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Abstract.

Ensemble estimates based on multiple datasets are frequently applied once many datasets are available for the same climatic

variable. Uncertainty that evaluates the difference between the ensemble datasets is always provided along with the ensemble

mean estimates to show to what extent the ensemble members are consistent with each other. However, one fundamental flaw

of classic uncertainty estimates is that only the uncertainty in one dimension (either the temporal variability or the spatial5

heterogeneity) can be considered, whereas the variation along the other dimension is dismissed due to limitations in algorithms

for classic uncertainty estimates, resulting in an incomplete assessment of the uncertainties. This study introduces a three-

dimensional variance partitioning approach and proposes a new uncertainty estimation (Ue) that includes the data uncertainties

in both spatiotemporal scales. The new methods avoid pre-averaging in either of the spatiotemporal dimensions and as a result,

the Ue estimate is around 20% higher than the classic uncertainty metrics. The deviation of Ue from the classic metrics is10

apparent for regions with strong spatial heterogeneity and where the variations significantly differ in temporal and spatial

scales. This shows that classic metrics reduce the uncertainty estimate through averaging, which means a loss of information

in the variations across spatiotemporal scales. Decomposing the formula for Ue shows that Ue has integrated four different

variations across the ensemble dataset members, while only two of the components are represented in the classic uncertainty

estimates. This analysis of the decomposition explains the correlation as well as the differences between the newly proposed Ue15

and the two classic uncertainty metrics. The new approach is implemented and analyzed with multiple precipitation products of

different types (e.g., gauge-based products, merged products and GCMs) which contain different sources of uncertainties with

different magnitudes. Among the multiple gauge-based precipitation products, Ue is the smallest, while among other products

Ue is generally larger because other uncertainty sources are included and the constraints of the observations are not as strong

as in gauge-based products. This new three-dimensional approach is flexible in its structure and particularly suitable for a20

comprehensive assessment of multiple datasets over large regions within any given period.

Copyright statement.

1



1 Introduction

With the technical developments in monitoring natural climate variables and the increasing knowledge of the physical mecha-

nisms in the climate system, many institutes have the ability to provide different kinds of climate datasets. Taking precipitation,

which is the dominant variable in the land water cycle, as an example, there are point measurements, such as GHCN-D (global

historical climatology network-daily, Menne et al., 2012), gridded products based on gauge measurements and interpolation5

(e.g., CRU, Harris et al., 2014), products derived from remote sensing (e.g., the Tropical Rainfall Measuring Mission - TRMM),

reanalysis datasets (e.g., NCEP) and estimates from models (e.g., GCMs). These products have been developed using different

original data, technologies and model settings for various purposes (Phillips and Gleckler, 2006; Tapiador et al., 2012; Beck

et al., 2017; Sun et al., 2018). As a result, there are differences between the various products due to measurement errors, model

biases, or chaotic noise. The uncertainty is thus regarded as the deviation of these model results from their real values.10

However, the real values are difficult to measure and the uncertainties are difficult to remove from the datasets. Thus, using

ensembles consisting of multiple datasets to generate a weighted average has become very popular in climate-related research.

The ensemble means of multiple datasets are considered more reliable estimates than a single dataset. For example, IPCC

uses 42 CMIP5 (Coupled Model Intercomparison Project Phase 5) models to show historical temperature changes and 39

CMIP5 models to average future temperature projections in RCP 8.5 scenario (Figure SPM.7 in IPCC, 2013b). Schewe et al.15

(2014) use nine global hydrological models to evaluate global water scarcity under climate change. GLDAS (Global Land

Data Assimilation System) involves four different land surface models (Rodell et al., 2004) and GRACE (Gravity Recovery

and Climate Experiment) provides estimates from three independent institutes (Landerer and Swenson, 2012). Using multiple

datasets reduces the dependence on a single dataset and eliminates the random variations associated to biases or noise in each

single model estimate.20

Along with the ensemble means, uncertainty information is recommended to be presented because the level of uncertainty

determines the reliability of the ensemble results. In general, uncertainties can be quantified as the range of maximum and

minimum values (i.e., Vmax−Vmin), the value difference at different quantiles (e.g., V5%−V95%), the consistency of mod-

els (ratio of models following a certain pattern to the total number of models), the variation (σ2) or the standard deviation

(σ) among multiple model estimations. These metrics describe the differences between multiple model estimates in different25

aspects. Among the metrics, the standard deviation (σ) is the most used because it has the same unit as the original dataset.

Moreover, it is less sensitive to extreme samples and to the number of datasets used for the investigation. The ratio of the

standard deviation (σ) to the mean value (µ), the so-called coefficient of variance (CV ), representing the dispersion or spread

of the distribution of various ensemble members (Everitt, 2013), is a unitless value which also shows the degree of uncertainty

efficiently.30

Depending on the purpose of the data evaluation, the uncertainty between the datasets can be displayed or visualized in space

to show the spatial heterogeneity. For example, the predicted future temperature increase has a higher significance in the north-

ern high-latitudes among different models than in the middle-latitudes (Box TS.6 Figure 1 in IPCC, 2013a). Another typical

implementation is to evaluate the evolution of the uncertainty over time. In general, the range of the uncertainty decreases in
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the historical period over time because more observations have been accessible recently. But the uncertainty increases in future

projections because of the increasing spread of model estimates (Figure SPM.7 in IPCC, 2013b), indicating a decreasing of

consistency but increasing variation among various datasets.

The two kinds of ways can easily show the spatial distribution or the temporal evolution of the uncertainty. But a short-

coming is apparent, as the variation along one dimension (time or space) has to be collapsed to generate the mean values when5

we attempt to assess the uncertainty for the other dimension (space or time). For example, the averaging over a specific region

to obtain the spatial mean is estimated at each time step before obtaining the temporal evolution of the model uncertainty (red

flowcharts in Figure 1). In contrast, averaging over a certain temporal period to obtain the temporal mean is necessary for each

grid cell when estimating the spatial variations of model uncertainties (blue flowcharts in Figure 1). The averaging, in either

dimension, means a loss of information about the variation in the data. Any changes in the variation that leaves the mean values10

unchanged will not be propagated to the global uncertainty estimation. The result of this is that the variations between datasets

is not fully considered when estimating the uncertainties. In other words, neither of the uncertainty estimates can represent the

whole of the differences between multiple datasets. The uncertainty can be underestimated, and the similarity of the datasets

thus overestimated. Indeed, the current literature has not paid attention to the ignoring of variation after averaging as well as

its influence on the assessment of the uncertainty.15

Space Time

Spatial mean

Temporal	evolution	 of	
the	spatial	mean	

Temporalmean

Spatial	distribution	 of	
the	temporal	mean

Uncertainty evolution
across time

Uncertainty distribution
over space

Figure 1. The two classic uncertainty assessments in the current literature: the temporal evolution of the model uncertainty (red) and the

spatial distribution of the model uncertainty (blue). Each of these estimations of the uncertainty has average over one of the dimensions,

either space or time, which will lead to losing information about the corresponding dimension.

