

Reviewer #1

We thank the reviewer for these helpful suggestions to improve our manuscript.

This paper “Linking economic and social factors to peak flows in an agricultural watershed using socio-hydrologic modeling” develops a coupled agent-based model to evaluate the impact of conversion decision on flood reduction in a watershed. I think the scope fits quite well with the journal and the authors explain their goal and method reasonably well. I do have some comments which I hope can further improve the quality of the manuscript. I would recommend a minor to moderate revision.

First, I think the authors can benefit well by enlarging their literature review into the “water resources systems analysis” (WRSA) realm. The study of human-hydrologic cycle interaction strat at the Harvard Water Program in the 1960s. A lot of classic issues (including the impact of land use, land cover change) had been addressed extensive lyin WRSA literature. Compare to “socio-hydrology,” WRSA also have a longer history of incorporating ABM into their modeling framework. I would strongly encourage authors to identify more literature on this aspect.

We thank the reviewer for this helpful comment. This paper was written with the emerging field of “socio-hydrology” strictly in mind. However, we realize that many other areas of water resources research have also utilized ABMs. We feel that the purpose of this paper is not to provide an elaborate and lengthy literature review. Most likely, one can probably write an entire review paper on the subject of incorporating ABMs and humans in water resources/hydrological analysis. We have cited some literature in the introduction (lines 71-73) to make readers aware of the WRSA field. Also, some of the studies that we cite on lines 97-100 do come from the WRSA field (e.g. Schlüter and Pahl-wostl, 2007).

Second, following my above comment, studies of ABM become more and more popular in the past decade. Methods used to quantify agents’ behavior have been improved a lot as well. Methods proposed by the authors are not entirely new (Section 2.7.2, line 375-385) because it is a Bayesian-based method (the authors even use the terminology: prior and posterior). Authors are encouraged to broaden their literature about ABM that uses Bayesian theory to address behavior uncertainty. The authors should highlight the different settings they used in their ABM compare to other Bayesian-based ABM.

Lines 393-404: The approach that we are using is not a true Bayesian approach. We are not using bayes rule/conditional probabilities to update any sort of probability distributions. The farmer agents are simply using a weighted average formulation that includes a variable taking into account their past land use configuration and several variables taking into account new information such as profits or future crop price projections. This is similar to a data assimilation approach such as the EnKF were the past model state is given a certain weight and new observations are given a certain weight based on a computed Kalman gain. Hence, we point to this field in lines 393-404 to indicate where this idea came from. Many studies in ABM dealing with agriculture and water resource take an optimization approach (e.g. Schreinemachers, P., Berger, T., 2011. An agent-based simulation model of human–environment interactions in agricultural systems.) or a rule-

based approach (e.g. van Oel, P.R., Krol, M.S., Hoekstra, A.Y., Taddei, R.R., 2010. Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit multi-agent simulation approach). We point out the different types of models used in the paragraph on lines 380-392. Some studies do use Bayesian methods, but these methods are usually paired with the main decision model (e.g. optimization). Ng et al 2011, "An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop", is one such study that uses Bayesian updating for updating farmer's perceptions of variables such as yields or crop prices.

We have updated the sentence on lines 396-398 so as not to confuse readers into thinking that we are using Bayesian methods.

Third, I do have a suggestion about paper structure. Currently, the authors put the ABM calibration in Section 5 which reads weird to me. The purpose of calibration and validation of the model is to demonstrate the credibility, therefore, it should be put before the authors use the model for any scenarios. I would suggest move Section 5 before the results. And add more discussion about ABM validation (beyond line 711-720) because this topic is the most popular issue in the ABM community nowadays.

This section has been moved prior to the results. Some further discussion and literature has been added in the paragraphs between lines 627 and 654.

I have some minor comments below:

Line 71-73: This kind of argument really needs to incorporate the studies of Water Resources Systems Analysis.

See comment above.

Line 137: You mean two "types" of agents?

Line 147-148: That is correct. The terminology in the manuscript has been changed from "primary" to "types" so as to make this more clear.

Line 223-224: This does match with your equation (7) to (9) because I did not see minimize flood damage objective function. Also, why the goal of the city agent is not "minimize the cost = flood damage + contact fee?

Lines 240-241: In the current version of the model, a stronger focus was placed on capturing the various decision variables that farmers may take into account, whereas the decision-making of the city agent was kept rather simple. So the city agent isn't "minimizing" flood damage using an objective function with numerical optimization, but rather the city agent is trying to reduce flooding based on a simplified linear equation, displayed below. Flood damage is computed based on a sigmoid relationship plotted below (left). This is described in detail in section S7 of the supplemental material. The city agent then takes this flood damage and computes a new conservation goal (amount of new land

that the city agent would like to convert to conservation as a percentage of the total watershed area) based on the linear relationship plotted below (right).

The city agent is a feature that will be improved in further iterations of the model. Introducing a cost function such as “cost = flood damage – flood reduction + contract_fee” is viable; however, this would require the city agent to have capability to simulate specific flood events in order to estimate flood reduction for a given amount of conservation implementation.

”Line 229: I think this is the first time you mention risk-aversion. You need a more detailed description of what does it mean in your model.

Risk-aversion indicates the willingness of a farmer to change his/her land use under uncertainty. Farmers with a high risk aversion will not want to change their previous land use because they are trying to avoid risk (keeping their land use the same represents a more predictable payoff to the farmer, even though their revenue may be smaller). Lines 176-182 were added to clarify this prior to the paragraph containing line 229 (now line 246).

Line 337: Since FAO has a physically-based crop model, you might want to test the sensitivity of the current crop model on your results given that this will affect farm agents’ decisions.

Line 352: The crop yields in our model are computed using a robust regression model that was formulated using temperature, precipitation, and yield data from 1960-2006. This model gives a reasonable prediction of yields based on environmental conditions. Unlike a physically-based model, there is no feasible way of testing the sensitivity of a regression-based model. We are not changing any of the values associated with specific regression coefficients. We do however take into account differences in yield based on soil types and add stochastic variability based on local differences in environmental conditions.

We thank the reviewer for this good suggestion. One of the goals for the future is to improve the crop model by introducing a physically-based crop model. This will allow us to simulate yields in more detail based on finer level farm management techniques.

Listed below is the reference for the crop regression model that is currently used.

