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Abstract.
Ensemble estimates based on multiple datasets are fre-

quently applied once many datasets are available for the same
climatic variable. Uncertainty estimate based on the differ-
ence between the ensemble datasets is always provided along5

with the ensemble mean estimate to show to what extent the
ensemble members are consistent with each other. However,
one fundamental flaw of classic uncertainty estimates is that
only the uncertainty in one dimension (either the temporal
variability or the spatial heterogeneity) can be considered,10

whereas the variation along the other dimension is dismissed
due to limitations in algorithms for classic uncertainty esti-
mates, resulting in an incomplete assessment of the uncer-
tainties. This study introduces a three-dimensional variance
partitioning approach and proposes a new uncertainty esti-15

mation (Ue) that includes the data uncertainties in both spa-
tiotemporal scales. The new approach avoids pre-averaging
in either of the spatiotemporal dimensions and as a result,
the Ue estimate is around 20% higher than the classic un-
certainty metrics. The deviation of Ue from the classic met-20

rics is apparent for regions with strong spatial heterogeneity
and where the variations significantly differ in temporal and
spatial scales. This shows that classic metrics underestimate
the uncertainty through averaging, which means a loss of in-
formation in the variations across spatiotemporal scales. De-25

composing the formula for Ue shows that Ue has integrated
four different variations across the ensemble dataset mem-
bers, while only two of the components are represented in
the classic uncertainty estimates. This analysis of the decom-
position explains the correlation as well as the differences30

between the newly proposed Ue and the two classic uncer-
tainty metrics. The new approach is implemented and ana-

lyzed with multiple precipitation products of different types
(e.g., gauge-based products, merged products and GCMs)
which contain different sources of uncertainties with differ- 35

ent magnitudes. Ue of the gauge-based precipitation prod-
ucts is the smallest, while Ue of the other products is gen-
erally larger because other uncertainty sources are included
and the constraints of the observations are not as strong as in
gauge-based products. This new three-dimensional approach 40

is flexible in its structure and particularly suitable for a com-
prehensive assessment of multiple datasets over large regions
within any given period.

Copyright statement.

1 Introduction 45

With the technical developments in monitoring natural cli-
mate variables and the increasing knowledge of the physi-
cal mechanisms in the climate system, many institutes have
the ability to provide different kinds of climate datasets.
Taking precipitation, which is the dominant variable in 50

the land water cycle, as an example, there are point mea-
surements, such as GHCN-D (global historical climatology
network-daily, Menne et al., 2012), gridded products based
on gauge measurements and interpolation (e.g., CRU, Har-
ris et al., 2014), products derived from remote sensing (e.g., 55

the Tropical Rainfall Measuring Mission - TRMM), reanal-
ysis datasets (e.g., NCEP) and estimates from models (e.g.,
GCMs). These products have been developed using differ-
ent original data, technologies and model settings for vari-
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ous purposes (Phillips and Gleckler, 2006; Tapiador et al.,
2012; Beck et al., 2017; Sun et al., 2018). As a result, there
are differences between the various products due to measure-
ment errors, model biases, or chaotic noise. The uncertainty
is thus regarded as the deviation of these model results from5

their real values.
However, the real values are difficult to measure and the

uncertainties are difficult to remove from the datasets. Thus,
using ensembles consisting of multiple datasets to generate a
weighted average has become very popular in climate-related10

research. The ensemble means of multiple datasets are con-
sidered more reliable estimates than a single dataset. For ex-
ample, IPCC uses 42 CMIP5 (Coupled Model Intercompar-
ison Project Phase 5) models to show historical temperature
changes and 39 CMIP5 models to average future tempera-15

ture projections in RCP 8.5 scenario (Figure SPM.7 in IPCC,
2013b). Schewe et al. (2014) use nine global hydrologi-
cal models to evaluate global water scarcity under climate
change. GLDAS (Global Land Data Assimilation System)
involves four different land surface models (Rodell et al.,20

2004) and GRACE (Gravity Recovery and Climate Exper-
iment) provides estimates from three independent institutes
(Landerer and Swenson, 2012). Using multiple datasets re-
duces the dependence on a single dataset and eliminates the
random variations associated to biases or noise in each single25

model estimate.
Along with the ensemble means, uncertainty information

is recommended to be presented because the level of uncer-
tainty determines the reliability of the ensemble results. In
general, uncertainties can be quantified as the range of max-30

imum and minimum values (i.e., Vmax−Vmin), the value
difference at different quantiles (e.g., V5%−V95%), the con-
sistency of models (ratio of models following a certain pat-
tern to the total number of models), the variation (σ2) or the
standard deviation (σ) of multiple model estimations. These35

metrics describe the differences between multiple model es-
timates in different aspects. Among the metrics, the standard
deviation (σ) is the most used because it has the same unit as
the original dataset. Moreover, it is less sensitive to extreme
samples and to the number of datasets used for the investi-40

gation. The ratio of the standard deviation (σ) to the mean
value (µ), the so-called coefficient of variance (CV ), repre-
senting the dispersion or spread of the distribution of various
ensemble members (Everitt, 2013), is a unitless value which
also shows the degree of uncertainty efficiently.45

Depending on the purpose of data evaluation, the uncer-
tainty between the datasets can be displayed or visualized in
space to show the spatial heterogeneity. For example, the pre-
dicted future temperature increase has a higher significance
in different models in the northern high-latitudes than in the50

middle-latitudes (Box TS.6 Figure 1 in IPCC, 2013a). An-
other typical implementation is to evaluate the evolution of
the uncertainty over time. In general, the range of the un-
certainty decreases in the historical period over time because
more observations have been accessible recently. But the un-55

certainty increases in future projections because of the in-
creasing spread of model estimates (Figure SPM.7 in IPCC,
2013b), indicating a decreasing of consistency but increasing
variation across various datasets.

The two kinds of ways can easily show the spatial dis- 60

tribution or the temporal evolution of the uncertainty. But a
short-coming is apparent, as the variation along one dimen-
sion (time or space) has to be collapsed to generate the mean
values when we attempt to assess the uncertainty for the other
dimension (space or time). For example, the averaging over 65

a specific region to obtain the spatial mean is estimated at
each time step before obtaining the temporal evolution of the
model uncertainty (red flowcharts in Figure 1). In contrast,
averaging over a certain temporal period to obtain the tem-
poral mean is necessary for each grid cell when estimating 70

the spatial variations of model uncertainties (blue flowcharts
in Figure 1). The averaging, in either dimension, means a loss
of information about the variation in the data. Any changes
in the variation albeit leaves the mean values unchanged will
not be propagated to the global uncertainty estimation. The 75

result of this is that the variations between datasets is not
fully considered when estimating the uncertainties. In other
words, neither of the uncertainty estimates can represent the
whole of the differences between multiple datasets. The un-
certainty can be underestimated, and the similarity of the 80

datasets thus overestimated. Indeed, the current literature has
not paid attention to the ignoring of variation after averaging
as well as its influence on the assessment of the uncertainty.

Space Time

Spatial mean

Temporal	evolution	 of	
the	spatial	mean	

Temporalmean

Spatial	distribution	 of	
the	temporal	mean

Uncertainty evolution
across time

Uncertainty distribution
over space

Figure 1. Two classic uncertainty assessments in the current litera-
ture: the temporal evolution of the model uncertainty (flowcharts in
red) and the spatial distribution of the model uncertainty (flowcharts
in blue). Each of these uncertainty estimates has averaged over one
of the dimensions, either space or time, which will lead to losing
information about the corresponding dimension.