The total variation among multiple datasets is contributed to by the spatial heterogeneity, temporal variability and the model

uncertainties. To some degree, the model uncertainty is similar to other dimensions as a variation along a third dimension

(ensemble dimension). The key to evaluating the model uncertainty is to decompose the variation caused by differences between

the datasets from the other two contributors. Although decomposing the variation by means of ANalysis Of VAriance (ANOVA)
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is often seen in hydro-metrological studies, this is designed to separate the process uncertainties generated in different model

processes that propagate to the final variation. For example, Déqué et al. (2007) decomposed the uncertainties of Regional

Climate Models (RCM) into four sources of uncertainty: sampling uncertainty, model uncertainty, radiative uncertainty and

boundary uncertainty. Bosshard et al. (2013) decomposed the uncertainty in river streamflow projections to uncertainties from

climate models, statistical post-processing schemes and hydrological models. These implementations differ from the purpose5

of the present study because they fail to separate the uncertainties from the spatiotemporal variations because spatiotemporal

averaging was already applied in the estimation process. Sun et al. (2010, 2012) for the first time decomposed the total variation

into temporal variation and spatial heterogeneity. They concluded that the variations along the spatial dimension contributed

more to the total variation than did the temporal variabilities. However, their method is only valid for one single dataset and is

thus not able to evaluate the uncertainties if multiple datasets describe the same variable. But a generalized method should be10

based on Sun’s work, as one more dimension can be added for a specific analysis of the uncertainties.

In the present study, we aim to introduce a new approach to estimating uncertainty among multiple datasets. The new

uncertainty metric should avoid any averaging over time or space, so that all information along each of these two dimensions

can be maintained for the assessment of the uncertainty. Multiple precipitation products will be used to display the results

and explain the specifics of the new method. In Section 2, the detailed method of the three-dimensional variance partitioning15

approach is introduced. The characteristics of multiple precipitation datasets and estimations of two other classic uncertainty

metrics are shown in Section 3. The results of the new approach for precipitation products are discussed in terms of the types

of precipitation datasets in Section 4. The differences between the new uncertainty estimation and two selected classic metrics

used in uncertainty analysis are analyzed and discussed in Section 5. A discussion and some conclusions follow in Section 6.

2 Method and datasets20

2.1 Mathematical Derivation

Multiple datasets recording the same climatic variable should be reorganized into a three dimensional database, using the

dimensions (1) time with a regular time interval (e.g. monthly or annual), (2) space with regular spatial units, with all the grids

re-organized into one dimension from the original longitude–latitude grids, and (3) ensemble as the third dimension describing

the different ensemble datasets. Thus, the dataset array can be re-organized to be25

Z = [zijk] (1)

with the i-th time step (i= 1,2, . . . ,m), j-th grid (j = 1,2, . . . ,n), and k-th ensemble member or ensemble model (k =

1,2, . . . , l).

We define the three dimensions to be time, space and ensemble dimension, and the means for these three dimensions to be

the temporal mean, spatial mean and ensemble mean. The corresponding variances are referred to as the temporal variance,30

spatial variance, and ensemble variance. We also define the grand mean (µ), grand variance (σ2) and the total sum of squares
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(SST ) (or total variation) across the entire database:

µ=

m∑
i=1

n∑
j=1

l∑
k=1

zijk/(mnl) (2)

σ2 =
SST

mnl
(3)

5

SST =

m∑
i=1

n∑
j=1

l∑
k=1

(zijk −µ)2. (4)

The total variation receive contributions from the variations along all three dimensions (Eq. 4). It can be reformulated as an

expression in terms of the variations along each of the three different dimensions. For instance, the derivation of the total

variation can start from the third ensemble dimension. For a specific kth ensemble member, the grand mean is formulated as

µts[k] =
∑m
i=1

∑n
j=1 zijk/(mn), leading to the total sum of squares being rewritten as10

SST =

m∑
i=1

n∑
j=1

l∑
k=1

(zijk −µts[k] +µts[k]−µ)2. (5)

The SST can be further expanded and rearranged as

SST =
∑m
i=1

∑n
j=1

∑l
k=1 (zijk −µts[k])

2

+2×
∑l
k=1 (µts[k]−µ)

[
m∑
i=1

n∑
j=1

(zijk −µts[k])

]
︸ ︷︷ ︸

=0

+

[
m∑
i=1

n∑
j=1

]
︸ ︷︷ ︸

=mn

∑l
k=1 (µts[k]−µ)

2 (6)15

SST =

m∑
i=1

n∑
j=1

l∑
k=1

(zijk −µts[k])2 +mn

l∑
k=1

(µts[k]−µ)2 (7)

SST =mn

l∑
k=1

σ2
ts[k] +mnlσ2(µts), (8)

where σ2(µts) is the variation of the grand mean for each ensemble member and σ2
ts[k] is the grand variance in the spatial20

and temporal dimensions for the ensemble member k. Moreover, σ2
ts[k] can be split using the mean of the spatial variation at
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each time step σ2
s [k, :] and the variation of the spatial mean σ2(µs[k, :]), denoted as in Eq. (9) with its derivation given in Eqs

(10)–(17).

σ2
ts[k] = σ2

s [k, :] +σ2(µs[k, :]). (9)

For a specific dataset k, the grand mean µts[k] at the spatiotemporal scale is

µts[k] =
1

mn

m∑
i=1

n∑
j=1

zijk. (10)5

The total sum of squares of the differences from the grand mean of this ensemble member is

SST [k] =

m∑
i=1

n∑
j=1

(zijk −µts[k])2 (11)

and the grand variance σ2
ts is

σ2
ts[k] =

1

mn

m∑
i=1

n∑
j=1

(zijk −µts[k])2. (12)

The derivation can start from either the spatial dimension or the temporal dimension. If the derivation starts from the spatial10

dimension, Eq. (11) can be rewritten by incorporating the spatial mean of each time step µs[k, i] =
∑l
j=1 zijk/n

SST [k] =

m∑
i=1

n∑
j=1

(zijk −µs[k, i] +µs[k,i]−µts[k])2. (13)

This can be expanded and then rearranged as

SST [k] =

m∑
i=1

n∑
j=1

(Zijk −µs[k,i])2

+2×
m∑
i=1

(µs[k, i]−µts[k])×

[
n∑
j=1

(Zijk −µs[k, i])

]
︸ ︷︷ ︸

=0

+

[
n∑
j=1

]
︸ ︷︷ ︸

=n

m∑
i=1

(µs[k,i]−µts[k])2

(14)

15

SST [k] =

m∑
i=1

n∑
j=1

(Zijk −µs[k,i])2 +n

m∑
i=1

(µs[k,i]−µts[k])2 (15)

SST [k] = n

m∑
i=1

σ2
s [k, i] +nmσ2(µs[k, :])

=nmσ2
s [k, :] +mnσ2(µs[k, :]).

(16)
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The grand variance of this specific dataset is Eq. 17 (identical to Eq. 9).

σ2
ts[k] =

SST [k]

mn
= σ2

s [k, :] +σ2(µs[k, :]). (17)

Here, σ2
s [k, :] is the mean of the spatial variation at each time step and σ2(µs[k, :]) is the variation of the spatial mean.