Tannura, M. A., Irwin, S. H. and Good, D. L.: Weather, Technology, and Corn and Soybean Yields in the U.S. Corn Belt. [online] Available from:
https://farmdoc.illinois.edu/assets/marketing/morr_08-01.pdf, 2008.

Line 402: How you define “neighbor”?

Line 421-422: If a farmer is located in subbasin A for example, he/she can make a certain random number of neighboring connections with other farmers in that same subbasin. A sentence was inserted at lines 422-423 to clarify the above. If a subbasin contains 10 farmers, one farmer might form 5 neighboring connections with farmers in that same subbasin while another farmer may form only 2 connections. This process is described in greater detail in section S3 of the supplement.

Line 564-Figure 6d: Why is there a jump in all three curves around 2012? The same question for Figure 8d. I hope these comments help the authors for their revision.

In the scenarios plotted in figures 6d and 8d (now figures 8d and 10 d), the farmer is placing an 85% weight on the future price decision variable ($\delta C_{futures:Y}$). Most likely what is happening in this case is that prices are high during 2010-2013, but crop price forecasts are predicting a down turn in crop prices. If farmer agents are considering crop price forecasts several years into the future, conservation land begins increasing while crop prices are still high during 2012 and 2013. Essentially, the farmers are changing their land use in anticipation of lower crop prices. The increase in conservation land will be more dramatic considering that farmer agents are placing such high weight on the future crop price forecasts.

1
2
3 **Linking economic and social factors to peak flows in an agricultural**
4 **watershed using socio-hydrologic modeling**

5
6
7 David Dziubanski¹, Kristie J. Franz¹, William Gutowski¹

8 ¹Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA

9
10
11
12
13
14
15
16
17
18 *Correspondence to:*
19 David Dziubanski
20 2027 Agronomy Hall
21 Iowa State University
22 Ames, IA 50011
23 dave.dziubanski@gmail.com

29 **Abstract:** Hydrologic modeling studies most often represent humans through predefined actions
30 and fail to account for human responses under changing hydrologic conditions. By treating both
31 human and hydrologic systems as co-evolving, we build a socio-hydrological model that
32 combines an agent-based model (ABM) with a semi-distributed hydrologic model. The curve
33 number method is used to clearly illustrate the impacts of landcover changes resulting from
34 decisions made by two different agent types. Aiming to reduce flooding, a city agent pays farmer
35 agents to convert land into conservation. Farmer agents decide how to allocate land between
36 conservation and production based on factors related to profits, past land use, and willingness.
37 The model is implemented for a watershed representative of the mixed agricultural/small urban
38 area land use found in Iowa, USA. In this preliminary study, we simulate scenarios of crop
39 yields, crop prices, and conservation subsidies along with varied farmer parameters that illustrate
40 the effects of human system variables on peak discharges. High corn prices lead to a decrease in
41 conservation land from historical levels; consequently, mean peak discharge increases by 6%,
42 creating greater potential for downstream flooding within the watershed. However, when corn
43 prices are low and the watershed is characterized by a conservation-minded farmer population,
44 mean peak discharge is reduced by 3%. Overall, changes in mean peak discharge, which is
45 representative of farmer land use decisions, are most sensitive to changes in crop prices as
46 opposed to yields or conservation subsidies.

47

48

49

50

51

52 **1. Introduction**
53

54 Humans change the water cycle through actions that affect physical and chemical aspects
55 of the landscape, and these changes occur from global to local scales and over varying time
56 periods (Vorosmarty and Sahagian, 2000). Despite their significant impacts to the landscape,
57 humans remain the most poorly represented variables in hydrologic models (Sivapalan et al.,
58 2012). Land cover and land use are commonly treated as fixed in time in many hydrologic
59 models through the use of static parameters. When made dynamic, landscape change is often
60 limited to predefined scenarios that are developed without consideration of how economics, local
61 culture, or climate may combine to influence land use decisions. For example, the field of
62 integrated water resources management (IWRM), which attempts to explore the interactions
63 between humans and water, typically uses “scenario-based” approaches (Savenije and Van der
64 Zaag, 2008). While scenario-based studies allow quantification of the impacts of a management
65 decision on the hydrologic system, there are significant limitations (Elshafei et al., 2014;
66 Sivapalan et al., 2012). Human and environmental systems are highly coupled with feedbacks
67 from one system creating stress on the other system, which in turn affects the behavior of the
68 first system. Therefore, representing management decisions as pre-determined will not reproduce
69 the real-world variability that may arise as a result of complex feedbacks between the human
70 system and the physical system.

71 Arguments have emerged for socio-hydrological in the hydrological sciences and Water
72 Resources Systems Analysis (WRSA) fields for modeling in which humans and the environment
73 are treated as co-evolving (e.g., Di Baldassarre et al., 2013; Brown et al., 2015; Montanari, 2015;
74 Rosengrant et al., 2002; Sivapalan et al., 2012; Sivapalan and Blöschl, 2015; Wainwright, 2008).
75 In this way, models can account for disturbances to natural systems by humans and

76 simultaneously assess physical processes and economic and social issues. In the hydrologic
77 literature, two approaches have been used to simulate coupled human and natural systems: a
78 classic top-down approach and a bottom-up approach using agent-based modeling (ABM). In the
79 first approach, all aspects of the human system are represented through a set of parametrized
80 differential equations (e.g., Di Baldassarre et al., 2013; Elshafei et al., 2014; Viglione et al.,
81 2014). For example, Elshafei et al. (2014) characterizes the population dynamics, economics,
82 and sensitivity of the human population to hydrologic change through differential equations to
83 simulate the coupled dynamics of the human and hydrologic systems in an agricultural
84 watershed. In contrast, the ABM approach consists of a set of algorithms that encapsulate the
85 behaviors of agents and their interactions within a defined system, where agents can represent
86 individuals, groups, companies, or countries (Axelrod and Tesfatsion, 2006; Borrill and
87 Tesfatsion, 2011; Parunak et al., 1998). System agents can range from passive members with no
88 cognitive function to individual and group decision-makers with sophisticated learning and
89 communication capabilities. The ABM approach has several advantages over the traditional top
90 down approach (Bonabeau, 2002). Agent-based models are able to capture emergent
91 phenomenon that result from interactions between individual entities. In addition, simulating
92 individual entities through ABM provides for a more natural description of a system in contrast
93 to developing differential equations that capture the behavior of the system as a whole. ABMs
94 also provide for greater modeling flexibility by allowing for different number of agents, various
95 degrees of agent complexity, and behavioral differences among the agents. ABM has been used
96 to study the influence of human decision making on hydrologic topics such as water balance and
97 stream hydrology (Bithell and Brasington, 2009), flooding (Du et al., 2017; Jenkins et al., 2017;
98 Yang et al., 2018), irrigation and water usage (Barreteau et al., 2004; Becu et al., 2003; Berger et

99 al., 2006; Berglund, 2015; van Oel et al., 2010; Schlüter and Pahl-wostl, 2007), water quality
100 (Ng et al., 2011), and groundwater resources (Noel and Cai, 2017; Reeves and Zellner, 2010).