The total variation across multiple datasets is contributed
by the spatial heterogeneity, temporal variability and the 85
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model uncertainties. To some degree, the model uncertainty
is similar to other dimensions as a variation along a third
dimension (ensemble dimension). The key to evaluating the
model uncertainty is to decompose the variation caused by
differences between the datasets from the other two con-5

tributors. Although decomposing the variation by means of
ANalysis Of VAriance (ANOVA) is often seen in hydro-
metrological studies, this is designed to separate the pro-
cess uncertainties generated in different model processes
that propagate to the final variation. For example, Déqué10

et al. (2007) decomposed the uncertainties of Regional Cli-
mate Models (RCM) into four sources of uncertainty: sam-
pling uncertainty, model uncertainty, radiative uncertainty
and boundary uncertainty. Bosshard et al. (2013) decom-
posed the uncertainty in river streamflow projections to un-15

certainties from climate models, statistical post-processing
schemes and hydrological models. These implementations
differ from the purpose of the present study because they fail
to separate the uncertainties from the spatiotemporal varia-
tions because spatiotemporal averaging was already applied20

in the estimation process. Sun et al. (2010, 2012) for the first
time decomposed the total variation into temporal variation
and spatial heterogeneity. They concluded that the variations
along the spatial dimension contributed more to the total vari-
ation than did the temporal variabilities. However, their ap-25

proach is only valid for one single dataset and is thus not able
to evaluate the uncertainties if multiple datasets describe the
same variable. But a generalized approach should be based
on Sun’s work, as one more dimension can be added for a
specific analysis of the uncertainties.30

In the present study, we aim to introduce a new approach to
estimating uncertainty of multiple datasets. The new uncer-
tainty metric should avoid any averaging over time or space,
so that all information along each of these two dimensions
can be maintained for the assessment of the uncertainty. Mul-35

tiple precipitation products will be used to display the results
and explain the specifics of the new approach. In Section 2,
the details of the three-dimensional variance partitioning ap-
proach are introduced. The characteristics of multiple precip-
itation datasets and estimations of two other classic uncer-40

tainty metrics are shown in Section 3. The results of the new
approach for precipitation products are discussed in terms of
the types of precipitation datasets in Section 4. The differ-
ences between the new uncertainty estimate and two selected
classic metrics used in uncertainty analysis are analyzed and45

discussed in Section 5. A discussion and some conclusions
follow in Section 6.

2 Method and datasets

2.1 Mathematical Derivation

Multiple datasets recording the same climatic variable should50

be reorganized into a three-dimensional database, using the

dimensions of (1) time with a regular time interval (e.g.
monthly or annual), (2) space with regular spatial units, with
all the grids re-organized into one dimension from the orig-
inal longitude–latitude grids, and (3) ensemble as the third 55

dimension describing the different ensemble datasets. Thus,
the dataset array can be re-organized to be

Z = [zijk] (1)

with the i-th time step (i= 1,2, . . . ,m), j-th grid (j =
1,2, . . . ,n), and k-th ensemble member or ensemble model 60

(k = 1,2, . . . , l).
We define the three dimensions to be time, space and en-

semble dimension, and the means for these three dimensions
to be the temporal mean, spatial mean and ensemble mean.
The corresponding variances are referred to as the temporal 65

variance, spatial variance, and ensemble variance. We also
define the grand mean (µ), grand variance (σ2) and the total
sum of squares (SST ) (or total variation) across the entire
database:

µ=

m∑
i=1

n∑
j=1

l∑
k=1

zijk/(mnl) (2) 70

σ2 =
SST

mnl
(3)

SST =

m∑
i=1

n∑
j=1

l∑
k=1

(zijk −µ)2. (4)

The total variation receives contributions from the variations 75

along all three dimensions (Eq. 4). It can be reformulated as
an expression in terms of the variations along each of the
three different dimensions. For instance, the derivation of the
total variation can start from the third ensemble dimension.
For a specific kth ensemble member, the grand mean is for- 80

mulated as µts[k] =
∑m

i=1

∑n
j=1 zijk/(mn), leading to the

total sum of squares being rewritten as

SST =

m∑
i=1

n∑
j=1

l∑
k=1

(zijk −µts[k] +µts[k]−µ)2. (5)

The SST can be further expanded and rearranged as

SST =

m∑
i=1

n∑
j=1

l∑
k=1

(zijk −µts[k])
2

+2×
l∑

k=1

(µts[k]−µ)

[
m∑
i=1

n∑
j=1

(zijk −µts[k])

]
︸ ︷︷ ︸

=0

+

[
m∑
i=1

n∑
j=1

]
︸ ︷︷ ︸

=mn

l∑
k=1

(µts[k]−µ)2
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(6)

SST =

m∑
i=1

n∑
j=1

l∑
k=1

(zijk −µts[k])
2
+mn

l∑
k=1

(µts[k]−µ)2

(7)

SST =mn

l∑
k=1

σ2
ts[k] +mnlσ2(µts), (8)5

where σ2(µts) is the variation of the grand mean for each en-
semble member and σ2

ts[k] is the grand variance in the spatial
and temporal dimensions for the ensemble member k. More-
over, σ2

ts[k] can be split using the mean of the spatial varia-
tion at each time step σ2

s [k, :] and the variation of the spatial10

mean σ2(µs[k, :]), denoted as in Eq. (9) with its derivation
given in Eqs (10)–(17).

σ2
ts[k] = σ2

s [k, :] +σ2(µs[k, :]). (9)

For a specific dataset k, the grand mean µts[k] at the spa-
tiotemporal scale is15

µts[k] =
1

mn

m∑
i=1

n∑
j=1

zijk. (10)

The total sum of squares of the differences from the grand
mean of this ensemble member is

SST [k] =

m∑
i=1

n∑
j=1

(zijk −µts[k])
2 (11)

and the grand variance σ2
ts is20

σ2
ts[k] =

1

mn

m∑
i=1

n∑
j=1

(zijk −µts[k])
2. (12)

The derivation can start from either the spatial dimension or
the temporal dimension. If the derivation starts from the spa-
tial dimension, Eq. (11) can be rewritten by incorporating the
spatial mean of each time step µs[k, i] =

∑l
j=1 zijk/n25

SST [k] =

m∑
i=1

n∑
j=1

(zijk −µs[k, i] +µs[k,i]−µts[k])
2.

(13)

This can be expanded and then rearranged as

SST [k] =

m∑
i=1

n∑
j=1

(Zijk −µs[k, i])
2

+2×
m∑
i=1

(µs[k, i]−µts[k])×

[
n∑

j=1

(Zijk −µs[k,i])

]
︸ ︷︷ ︸

=0

+

[
n∑

j=1

]
︸ ︷︷ ︸

=n

m∑
i=1

(µs[k, i]−µts[k])
2

(14)

SST [k] =

m∑
i=1

n∑
j=1

(Zijk −µs[k, i])
2
+n

m∑
i=1

(µs[k, i]−µts[k])
2

(15) 30

SST [k] = n

m∑
i=1

σ2
s [k, i] +nmσ2(µs[k, :])

=nmσ2
s [k, :] +mnσ2(µs[k, :]).

(16)

The grand variance of this specific dataset is Eq. 17 (identical
to Eq. 9).

σ2
ts[k] =

SST [k]

mn
= σ2

s [k, :] +σ2(µs[k, :]). (17) 35

Here, σ2
s [k, :] is the mean of the spatial variation at each time

step and σ2(µs[k, :]) is the variation of the spatial mean.
Or if we started the derivation from the time dimension,

the grand variance can be split using the average of the tem-
poral variation from all regions σ2

t [:,k] and the spatial varia- 40

tion of the temporal mean σ2(µt[:,k]):

σ2
ts[k] = σ2

t [:,k] +σ2(µt[:,k]). (18)

With Eq. (9) or Eq. (17) and Eq. (18), we obtain

σ2
ts[k] =

1

2

{
[σ2(µt[:,k]) +σ2

s [k, :]] + [σ2(µs[k, :]) +σ2
t [:,k]]

}
.