Or if we started the derivation from the time dimension, the grand variance can be split using the average of the temporal

variation from all regions σ2
t [:,k] and the spatial variation of the temporal mean σ2(µt[:,k]):5

σ2
ts[k] = σ2

t [:,k] +σ2(µt[:,k]). (18)

With Eq. (9) or Eq. (17) and Eq. (18), we obtain

σ2
ts[k] =

1

2

{
[σ2(µt[:,k]) +σ2

s [k, :]] + [σ2(µs[k, :]) +σ2
t [:,k]]

}
. (19)

Substituting Eq. (19) into Eq. (8) results in

SST = mn
2

∑l
k=1[σ

2(µt[:,k]) +σ2
s [k, :]]10

+mn
2

∑l
k=1[σ

2(µs[k, :]) +σ2
t [:,k]] +mnlσ2(µts). (20)

The first term on the right-hand side of Eq. (20) can be transformed to

mn

2

l∑
k=1

[σ2(µt[:,k]) +σ2
s [k, :]] =mnl

[
σ2
s_t+σ2

s

2

]
, (21)

where σ2
s_t is the mean value across ensemble members of the spatial variation of the temporal mean, and σ2

s represents the

grand mean of σ2
s , which is the grand variance across the temporal and ensemble dimensions. Eq. (20) then becomes15

SST =mnl

[
σ2
s_t+σ2

s

2

]
+mnl

[
σ2
t_s+σ2

t

2

]
+mnlσ2

e(µts), (22)

where σ2
t_s denotes the mean value across ensemble members of the temporal variation of the spatial mean, σ2

t denotes the grand

mean of σ2
t , the grand variance across space and ensemble dimensions, and σ2

e(µts) denotes the variation across ensemble

members of the spatial-temporal means µts.

Similarly, the global derivation of SST can start from any of the other two dimensions (i.e., space or time). This derivation20

can then be formulated as

SST =mnl

[
σ2
s_e+σ2

s

2

]
+mnl

[
σ2
e_s+σ2

e

2

]
+mnlσ2

t (µse) (23)

SST =mnl

[
σ2
e_t+σ2

e

2

]
+mnl

[
σ2
t_e+σ2

t

2

]
+mnlσ2

s(µet), (24)
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where each variable is defined in Appendix A. Averaging these three expressions of SST defined in Eqs (22)–(24) leads to

SST = mnl
3 [

σ2
t_s+σ

2
t_e

2 +σ2
t +σ2

t (µse)]

+mnl
3 [

σ2
s_t+σ

2
s_e

2 +σ2
s +σ2

s(µet)]

+mnl
3 [

σ2
e_t+σ

2
e_s

2 +σ2
e +σ2

e(µts)]. (25)

With the total number of degrees of freedom being m×n× l, the grand variance is expressed as5

σ2 =
1

3
[
σ2
t_s+σ2

t_e

2
+σ2

t +σ2
t (µse)]︸ ︷︷ ︸

Vt

+
1

3
[
σ2
s_t+σ2

s_e

2
+σ2

s +σ2
s(µet)]︸ ︷︷ ︸

Vs

+
1

3
[
σ2
e_t+σ2

e_s

2
+σ2

e +σ2
e(µts)]︸ ︷︷ ︸

Ve

, (26)

where Vt, Vs and Ve denote the temporal, spatial and ensemble variances, respectively. An illustration of the present approach

is shown in Figure 2 to facilitate the understanding of the partitioning results. The original database, consisting of multiple10

datasets, is re-organized into three dimensions (grey in the centre). Zones with different colors represent different processes of

the original database from different dimensions (see the details in the caption of Figure 2 and Appendix A).

Note that the ensemble variance Ve in Eq. (26) is a combination of several variations across the ensemble members. The four

components are the variations of temporal and spatial values (σ2
e , zone B3), temporal mean (σ2

e_t, zone C5), spatial mean (σ2
e_s,

zone C6) and the grand variance of the spatiotemporal mean for a single ensemble member (σ2
e(µts), zone F3). Similarly,15

the other variances only rely on the variances in the corresponding dimension, which shows the independence of the three

dimensions. This also is an illustration of the fact that the uncertainty across ensemble members is similar to the temporal

variation and spatial heterogeneity.

2.2 Definitions of the metrics for model uncertainty

Although the total variation is a result of contributions from the spatial heterogeneity, temporal variability, and the uncertainties20

across different datasets, we mainly focus on the variance in the ensemble dimension because the spatial or temporal variation

is natural for climatic variables. The uncertainty among ensemble members is normalized as the ratio of the square root of the

ensemble variance (Ve) to the grand mean value of the datasets (µ).

Ue =
√
Ve/µ (27)

Two classic metrics are also introduced for comparison. For each basic spatial unit (in the present study this means a grid25

cell), we can estimate the temporal mean of the target variable in each ensemble dataset as µt[j,k], j = 1, ...,n represents the

spatial unit, and k = 1, ..., l represents the index of the dataset. Then we can estimate the variations across different ensemble
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Figure 2. Partitioning the temporal-spatial-ensemble variance. The original database is re-organized into three dimensions: time, space and

ensemble. Zones with different colours represent different processes based on the original database through different dimensions. The labels

of the zones are listed on the right; detailed definitions can be found in Appendix A. The grand variance is σ2 and the grand mean is µ.

The subscripts t, s, and e indicate dimensions of time, space and ensemble, respectively. In Zone A, µx shows the mean values across the

x-dimension (x=t, s or e); in Zone B, σ2
x indicates the variation across the x-dimension; in Zone C, σ2

x_y indicates the variation across

the x-dimension of µy (y=t, s or e); in Zone D µxy indicates the means across the x- and y-dimensions; in Zone E, σ2
xy indicates the

variation across the x- and y-dimensions; in Zone F, σ2
x(µyz) indicates the variation across the x-dimension of the means across the y- and

z-dimensions (z=t, s or e).

datasets of the mean values as σ2(µt[j, :]) (expressed as σ2
e_t[j] in this study). The spatial distribution of the σ2

e_t shows the

magnitude of the model uncertainty over space and its root σe_t[j] is the model deviation at each spatial unit. The estimate of

this model deviation over the entire region can be expressed as

N.s.std=

√
σ2
e_t/µ=

1

µ

√√√√ 1

n

n∑
j=1

σ2
e_t[j]. (28)

For each spatial unit, σ2
e_t[j] (j = 1, ...,n) can take a different value. The values for all the grid cells are averaged to obtain5

σ2
e_t, which shows the general magnitude of the ensemble variation over space. The quantity N.s.std is normalized as the ratio

of the square root of the averaged variations
√
σ2
e_t to the grand mean of all the datasets µ.
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Similarly, the model uncertainty can be normalized as the ratio of the square root of the averaged ensemble variation but at

different time steps σ2
e_s to the entire means:

N.t.std=

√
σ2
e_s/µ=

1

µ

√√√√ 1

m

m∑
i=1

σ2
e_s[i], (29)

where σ2
e_s[i] (i= 1, ...,m) is the variation across different datasets of the spatial means of each product at each time unit

µs[i,k],(i= 1, ...,m,k = 1, ..., l).5

The two uncertainty estimates (Eqs 28 and 29) correspond to the two classic metrics presented in the Introduction. We will

compare Ue with these two classic metrics (N.t.std and N.s.std) to show their relations and differences.

2.3 Study area and data description

Mainland China has been selected as the study area because of its large area and different types of climate (Kottek et al.,

2006). Ten different subregions have been defined to facilitate the comparisons and analysis of the strong spatial variations.10

The subregions are (1) Songhua River Basin, (2) Liao River Basin, (3) Hai River Basin, (4) Yellow River Basin, (5) Huai River

Basin, (6) Yangtze River Basin, (7) Southeast China, (8) South China, (9) Southwest China, (10) Northwest China, see Figure

3. The entire Chinese mainland is numbered as the 11th region. Most of the subregions are natural river basins: this definition

is more appropriate for water resource analysis than definitions using longitude–latitude grids or those based on administrative

regions.15

Figure 3. Ten subregions are defined in this study. These subregions are mainly river basins (Regions 1–8), but 9 is Southwest China and 10

is Northwest China. Region 11 is the entirety of the Chinese mainland.

