c). ThisSuch errors may be due to the uncertainty in the model parameters related to SM and 

the error propagation from the remote sensing based SMθ. As shown in supplemental Table S5, the effective parameter 10 

(a)

(b)

(d)

(e)

(c)

UAS data
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values of the infiltration rate for the saturated soil (Ks) and fitting parameter of the Mualem model (n) were taken as the 

mean values from the look-up table without considering ranges of variability (standard deviations in the table). In fact, only 

one parameter, SWSmax, among the three parameters related to SMθ dynamics was calibrated with UAS estimates of SMθ in 

the root zone. To keep the model simple, the SVEN model only used one soil layer to simulate the dynamics of soil water 

storage (Figure 3). Such simplification could also contribute to the relatively moderate performance of simulating θ. 5 

Additionally, the SMUAS derived θ estimates used for calibration have also errors of around 13% compared to the direct 

measurements (Wang et al., 2018a) that), which can propagateinduce uncertainties in the simulated time series through error 

propagates in the parameter calibration. Furthermore, only seven snapshot estimates from UAS were used to calibrate the 

model with an average frequency of 25 days during the period of fast growth. It can be expected that improving the better 

UAS based snapshot estimates of SMθ and increasing the number of observations for model calibration can improve the 10 

simulation performance.  

The results of the simulated LE and GPP are shown in Figure 5 6 (d) and (e), respectively. In most cases, It can be seen that 

the the simulation overestimated shows the overestimation of LE. This can be improved with better, which closely relates to 

the estimates of Rn and SMθ. From the scatterplot of Figure 5 (e), tThe simulation underestimated GPP, as the parameter 

LUEmax was assumed to be the same as from a nearly nearby beech forest (Wang et al., 2018a). Even though both sites are 15 

temperate deciduous forests, there is differencedifferences still exist between the natural beech forest and the willow forest 

bioenergy plantation. It should be noted thatNotably, there is a significant underestimation of the simulated GPP in June of 

2016 as shown in Figure 5 6 (e). Besides the possible uncertainties from the LUEmax described above, thisthe 

underestimation may also result from the observation uncertainties in partitioning of GPP and respiration in the eddy 

covariance data processing used in validation.. In the data processing, the night time net ecosystem exchanges were used to 20 

calculate the ecosystem respiration. During the night time, the eddy covariance footprint has a large coverageextended well-

beyond the edges of the willow forest of interest, due to the stable atmospheric conditions. The ploughing activitiestillage 

practices in the nearby field released CO2 to the atmosphere. ThisRapeseed fields (Fig. 1) could contribute overestimation of 

daytime ecosystem respiration, and thus also leads to the overestimation of GPP in the eddy covariance data processing.  

 25 
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Figure 67. Boxplots of the residuals for the daily simulation. (a-e) are simulation residuals and NDVI. (f-j) are simulation 

residuals and the ratio of the actual (SWin) and potential (SWinpot) solar radiation, which is an indicator of the cloudiness 

condition. (a, f) surface temperature Ts, (b, g) net radiation Rn, (c, h) soil moisture θ, (d, i) latent heat flux LE, and (e, j) 

gross primary productivity GPP. The blue dashed lines refer to the zero residuals. 

 5 

To check  

(a)

(b)

(c)

(d)
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the model simulation performance under cloudyFigure 5. Simulated continuous daily land surface variables from 11th April 

to 7th October 2016 in the willow plantation. (a) Land surface temperature Ts, (b) Net radiation Rn, (c) Soil moisture SM, (d) 

Latent heat flux LE, and (e) Gross primary productivity GPP.  

 conditions, we analysed the relationship between model residuals and the ratio representing the diffuse radiation fraction 

(Figure 7 f-j). There were no significant differences for the residuals of the simulated Ts, Rn, θ, LE and GPP under low and 5 

high diffuse radiation fraction conditions. Due to the ability of UAS to acquire data in both cloud cover and clear sky 

conditions, the SVEN model was capable of interpolating land surface variables under cloud cover conditions with similar 

skill as under clear sky conditions.  