101 A dominating topic in the hydrologic sciences that can be studied through use of ABMs
102 is the issue of land use change impacts on hydrologic flows in intensively managed agricultural
103 landscapes (Rogger et al., 2017). A number of studies have attempted to quantify the impact of
104 land use change on streamflow (Ahn and Merwade, 2014; Frans et al., 2013; Naik and Jay, 2011;
105 Schilling et al., 2010; Tomer and Schilling, 2009; Wang and Hejazi, 2011) Ahn and Merwade
106 (2014) is one such study that found that 85% of streamflow stations in Georgia indicated a
107 significant human impact on streamflow. Another study by Schilling et al., (2010) indicated a
108 32% increase in the runoff ratio in the Upper Mississippi River basin due to land use changes,
109 mainly due to increases in soybean acreage. Results of Wang and Hejazi (2011) are consistent
110 with Schilling et al., (2010). They found a clear spatial pattern of increased human impact on
111 mean annual stream over the Midwestern states due to increases in cropland area.

112 Given clear evidence that the human system has a significant effect on streamflow, we use a
113 social-hydrologic modeling approach to better understand the effects of land-use changes driven
114 by economic and human behavior on hydrologic responses, which would be otherwise difficult
115 to observe with a hydrologic model alone.

116 In this study, we develop a social-hydrologic model that simulates changes in conservation
117 land area over time within an agriculturally-dominated watershed as a function of dynamic
118 human and natural factors. Using a sensitivity analysis approach, we use this model to quantify
119 the impact of economic and human factors on land use changes relating to conservation
120 implementation and subsequently, how these land use changes impact the hydrologic system. We
121 explore the following research questions:

122 1) To what degree do economic and agronomic factors (specifically crop prices,
123 conservation incentives, and crop yields) impact the success of a conservation
124 program designed to reduce peak flows?

125 2) To what degree are hydrologic outcomes sensitive to various factors that commonly
126 influence agricultural land use decisions?

127 Using simulations of a historical 47 year period, we explore land use and hydrologic outcomes
128 for a typical agricultural watershed in Iowa under the following six scenarios developed from
129 economic data: crop yields 11% above and below historical values, corn prices 19% above and
130 below historical values, and conservation subsidy rates 27% above and below historical cash rent
131 values. Additionally, we simulate land use and hydrologic outcomes for the historical period
132 without any perturbations to these economic data for comparison purposes. The following model
133 methodology is described using the ODD (Overview, Design Concepts, and Details) protocol
134 developed by Grimm et al. (2006).

135 **2. Model Purpose**

136 The purpose of the model is to understand the impact of land use decisions by upstream
137 farmers on flooding response in a downstream urban area under perturbations to extrinsic
138 economic and natural factors (e.g. crop prices, land rental values, climate), as well as intrinsic
139 factors (e.g. internal farmer behavior, local government incentives). System behavior under
140 changes in extrinsic and intrinsic factors is analyzed using a scenario-based ensemble approach.

141 **2.1 State Variables and Scales**

142 The model links an agent-based model of human decision making with a rainfall-runoff
143 model to simulate social and natural processes within highly-managed agricultural watersheds

147 (Figure 1). The agent-based model consists of two types of agents: a group of farmer agents and
148 a city agent.

149 The primary modeling domain consists of the watershed and the subbasins located within
150 the watershed. The model user must define the subbasins based on external analyses of
151 hydrologic flows and conditions. Each subbasin is populated by one or more farmer agents as
152 specified by the user. A farmer agent modifies the land use of the subbasin in proportion to the
153 subbasin area assigned to that agent. The most downstream subbasin in the watershed is
154 populated by an urban center, which is represented by a city agent. The city agent impacts land
155 use by providing subsidies to upstream farmer agents to change his/her land management.

156

Figure 1. Flow of information within the agent-based model.

157

2.1.1 Farmer agent state variables

158

159

160 The primary state variable for a farmer agent is the conservation parameter ($Cons_{max}$),
161 which characterizes the degree to which a farmer agent is “production-minded” versus
162 “conservation-minded”. This concept is based on McGuire et al. (2013) who identified that
163 US cornbelt farmers tend to fall along a spectrum from purely productivist to purely
164 conservationist. $Cons_{max}$ is randomly assigned to each farmer agent upon initialization and
165 provides variation in farmer agent behavior based on how an individual agent may prefer to
166 balance maximizing crop yields versus protecting the environment. $Cons_{max}$ represents the
167 maximum fraction of land a farmer is willing to put into conservation. The minimum value is
168 0.0, in which case a farmer is purely production-minded and is unwilling to convert any
169 production land into conservation. We set the maximum value at 10% ($Cons_{max} = 0.10$) based
170 on the conservation practice used in this study (Section 2.7.1). Therefore, a farmer is purely
171 conservation-minded at a parameter value of 0.1, and is willing to convert up to 10% of
172 his/her production land into conservation. This range of values corresponds to the percentage
173 of conservation land implemented over each of the last ten year for the entire state of Iowa
174 (~5-6% conservation land) and the Central Iowa Agricultural District (~3-4% conservation
175 land).

176 A secondary state variable of importance to the farmer agent is risk aversion attitude
177 (Prokopy et al., 2019). Risk aversion can be defined as the willingness to change land use
178 under uncertainty. Farmers with a high risk aversion are unwilling to change their land use
179 because they are trying to avoid risk. Keeping their land use consistent represents a more
180 predictable payoff, even if the revenue may not be as great as another land use choice.
181 Farmers that are more risk tolerant however, are more likely to adopt new practices such as
182 conservation.