(19)

Substituting Eq. (19) into Eq. (8) results in 45

SST =
mn

2

l∑
k=1

[σ2(µt[:,k]) +σ2
s [k, :]]

+
mn

2

l∑
k=1

[σ2(µs[k, :]) +σ2
t [:,k]] +mnlσ2(µts).
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(20)

The first term on the right-hand side of Eq. (20) can be
transformed to

mn

2

l∑
k=1

[σ2(µt[:,k]) +σ2
s [k, :]] =mnl

[
σ2
s_t +σ2

s

2

]
, (21)

where σ2
s_t is the mean value across ensemble members of5

the spatial variation of the temporal mean, and σ2
s represents

the grand mean of σ2
s , which is the grand variance across the

temporal and ensemble dimensions. Eq. (20) then becomes

SST =mnl

[
σ2
s_t +σ2

s

2

]
+mnl

[
σ2
t_s +σ2

t

2

]
+mnlσ2

e(µts),

(22)

where σ2
t_s denotes the mean value across ensemble members10

of the temporal variation of the spatial mean, σ2
t denotes the

grand mean of σ2
t , the grand variance across space and en-

semble dimensions, and σ2
e(µts) denotes the variation across

ensemble members of the spatial-temporal means µts.
Similarly, the global derivation of SST can start from any15

of the other two dimensions (i.e., space or time). This deriva-
tion can then be formulated as

SST =mnl

[
σ2
s_e +σ2

s

2

]
+mnl

[
σ2
e_s +σ2

e

2

]
+mnlσ2

t (µse)

(23)

SST =mnl

[
σ2
e_t +σ2

e

2

]
+mnl

[
σ2
t_e +σ2

t

2

]
+mnlσ2

s(µet),

(24)20

where each variable is defined in Appendix A. Averaging
these three expressions of SST defined in Eqs (22)–(24)
leads to

SST =
mnl

3
[
σ2
t_s +σ2

t_e

2
+σ2

t +σ2
t (µse)]

+
mnl

3
[
σ2
s_t +σ2

s_e

2
+σ2

s +σ2
s(µet)]

+
mnl

3
[
σ2
e_t +σ2

e_s

2
+σ2

e +σ2
e(µts)].

(25)

With the total number of degrees of freedom being m× 25

n× l, the grand variance is expressed as

σ2 =
1

3
[
σ2
t_s +σ2

t_e

2
+σ2

t +σ2
t (µse)]︸ ︷︷ ︸

Vt

+
1

3
[
σ2
s_t +σ2

s_e

2
+σ2

s +σ2
s(µet)]︸ ︷︷ ︸

Vs

+
1

3
[
σ2
e_t +σ2

e_s

2
+σ2

e +σ2
e(µts)]︸ ︷︷ ︸

Ve

,

(26)

where Vt, Vs and Ve denote the temporal, spatial and ensem-
ble variances, respectively. An illustration of the present ap-
proach is shown in Figure 2 to facilitate the understanding of 30

the partitioning results. The original database, consisting of
multiple datasets, is re-organized into three dimensions (grey
in the centre). Zones with different colors represent different
processes of the original database from different dimensions
(see the details in the caption of Figure 2 and Appendix A). 35

Note that the ensemble variance Ve in Eq. (26) is a com-
bination of several variations across the ensemble mem-
bers. The four components are the variations of temporal
and spatial values (σ2

e , zone B3), temporal mean (σ2
e_t, zone

C5), spatial mean (σ2
e_s, zone C6) and the grand variance 40

of the spatiotemporal mean for a single ensemble mem-
ber (σ2

e(µts), zone F3). Similarly, the other variances only
rely on the variances in the corresponding dimension, which
shows the independence of the three dimensions. This also is
an illustration of the fact that the uncertainty across ensem- 45

ble members is similar to the temporal variation and spatial
heterogeneity.

2.2 Definitions of the metrics for model uncertainty

Although the total variation is a result of contributions from
the spatial heterogeneity, temporal variability and the uncer- 50

tainties across different datasets, we mainly focus on the vari-
ance in the ensemble dimension because the spatial or tempo-
ral variation is natural for climatic variables. The uncertainty
of ensemble members is normalized as the ratio of the square
root of the ensemble variance (Ve) to the grand mean value 55

of the datasets (µ).

Ue =
√
Ve/µ (27)

Two classic metrics used for uncertainty estimates are also
introduced for comparison. For each basic spatial unit (in
the present study this means a grid cell), we can estimate 60

the temporal mean of the target variable in each ensemble
dataset as µt[j,k], j = 1, ...,n represents the spatial unit, and
k = 1, ..., l represents the index of the dataset. Then we can
estimate the variations across different ensemble datasets of
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Figure 2. Partitioning the temporal-spatial-ensemble variance. The original database is re-organized into three dimensions: time, space and
ensemble. Zones with different colours represent different processes based on the original database through different dimensions. The labels
of the zones are listed on the right; detailed definitions can be found in Appendix A. The grand variance is σ2 and the grand mean is µ.
The subscripts t, s, and e indicate dimensions of time, space and ensemble, respectively. In Zone A, µx shows the mean values across the
x-dimension (x=t, s or e); in Zone B, σ2

x indicates the variation across the x-dimension; in Zone C, σ2
x_y indicates the variation across

the x-dimension of µy (y=t, s or e); in Zone D µxy indicates the means across the x- and y-dimensions; in Zone E, σ2
xy indicates the

variation across the x- and y-dimensions; in Zone F, σ2
x(µyz) indicates the variation across the x-dimension of the means across the y- and

z-dimensions (z=t, s or e).

the mean values as σ2(µt[j, :]) (expressed as σ2
e_t[j] in this

study). The spatial distribution of the σ2
e_t shows the magni-

tude of the model uncertainty over space and its root σe_t[j]
is the model deviation at each spatial unit. The estimate of
this model deviation over the entire region can be expressed5

as

N.s.std=

√
σ2
e_t/µ=

1

µ

√√√√ 1

n

n∑
j=1

σ2
e_t[j]. (28)

For each spatial unit, σ2
e_t[j] (j = 1, ...,n) can take a different

value. The values for all the grid cells are averaged to obtain
σ2
e_t, which shows the general magnitude of the ensemble10

variation over space. The quantity N.s.std is normalized as

the ratio of the square root of the averaged variations
√
σ2
e_t

to the grand mean of all the datasets µ.
Similarly, the model uncertainty can be normalized as the

ratio of the square root of the averaged ensemble variation15

but at different time steps σ2
e_s to the entire means:

N.t.std=

√
σ2
e_s/µ=

1

µ

√√√√ 1

m

m∑
i=1

σ2
e_s[i], (29)

where σ2
e_s[i] (i= 1, ...,m) is the variation across different

datasets of the spatial means of each product at each time
unit µs[i,k],(i= 1, ...,m,k = 1, ..., l). 20

The two uncertainty estimates (Eqs 28 and 29) correspond
to the two classic metrics presented in the Introduction. We
will compare Ue estimated by the newly proposed approach
with these two classic metrics (N.t.std andN.s.std) to show
their relations and differences. 25

2.3 Study area and data description

Mainland China has been selected as the study area because
of its large area and different types of climate (Kottek et al.,
2006). Ten different subregions have been defined to facili-
tate the comparisons and analysis of the strong spatial varia- 30

tions. The subregions are (1) Songhua River Basin, (2) Liao
River Basin, (3) Hai River Basin, (4) Yellow River Basin,
(5) Huai River Basin, (6) Yangtze River Basin, (7) Southeast
China, (8) South China, (9) Southwest China, (10) Northwest
China, see Figure 3. The entire Chinese mainland is num- 35

bered as the 11th region. Most of the subregions are natu-
ral river basins: this definition is more appropriate for water
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resource analysis than definitions using longitude–latitude
grids or those based on administrative regions.