 

To check whether the model simulations are be good under overcast conditions, we analysed the relationship between model 10 

residuals and the ratio representing the diffuse radiation fraction and NDVI (Figure 6). Residuals of the simulated Ts, Rn, 

SM and LE do not show difference between low and high diffuse radiation fraction. The SVEN model was capable of 

interpolating LE and SM under cloud cover conditions with similar skill as under clear sky conditions but not GPP. GPP was 

underestimated under high diffuse radiation conditions and overestimated in the low diffuse radiation conditions. This is due 

to that the model did not consider the enhancement diffuse radiation effects on the plant carbon assimilation rate (Mercado et 15 

al., 2009; Roderick et al., 2001). It could be improved by incorporating an index representing the diffuse radiation fraction as 

Wang et al. (2018a), if higher accuracy is needed.  

 

Figure 6. Model residuals for the daily simulation. (a-e) are relationship between model residuals and the ratio of the actual 

(SWin) and potential (SWinpot), which is an indicator for the diffuse radiation fraction. (f-j) are relationship between model 20 

residuals and NDVI. (a, f) surface temperature Ts, (b, g) net radiation Rn, (c, h) soil moisture SM, (d, i) latent heat flux LE, 

and (e, j) gross primary productivity GPP. 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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4.3 Validation at half-hourly and monthly time scales  

Validation of the half-hourly and monthly Ts, Rn, SMθ, LE and GPP by the SVEN model is shown in Figure 78. The 

simulated half-hourly Ts, Rn, SMθ, LE and GPP captured the temporal dynamics of land surface fluxes at this site. RMSDs 

for half-hourly Ts, Rn, SMθ, LE and GPP are 3.04 °C, 63.82 W∙m-2, 1.99% m3∙m-3, 56.37 W∙m-2 and 6.14 µmol∙C∙m-2∙s-1, 

respectively. R2 for Ts, Rn, SM, LE and GPP are 0.83, 0.89, 0.49, 0.78 and 0.77, respectively. At the monthly time scale, 5 

RMSDs for Ts, Rn, SM, LE and GPP are 2.10 °C, 10.96 W∙m-2, 1.86% m3∙m-3, 9.09 W∙m-2 and 1.82 g∙C∙m-2∙d-1, respectively. 

R2 for Ts, Rn, SM, LE and GPP are 0.96, 0.94, 0.61, 0.97 and 0.97, respectively. The metrics of RE for hourly and monthly 

scales are not shown, as they are the same as the RE at the daily scale. Compared to the simulation performance at the daily 

time scale (as shown in Table 3), the half-hourly simulation has higher RMSDs and lower R2. However, the monthly 

simulation has betterSuch performance than the may be due to that parts of SVEN modules are more suitable for daily with 10 

lower RMSDs and slightly higher R2. When performing temporal averages, random errors cancel out. Additionally, thescale 

simulation instead of the half-hourly. For instance, the simulation of LE in SVEN model is based on the Priestley-Taylor 

equation originally applied to estimate monthly LE (Fisher et al., 2008) and was expended to be applied at daily steps 

(Garcia et al., 2013), but it is not appropriate for representing LE processes at sub-daily time scales.  

Regarding the monthly time scale, RMSDs for Ts, Rn, θ, LE and GPP are 2.10 °C, 10.96 W∙m-2, 1.86% m3∙m-3, 9.09 W∙m-2 15 

and 1.82 g∙C∙m-2∙d-1, respectively. The monthly simulation has lower RMSDs and slightly higher R2 compared to the daily 

simulation. The improvement of model performance from the half-hourly to daily and monthly time scales indicates the 

model errors can be reduced by aggregating the simulation outputs to longer time scales. ThisSuch accuracy also implies that 

the SVEN model has greater potential to temporally interpolate remote sensing observations at daily and monthly time 

scales, which are more relevant for applications in agriculture and ecosystem management.  20 

 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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Figure 78. Validation of the gap filled land surface variables at daily, half-hourly and monthly time scales in the willow 

plantation. (a-e) are at daily time scale, (f-j) are at half -hourly time scale, and (f-jk-o) are at the monthly time scale. (a, f, k) 

land surface temperature Ts, (b, g, l) net radiation Rn, (c, h, m) soil moisture SMθ, (d, iI, m) latent heat flux LE, and (e, j, o) 

gross primary productivity GPP. The metrics of RE for hourly and monthly scales are not shown, as they are the same as the 5 

RE at the daily scale. 

 

Table 3. Comparison of model simulation performance at half -hourly, daily and monthly time scales. 