183 Farmer agents are further characterized by their decision-making preferences, which
184 describe the relative importance that farmer agents place on different decision variables when
185 adjusting their land use. The farmer agent decision characteristics are described in Sect. 2.7.2.

186 Each farmer agent is assigned state variables characterizing the percent of different soil
187 types associated with the farmer's land. Corn crop productivity and crop production costs
188 (including the land rental value) vary for each soil type. Thus, the soil types associated with a
189 farmer agent's land impact his/her revenue.

190 **2.1.2 City Agent State Variables**

191 The city agent is characterized by a conservation goal that defines the amount of acres of
192 conservation land desired. The purpose of the conservation land is to reduce flooding in the city,
193 and the conservation goal changes from year-to-year depending on prior hydrologic events. The
194 damage that the city agent incurs from a flood event is defined by a flood damage function. A
195 parameter, $ConsGoal_{max}$, in the agent model defines how responsive the city agent is to prior
196 hydrologic outcomes and determines by how much the city agent will change the conservation
197 goal after experiencing a flood event (Section 2.8)

198 **2.2 Model Overview and Scheduling**
199
200

201 Each year, the agent-based model proceeds through monthly time steps to simulate the
202 relevant decision making. The hydrologic module proceeds in shorter hourly time steps to
203 capture flood discharge events associated with rainfall events. Figure 2 depicts the decision-
204 scheduling within the agent-based model. In January, the farmer agent calculates his/her
205 preferred land division between production and conservation based on their risk aversion
206 attitude, conservation-mindedness, newly acquired information about the global market (crop

207 prices, crop production costs, and crop insurance), conservation subsidies provided by the city
208 agent, as well as recent farm performance (profits and yields) (Figure 2, purple box).

209 In February, the city agent contacts farmer agents in random order to establish new
210 conservation contracts if an unmet conservation goal remains or to renew any expiring contracts
211 (Figure 2, yellow box). If the farmer agent wants to add additional conservation acreage, a new
212 contract is established for a 10 year period. The contract length is based on the Conservation
213 Reserve Program (CRP), which is a program administered by the Farm Service Agency that
214 promotes removal of environmentally-sensitive land from agricultural production in exchange
215 for an annual subsidy payment. However, if the farmer agent wants fewer conservation hectares,
216 expiring contracts are renewed for a smaller number of hectares or are ended. The farmer is
217 obligated to fulfill any contracts that have not yet expired (i.e. contracts less than 10 years old).
218 Any new acreage that has been established in conservation in addition to currently active
219 contracts is subtracted from the city agent's conservation goal that was established in January.
220 The city agent contacts as many farmer agents as needed until the conservation goal is reached.
221 If there are not enough farmer agents willing to enter into conservation contracts and the
222 conservation goal is not reached, the goal rolls into the next year. Because the farmer agents'
223 land use decisions change on a yearly basis, it may be possible for the city agent to establish
224 further contracts in the next year and fulfill the conservation goal.

225

Figure 2. Timeline of agent decisions and actions within the agent-based model.

226 Prior to May, the farmer agent establishes any newly contracted conservation land on the
 227 historically poorest yielding land. The farmer agent makes no further decisions during May
 228 through August (Figure 2). The city agent continuously keeps track of any flooding that occurs
 229 during the May-August period (when the maximum discharge is assumed to occur) (Figure 2,
 230 orange box). The associated flood damage cost is calculated in September and used to calculate
 231 whether any further conservation land should be added (Figure 2, green box). If no flooding
 232 occurred, the conservation goal remains unchanged. In October, the farmer agent harvests his/her
 233 crop and calculates yields and profits for that year (Figure 2, blue box).

234 **2.3 Design Concepts**

235
236 **Emergence:** Patterns in total conservation land and flood magnitude arise over time, depending
237 on a number of variables. Agent decision-making parameters and behavioral characteristics (e.g.
238 conservation-mindedness) influence the total acreage in conservation land, which in turn affects
239 the magnitude of floods through changes in runoff productivity of the landscape.

240 **Objectives and Adaptation:** The objective goal of the city agent is to reduce flood damage in
241 the city. The city agent attempts to meet this objective goal through an incentive program in
242 which farmer agents are paid to convert production land to a conservation practice that will
243 reduce runoff. If the city agent incurs a large cost from flooding in a given year, the city agent
244 adjusts his/her “conservation goal” upward in order to reduce minimize future flood damage
245 from events of similar magnitude. The objective of the farmer agent is to balance a maximization
246 of profits with conservation and risk-aversion attitude. The farmer agents incrementally adjust
247 their land use on an annual basis by taking into account profit variables, risk-aversion, and
248 conservation-mindedness.

249 **Stochasticity:** Adjustments and stochastic variability are added to key agricultural variables,
250 which include crop yields, production costs, cash rent values, and opportunity costs associated
251 with conservation land in order to account for economic and environmental randomness within
252 the system (Supplement S1.1, S1.2, S2). Random factors for these variables are drawn from
253 uniform continuous distributions that are based on field data of crop yields, empirical survey
254 data, and estimates published by Iowa State University Extension and Outreach. Changes in
255 these distributions are also accounted for, depending on crop price levels.

256 **Learning:** As will be outlined further in Sect. 2.7.2, each year, the farmer agents calculate profit
257 differences between crop production and conservation subsidies. Farmer agents save this profit

258 difference information from the beginning of the simulation and use it to adjust their decision-
259 making space on an annual basis. The profit difference information is based on past crop prices,
260 production costs, and conservation subsidies.

261 **2.4 Model Input**

262 **2.4.1 Economic Inputs**

265 Inputs to the agent-based models are historical crop prices (\$/MT), production costs
266 (\$/Ha), cash rental rates (\$/Ha), and federal government subsidy estimates (\$/Ha). An example of
267 these model inputs is shown in Fig. 3 in comparison to mean Iowa crop yields.

268 **2.4.2 Production Costs**

269
270 Production costs are treated as a time series input, with total costs per hectare for each
271 year represented by one lumped value. Production costs used in this model application include
272 machinery, labor, crop seed, chemicals, and crop insurance (Plastina, 2017). In addition, it is
273 assumed that all farmer agents rent their land, which significantly increases expenses as land
274 rental costs account for approximately half of total production costs (Plastina, 2017).