Precipitation is one of the climatic variables sensitive
to large-scale atmospheric cycles and the local topogra-
phy. Thirteen different precipitation datasets from various5

sources have been collected for comparison (Table 1). These
datasets have been categorized into three groups according to
the methods they used for generating the products, namely,
gauge-based products, merged products and General Circu-
lation Models (GCMs). The gauge-based products (namely,10

CMA, GPCC, CRU, CPC and UDEL) use data observed
from global precipitation gauges. The density of the ground
observation gauges, the representativeness of the gauges, and
the interpolation algorithms for converting the gauge obser-
vations to a gridded dataset differ from product to product.15

The CMA (China Meteorological Administration) dataset
has the densest distribution of gauges and probably has the
best quality to capture the spatiotemporal variations of the
precipitation over the study area. The CMA dataset is ex-
cluded when estimating the uncertainty of the gauge-based20

products: it is chosen as the reference dataset for compari-
son.

As for the merged precipitation products, the CMAP,
GPCP and MSWEP use different sources of precipitation
data (namely, gauge observations, satellite remote sensing,25

and atmospheric model re-analysis). These different precip-
itation sources are averaged using different weights. Thus,
the differences between the three merged products are asso-
ciated with the precipitation sources and the weight of the
gauge observations. ERA-Interim is a re-analysis product: it30

uses near-real-time assimilation with data from global ob-
servations (Dee et al., 2011). Thus, the forecasting model is
constrained by the observations and forced to follow the real
system to some degree. Because of its use of observations,
ERA-interim also belongs to the category of merged prod-35

ucts.
GCM precipitation is a pure model estimation because ob-

servations are not used to constrain the simulations. The im-
plemented physical and numerical processes will affect the
accuracy of the model results. The lack of constraints on the40

GCMs will cause them to not follow the actual synoptic vari-
ability and explore other trajectories in the solution space.
Kay et al. (2015) repeatedly ran the same GCM with a very
small shift in the initial conditions. But the small difference
leads to an increasing spread in the model outputs after a45

number of running time steps (see Figure 2 in Kay et al.,
2015). Therefore, the uncertainty in GCMs can be attributed
to the differences in the model structures, parameter settings,
and the initial conditions as well. There are more than 20
kinds of different GCMs; only 4 of them have been chosen,50

randomly, to maintain the same number of datasets using the
gauge-based products as those using merged products.

All the products of the three precipitation types, including
CMA, are in gridded format. Although they differ in their
original spatial resolution, all products have been interpo-55

lated to a 0.5o spatial resolution to unify the spatial units.
Annual average values are summed based on their original
time steps (daily or monthly) and the overlap time span of all
the datasets is from 1979 to 2005 for all products.

3 Characteristics of precipitation and model quantified 60

uncertainties with classic metrics

3.1 Spatial patterns of annual precipitation

The long-term annual mean precipitation (1979–2005) ob-
tained by averaging the precipitation from multiple datasets
in the corresponding precipitation group is mapped in Figure 65

4. The annual mean precipitation obtained from the CMA
dataset is 589.8 mm yr−1 (1.6 mm day−1) over the en-
tire Chinese mainland. The gauge-based precipitation has the
least bias (-4.1mm yr−1, -0.7% in percentage) compared to
the CMA precipitation. The precipitation in the merged prod- 70

ucts and GCMs is larger than that of the CMA by 63.1 and
232.0 mm yr−1 (with the bias equal to +10.7% and +39.3%),
respectively.

The spatial pattern of the annual precipitation shows a de-
creasing gradient from Southeast China (>1600 mm yr−1) 75

to Northwest China (<400 mm yr−1) in CMA and all other
three precipitation groups. However, they have different abil-
ities to display the spatial gradient of the precipitation in
some detail. For instance, abrupt precipitation changes rather
than following the general gradient occur in some areas in 80

CMA. This is probably caused by the sudden changes in
topography (e.g., the northern Tienshan Mountain, the Qil-
ian Mountains), which is not captured in the gauge-based
products because some of the key gauges are not included
in the production of the gauge-based products. The abrupt 85

changes can be somehow represented by merged products
and GCMs because the local variation due to topographic
changes can be observed by other measurements or modelled
by algorithms. The precipitation in the merged products and
the GCMs is higher than that of CMA in the Himalayas, and 90

particularly the GCMs show higher precipitation in the North
Tibet Plateau as well as the southern part of the Hengduan
Mountains. These differences show the general characteris-
tics of the three types of precipitation products.

3.2 Spatial distribution of model uncertainties 95

In addition to the precipitation differences in its long-term
annual means, differences can be found between datasets
within the same precipitation group. The spatial distribution
of the model uncertainty for each precipitation group, which
is expressed as the ensemble deviation of the annual pre- 100

cipitation from different precipitation products, is mapped in
Figure 5.

The ensemble deviation of the datasets based on gauge ob-
servations is small in most of the land area of China (<50
mm yr−1, Figure 5-a). Although the deviation is higher in 105
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Figure 3. Ten subregions are defined in this study. These subregions are mainly river basins (Regions 1–8), but 9 is Southwest China and 10
is Northwest China. Region 11 is the entirety of the Chinese mainland.

(a) CMA (b) Gauge-based

(d) GCMs(c) Merged Products

Figure 4. Annual precipitation over a long-term period (1979–2005) for each group of precipitation datasets. (a) Annual precipitation of
CMA dataset, (b) ensemble means of the annual precipitation over the precipitation products in gauge-based precipitation excluding CMA,
(c) ensemble mean of the annual precipitation of all merged products, (d) ensemble means of the annual precipitation of all GCMs. The
observations in Taiwan are not released in the CMA dataset.
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(a) Gauge-based (b) Gauge-based

(c) Merged Products (d) Merged Products

(e) GCMs (f) GCMs

0 20 40 60 80 1000 50 100 150 200 250 300 350 400
Ensemble deviation (mm/yr) Normalized ensemble deviation (%)

Figure 5. Spatial distribution of model uncertainty in annual precipitation estimated by the ensemble products. The uncertainty is expressed
as the standard deviation of the annual precipitation across ensemble precipitation products of a specific group (up: gauge-based products,
middle: merged products, bottom: GCMs). The left panels are the values of the uncertainty. The right panels are the ratios of ensemble
deviation to the ensemble means of the datasets in the corresponding group.

the south of China (50-100 mm yr−1), the area is not con-
tinuous in space. The highest deviation occurs along the
Himalayas, indicating a high variation across the observed
datasets. Regarding the merged precipitation products, the
deviation shows high values (>200 mm yr−1, Figure 5-c) in5

Southwest China (e.g., the Tibet Plateau, Yunnan Province,
Guangxi Province). Moderate deviation is found in North-
east China, North China and Southeast China. The deviation
of precipitation has a correlation with the topology, which
indicates that the performance of the technologies used for10

the merged products are subject to the topologies as well.
Compared to the gauge-based and merged products, the de-
viation of the selected GCMs has the highest value (>400
mm yr−1, Figure 5-e) in South China, indicating a signifi-
cant model uncertainty of the annual precipitation between15

different GCMs.
The ratio of the ensemble deviation to the mean value,

which shows the model uncertainty with no units, is very low

in East China (<10%, Figure 5-b). It is higher in West China
especially in the Himalayas and the North Tibet Plateau. 20

Similar to that of the gauge-based products, the uncertainty
of the merged products has higher values in the West than
in the East of China (Figure 5-d). The area with a devia-
tion ratio less than 10% is mainly distributed in Southeast
China and is apparently smaller than that of the gauge-based 25

products, showing a decreasing similarity among different
merged products. The area with a moderate deviation ratio
(10%–40%) increases compared to that of the gauge-based
products, and the area is mostly in central and western China.
The uncertainty estimated in the GCMs shows similar pat- 30

terns in West China to that of the merged products but with
higher magnitudes in East China (Figure 5-f). Only the area
in the Northeast and part of central China features small un-
certainty, less than 10%, and the deviation ratio rises signifi-
cantly in South China (e.g., the Pearl River basin), which cor- 35
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responds to the high standard deviations in the GCMs shown
in Figure 5-e.