Precipitation is one of the climatic variables sensitive to large-scale atmospheric cycles and the local topography. Thirteen

different precipitation datasets from various sources have been collected for comparison (Table 1). These datasets have been
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categorized into three groups according to the methods they used for generating the products, namely, gauge-based products,

merged products and General Circulation Models (GCMs). The gauge-based products (namely, CMA, GPCC, CRU, CPC and

UDEL) use data observed from global precipitation gauges. The density of the ground observation gauges, the representa-

tiveness of the gauges, and the interpolation algorithms for converting the gauge observations to a gridded dataset differ from

product to product. The CMA (China Meteorological Administration) dataset has the densest distribution of gauges and prob-5

ably has the best quality to capture the spatiotemporal variations of the precipitation over the study area. The CMA dataset is

excluded when estimating the uncertainty among the gauge-based products: it is chosen as the reference dataset for comparison.

Among the merged precipitation products, the CMAP, GPCP and MSWEP use different sources of precipitation data

(namely, gauge observations, satellite remote sensing, and atmospheric model re-analysis). These different precipitation sources

are averaged using different weights. Thus, the differences between the three merged products are associated with the precipita-10

tion sources and the weight of the gauge observations. ERA-Interim is a re-analysis product: it uses near-real-time assimilation

with data from global observations (Dee et al., 2011). Thus, the forecasting model is constrained by the observations and

forced to follow the real system to some degree. Because of its use of observations, ERA-interim also belongs to the category

of merged products.

GCM precipitation is a pure model estimation because observations are not used to constrain the simulations. The imple-15

mented physical and numerical processes will affect the accuracy of the model results. The lack of constraints on the GCMs

will cause them to not follow the actual synoptic variability and explore other trajectories in the solution space. Kay et al.

(2015) repeatedly ran the same GCM with a very small shift in the initial conditions. But the small difference leads to a spread

in the model outputs after a number of running time steps (see Figure 2 in Kay et al., 2015). Therefore, the uncertainty in GCMs

can be attributed to the differences in the model structures, parameter settings, and the initial conditions as well. There are more20

than 20 kinds of different GCMs; only 4 of them have been chosen, randomly, to maintain the same number of datasets using

the gauge-based products as those using merged products.

All the products of the three precipitation types, including CMA, are in gridded format. Although they differ in their original

spatial resolution, all products have been interpolated to a 0.5o spatial resolution to unify the spatial units. Annual average

values are summed based on their original time steps (daily or monthly) and the overlap time span of all the datasets is from25

1979 to 2005 for all products.

3 Characteristics of precipitation and model quantified uncertainties with classic metrics

3.1 Spatial patterns of annual precipitation

The long-term annual mean precipitation (1979–2005) obtained by averaging the precipitation from multiple datasets in the

corresponding precipitation group is mapped in Figure 4. The annual mean precipitation obtained from the CMA dataset is30

589.8 mm yr−1 (1.6 mm day−1) over the entire Chinese mainland. The gauge-based precipitation has the least bias (-4.1mm

yr−1, -0.7% in percentage) compared to the CMA precipitation. The precipitation in the merged products and GCMs is larger

than that of the CMA by 63.1 and 232.0 mm yr−1 (with the bias equal to +10.7% and +39.3%), respectively.
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The spatial pattern of the annual precipitation shows a decreasing gradient from Southeast China (>1600 mm yr−1) to

Northwest China (<400 mm yr−1) in CMA and all other three precipitation groups. They have different abilities to display

the spatial gradient of the precipitation in some detail. For instance, some areas have abrupt precipitation changes rather than

follow the general gradient in CMA. This is probably caused by the sudden changes in topography (e.g., the northern Tienshan

Mountain, the Qilian Mountains), which is not captured in the gauge-based products because some of the key gauges are not5

included in the production of the gauge-based products. The abrupt changes can be somehow represented by merged products

and GCMs because the local variation due to topographic changes can be observed by other methods or by model algorithms.

The precipitation in the merged products and the GCMs is higher than that of CMA in the Himalayas, and particularly the

GCMs show higher precipitation in the North Tibet Plateau as well as the southern part of the Hengduan Mountains. These

differences show the general characteristics of the three types of precipitation products.10

(a) CMA (b) Gauge-based

(d) GCMs(c) Merged Products

Figure 4. The annual precipitation over a long-term period (1979–2005) for each group of precipitation datasets. (a) Annual precipitation of

CMA dataset, (b) ensemble means of the annual precipitation over the precipitation products in gauge-based precipitation excluding CMA,

(c) ensemble mean of the annual precipitation of all merged products, (d) ensemble means of the annual precipitation of all GCMs. The

observations in Taiwan are not released in the CMA dataset.

3.2 Spatial distribution of model uncertainties

In addition to the precipitation differences in its long-term annual means, differences can be found between datasets within the

same precipitation group. The spatial distribution of the model uncertainty for each precipitation group, which is expressed as

the ensemble deviation of the annual precipitation from different precipitation products, is mapped in Figure 5.
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(a) Gauge-based (b) Gauge-based

(c) Merged Products (d) Merged Products

(e) GCMs (f) GCMs

0 20 40 60 80 1000 50 100 150 200 250 300 350 400
Ensemble deviation (mm/yr) Normalized ensemble deviation (%)

Figure 5. The spatial distribution of model uncertainty in annual precipitation among different ensemble products. The uncertainty is ex-

pressed as the standard deviation of the annual precipitation across ensemble precipitation products of a specific group (up: gauge-based

products, middle: merged products, bottom: GCMs). The left panels are the values of the uncertainty. The right panels are the ratios of

ensemble deviation to the ensemble means of the datasets in the corresponding group.
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Among the datasets based on gauge observations, the ensemble deviation value is small in most of the land area of China (<50

mm yr−1, Figure 5-a). Although the deviation is higher in the south of China (50-100 mm yr−1), the area is not continuous in

space. The highest deviation occurs along the Himalayas, indicating a high variation among the observed datasets. Regarding

the merged precipitation products, the deviation shows high values (>200 mm yr−1, Figure 5-c) in Southwest China (e.g.,

the Tibet Plateau, Yunnan Province, Guangxi Province). Moderate deviation is found in Northeast China, North China and5

Southeast China. The deviation of precipitation has a correlation with the topology, which indicates that the performance of

the technologies used for the merged products are subject to the topologies as well. Compared to the gauge-based and merged

products, the deviation among the selected GCMs has the highest value (>400 mm yr−1, Figure 5-e) in South China, indicating

a significant model uncertainty of the annual precipitation between different GCMs.

The ratio of the ensemble deviation to the mean value, which shows the model uncertainty with no units, is very low in10

East China (<10%, Figure 5-b). It is higher in West China especially in the Himalayas and the North Tibet Plateau. Similar

to that of the gauge-based products, the uncertainty in the merged products has higher values in the West than in the East of

China (Figure 5-d). The area with a deviation ratio less than 10% is mainly distributed in Southeast China and is apparently

smaller than that of the gauge-based products, showing a decreasing similarity among different merged products. The area

with a moderate deviation ratio (10%–40%) increases compared to that of the gauge-based products, and the area is mostly in15

central and western China. The uncertainty estimated in the GCMs shows similar patterns in West China to that of the merged

products but with higher magnitudes in East China (Figure 5-f). Only the area in the Northeast and part of central China features

small uncertainty, less than 10%, and the deviation ratio rises significantly in South China (e.g., the Pearl River basin), which

corresponds to the high standard deviations in the GCMs shown in Figure 5-e.