275 **2.4.3 Conservation Subsidy and Costs**

276 The conservation subsidy is based on the CRP Contour Grass Strips practice (CP-15A)
277 which includes annual land rental payments and 90% cost share for site preparation and
278 establishment (USDA Conservation Reserve Program Practice CP-15A, 2011). Subsidies are
279 calculated using annual inputs of historical cash rental rates. The cost of establishing and
280 maintaining conservation land is based on analysis conducted by Tyndall et al., (2013). These
281 costs are adjusted based on the land quality of each farmer agent (Supplement S1.2).

282

Figure 3. Example input time series of corn price, production cost, and cash rent as compared to mean crop yields.

283 **2.4.4 Federal Government Subsidies**

284 Calculation of federal government crop subsidies for individual farmer agents were not
 285 included in the agent-based model due to the complexity and variety of commodity programs
 286 available to US farmers, each of which focuses on different aspects of revenue protection (e.g.,
 287 protection against low crop prices, protection against revenue loss). Rather, federal crop
 288 subsidies are an input to the model and applied equally to each farmer agent. In this study, crop

289 subsidy inputs are based on historical estimates produced by Iowa State University Agricultural
290 Extension (Hofstrand, 2018).

291 **2.4.5 Environmental Variables**

292 The hydrology module requires hourly liquid precipitation (mm) as an input to simulate
293 discharge from short-term heavy rainfall events. The crop yield module requires inputs of mean
294 monthly precipitation and temperature to estimate crop yields (Section 2.6). The module
295 calculates mean monthly precipitation based on the hourly precipitation input, however, the user
296 must provide an input of mean monthly temperatures (C).

297 **2.5 Hydrology Module**

298 A model structure that is designed to simulate peak flows was chosen for the hydrology
299 module. Because the city agent in this model is impacted only by the maximum annual peak
300 flow, precisely simulating the full time series of hydrologic flows as well as hydrologic
301 components such as groundwater flow and evapotranspiration were not needed to meet the
302 objectives of the current study. The modeling structure was designed based on a version of the
303 U.S. Army Corps of Engineers' Hydrologic Engineering Center Hydrologic Modeling System
304 (HEC-HMS) (Scharffenberg, 2013) used by the City of Ames, Iowa for flood forecasting in the
305 Squaw Creek watershed in central Iowa. The Squaw Creek watershed represents the type of
306 rural-urban conditions of interest for this study, and is a useful test-bed for this modeling
307 application (Section 3). Further, calibrated parameters were available for the Squaw Creek
308 watershed (Schmieg et al., 2011), providing a realistic baseline for the hydrology module.

309 Using the configuration and parameters previously defined by Schmieg et al. (2011) for
310 the Squaw Creek watershed, the model on average was within 12.7% of the observed peak
311 discharge for 12 major events simulated. Six of these events were simulated within 3-8% of the

312 observation, while the least satisfactory simulation overestimated the observed peak discharge by
313 33%. This error was most likely due to the high spatial variability of precipitation for that event.
314 For the two most recent record flooding events that have occurred, the model underestimated the
315 peak discharge by 6.2% (2008, observed: $356.7 \text{ m}^3\text{s}^{-1}$, simulated: $334.6 \text{ m}^3\text{s}^{-1}$) and 16.6% (2010,
316 observed: $634.3 \text{ m}^3\text{s}^{-1}$, simulated $528.3 \text{ m}^3\text{s}^{-1}$), showing that the model is able to simulate the
317 flooding events needed to run scenarios within the ABM with a fair degree of accuracy. The
318 HEC-HMS model has also been successfully used for simulation of short term rainfall-runoff
319 events and peak flow and flood analysis in other studies (Chu and Steinman, 2009; Cydzik and
320 Hogue, 2009; Gyawali and Watkins, 2013; Halwatura and Najim, 2013; Knebl et al., 2005;
321 Verma et al., 2010; Zhang et al., 2013).

322 In the module, basin runoff is computed using the Soil Conservation Service (SCS) curve
323 number (CN) method, runoff is converted to basin outflow using the SCS unit hydrograph (SCS-
324 UH) method, and channel flow is routed through reaches in the river network using the
325 Muskingum method (Mays, 2011). A single area-weighted CN parameter is required for each
326 subbasin and is the only hydrology module parameter that changes during the simulation if land
327 cover changes. The SCS-UH method requires specification of subbasin area, time lag, and model
328 timestep. The Muskingum method is based on the continuity equation and a discharge-storage
329 relationship which characterizes the storage in a river reach through a combination of wedge and
330 prism storage (Mays, 2011). The Muskingum method requires specification of three parameters
331 for each reach within the river network: Muskingum X, Muskingum K, and the number of
332 segments over which the method will be applied within the reach (Mays, 2011). Muskingum X
333 describes the shape of the wedge storage within the reach whereas Muskingum K can be
334 approximated as the travel time through the reach.

335 For the agricultural areas, empirically-derived CN values (Dziubanski et al., 2017) are
336 used for native prairie strips; a CN = 82 is used for 100% row crop production; and a CN = 72
337 is used for the conservation option implemented by the farmer agents. Urban areas are set to a
338 CN = 90 which is derived from the standard lookup tables for residential areas with lot sizes
339 of 0.051 hectares or less, soil group C (USDA-Natural Resources Conservation Service,
340 2004). Subbasin delineations and Muskingum parameters previously defined by Schmieg et al.
341 (2011) are used.

342 The model accepts point-scale rainfall data (e.g., rain gauge data) and calculates mean areal
343 precipitation using the Thiessen Polygon gauge weighting technique (Mays, 2011). The Thiessen
344 weights are entered as parameters to the module. For the initial testing presented in this paper,
345 uniform precipitation over the entire watershed was assumed.

346 Output from the hydrology module is discharge at the watershed outlet ($m^3 s^{-1}$). The
347 hydrology module is run continuously but is designed primarily for simulation of peak flows,
348 which generally occur during the summer in the study region; therefore, for simplicity, a constant
349 baseflow is assumed and snow is ignored. Runoff, river routing processes, and discharge are
350 computed on a timestep identical to the input rainfall data. The model is run at an hourly
351 timestep in this study, but is capable of running at a 30-minute timestep.