The magnitude of the ensemble deviation demonstrates the
model uncertainty of the different products in the same pre-
cipitation group and shows the ability to estimate the pre-5

cipitation with different methods. For all products, the en-
semble deviation is relatively larger where the precipitation
is higher, especially along the mountains and the subtropical
regions. The deviation ratio is higher in Northwest China,
where the precipitation is among the lowest in China. Par-10

ticularly for the gauge-based products, higher ratios occur
where the gauge density is low and the orographic effect is
apparent (e.g., the Tibet Plateau and other mountainous area).
For the merged products and the GCMs, the deviation ratio
increases especially in Southeast China, showing decreasing15

similarities among different precipitation products. Because
the deviation ratio has taken into account both the variation
and the means (which may have a systematic bias), the de-
viation ratio is better than the absolute ensemble deviation
at representing the uncertainty, and it is the most commonly20

used in geographic studies.

3.3 Temporal evolution of model uncertainties

Figure 5 shows the spatial distribution of the ensemble de-
viation of the precipitation products. However, the temporal
evolution of the deviation, which shows the performance of25

product over time and its changes, are not captured because
the temporal variation has been averaged in order to estimate
the spatial ensemble deviation in Figure 5. In this subsection,
we examine the temporal evolution of the uncertainties in re-
gional annual precipitation estimated by different ensemble30

products. The analysis is based on the ten subregions defined
in Figure 3 and the entire Chinese mainland.

The annual precipitation of each precipitation group has
been normalized as the ratio to the long-term annual mean
of the CMA in each subregion (black line in Figure 6). The35

magnitude of the annual precipitation in the gauge-based
products (the blue solid line) is similar to that of CMA ex-
cept in Southwest China (Figure 6-i) for the overestimation
along the Himalayas (Figure 4-a,b). The precipitation in the
merged products (the green solid line) is higher in South-40

west and Northwest China, in accordance with Figure 4-c.
The annual precipitation of the GCMs (the red solid line) is
apparently higher than that of the gauge-based products and
merged products for almost all regions, which agrees with
the spatial patterns in Figure 4-d.45

The ensemble deviation across time scale is shown in the
shaded area in Figure 6. It is estimated as the deviation of
regional annual precipitation of each product in the same
group at a specific time step for each subregion. The devi-
ation is normalized to facilitate comparisons between dif-50

ferent subregions. High deviations are found in Southwest
China (Figure 6-i) in all three precipitation groups because
of the large differences along the Himalayas. The devia-

tions of the gauge-based products and the merged products
in other regions are small and getting smaller with time. This 55

is mainly because more observations are included and tech-
nologies have improved with time to control the quality of
the data. A large deviation is found in the merged products in
10-Northwest China (Figure 6-j) and 4-Yellow River Basin
(Figure 6-d), where a dry climate dominates and the annual 60

precipitation is among the lowest. The model deviation of
GCMs varies between regions as it is at its smallest in 1-
Songhua River Basin (Figure 6-a) and 6-Yangtze River Basin
(Figure 6-f), while it is among the highest in 8-South China
and West China (9,10), agreeing with the deviation maps in 65

Figure 5.
Despite their mean values and magnitudes of deviation, the

temporal evolution of the gauge-based products and merged
products agree well with those of the CMA dataset, while the
temporal evolution of the members of the category of GCMs 70

is weaker and not well correlated with that of the CMA. The
main reason is that GCMs are not constrained in their synop-
tic variability and the sequence of wet and dry years can be
very different from that of the observations. A smoother re-
sult is thus obtained when we build the ensemble mean from 75

the GCMs. Unlike the weak variation in GCMs, the gauge-
based and merged products have a strong co-variance and the
ensemble mean preserves this co-variance.

For the entire Chinese mainland (Figure 6-k), the ensem-
ble deviation remains stable in different precipitation groups. 80

In contrast, the annual precipitation spans the strongest spa-
tial heterogeneity in the mainland compared to those divided
by subregions (Figure 4). However, the spatial variation has
been collapsed because the regional precipitation has to be
obtained before the temporal analysis. It is therefore interest- 85

ing to evaluate how the uncertainty changes when the vari-
ations along both the time dimension and the spatial dimen-
sion are considered in the precipitation datasets.

3.4 Variations along the temporal and spatial
dimensions 90

Previous subsections provide the deviation analysis in either
temporal scale or the spatial scale. However, the two are sel-
dom compared with each other. Herein, the standard devia-
tion of the temporal and spatial variations in the precipita-
tion datasets are compared in Figure 7 in ten subregions and 95

the China mainland for different precipitation groups. The
gauge-based products provide similar annual regional precip-
itation to CMA over the China mainland and the ten specific
subregions except for the region 7-Southeast China (Figure
7-g) and region 9-Southwest China (Figure 7-i). While the 100

merged products provide larger precipitation estimations for
most of the regions. It might indicate the degraded ability of
remote sensing, one of important data sources in the merged
products, to estimate the precipitation amount in storms as
the storms mainly contribute to the total precipitation for the 105

two subregions. The regional precipitation in GCMs is even
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(a) 1. Songhua River (b) 2. Liao River

(c) 3. Hai River (d) 4. Yellow River

(e) 5. Huai River (f) 6. Yangtze River

(g) 7. Southeast China (h) 8. South China

(i) 9. Southwest China

(j) 10. Northwest China

(k) 11. China Mainland
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Figure 6. Temporal evolution of the model uncertainty. The uncertainty is expressed as the normalized ensemble deviation of annual precip-
itation across ensemble datasets in each precipitation group for specific subregions. The value on the top right of each panel is the annual
regional precipitation estimated in CMA dataset (1979–2015). The annual precipitation is normalized as the ratio to the CMA long-term
annual precipitation. The solid curve represents the ensemble mean of precipitation in each precipitation data group over the subregion. The
width of the shaded area represents the standard deviation of the annual precipitation estimated from the datasets within that group for each
year (divided by the annual precipitation of the corresponding group). The shaded area is equally distributed in the two sides of the ensemble
mean values for the corresponding precipitation group.
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larger except in the region 8-South China (Figure 7-h). These
results indicate the degraded ability of merged products and
GCMs in reproducing the total value of the annual precipita-
tion.

The spatial standard deviation (as a ratio to the mean) in5

regions 9, 10 and 11 are the largest, indicating the strongest
spatial heterogeneity over these regions. Smallest spatial
variations are found in regions 7-Southeast China and the 3-
Hai River, either because of the small area or the high homo-
geneity in these subregions. Nevertheless, the spatial devia-10

tion in most of the subregions is larger than the temporal de-
viation. The ratio of the temporal deviation to the spatial de-
viation is among the smallest in the subregions 9, 10 and 11
(k=0.1, 0.12 and 0.05, respectively. k is the ratio of the tem-
poral deviation to the spatial deviation), showing an apparent15

difference between the variations along the two dimensions.
While, the difference between the variations along the two
dimensions is small in the 3-Hai River basin (k=1.15) and 7-
Southeast China (k=0.90), mainly due to the relatively strong
variability of the annual precipitation in different years.20

In addition to the differences between regions, the vari-
ations in different precipitation groups also vary in magni-
tude. Excluding the CMA dataset, which consists of only
one single product, the total variation (the sum of the spa-
tial and temporal variations) across the gauge-based prod-25

ucts is higher than that of the other two groups. This differ-
ence demonstrates that the gauge-based products may have
the largest spatial variation, and the correlations between the
different gauge-based products are high, so that this variation
is preserved when passing to the ensemble. In contrast, vari-30

ations across the GCMs are the smallest, either because the
precipitation estimated in the GCMs are more spatially ho-
mogenous than those of other precipitation products, or be-
cause the precipitation estimations in different GCMs are not
consistent in time or space since there are no constraints on35

the GCM simulation. The inconsistent precipitation patterns
will be further eliminated when carrying out an ensemble av-
eraging over multiple datasets.