The magnitude of the ensemble deviation demonstrates the model uncertainty among the different products in the same20

precipitation group and shows the ability to estimate the precipitation with different methods. For all products, the ensemble

deviation is relatively larger where the precipitation is higher, especially along the mountains and the subtropical regions.

The deviation ratio is higher in Northwest China, where the precipitation is among the lowest in China. Particularly for the

gauge-based products, higher ratios occur where the gauge density is low and the orographic effect is apparent (e.g., the

Tibet Plateau and other mountainous area). For the merged products and the GCMs, the deviation ratio increases especially in25

Southeast China, showing decreasing similarities among different precipitation products. Because the deviation ratio has taken

into account both the variation and the means (which may have a systematic bias), the deviation ratio is better than the absolute

ensemble deviation at representing the uncertainty, and it is the most commonly used in geographic studies.

3.3 Temporal evolution of model uncertainties

Figure 5 shows the spatial distribution of the ensemble deviation among different precipitation products. However, the temporal30

evolution of the deviation, which shows the performance of product over time and its changes, are not captured because the

temporal variation has been averaged in order to estimate the spatial ensemble deviation in Figure 5. In this subsection, we

examine the temporal evolution of the uncertainties in regional annual precipitation among different ensemble products. The

analysis is based on the ten subregions defined in Figure 3 and the entire Chinese mainland.
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(a) 1. Songhua River (b) 2. Liao River

(c) 3. Hai River (d) 4. Yellow River

(e) 5. Huai River (f) 6. Yangtze River

(g) 7. Southeast China (h) 8. South China

(i) 9. Southwest China

(j) 10. Northwest China

(k) 11. China Mainland
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Figure 6. The temporal evolution of the model uncertainty. The uncertainty is expressed as the normalized ensemble deviation of annual

precipitation across ensemble datasets in each precipitation group for specific subregions. The value on the top right of each panel is the

annual regional precipitation estimated in CMA dataset (1979–2015). The annual precipitation is normalized as the ratio to the CMA long-

term annual precipitation. The solid curve represents the ensemble mean of precipitation in each precipitation data group over the subregion.

The width of the shaded area represents the standard deviation of the annual precipitation in each year among the datasets within that group

(divided by the annual precipitation of the corresponding group). The shaded area is equally distributed in the two sides of the ensemble

mean values for the corresponding precipitation group.
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The annual precipitation of each precipitation group has been normalized as the ratio to the long-term annual mean of the

CMA in each subregion (black line in Figure 6). The magnitude of the annual precipitation in the gauge-based products (the

blue solid line) is similar to that of CMA except in Southwest China (Figure 6-i) for the overestimation along the Himalayas

(Figure 4-a,b). The precipitation in the merged products (the green solid line) is higher in Southwest and Northwest China,

in accordance with Figure 4-c. The annual precipitation of the GCMs (the red solid line) is apparently higher than that of the5

gauge-based products and merged products for almost all regions, which agrees with the spatial patterns in Figure 4-d.

The ensemble deviation across time scale is shown in the shaded area in Figure 6. It is estimated as the deviation of regional

annual precipitation among different products in the same group at a specific time step for each subregion. The deviation

in normalized to facilitate comparisons between different subregions. High deviations are found in Southwest China (Figure

6-i) in all three precipitation groups because of the large differences along the Himalayas. The deviations among the gauge-10

based products and the merged products in other regions are small and getting smaller with time. This is mainly because more

observations are included and technologies have improved with time to control the quality of the data. A large deviation is

found in the merged products in 10-Northwest China (Figure 6-j) and 4-Yellow River Basin (Figure 6-d), where a dry climate

dominates and the annual precipitation is among the lowest. The model deviation of GCMs varies between regions as it is at

its smallest in 1-Songhua River Basin (Figure 6-a) and 6-Yangtze River Basin (Figure 6-f), while it is among the highest in15

8-South China and West China (9,10), agreeing with the deviation maps in Figure 5.

Despite their mean values and magnitudes of deviation, the temporal evolution of the gauge-based products and merged

products agree well with those of the CMA dataset, while the temporal evolution of the members of the category of GCMs

is weaker and not well correlated with that of the CMA. The main reason is that GCMs are not constrained in their synoptic

variability and the sequence of wet and dry years can be very different from that of the observations. A smoother result is thus20

obtained when we build the ensemble mean from the GCMs. Unlike the weak variation in GCMs, the gauge-based and merged

products have a strong co-variance and the ensemble mean preserves this co-variance.

For the entire Chinese mainland (Figure 6-k), the ensemble deviation remains stable in different precipitation groups. In

contrast, the annual precipitation spans the strongest spatial heterogeneity in the mainland compared to those divided by

subregions (Figure 4). However, the spatial variation has been collapsed because the regional precipitation has to be obtained25

before the temporal analysis. It is therefore interesting to evaluate how the uncertainty changes when the variations along both

the time dimension and the spatial dimension are considered in the precipitation datasets.

3.4 Variations along the temporal and spatial dimensions

Previous subsections provide the deviation analysis in either temporal scale or the spatial scale. However, the two are seldom

compared with each other. Herein, the standard deviation of the temporal and spatial variations in the precipitation datasets are30

compared in Figure 7 in ten subregions and the China mainland for different precipitation groups. The gauge-based products

provide similar annual regional precipitation to CMA over the China mainland and the ten specific subregions except for the

region 7-Southeast China (Figure 7-g) and region 9-Southwest China (Figure 7-i). While the merged products provide larger

precipitation estimations for most of the regions. It might indicate the degraded ability of remote sensing, one of important
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data sources in the merged products, to estimate the precipitation amount in storms as the storms mainly contribute to the total

precipitation for the two subregions. The regional precipitation in GCMs is even larger except in the region 8-South China

(Figure 7-h). These results indicate the degraded ability of merged products and GCMs in reproducing the total value of the

annual precipitation.

(a) 1. Songhua River (b) 2. Liao River (c) 3. Hai River (d) 4. Yellow River

(e) 5. Huai River (f) 6. Yangtze River (g) 7. Southeast China (h) 8. South China

(i) 9. Southwest China (j) 10. Northwest China (k) 11. China Mainland

P=514.1mm P=536.6mm P=502.3mm P=455.2mm

P=834.2mm P=1065.1mm P=1412.2mm P=1524.7mm

P=711.1mm P=180.1mm P=583.6mm
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Figure 7. The spatial standard deviation (horizontal) and temporal standard deviation (vertical) of the annual precipitation across ensemble

datasets in each of the different precipitation groups for each subregion. The P value in the bottom left is the annual precipitation of CMA.

The cross centre represents the long-term means of the regional annual precipitation in ratio to the CMA mean value. The horizontal error

bar represents the spatial standard deviation (spatial variation of the long-term annual precipitation at all the grids). The vertical error bar

represents the temporal standard deviation (temporal variations of region-averaged annual precipitation in different years).

Regarding the temporal and spatial deviations, regions 9, 10 and 11 have the largest spatial standard deviation (as a ratio to5

the mean), indicating the strongest spatial heterogeneity over the regions. Regions 7-Southeast China and the 3-Hai River have

the smallest variations, either because of their small area or because the homogeneity in these subregions is high. However, the

spatial deviation in most of the subregions is larger than the temporal deviation. The ratio of the temporal deviation to the spatial

deviation is among the smallest in the subregions 9, 10 and 11 (k=0.1, 0.12 and 0.05, respectively. k is the ratio of the temporal
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deviation to the spatial deviation), showing an apparent difference between the variations along the two dimensions. While, the

difference between the variations along the two dimensions is small in the 3-Hai River basin (k=1.15) and 7-Southeast China

(k=0.90), mainly due to the relatively strong variability of the annual precipitation in different years.