Time scale Statistics Ts Rn SMθ LE GPP 

Half hourly 

R2 0.83 0.89 0.49 0.78 0.77 

RMSD 3.04 °C 63.82 W∙m-2 1.99% m3∙m-3 56.37 W∙m-2 6.14 µmol∙C∙m-2∙s-1 

NRMSD 9.63% 8.41% 19.15% 10.49% 7.57% 

Daily 

R2 0.9 0.92 0.5 0.7 0.79 

RMSD 2.35 °C 14.49 W∙m-2 1.98% m3∙m-3 16.62 W∙m-2 3.01 g∙C∙m-2∙d-1 

NRMSD 11.77% 6.65% 19.53% 14.77% 12.97% 

Monthly 

R2 0.96 0.94 0.61 0.97 0.97 

RMSD 2.1 °C 10.96 W∙m-2 1.86% m3∙m-3 9.09 W∙m-2 1.82 g∙C∙m-2∙d-1 

NRMSD 18.49% 9.29% 25.91% 17.88% 12.42% 
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4.4 Potential applications and improvement of SVEN model 

This study showed that SVEN can be used as a tool to temporally interpolate land surface variables between remote sensing 

acquisitions with few meteorological data. In the statistical approaches, Alfieri et al. (2017) identified that a return interval of 

remote sensing observations should be no less than 5 days to accurately interpolate daily ET with relative errors less than 

20%. The results shown from our model based interpolation approach on in a willow forest, suggests that the revisit time for 5 

the remote sensing observations can potentially be extended. For instance, this study demonstrated that seven instantaneous 

observations/simulations with an averaged revisit time of 25 days can be used to accurately interpolate the daily ET for 180 

days. This comparison shows the great benefits of using the model based approach to continuously estimate land surface 

fluxes from remote sensing based snapshot observations or simulationsestimates. The model based approach can be used to 

estimate ecosystem states and flux exchange with the atmosphere for a landscape (e.g. crop fields) with temporally sparse 10 

UAS flight campaigns. This approach has great potential for agricultural ecosystem monitoring and management. The 

interpolated continuous record of land surface variables can also further facilitate our understanding onof the temporal 

dynamics of land surface-atmosphere flux exchanges.  

On the other handside, this study also provides ideas to utilize remote sensing estimates or observations to improve land 

surface modeling. Traditionally, the applicability of land surface models is restricted limited due to complex model 15 

parameterization and the limited availability of “ground truth” or in-situ data for parameter calibration. As shown in this 

study, one solution for this limitation is to usinge remote sensing based simulations observations or estimates as “ground 

truth” for model calibration (Stisen et al., 2011; Zhang et al., 2009). This study calibrated the model parameters using 

through remote sensing snapshot (UAS) estimates of land surface variables such as Ts and SMθ, and provided an example of 

integrating remote sensing data and process-based models. Other variables such as Rn, ET and GPP as shown in Figure 4 20 

could also be incorporated for model calibration.  

Compared to complex land surface models, this approach is simple and efficient. , It is especially suitable for operational 

applications to interpolate the remote sensing based snapshot estimates into the temporally continuous values.  

Both the look-up table and parameter optimization approaches were used in this study to obtain the parameter values. For 

instance, we used a look-up table (Carsel and Parrish, 1988) to get values of the fitting parameter of the Mualem model (n) 25 

and the infiltration rate for the saturated soil (Ks). The advantage of using the look-up table approach is that it can be easily 

applied according to the site conditions, such as vegetation types, soil texture and soil depth. However, this approach 

requires prior knowledge on the site. Insufficient knowledge of the site conditions may lead to the selection of unsuitable 

parameter values from the look-up tables. For instance, Ks may vary at different soil layers and it could be difficult to select 

an effective Ks to represent the condition for the entire soil layers. Regarding the optimization approach, this method has an 30 

advantage to achieve good fitting performance with UAS derived observations or estimates. However, this optimization 

approach needs to consider the number of observations and calibration parameters, parameter equifinality and multi-

objective optimization (Her and Chaubey, 2015). For instance, due to limited fourteen UAS derived Ts or θ available for 
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calibration, we selected only four parameters (Csat, b, Cveg, and SWSmax), which are hard to obtain from the look-up table 

approach with insufficient prior knowledge of the site, for optimization. To deal with parameter equifinality and multi-

objective optimization, the Monte Carlo optimization was combined with the Pareto front analysis in this study. Other 

approaches e.g. Bayesian analysis could also be utilized to calibrate the model parameter with multiple objectives and 

separate the uncertainty sources: input, parameters and model structure (Vrugt et al., 2009). It can be a useful tool for the 5 

model calibration and quantification of the simulated uncertainty. Besides the look-up table and optimization approaches, 

another promising approach is to estimate soil or plant hydraulic properties from imaging spectroscopy (Goldshleger et al., 