4 Variances in precipitation products

4.1 Variances in three dimensions40

In the preceding section, we introduced the spatial and tem-
poral characteristics of the annual precipitation. The varia-
tions in the precipitation in two dimensions of the precipita-
tion products in the same precipitation group were estimated
by two classic metrics. In this section, we will present the un-45

certainty results estimated by the newly proposed approach
to the variance. As introduced in the methods section, the in-
put annual precipitation to the approach is re-organized into
three dimensions: (1) time, 27 years from 1979 to 2005, (2)
space, 0.5o grids in a specific region and (3) ensemble, the50

number of models in each precipitation group (four models

for each of the three groups). Note that the estimated variance
is for a specific subregion because it is an analysis based on
regions and a long-term scale.

The grand variance (V , total value of the variance for all 55

three dimensions) and its three components (i.e., variance in
time Vt, space Vs and ensemble dimension Ve) for all the
subregions is mapped in Figure 8. The grand variance is sim-
ilar in space in groups of the gauge-based products and the
merged products (Figure 8-a,b,c), while the grand variance in 60

the GCMs is larger and is approximately twice the V in the
other two groups in regions 9-South China and 10-Southwest
China. The differences are mainly constituted by the spatial
variance and ensemble variance (Figure 8-i,l).

The temporal variance Vt is the smallest among all three 65

variances, and it has very little differences in North China
(Figure 8-d,e,f). But it is higher in the gauge-based prod-
ucts than in the merged products and GCMs in regions 8-
Southeast China and 9-South China, indicating a relatively
strong temporal variation in the annual precipitation series, 70

in accordance with the larger uncertainty ranges shown in
Figure 6-h,i. Similar patterns of the spatial variance Vs are
found in the gauge-based products and merged products (Fig-
ure 8-g,h). Largest Vs is found in regions 7-Southeast River
basin and 9-Southwest China because the precipitation sig- 75

nificantly varies in space in these two subregions: it is higher
in GCM precipitation especially in 9-Southwest China, in-
dicating the strong spatial heterogeneity in the GCM mod-
els over the Himalayas (Figure 8-i). The ensemble variance
Ve is relatively small in most regions for gauge-based prod- 80

ucts (Figure 8-j), indicating that the model variation across
datasets in the observation group is small. A similarly small
Ve is found in the northern regions of the merged products
as well as in the GCMs for the regions in North China,
while the intra-ensemble variations are large in the GCMs, 85

especially in the South, especially 9-Southwest China and 8-
South China (Figure 8-k,l).

One can conclude that the grand variance and individual
variance for each of the three different dimensions are gen-
erally larger in the precipitation group consisting of GCMs. 90

The variations for the gauge-based products and merged
products are similar in values and spatial distribution. How-
ever, in addition to the variances, the deviation defined as
the ratio of the square root of the variance to the mean (e.g.,
U , Ut, Us, Ue) contains extra information about the regional 95

means, and will be discussed in the following section.

4.2 Deviations in three dimensions

In contrast to the spatial gradient of the magnitude of the
variance distributed over the ten subregions (Figure 8), the
larger values of the total deviation (U =

√
V /µ) occurs in 100

the Northwest, but a lower value generally occurs in South
China (Figure 9). The decreasing tendency of magnitude of
the precipitation from the southeast to the northwest results
in a shift of the spatial gradient compared to Figure 4. The
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(a) 1. Songhua River (b) 2. Liao River (c) 3. Hai River (d) 4. Yellow River

(e) 5. Huai River (f) 6. Yangtze River (g) 7. Southeast China (h) 8. South China

(i) 9. Southwest China (j) 10. Northwest China (k) 11. China Mainland
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Figure 7. Spatial standard deviation (horizontal) and temporal standard deviation (vertical) of the annual precipitation across ensemble
datasets in each of the different precipitation groups for each subregion. The P value in the bottom left is the annual precipitation of CMA.
The cross centre represents the long-term means of the regional annual precipitation in ratio to the CMA mean value. The horizontal error
bar represents the spatial standard deviation (spatial variation of the long-term annual precipitation at all the grids). The vertical error bar
represents the temporal standard deviation (temporal variations of region-averaged annual precipitation in different years).

total deviation U is the highest in Northwest China (U=0.89,
Figure 9-a,b,c) for all three precipitation groups, but is rel-
atively small in the northeastern 1-Songhua River (U=0.27)
and 8-South China (U=0.29) for the gauge-based products. A
relatively lower U is found in subregion 6-Yangtze River in5

the merged products and GCMs in the eastern part of China.
Deviations along the temporal and spatial dimensions are

inherent, as they show the temporal evolution and spatial het-
erogeneity of the precipitation products. The results show
that Ut is small and contributes very little to the total U ,10

indicating the weak fluctuation of annual precipitation com-
pared to the spatial heterogeneity (Figure 9-d,e,f). The small-
est value of Ut for the GCMs is in accordance with the
weakest temporal variations in Figure 6. The deviation in
the spatial dimension (Us) contributes the most to the total15

deviation, especially in Northwest China (Us=0.77 for the
gauge-based products, Figure 9-g). The high Us indicates
the strong spatial heterogeneity of precipitation in the re-
gion, demonstrating that the ability to describe the precip-
itation varies significantly in different places in the subre-20

gions. However, because the spatial variations obtained by
the GCMs in Northwest China are less significant than with
the other two groups, the value ofUs for region 10-Southwest
China (=0.51) is smaller than that of the gauge-based and
merged products. 25

The variations along the temporal and spatial dimensions
show the natural precipitation patterns but the deviation of
multiple products (Ue) shows the ability to consistently rep-
resent the spatiotemporal patterns. Therefore, Ue indicates
the uncertainty of the ensemble precipitation products in the 30

same group. For the gauge-based products,Ue is smaller than
0.1 for regions in East China, indicating that the model varia-
tions are relatively small compared to the annual means. The
value of Ue is higher for 9-Southwest China (=0.30) and 10-
Northwest China (=0.37), showing large variations even in 35

the gauge-based products. For the merged products, Ue is
similar to that of the gauge-based products in West China
(=0.36), while it is larger in the East, especially for 6-Yangtze
River and 4-Yellow River (more than two times larger than
Ue of the gauge-based products). 40
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Figure 8. Maps of the estimated grand variance (V ) and variances in different dimensions (Vt, Vs, Ve) across the ensemble datasets in each
of the three different precipitation groups.

For the GCM precipitation, Ue increases compared to the
other two groups in the eastern subregions, corresponding to
the higher spatial model uncertainty in GCMs over the east-
ern regions shown in Figure 5. It decreases in 10-Northwest
China (Ue=0.25) and a possible reason for this is that the5

spatial homogeneity of the variations in 10-Northwest China
(Figure 5-f) is stronger than that of the other groups (Figure
5-b,d,f). In the GCMs, the highest Ue occurs in Southwest
China, where both the means and the variations are higher
(Figure 4 and 5). One can conclude that Ue is linked with the10

magnitude of the model uncertainties in Figure 5 and Figure
6, indicating that it is to some degree correlated with the clas-
sic metrics, as higher Ue covers the grid cells or regions with
higher model uncertainty.