In addition to the differences between regions, the variations in different precipitation groups also vary in magnitude. Ex-

cluding the CMA dataset, which consists of only one single product, the total variation (the sum of the spatial and temporal5

variations) in the gauge-based products is higher than that of the other two groups. This difference demonstrates that the gauge-

based products may have the largest spatial variation, and the correlations between the different gauge-based products are high,

so that this variation is preserved when passing to the ensemble. In contrast, the GCMs have the smallest variations, either

because the precipitation estimated in the GCMs are more spatially homogenous than those of other precipitation products, or

because the precipitation estimations in different GCMs are not consistent in time or space since there are no constraints on the10

GCM simulation. The inconsistent precipitation patterns will be further eliminated when carrying out an ensemble averaging

over multiple datasets.

4 Variances in precipitation products

4.1 Variances in three dimensions

In the preceding section, we introduced the spatial and temporal characteristics of the annual precipitation. The variations in15

the precipitation in two dimensions among different precipitation products in the same precipitation group were estimated

by two classic methods. In this section, we will present the uncertainty results estimated by the newly proposed approach to

the variance. As introduced in the methods section, the input annual precipitation to the approach is re-organized into three

dimensions: (1) time, 27 years from 1979 to 2005, (2) space, 0.5o grids in a specific region and (3) ensemble, the number of

models in each precipitation group (four models for each of the three groups). Note that the estimated variance is for a specific20

subregion because it is an analysis based on regions and a long-term scale.

The grand variance (V , total value of the variance for all three dimensions) and its three components (i.e., variance in time

Vt, space Vs and ensemble dimension Ve) for all the subregions is mapped in Figure 8. The grand variance is similar in space in

the precipitation groups of the gauge-based products and the merged products (Figure 8-a,b,c), while the grand variance in the

GCMs is larger and is approximately twice the V in the other two groups in regions 9-South China and 10-Southwest China.25

The differences are mainly constituted by the spatial variance and ensemble variance (Figure 8-i,l).

The temporal variance Vt is the smallest among all three variances, and it has very little differences in North China (Figure

8-d,e,f). But it is higher in the gauge-based products than in the merged products and GCMs in regions 8-Southeast China and

9-South China, indicating a relatively strong temporal variation in the annual precipitation series, in accordance with the larger

uncertainty ranges shown in Figure 6-h,i. Similar patterns of the spatial variance Vs are found in the gauge-based products30

and merged products (Figure 8-g,h). Regions 7-Southeast River basin and 9-Southwest China have the largest Vs because the

precipitation significantly varies in space in these two subregions: it is higher in GCM precipitation especially in 9-Southwest

China, indicating the strong spatial heterogeneity in the GCM models over the Himalayas (Figure 8-i). The ensemble variance

19



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

10
4  m

m
2

0

80

60

50

10

30

20

40

70

0

6

4

3

1

2

5

0

50

30

20

10

40

0

30

20

15

5

10

25

10
4  m

m
2

10
4  m

m
2

10
4  m

m
2

Vt

Vs

Ve

V

(b)
Gauge-based Merged Products GCMs

Figure 8. Maps of the estimated grand variance (V ) and variances in different dimensions (Vt, Vs, Ve) across the ensemble datasets in each

of the three different precipitation groups.

Ve is relatively small in most regions for gauge-based products (Figure 8-j), indicating that the model variation among datasets

in the observation group is small. A similarly small Ve is found in the northern regions among the merged products as well

as in the GCMs for the regions in North China, while the intra-ensemble variations are large in the GCMs, especially in the

South, especially 9-Southwest China and 8-South China (Figure 8-k,l).

One can conclude that the grand variance and individual variance for each of the three different dimensions are generally5

larger in the precipitation group consisting of GCMs. The variations for the gauge-based products and merged products are

similar in values and spatial distribution. However, in addition to the variances, the deviation defined as the ratio of the square

root of the variance to the mean (e.g., U , Ut, Us, Ue) contains extra information about the regional means, and will be discussed

in the following section.
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4.2 Deviations in three dimensions

In contrast to the spatial gradient of the magnitude of the variance distributed over the ten subregions (Figure 8), the larger

values of the total deviation (U =
√
V /µ) occurs in the Northwest, but a lower value generally occurs in South China (Figure

9). The decreasing tendency of magnitude of the precipitation from the southeast to the northwest results in a shift of the spatial

gradient compared to Figure 4. The total deviation U is the highest in Northwest China (U=0.89, Figure 9-a,b,c) for all three5

precipitation groups, but is relatively small in the northeastern 1-Songhua River (U=0.27) and 8-South China (U=0.29) for the

gauge-based products. Subregion 6-Yangtze River has a relatively lower U in the merged products and GCMs in the eastern

part of China.

Deviations along the temporal and spatial dimensions are inherent, as they show the temporal evolution and spatial hetero-

geneity of the precipitation products. The results show that Ut is small and contributes very little to the total U , indicating10

the weak fluctuation of annual precipitation compared to the spatial heterogeneity (Figure 9-d,e,f). The smallest value of Ut

for the GCMs is in accordance with the weakest temporal variations in Figure 6. The deviation in the spatial dimension (Us)

contributes the most to the total deviation, especially in Northwest China (Us=0.77 for the gauge-based products, Figure 9-g).

The high Us indicates the strong spatial heterogeneity of precipitation in the region, demonstrating that the ability to describe

the precipitation varies significantly in different places in the subregions. However, because the spatial variations obtained by15

the GCMs in Northwest China are less significant than with the other two groups, the value of Us for region 10-Southwest

China (=0.51) is smaller than that of the gauge-based and merged products.

The variations along the temporal and spatial dimensions show the natural precipitation patterns but the deviation of the

values among multiple products (Ue) shows the ability to consistently represent the spatiotemporal patterns. Therefore, Ue

indicates the uncertainty of the precipitation products among ensemble members of the same group. For the gauge-based20

products, Ue is smaller than 0.1 for regions in East China, indicating that the model variations are relatively small compared

to the annual means. The value of Ue is higher for 9-Southwest China (=0.30) and 10-Northwest China (=0.37), showing large

variations even in the gauge-based products. For the merged products, Ue is similar to that of the gauge-based products in West

China (=0.36), while it is larger in the East, especially for 6-Yangtze River and 4-Yellow River (more than two times larger

than Ue of the gauge-based products).25

For the GCM precipitation, Ue increases compared to the other two groups in the eastern subregions, corresponding to the

higher spatial model uncertainty in GCMs over the eastern regions shown in Figure 5. It decreases in 10-Northwest China

(Ue=0.25) and a possible reason for this is that the spatial homogeneity of the variations in 10-Northwest China (Figure 5-f)

is stronger than that of the other groups (Figure 5-b,d,f). In the GCMs, the highest Ue occurs in Southwest China, where both

the means and the variations are higher (Figure 4 and 5). One can conclude that Ue is linked with the magnitude of the model30

uncertainties in Figure 5 and Figure 6, indicating that it is to some degree correlated with the classic metrics, as higher Ue

covers the grid cells or regions with higher model uncertainty.
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Figure 9. Maps of deviations (U , Ut, Us, Ue) estimated as the ratio of the square root of the corresponding variances (i.e., V , Vt, Vs, Ve) to

the regional mean (µ) among the ensemble datasets in each of the three different precipitation groups. Of these, Ue is considered to be the

model uncertainty.
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5 Comparison of the uncertainty Ue with the classic metrics

5.1 Deviation from the classic uncertainty metrics

In this section, we will compare the uncertainty Ue among ensemble members estimated by the three-dimensional partitioning

approach with the two classic metrics (defined as N.s.std in Eq. 28 and N.t.std in Eq.29), to explain how these three metrics

are related and differ with each other. As shown in Figure 10, Ue is correlated with both N.s.std and N.t.std. The correlation5

is stronger when Ue is smaller than 0.2, where the regions from 1 to 8 are generally included for all three precipitation groups.