352 **2.6 Crop Yield Module**

353
354 Crop yields are modeled with a multiple regression equation that takes into account
355 monthly precipitation and temperature. The regression equation, which was developed using
356 historical crop yield and meteorological data for Iowa from 1960-2006, can be represented as
357 (Tannura et al., 2008):

$$\begin{aligned}
yield_t = & \beta_0 + \beta_1(year_t) + \beta_2(September \text{ through April precipitation}) \\
& + \beta_3(May \text{ precipitation}) + \beta_4(June \text{ precipitation}) \\
& + \beta_5(June \text{ precipitation})^2 + \beta_6(July \text{ precipitation}) \\
& + \beta_7(July \text{ precipitation})^2 + \beta_8(August \text{ precipitation}) \\
& + \beta_9(August \text{ precipitation})^2 + \beta_{10}(May \text{ temperature}) \\
& + \beta_{11}(June \text{ temperature}) + \beta_{12}(July \text{ temperature}) \\
& + \beta_{13}(August \text{ temperature}) + \varepsilon_t
\end{aligned} \tag{1}$$

358 Mean error of the above regression for Iowa over the 1960-2016 period is -0.395 MT/ha,
 359 and mean absolute error is +0.542 MT/ha. An error correction factor of +0.395 MT/ha was added
 360 to the yield for each year to correct for this error. The above regression model is only appropriate
 361 for reproducing mean historical crop yields. Since each farmer's land can be composed of
 362 different soil types, adjustments are applied to the crop yield for each soil type to account for
 363 differences in soil productivity (Supplement S2).

364 **2.7 Farmer Agent Module**

365 **2.7.1 Conservation option**

368 The conservation option implemented by farmer agents is native prairie strips, a practice
 369 in which prairie vegetation is planted in multiple strips perpendicular to the primary flow
 370 direction upland of and/or at the farm plot outlet (Dziubanski et al., 2017; Helmers et al.,
 371 2012; Zhou et al., 2010). Either 10% or 20% of the total field size is converted into native
 372 prairie vegetation under this practice. Prairie strips have been shown to reduce runoff by an
 373 average of 37% (Hernandez-Santana et al., 2013), and have additional benefits of reducing
 374 nutrients (Zhou et al., 2014) and sediments (Helmers et al., 2012) in runoff. The greatest
 375 runoff reduction was realized under the 10% native prairie cover; therefore, the most
 376 conservation-minded farmers ($Cons_{max} = 0.10$) in the model potentially convert up to 10% of
 377 their total land into native prairie.

378 **2.7.2 Farmer agent land use decision process**

379
380 Agents within an ABM can be modeled using a variety of decision models with varying
381 degrees of complexity. Rules governing agent decision making need to realistically capture
382 human behavior without creating an excessively complex model(An, 2012; Zenobia et al.,
383 2009). An (2012) compiled a list of nine of the most common decision models used in agent-
384 based modeling studies. Examples of a few of these include micro economic models, space
385 theory based models, cognitive models, and heuristic models. In micro-economic models, agents
386 are typically designed to determine optimal resource allocation or production plans such that
387 profit is maximized and constraints are obeyed (Berger and Troost, 2014). Example studies using
388 optimization include Becu et al. (2003), Ng et al. (2011), Schreinemachers and Berger (2011). In
389 heuristic-based models, agents are set up to use “rules” to determine their final decision (Pahl-
390 wostl and Ebenhöh, 2004; Schreinemachers and Berger, 2006). The “rules” are typically
391 implemented using conditional statements (e.g. if-then). Example studies using heuristics include
392 Barreteau et al. (2004), Le et al. (2010), Matthews (2006), van Oel et al. (2010).

393 We take a different approach from the aforementioned studies by modeling agent decision
394 making using a nudging concept originating in the field of data assimilation (Asch et al., 2017).
395 Agents nudge their decision based on outcomes (i.e. flood damage, farm profitability) from the
396 previous year. Information relevant to an individual agent is mapped into the decision space
397 through a weighting function that updates the previous year's land use prior decision to create a
398 new (posterior) decision for the current year. The approach used for both agents is different from
399 optimization in that the agents are not trying to determine the best decision for each year. These
400 types of agents behave based on the idea of “bounded rationality”. In this case, the rationality of
401 the agents is limited by the complexity of the decision problem and their cognitive ability to
402 process information about their environment (Simon, 1957). These agents try to find a

403 satisfactory solution for the current year, and are thus termed “satisficers” rather than optimizers
404 (Kulik and Baker, 2008).

405 At the start of each calendar year, a farmer agent decides how to allocate his/her land
406 between production and conservation based on five variables: risk-aversion, crop price
407 projections, past profits, conservation goal, and neighbor land decisions. These factors were
408 chosen based on numerous studies indicating profits, economic incentives, conservation beliefs,
409 beliefs in traditional practices, neighbor connections, and observable benefits to be the key
410 factors influencing on-farm decision making related to conservation adoption (Arbuckle et al.,
411 2013; Arbuckle, 2017; Burton, 2014; Daloğlu et al., 2014; Davis and Gillespie, 2007; Hoag et
412 al., 2012; Lambert et al., 2007; McGuire et al., 2015; Nowak, 1992; Pfrimmer et al., 2017;
413 Prokopy et al., 2019; Ryan et al., 2003).

414 A farmer agent’s decision of the total amount of land to be allocated into conservation, C_t ,
415 for the current year t is:

$$D_t = W_{risk-averse}[C_{t-1:t-X}] + W_{futures}[D_{t-1} + \delta C_{futures:Y}] + W_{profit}[D_{t-1} + \delta C_{profit:X}] + W_{cons}[D_{t-1} + \delta C_{cons}] + W_{neighbor}[C_{neighbor}] \quad (2)$$

416 where $C_{t-1:t-X}$ is the mean total amount of land allocated to conservation during the previous X
417 years, D_{t-1} is the prior conservation decision (total amount of land the farmer would have liked
418 to implement in conservation) in year $t - 1$, $\delta C_{futures:Y}$ is the decision based on crop price
419 projections for Y years into the future, $\delta C_{profit:X}$ is the decision based on the mean past profit of
420 the previous X years, δC_{cons} is the decision based on the conservation goal of the farmer, and
421 $C_{neighbor}$ (Supplement S3) is the weighted mean conservation land of the farmer agent’s
422 neighbors (Table 1). A given farmer can make a certain random number of neighboring
423 connections with farmers that are located in the same subbasin (Supplement S3). The variable Y

424 indicates that ~~One~~ one farmer agent might consider his/her history of conservation land
425 implemented over the last year, while another farmer agent might consider his/her conservation
426 land implemented over the last 5 years. Similarly, the variable *X* indicates that one farmer agent
427 might take into account future crop projections for the next 5 years, while another farmer agent
428 might take into account crop projections for the next 10 years.