5 Comparison of the uncertainty Ue with the classic 15

metrics

5.1 Deviation from the classic uncertainty metrics

In this section, we will compare the uncertainty Ue of the
ensemble members estimated by the three-dimensional par-
titioning approach with the two classic metrics (defined as 20

N.s.std in Eq. 28 and N.t.std in Eq.29), to explain how
these three metrics are related and differ with each other.
As shown in Figure 10, Ue is correlated with both N.s.std
and N.t.std. The correlation is stronger when Ue is smaller
than 0.2, where the regions from 1 to 8 are generally in- 25

cluded for all three precipitation groups. But Ue is in general
larger than N.s.std and N.t.std for the products. This devi-
ation is because the variation along one dimension has been
collapsed when calculating the deviation along the other di-
mension. For subregions 9, 10 and 11, N.s.std and N.t.std 30

deviate the most from the 1:1 line of Ue. Taking subregion
9-Southwest China in the gauge-based products as an exam-
ple, the temporal variance is 62.4 mm yr−1 while the spatial
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Figure 9. Maps of deviations (U , Ut, Us, Ue) estimated as the ratio of the square root of the corresponding variances (i.e., V , Vt, Vs, Ve) to
the regional mean (µ) of the ensemble datasets in each of the three different precipitation groups. Of these, Ue is considered to be the model
uncertainty.

variance is 571.8 mm yr−1 (Figure 7-i). The difference be-
tweenN.s.std andUe is 0.058 (=0.297-0.239, deviation ratio
is 24.3%) when the temporal variation is collapsed. The dif-
ference between N.t.std and Ue is 0.126 (=0.297-0.171, de-
viation ratio is 73.4%) when the spatial variation is collapsed.5

The deviation is significantly larger than that between Ue and
N.s.std, showing that the collapse will induce a deviation re-
lated to the magnitude of the collapsed dimension.

These subregions (9, 10, 11) feature strong spatial het-
erogeneities (Figure 7-i,j,k) in the annual mean precipitation10

(Figure 4). The averaging process before estimating the clas-
sic metrics will cause a significant smoothing of the datasets
when the spatial heterogeneity of the datasets is very strong,
because the spatial variation is significantly higher than the
temporal variation, as shown in Figure 7. The estimation of15

N.t.std, which needs an averaging over the spatial dimen-
sion, will lose more information than that in the time dimen-
sion. The deviation between N.t.std and Ue (Figure 10-b) is
larger than that between N.s.std and Ue (Figure 10-a). The
priority of the precipitation types also changes, from model 20

dominated (the model uncertainty in GCMs are larger than
the other) to region dominated (the uncertainties in the spe-
cific regions 9, 10, and 11, are larger than in the other regions
no matter which precipitation data is used). This indicates
that the difference in model variation over space can be re- 25

flected in the new uncertainty Ue.
Each classic metric has its physical meaning:N.s.std rep-

resents the uncertainties over space and N.t.std represents
the uncertainties across time. The comparison of Ue with
each of them demonstrates the metric performance on the 30
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Figure 10. Relation of Ue to the two classic metrics (a) the normalized spatial standard deviation N.s.std and (b) the normalized temporal
standard deviation N.t.std. The two metrics are estimated with Eqs 28 and 29 of the ensemble datasets in each of the three different
precipitation groups.

same physical meaning. It is possible to compare Ue with a
combination of the two classic metrics, but the combination
could be far more complex than a simple sum of the two clas-
sic metrics. However, a qualitative comparison is accessible
because Ue has a linear correlation with either of them. This5

correlation will persist, and occur between Ue and a combi-
nation of the two classic metrics by summing them up with
certain weights.

5.2 Decomposition of the ensemble uncertainty

We now decompose the ensemble variance to determine the10

reason for the deviation of Ue from N.s.std and N.t.std. As
shown in Eq. (26), the ensemble variance Ve is expressed by

Ve =
1

3
[
σ2
e_t +σ2

e_s

2
+σ2

e +σ2
e(µts)]. (30)

This combines four components which stand for the variation
of different estimates across the ensemble dimension (i.e., the15

variance of original temporal and spatial values - σ2
e , of the

temporal mean - σ2
e_t, of the spatial mean - σ2

e_s and of the
grand mean - σ2

e(µts)). Among these, σ2
e_t is the mean of

the squares of the spatial deviation in Figure 5-a,c,e for all
grids in a specific region and σ2

e_s is the mean of the squares20

of the temporal deviation in Figure 6 for each time step in
a specific region. These two components are closely related
to the two classic metrics N.s.std (Eq. 28) and N.t.std (Eq.
29), respectively.

By decomposing Eq. (30), the contributions of the four25

components to the ensemble variance Ve are shown in Fig-
ure 11. For all three precipitation groups, σ2

e is the dominant
component simply because all the information on variations
of the original datasets is retained in the uncertainty estima-
tion. The other three components result from estimations af-30

ter an averaging is performed, either over time, space, or the
full spatiotemporal dimensions, which means a loss of infor-
mation. The contribution of σ2

e_t and σ2
e_s is approximating

0.15 for regions from 1 to 8. But σ2
e_t increases for regions 9,

10 and 11, indicating that there is significant spatial hetero- 35

geneity in these regions. In contrast, σ2
e_s decreases because

the spatial averaging has collapsed the spatial variations. The
very small contribution of σ2

e_s related toN.t.std is the cause
for larger deviations between N.t.std and Ue in these subre-
gions (Figure 10-b). 40

Although any component can be used as a metric for eval-
uating the variations of multiple datasets, there are limita-
tions for each of the variations. Regarding the variation of
the temporal mean σ2

e_t and spatial mean σ2
e_s, the collapse

of a dimension has ignored part of the information. More- 45

over, the variation of the grand mean σ2
e(µts) has ignored

both the temporal variability and spatial heterogeneity, which
further decreases its applicability to the assessment of uncer-
tainty. The variation σ2

e is estimated based on the original
data without averaging, and thus it represents the most infor- 50

mation. However, it does not take into account the systematic
uncertainty (bias in the mean values) which is expressed by
σ2
e(µts).
Therefore, none of the single components is able to rep-

resent the others. The integrated metric Ve is therefore a so- 55

lution that represents all metrics to different degrees. What
is interesting is that the variability of the proportions of σ2

e_t

and σ2
e_s (or σ2

e and σ2
e(µts)) are opposite and the sum of

their proportions is stable, around 0.3 (or 0.7). This indicates
a complementary relation between the two pairs of elements 60

(σ2
e_t & σ2

e_s; σ2
e & σ2

e(µts)). On the other hand, some of
the information is ignored in one of the components but re-
mains in the other one within the same pair. Therefore, the
variation along the time dimension and that along the spatial
dimension should be considered together, as is done in the es- 65

timation of the ensemble variance Ve. The normalized uncer-
tainty Ue derived from the integrated variation Ve, which is
better able to determine the uncertainties than are the classic
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Figure 11. Proportions of the four components in Eq. (30) to Ve of the ensemble datasets in each of the three different precipitation groups:
(a) gauge-based products, (b) merged products and (c) GCMs. The contribution is normalized so that their sum is 1.0 for each region. Among
the four components, σ2

e_t and σ2
e_s are associated with the two classic metrics N.s.std and N.t.std, respectively.

metrics, should be the more proper choice for an uncertainty
analysis.