But Ue is in general larger than N.s.std and N.t.std for the products. This deviation is because the variation along one

dimension has been collapsed when calculating the deviation along the other dimension. For subregions 9, 10 and 11, N.s.std

and N.t.std deviate the most from the 1:1 line of Ue. Taking subregion 9-Southwest China in the gauge-based products as

an example, the temporal variance is 62.4 mm yr−1 while the spatial variance is 571.8 mm yr−1 (Figure 7-i). The difference10

between N.s.std and Ue is 0.058 (=0.297-0.239, deviation ratio is 24.3%) when the temporal variation is collapsed. The

difference between N.t.std and Ue is 0.126 (=0.297-0.171, deviation ratio is 73.4%) when the spatial variation is collapsed.

The deviation is significantly larger than that between Ue andN.s.std, showing that the collapse will induce a deviation related

to the magnitude of the collapsed dimension.
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Figure 10. The relation ofUe to the two classic metrics (a) the normalized spatial standard deviationN.s.std and (b) the normalized temporal

standard deviation N.t.std. The two metrics are estimated with Eqs 28 and 29 among the ensemble datasets in each of the three different

precipitation groups.

These subregions (9, 10, 11) feature strong spatial heterogeneities (Figure 7-i,j,k) in the annual mean precipitation (Figure15

4). The averaging process before estimating the classic metrics will cause a significant smoothing of the datasets when the

spatial heterogeneity among the datasets is very strong, because the spatial variation is significantly higher than the temporal

variation, as shown in Figure 7. The estimation of N.t.std, which needs an averaging over the spatial dimension, will lose

more information than that in the time dimension. The deviation between N.t.std and Ue (Figure 10-b) is larger than that

between N.s.std and Ue (Figure 10-a). The priority of the precipitation types also changes, from model dominated (the model20
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uncertainty in GCMs are larger than the other) to region dominated (the uncertainties in the specific regions 9, 10, and 11, are

larger than in the other regions no matter which precipitation data is used). This indicates that the difference in model variation

over space can be reflected in the new uncertainty Ue.

Each classic metric has its physical meaning: N.s.std represents the uncertainties over space and N.t.std represents the

uncertainties across time. The comparison of Ue with each of them demonstrates the metric performance on the same physical5

meaning. It is possible to compare Ue with a combination of the two classic metrics, but the combination could be far more

complex than a simple sum of the two classic metrics. However, a qualitative comparison is accessible because Ue has a linear

correlation with either of them. This correlation will persist, and occur between Ue and a combination of the two classic metrics

by summing them up with certain weights.

5.2 Decomposition of the ensemble uncertainty10

We now decompose the ensemble variance to determine the reason for the deviation of Ue fromN.s.std andN.t.std. As shown

in Eq. (26), the ensemble variance Ve is expressed by

Ve =
1

3
[
σ2
e_t+σ2

e_s

2
+σ2

e +σ2
e(µts)]. (30)

This combines four components which stand for the variation of different estimates across the ensemble dimension (i.e., the

variance of original temporal and spatial values - σ2
e , of the temporal mean - σ2

e_t, of the spatial mean - σ2
e_s and of the grand15

mean - σ2
e(µts)). Among these, σ2

e_t is the mean of the squares of the spatial deviation in Figure 5-a,c,e for all grids in a specific

region and σ2
e_s is the mean of the squares of the temporal deviation in Figure 6 for each time step in a specific region. These

two components are closely related to the two classic metrics N.s.std (Eq. 28) and N.t.std (Eq. 29), respectively.

(a) Gauge-based
(b) Merged Products (c) GCMs

Regions Regions Regions

Pr
op

or
tio

ns

Figure 11. The proportions of the four components in Eq. (30) to Ve among the ensemble datasets in each of the three different precipitation

groups: (a) gauge-based products, (b) merged products and (c) GCMs. The contribution is normalized so that their sum is 1.0 for each region.

Among the four components, σ2
e_t and σ2

e_s are associated with the two classic metrics N.s.std and N.t.std, respectively.

By decomposing Eq. (30), the contributions of the four components to the ensemble variance Ve are shown in Figure 11.

For all three precipitation groups, σ2
e is the dominant component simply because all the information on variations among20

the original datasets is retained in the uncertainty estimation. The other three components result from estimations after an
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averaging is performed, either over time, space, or the full spatiotemporal dimensions, which means a loss of information.

The contribution of σ2
e_t and σ2

e_s is approximating 0.15 for regions from 1 to 8. But σ2
e_t increases for regions 9, 10 and

11, indicating that there is significant spatial heterogeneity in these regions. In contrast, σ2
e_s decreases because the spatial

averaging has collapsed the spatial variations. The very small contribution of σ2
e_s related to N.t.std is the cause for larger

deviations between N.t.std and Ue in these subregions (Figure 10-b).5

Although any component can be used as a metric for evaluating the variations among multiple datasets, there are limitations

for each of the variations. For the variation of the temporal mean σ2
e_t and spatial mean σ2

e_s, the collapse of a dimension has

ignored part of the information. Moreover, the variation of the grand mean σ2
e(µts) has ignored both the temporal variability and

spatial heterogeneity, which further decreases its applicability to the assessment of uncertainty. The variation σ2
e is estimated

based on the original data without averaging, and thus it represents the most information. However, it does not take into account10

the systematic uncertainty (bias in the mean values) which is expressed by σ2
e(µts).

Therefore, none of the single components is able to represent the others. The integrated metric Ve is therefore a solution

that represents all metrics to different degrees. What is interesting is that the variability of the proportions of σ2
e_t and σ2

e_s (or

σ2
e and σ2

e(µts)) are opposite and the sum of their proportions is stable, around 0.3 (or 0.7). This indicates a complementary

relation between the two pairs of elements (σ2
e_t & σ2

e_s; σ2
e & σ2

e(µts)). On the other hand, some of the information is ignored15

in one of the components but remains in the other one within the same pair. Therefore, the variation along the time dimension

and that along the spatial dimension should be considered together, as is done in the estimation of the ensemble variance Ve.

The normalized uncertainty Ue derived from the integrated variation Ve, which is better able to determine the uncertainties than

are the classic metrics, should be the more proper choice for an uncertainty analysis.

5.3 Differences between the metrics in value and proportion20

Figure 10 shows thatUe is generally higher than the uncertainty identified by the two classic metrics (i.e.,N.s.std andN.t.std).