429 Decision weights alter how each of the five components factor into the farmer agent's
430 decision: $W_{risk-averse}$ reflects the unwillingness to change past land use, $W_{futures}$ reflects the
431 consideration of future price projections, W_{prof} reflects the consideration of past profits, W_{cons} is
432 the agent's consideration of his/her conservation goal, and $W_{neighbor}$ reflects the importance that
433 the agent places on his neighbor's decision (Table 2). Upon initializing each farmer agent, values
434 are allocated for each decision weight such that:

$$W_{risk-averse} + W_{futures} + W_{prof} + W_{cons} + W_{neighbor} = 1 \quad (3)$$

435 The above decision scheme allows for varying decision weights, thus one farmer's
436 decision may be heavily weighted by future crop prices, whereas another farmer's decision may
437 be heavily weighted by past profits. If majority of a farmer's decision is based on $W_{risk-averse}$,
438 then that farmer is less inclined to change his/her previous land use.

439 The decision components for past profit and future crop prices are based on a partial
440 budgeting approach that compares land use alternatives. Under this budgeting approach, farmer
441 agents take into account added and reduced income, as well as added and reduced costs from
442 changing an acre of land from crop production to conservation (Tigner, 2006). The result from
443 performing this budget indicates the net gain or loss in income that a farmer agent may incur if
444 they make the land conversion.

445 The past profits decision is solely based on outcomes that have been fully realized for the
446 previous X years. In this decision, the land allocated to conservation is based on the net amount
447 of money that could have been earned per hectare of conservation land versus crop land and is
448 calculated as:

$$\delta C_{profit:X} = [A * Profit_{diff}^2 + B * Profit_{diff} + C] \cdot Cons_{max} \cdot Hectares_{tot} \quad (4)$$

449 where $Profit_{diff}$ is the difference in profit between a hectare of cropland and a hectare of
450 conservation land (Table 1), $Cons_{max}$ is the farmer agent's maximum conservation parameter,
451 $Hectares_{tot}$ is the area of the agent's land. In the case of $\delta C_{profit:X}$, $Profit_{diff}$ is calculated
452 using realized crop prices from previous years (Supplement S4). The future price decision
453 variable, $\delta C_{futures:Y}$, is also calculated using the same form of Eq. (4). However, $Profit_{diff}$ is
454 calculated using projected crop prices for the Y upcoming growing seasons. These price
455 projections are based on historical crop prices with an added adjustment calculated from
456 historical errors in crop price forecasts produced by the U.S. Department of Agriculture
457 (Supplement S5).

458 **Figure 4.** Example of percent conservation change for δC_{profit} and $\delta C_{futures}$. Gray curves
 459 indicate negative percent change (decrease conservation land), black curves indicate positive
 460 percent change (increase conservation land).

461 The first term in Eq. (4), the is a second-degree polynomial of form $Ax^2 + Bx + C = y$,

462 is displayed in Fig. 4. At the start of each year, farmers may decide to alter their land use based

463 on observed $Profit_{diff}$ from harvests in previous years ($\delta C_{profit:X}$) or calculated $Profit_{diff}$

464 based on projected crop prices ($\delta C_{futures:Y}$). If $Profit_{diff}$ is positive (i.e. greater profit is earned

465 from crop production than conservation land), the farmer agent will potentially decrease the

466 amount of land in conservation (gray curve). Likewise, under negative $Profit_{diff}$, conservation

467 land is potentially increased because revenue is lower from crop production (black curve). Half

468 of the maximum allowable percent increase in conservation land is assumed to correspond to the

469 median historical negative $Profit_{diff}$, whereas half of the maximum allowable percent decrease

470 in conservation land corresponds to the median historical positive $Profit_{diff}$ (Figure 4). We

471 assume that farmer agents will not change land use when a very small profit difference between

471 the two possible options is observed because changing land use requires extra upfront time and
472 resources (Duffy, 2015). Similarly, we assume that farmer agents will fully implement the
473 maximum land conversion possible prior to reaching the most extreme $Profit_{diff}$ values. Three
474 equations need to be simultaneously solved to determine coefficients A, B, C (Supplement S4).
475 The three equations are based on the 25th, median, and 75th percentiles of historical $Profit_{diff}$
476 information. Thus, farmers are continually utilizing historical observations of $Profit_{diff}$ to
477 formulate their decision space through time.

478 The use of a profit function (i.e. Eq. (4)) is meant to capture the effects of changes in crop
479 prices on conservation land. In 2008 and 2011, corn prices rose to a record high values, and
480 farmers in the Midwest U.S. (e.g., Iowa, Minnesota) were converting significant portions of CRP
481 land back into crop production (Marcotty, 2011; Secchi and Babcock, 2007). It is estimated that
482 when corn prices rise by \$1.00, 10-15% of CRP land in Iowa is converted back to production
483 (Secchi and Babcock, 2007). Eq. (4) captures this transition between adding and removing
484 conservation land based on crop price change, and it allows for variation in the decision-making
485 between farmer agents since variables such as crop production costs vary from farm to farm.

486 The total amount of agricultural land that a farmer converts to conservation in any given
487 year based on his/her conservation goal (δC_{cons}) is defined by the Bernoulli distribution:

$$P(n) = p^n(1 - p)^{1-n} \quad n \in \{0,1\} \quad (5)$$

488 Here, p indicates the probability of fully implementing conservation land and $1 - p$ indicates the
489 probability of not implementing any conservation land. The variable n is simply the support of
490 the distribution that labels a success of full implementation as 1 and a failure of full

491 implementation as 0. The probability p of fully implementing conservation land is a function of
 492 the agent's $Cons_{max}$ parameter and is computed by:

$$p = 10 \cdot Cons_{max} \quad (6)$$

493 The probability p scales from 0 at a $Cons_{max}$ of 0, to 1 at a $Cons_{max}$ of 0.1. Therefore, farmer
 494 agents with a $Cons_{max}$ of 0.05 and 0.1 will have a 50% and 100% probability of fully
 495 implementing (10% of total agricultural land) conservation land in any given year based on their
 496 conservation decision variable.