2012; Nocita et al., 2015) or thermal imaging data (Jones, 2004).  

This model based interpolation approach can potentially also be applied with the space-borne remote sensing measurements 

to facilitate the temporally continuous estimation of large-scale land surface fluxes. The combination of the process-based 10 

models and satellite observations (e.g. Sentinel or MODIS land surface temperature and GPP products) can reduce the need 

of in-situ data for parameterizations. The temporally continuous estimates of land surface fluxes from satellite data facilitate 

our understanding of the temporal upscaling from instantaneous estimates to the daily or longer time scales to improve our 

knowledge of the coupled energy, water and carbon cycles at various temporal scales, particularly for data-scarcity regions. 

The practicality of the proposed approach for describing surface fluxes and water budgets in sites without flux stations and 15 

direct field observations. It can be used to estimate ecosystem states and flux exchange with the atmosphere for a larger part 

of a landscape (e.g. farm) with temporally sparse UAS flight campaigns and online meteorological data. This has great 

potential to improve the management of agriculture ecosystems. for  and forecastingHowever, there are also challenges and 

limitations for widespread applications of the proposed model to other regions or with satellite Earth observation. SVEN also 

requires further improvement to enhance its ability for large-scale applications. For instance, the current soil moisture 20 

module in SVEN model is a simple water balance model with considering one soil layer, which has limited capacity to 

simulate soil water dynamics particularly in regions with complex landforms. In addition, the soil layer depth refers to the 

maximum root water uptake depth, which can vary with time (Guderle and Hildebrandt, 2015), but SVEN simplified this soil 

depth parameter to keep it consistent. Thus, in our study, SVEN only achieved moderate performance to simulate soil water 

dynamics and it can be expected that in drywater limited  controlleddrylands, soil moisture simulation has a larger impact on 25 

the ET than in our site regions this has a larger impact on the ET than in our site. Nonetheless, SVEN soil moisture 

estimates, relying on precipitation and water balance, should be in principle more accurate than those using thermal inertia 

(Garcia et al., 2013) , the original complementary approach relying on VPD (Fisher et al., 2008) or soil moisture proxies 

using antecedent precipitation proxies (Morillas et al., 2013; Zhang et al., 2010). Compared to the Penman-Monteith 

approach, the Priestley–Taylor approach may need adjustment of the aerodynamic term, when extending the study from 30 

radiation controlled sites to arid climates (Tadesse et al., 2018; Xiaoying and Erda, 2005). When applying SVEN to the large 

scale, the model needs to consider the sub-grid heterogeneity and identify the effective values for model parameters, e.g. soil 

saturated hydraulic conductance. The plant functional type and soil type parameterization scheme for different ecosystems 

and environmental conditions would be needed. Furthermore, there also remain challenges to get the reliability of 
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atmospheric forcing such as radiation, precipitation and wind speed. Accurate gridded meteorological data from reanalysis, 

remote sensing or weather forecasting models as forcing will be needed. Moreover, satellite based observations or estimates 

may have larger uncertainties due to the coarser spatial resolution than UAS estimates. Applying SVEN with satellite data to 

large scale, we also need to evaluate the accuracy of satellite products and consider the error propagation from remote 

sensing estimates to the simulation outputs. In addition, satellite data in the optical and thermal ranges can only provide 5 

observations during the cloudless conditions. The satellite data based model calibration may lead model estimates biased 

toward sunny weather conditions. However, SVEN soil moisture estimates, relying on precipitation and water balance, 

should be in principle more accurate than those using thermal inertia (Garcia et al., 2013) , the original complementary 

approach relying on VPD (Fisher et al., 2008) or soil moisture proxies using antecedent precipitation proxies (Morillas et al., 