Figure 12 then summarizes the magnitude of the deviations of the classic metrics from the new uncertainty Ue. We can see

that the two classic metrics generally underestimate the uncertainty by around 0.03 (Figure 12-a). The variation of the un-

derestimation of N.t.std is larger than that of N.s.std, showing a larger deviation between Ue and N.t.std. Employing the

new uncertainty metric will increase the estimated uncertainty by around 20%–40% for half of the cases, when compared to25

N.s.std (Figure 12-b). For nearly 25% of the cases, the new Ue increases the estimated uncertainty by more than 50%. In

extreme cases, Ue is more than double N.t.std (Figure 12-b). The results show that the widely applied uncertainty estimates

from the two classic metrics have underestimated the uncertainty among different models / datasets. Such an underestimation

may especially occur for the temporal assessment of the uncertainties (N.t.std), which is very commonly seen in scientific

reports and articles to illustrate the temporal evolution of the variables of interest.30
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Figure 12. The changes in (a) value and (b) percentage when using Ue as the new uncertainty metric compared to classic metrics N.s.std

(Eq. 28) and N.t.std (Eq. 29).

6 Discussion and Conclusions

6.1 Features and applicability of the approach

The total variation of the database which consists of multiple datasets is contributed by the spatiotemporal variations as well

as the uncertainties among ensemble datasets. While the uncertainty assessment with current approaches (e.g., eqs. 28 and 29)

needs either the temporal variability or the spatial heterogeneity to be averaged which means a loss of information. The variance5

partitioning approach proposed in this study works in three dimensions. It uses all the information over both the temporal and

the spatial dimensions among the multiple ensemble members. It avoids the collapse of variation along any dimension, and

thus the proposed uncertainty estimate Ue provides a more accurate estimate of the uncertainty. The estimate Ue is especially

suitable for an overall assessment among multiple datasets over a certain period and over a specific space. Even though the

trade-off is that Ue cannot provide the temporal evolution or spatial heterogeneity for users’ consideration, in many cases we10

would like to know the general performance of the ensemble models based on a global single estimate.

The results of this partitioning approach can be affected by the choice of the time step intervals. For example, the temporal

variance or proportion of temporal variance will significantly increase if the time interval is chosen to be one month. The inter-

annual variability of precipitation will result in higher Vt. The changes depend on how significant the inter-annual variability

is compared to the intra-annual variations. Moreover, only changes in the temporal variation (the average values remain but15

the magnitudes of the variation increase or decrease) can be captured by Ue. But N.s.std will remain the same because the

temporal variability has been neglected in the averaging process. It is the same with N.t.std if different spatial resolutions of

the measurements are used.

The proposed approach has a flexible structure that can deal with different problems, from a global scale to regional studies.

The temporal dimension can also span from daily, monthly, annual to decadal analyses with different scopes. The ensemble20
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dimension is applicable from two members (i.e., model evaluation between simulations and observations) to any number of

multi-models (consensus evaluation, Tebaldi et al., 2011; McSweeney and Jones, 2013). The present approach is also applicable

to any variables that are organized in three dimensions, such as climatic variables (e.g., temperature, evaporation), hydrological

variables (e.g., soil moisture, runoff) or environmental variables (e.g., drought index). Based on these advantages, this three-

dimensional partitioning approach can be widely applied in hydro-climatic analysis.5

6.2 Conclusions

A new three-dimensional partitioning approach has been proposed in this paper to assess the model uncertainties among

multiple ensemble datasets. The new uncertainty metric (Ue) is estimated with an overall consideration of temporal and spatial

variations as well as the differences among the ensemble products. The results have shown that Ue is generally larger than the

classic uncertainty metrics N.s.std and N.t.std, which require a collapse of the variation along either the temporal or spatial10

dimension. The deviation occurs where the spatial variations are significant but being averaged in the N.t.std estimation. The

decomposition of the total variance Ve shows the complementary relation between the two classic metrics, and therefore the

new uncertainty Ue (derived from Ve) is a more comprehensive estimate of the uncertainty among multiple ensemble products.

Thirteen precipitation datasets generated by different methods have been categorized into three groups (namely, gauge-based

products, merged products and GCMs) and the model uncertainty in the ensemble products has been analyzed with the new15

approach and with the two classic uncertainty metrics for each precipitation group. Using the classic metrics, in most regions,

the GCMs have been indicated as having the largest model uncertainty. But the new estimatorUe indicates that the largest model

uncertainty occurs in specific regions no matter which precipitation group is considered. The impact of spatial heterogeneity

on the model uncertainty has been represented well in the new uncertainty metric (Ue). In addition to the theoretical analysis

of the components of Ue, the overall model uncertainty Ue can be used as a new uncertainty estimate which involves more20

information and should receive more attention in the field of uncertainty assessment.

Appendix A: The algorithms for different expressions in the methodology

Zone A:

A1: µt[s,e;n× l];µt[j,k] = 1
m

∑m
i=1 zijk

A2: µs[e, t; l×m];µs[k, i] =
1
n

∑n
j=1 zijk25

A3: µe[t,s;m×n];µe[i, j] = 1
l

∑l
k=1 zijk

Zone B:

B1: σ2
t [s,e;n× l];σ2

t [j,k] =
1
m

∑m
i=1(zijk −µt[j,k])2

B2: σ2
s [e, t; l×m];σ2

s [k, i] =
1
n

∑n
j=1(zijk −µs[k, i])2

B3: σ2
e [t,s;m×n];σ2

e [i, j] =
1
l

∑l
k=1(zijk −µe[i, j])230

Zone C:

C1: σ2
t_s[e; l];σ

2
t_s[k] = σ2(µs[k, :])
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C2: σ2
t_e[s;n];σ

2
t_e[j] = σ2(µe[:, j])

C3: σ2
s_t[e; l];σ

2
s_t[k] = σ2(µt[:,k])

C4: σ2
s_e[t;m];σ2

s_e[i] = σ2(µe[i, :])

C5: σ2
e_t[s;n];σ

2
e_t[j] = σ2(µt[j, :])

C6: σ2
e_s[t;m];σ2

e_s[i] = σ2(µs[:, i])5

Zone D:

D1: µet[s;n];µet[j] = 1
lm

∑l
k=1

∑m
i=1 zijk

D2: µse[t;m];µse[i] =
1
nl

∑n
j=1

∑l
k=1 zijk

D3: µts[e;k];µts[k] = 1
mn

∑m
i=1

∑n
j=1 zijk

Zone E:10

E1: σ2
et[s;n];σ

2
et[j] =

1
lm

∑l
k=1

∑m
i=1(zijk −µet[j])2

E2: σ2
se[t;m];σ2

se[i] =
1
nl

∑n
j=1

∑l
k=1(zijk −µse[i])2

E3: σ2
ts[e; l];σ

2
st[k] =

1
mn

∑m
i=1

∑n
j=1(zijk −µts[k])2

Zone F:

F1: σ2
t (µse) =

1
m

∑m
i=1(

1
nl

∑n
j=1

∑l
k=1 zijk −

1
m

∑m
i=1(

1
nl

∑n
j=1

∑l
k=1 zijk))

215

F2: σ2
s(µet) =

1
n

∑n
j=1(

1
lm

∑l
k=1

∑m
i=1 zijk −

1
n

∑n
j=1(

1
lm

∑l
k=1

∑m
i=1 zijk))

2

F3: σ2
e(µts) =

1
l

∑l
k=1(

1
mn

∑m
i=1

∑n
j=1 zijk −

1
l

∑l
k=1(

1
mn

∑m
i=1

∑n
j=1 zijk))

2

The t,s,e in the algorithms represents the three dimensions time, space and ensemble, with the size of m,n, l and index

with i, j,k, respectively. Each expression is shown with its size and the meaning of each dimension. For example, for the A1:

µt[s,e;n×l], the µt has a size of n×l. The first axis represents the space dimension, and the second is the ensemble dimension.20

While C1 (σ2
t_s[e; l]) has only one ensemble dimension with its size as l. F1 (σ2

t (µse)) is only a single value.
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