5.3 Differences between the metrics in value and
proportion

Figure 10 shows that Ue is generally higher than the uncer-5

tainty identified by the two classic metrics (i.e., N.s.std and
N.t.std). Figure 12 then summarizes the magnitude of the
deviations of the classic metrics from the new uncertaintyUe.
We can see that the two classic metrics generally underesti-
mate the uncertainty by around 0.03 (Figure 12-a). The vari-10

ation of the underestimation of N.t.std is larger than that of
N.s.std, showing a larger deviation betweenUe andN.t.std.
Employing the new uncertainty metric will increase the esti-
mated uncertainty by around 20%–40% for half of the cases,
when compared to N.s.std (Figure 12-b). For nearly 25%15

of the cases, the new Ue increases the estimated uncertainty
by more than 50%. In extreme cases, Ue is more than dou-
ble N.t.std (Figure 12-b). The results show that the widely
applied uncertainty estimates from the two classic metrics
have underestimated the uncertainty of the various models20

or datasets. Such an underestimation may especially occur
for the temporal assessment of the uncertainties (N.t.std),
which is very commonly seen in scientific reports and arti-
cles to illustrate the temporal evolution of the variables of
interest.25

6 Discussion and Conclusions

6.1 Features and applicability of the approach

The total variation across the database which consists of mul-
tiple datasets is contributed by the spatiotemporal variations
as well as the uncertainties of ensemble datasets. While the30

uncertainty assessment with current approaches (e.g., eqs. 28
and 29) needs either the temporal variability or the spatial
heterogeneity to be averaged which means a loss of infor-
mation. The variance partitioning approach proposed in this
study works in three dimensions. It uses all the information35

over both the temporal and the spatial dimensions of the mul-
tiple ensemble members. It avoids the collapse of variation
along any dimension, and thus the proposed uncertainty esti-
mateUe provides a more accurate estimate of the uncertainty.
The estimate Ue is especially suitable for an overall assess- 40

ment of the multiple datasets over a certain period and over
a specific space. Even though the trade-off is that Ue cannot
provide the temporal evolution or spatial heterogeneity for
users’ consideration, in many cases we would like to know
the general performance of the ensemble models based on a 45

global single estimate.
The results of this partitioning approach can be affected by

the choice of the time step intervals. For example, the tem-
poral variance or proportion of temporal variance will sig-
nificantly increase if the time interval is chosen to be one 50

month. The intra-annual variability of precipitation will re-
sult in higher Vt. The changes depend on how significant the
intra-annual variability is compared to the inter-annual vari-
ations. Moreover, only changes in the temporal variation (the
average values remain but the magnitudes of the variation 55

increase or decrease) can be captured by Ue. But N.s.std
will remain the same because the temporal variability has
been neglected in the averaging process. It is the same with
N.t.std if different spatial resolutions of the measurements
are used. 60

The proposed approach has a flexible structure that can
deal with different problems, from a global scale to regional
studies. The temporal dimension can also span from daily,
monthly, annual to decadal analyses with different scopes.
The ensemble dimension is applicable from two members 65

(i.e., model evaluation between simulations and observa-
tions) to any number of multi-models (consensus evalua-
tion, Tebaldi et al., 2011; McSweeney and Jones, 2013).
The present approach is also applicable to any variables
that can be organized in three dimensions, such as climatic 70

variables (e.g., temperature, evaporation), hydrological vari-
ables (e.g., soil moisture, runoff) or environmental variables
(e.g., drought index). Based on these advantages, this three-
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dimensional partitioning approach can be widely applied in
hydro-climatic analysis.

6.2 Conclusions

A new three-dimensional partitioning approach has been pro-
posed in this paper to assess the model uncertainties of mul-5

tiple ensemble datasets. The new uncertainty metric (Ue) is
estimated with an overall consideration of temporal and spa-
tial variations as well as the differences among the ensemble
products. The results have shown that Ue is generally larger
than the classic uncertainty metrics N.s.std and N.t.std,10

which require a collapse of the variation along either the
temporal or spatial dimension. The deviation occurs where
the spatial variations are significant but being averaged in the
N.t.std estimation. The decomposition of the total variance
Ve shows the complementary relation between the two clas-15

sic metrics, and therefore the new uncertainty Ue (derived
from Ve) is a more comprehensive estimate of the uncertainty
of multiple ensemble products.

Thirteen precipitation datasets generated by different
methods have been categorized into three groups (namely,20

gauge-based products, merged products and GCMs) and the
model uncertainty in the ensemble products has been ana-
lyzed with the new approach and with the two classic uncer-
tainty metrics for each precipitation group. Using the clas-
sic metrics, in most regions, uncertainty of GCMs has been25

found to be the largest. But the new estimator Ue indicates
that the largest model uncertainty occurs in specific regions
no matter which precipitation group is considered. The im-
pact of spatial heterogeneity on the model uncertainty has
been represented well in the new uncertainty metric (Ue). In30

addition to the theoretical analysis of the components of Ue,
the overall model uncertainty Ue can be used as a new uncer-
tainty estimate which involves more information and should
receive more attention in the field of uncertainty assessment.

Appendix A: The algorithms for different expressions in 35

the methodology

Zone A:
A1: µt[s,e;n× l];µt[j,k] =

1
m

∑m
i=1 zijk

A2: µs[e, t; l×m];µs[k, i] =
1
n

∑n
j=1 zijk

A3: µe[t,s;m×n];µe[i, j] =
1
l

∑l
k=1 zijk 40

Zone B:
B1: σ2

t [s,e;n× l];σ2
t [j,k] =

1
m

∑m
i=1(zijk −µt[j,k])

2

B2: σ2
s [e, t; l×m];σ2

s [k,i] =
1
n

∑n
j=1(zijk −µs[k,i])

2

B3: σ2
e [t,s;m×n];σ2

e [i, j] =
1
l

∑l
k=1(zijk −µe[i, j])

2

Zone C: 45

C1: σ2
t_s[e; l];σ

2
t_s[k] = σ2(µs[k, :])

C2: σ2
t_e[s;n];σ

2
t_e[j] = σ2(µe[:, j])

C3: σ2
s_t[e; l];σ

2
s_t[k] = σ2(µt[:,k])

C4: σ2
s_e[t;m];σ2

s_e[i] = σ2(µe[i, :])
C5: σ2

e_t[s;n];σ
2
e_t[j] = σ2(µt[j, :]) 50

C6: σ2
e_s[t;m];σ2

e_s[i] = σ2(µs[:, i])
Zone D:

D1: µet[s;n];µet[j] =
1
lm

∑l
k=1

∑m
i=1 zijk

D2: µse[t;m];µse[i] =
1
nl

∑n
j=1

∑l
k=1 zijk

D3: µts[e;k];µts[k] =
1

mn

∑m
i=1

∑n
j=1 zijk 55

Zone E:
E1: σ2

et[s;n];σ
2
et[j] =

1
lm

∑l
k=1

∑m
i=1(zijk −µet[j])

2

E2: σ2
se[t;m];σ2

se[i] =
1
nl

∑n
j=1

∑l
k=1(zijk −µse[i])

2

E3: σ2
ts[e; l];σ

2
st[k] =

1
mn

∑m
i=1

∑n
j=1(zijk −µts[k])

2

Zone F: 60

F1: σ2
t (µse) =

1
m

∑m
i=1(

1
nl

∑n
j=1

∑l
k=1 zijk

− 1
m

∑m
i=1(

1
nl

∑n
j=1

∑l
k=1 zijk))

2

F2: σ2
s(µet) =

1
n

∑n
j=1(

1
lm

∑l
k=1

∑m
i=1 zijk

− 1
n

∑n
j=1(

1
lm

∑l
k=1

∑m
i=1 zijk))

2

F3: σ2
e(µts) =

1
l

∑l
k=1(

1
mn

∑m
i=1

∑n
j=1 zijk 65

− 1
l

∑l
k=1(

1
mn

∑m
i=1

∑n
j=1 zijk))

2

The t,s,e in the algorithms represents the three dimensions
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time, space and ensemble, with the size of m,n, l and in-
dex with i, j,k, respectively. Each expression is shown with
its size and the meaning of each dimension. For example, for
the A1: µt[s,e;n× l], the µt has a size of n× l. The first axis
represents the space dimension, and the second is the ensem-5

ble dimension. While C1 (σ2
t_s[e; l]) has only one ensemble

dimension with its size as l. F1 (σ2
t (µse)) is only a single

value.
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