2013; Zhang et al., ) 10 

Both the look-up table and parameter optimization approaches were used in this study to obtain the parameter values. For 

instance, we used a look-up table (Carsel and Parrish, 1988) to get values of the fitting parameter of the Mualem model (n) 

and the infiltration rate for the saturated soil (Ks). The advantage of using the look-up table approach is that it can be easily 

applied according to the site conditions, such as vegetation types, soil texture and soil depth. However, this approach 

requires prior knowledge on the site. Insufficient knowledge on the site conditions may lead to the selection of unsuitable 15 

parameter values from the look-up tables. For instance, Ks may vary at different soil layers and it could be difficult to select 

an effective Ks to represent the condition for the entire soil layers.  

Regarding the optimization approach, this method has an advantage to achieve a good fitting performance with UAS 

observations or estimates. However, this optimization approach needs to consider the number of observations and calibration 

parameters, parameter equifinality and multi-objective optimization (Her and Chaubey, 2015). For instance, due to limited 20 

fourteen UAS Ts or SM available for calibration, we selected only four parameters (Csat, b, Cveg, and SWSmax), which are 

hard to obtain from the look-up table approach with insufficient prior knowledge of the site, for optimization. To deal with 

parameter equifinality and multi-objective optimization, the Monte Carlo optimization was combined with the Pareto front 

analysis in this study. Other approaches e.g. Bayesian analysis could also be utilized to calibrate the model parameter with 

multiple objectives and separate the uncertainty sources: input, parameters and model structure (Vrugt et al., 2009). It can be 25 

a useful tool for the model calibration and quantification of the simulated uncertainty. Besides the look-up table and 

optimization approaches, another promising approach is to estimate soil or plant hydraulic properties from imaging 

spectroscopy (Goldshleger et al., 2012; Nocita et al., 2015) or thermal imaging data (Jones, 2004).  

5 Conclusion 

Continuous estimation of land surface variables, such as surface temperature, net radiation, soil moisture, evapotranspiration 30 

and gross primary productivity at daily or monthly time scales is important for hydrological and ecological applications. 

However, remotely sensed observations can bewere limited to directly used to estimate the instantaneous status of land 
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surface variables at the time of data acquisitions. Therefore, to continuously estimate land surface variables from remote 

sensing, this study developed a tool to fill the temporal gaps of land surface fluxes between data acquisitions and interpolate 

instantaneous estimates into continuous records. The tool is a dynamic Soil Vegetation Atmosphere Transfer model, the Soil-

Vegetation, Energy, water and CO2 traNsfer model (SVEN), which is a parsimonious model to continuously simulate land 

surface variables with meteorological forcing and vegetation indices as model forcing. To interpolate the snapshot estimates 5 

from UAS, this study conducted the model parameter calibration to integrate the SVEN model and the snapshot estimates of 

surface temperature and soil moisture at the time of flight. ThisSuch model-data integration provides an effective way to 

continuously estimate land surface fluxes from remotely sensed observations. A case study was conducted with seven 

temporally sparse observations from UAS multispectral and thermal sensors in a Danish willow bioenergy plantation (DK-

RCW) during the growing season of 2016 (180 days). Satisfactory results were achieved with the root mean square 10 

deviations for the simulated daily land surface temperature, net radiation, soil moisture, latent heat flux and gross primary 

productivity equal to 2.35 °C, 14.49 W∙m-2, 1.98% m3∙m-3, 16.62 W∙m-2 and 3.01 g∙C∙m-2∙d-1, respectively. 

 This model based interpolation method has potential not just with UAS but also with remotely sensed data from other 

platforms, e.g. satellite and manned airborne systems, for a range of spatial and temporal scales. similar to more complex 

existing . While LSM would require information about  for parameterization, the possibility to calibrate several model 15 

parameters using ET or soil moisture estimates from satellite sensors, as done in this study with UAS, reducing the need of 

in situ data for parameterizations. KALMAN FILTER ? However, uncertainties related with  Additionally, the combination 

of the model based interpolation approach and remotely sensed observations (e.g. Sentinel or MODIS land surface 

temperature and GPP products) can facilitate our understanding on the temporal upscaling of instantaneous estimates to the 

daily or longer time scales to improve our knowledge of the coupled energy, water and carbon cycles at various temporal 20 

scales.  
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