497 **2.8 City Agent Module**

498 At the end of each year, the city agent collects discharge data and calculates the damage
 499 (Supplement S7) associated with the peak annual discharge at the watershed outlet for that year.
 500 In February of the next year, the flood damage for the previous year $t - 1$ is used to compute the
 501 conservation goal of the city agent for the current year t .

503 The conservation goal of the city agent is calculated as:

$$G_t = G_{t-1} + (A_{tot} - C_{tot}) \cdot P \quad (7)$$

$$P = P_{new} \cdot FDam \quad (8)$$

504
 $P_{new} = \frac{ConsGoal_{max}}{FDmax}$ (9)

505 where G_t is the conservation goal for the new year t (Table 1), G_{t-1} is the unfulfilled hectares in
 506 conservation from the previous conservation goal for year $t - 1$, A_{tot} is the total land area ~~in the~~
 507 ~~catchmentowned by the farmer agents~~, C_{tot} is the total number of hectares currently in
 508 conservation, P is the percentage of new production land added into conservation, P_{new} indicates
 509 how much land to add into conservation based on the flood damage $FDam$ for year $t - 1$, and
 510 $ConsGoal_{max}$ is a parameter that indicates the new percentage of conservation land to be added

511 if maximum flood damage occurs (Table 2). Currently, $ConsGoal_{max}$ is set to 5% of total land
512 area in the watershed when maximum damage occurs.

513 **3. Scenario Analysis**

514
515 The study watershed is modeled after the Squaw Creek basin (~56200 Ha) located in
516 central Iowa, USA (Figure 45). This basin is characterized by relatively flat hummocky
517 topography and poorly drained soils with a high silt and clay content (~30-40% silt and clay)
518 (Prior, 1991; USDA-Natural Resources Conservation Service (USDA-NRCS), 2015). The
519 predominant land use is row crop agriculture (~70% of the total watershed area) with one major
520 urban center at the outlet (Ames, Iowa), and several small communities upstream. Average
521 annual precipitation is 32 inches (812 mm), with the heaviest precipitation falling during the
522 months of May and June. The watershed is divided into 14 subbasins.

523

Figure 45. Squaw Creek watershed and subbasin division used in the hydrology module. Land cover data shown is from the National Land Cover Database (NLCD), 2016.

524 In this model application, 100 farmer agents are implemented (~7 farmers per subbasin)
 525 with 121 hectares total for each farmer. The total acreage per farmer compares reasonably well
 526 with average farm size for the state of Iowa in 2017, which was 140 hectares (USDA National
 527 Agricultural Statistics Service, 2018). Soil types and the area of land associated with each soil
 528 type are randomly assigned to each farmer agent upon model initialization. Assigning different

529 soil types creates heterogeneous conditions under which farmer agents must operate (Supplement
530 S2) and affects the profitability of each farmer agent differently.

531 Six scenarios are run: high and low yield ($\pm 11\%$ from historical yield), high and low
532 corn prices ($\pm 19\%$ from historical prices) and high and low conservation subsidies ($\pm 27\%$ from
533 historical cash rent). The watershed was also simulated under historical conditions, in which no
534 economic variables were changed, for comparison purposes. The above percentages were
535 computed using trends and mean absolute deviations of historical economic data. For instance,
536 based on the crop regression model (Section 2.6), crop yields display a relatively linear increase
537 with time. The mean absolute deviation of crop yield was then computed using the linear time
538 trend as a central tendency. The mean absolute deviation was determined to be 11%, thus the
539 yield scenarios are $\pm 11\%$ from the historical yield. The same approach was used for the crop
540 price and conservation subsidy scenarios. A linear and cubic function were found to provide a
541 good estimate of the central tendency of historical cash rent and crop prices, respectively, for
542 those calculations. In addition, four different farmer decision schemes are created in which an
543 80% weight was assigned to one decision variable, with all other variable weights set to 5%
544 (Table 3). Each scenario is tested with each decision scheme and system outcomes under
545 different farmer behaviors are assessed.

546 To test the sensitivity of the hydrologic system to farmer types, the conservation
547 parameter ($Cons_{max}$) of the farmer agents is varied using a stratified sampling approach. Each
548 farmer agent is randomly assigned a $Cons_{max}$ value from a predefined normal distribution:
549 ($\overline{Cons_{max}}, \sigma_{Cons_{max}}$). The lowest distribution is defined as $\mathcal{N}(0.01, 0.01)$ and the highest
550 distribution is defined as $\mathcal{N}(0.09, 0.01)$. Any farmer agent that is assigned a parameter value
551 less than 0 or greater than 0.1 is modified to have a value of 0 or 0.1, respectively. Twelve

552 simulations are performed for each conservation parameter distribution, with a total of 17
553 conservation parameter distributions. Thus, the first 12 simulations consist of farmer agents with
554 $Cons_{max}$ chosen from $\mathcal{N}(0.01, 0.01)$. For the next 12 simulations, the mean $Cons_{max}$ is shifted
555 up by 0.05, with $Cons_{max}$ chosen from $\mathcal{N}(0.015, 0.01)$. A total of 204 simulations are
556 conducted for each decision scheme under each scenario (Table 3).

557 Each simulation is run using 47 years of historical climate and market data, with the
558 exception of federal crop subsidies, which are based on 16 years of historical estimates produced
559 by Iowa State University Agricultural Extension (Hofstrand, 2018; Table 4). It is assumed that
560 federal crop subsidy payments from 1970-2000 are similar to levels seen from year 2000-2005
561 due to relative stability in long-term crop prices and production costs. The hourly 47 year
562 precipitation time series data was obtained from the Des Moines, Iowa airport Automated
563 Surface Observing System. Historical 47 year time series of corn prices, crop production costs,
564 and land rental values are used as economic inputs into the model and were obtained from Iowa
565 State University Agricultural Extension and Illinois FarmDoc (Table 4).

566 **45. Model Calibration and Validation**

567 Calibrating and validating the social part of social-hydrologic models is difficult due to
568 reasons that include lack of sufficiently detailed empirical data or system complexity at various
569 scales (An, 2012; Ormerod and Rosewell, 2009; Troy et al., 2015). Validation of agent-based
570 models is usually performed on what are termed the micro and macro levels. The micro level
571 involves comparing individual agent behaviors to real world empirical data whereas the macro
572 level involves comparing the model's aggregate response to system-wide empirical data (An et
573 al., 2005; Berger, 2001; Troy et al., 2015; Xiang et al., 2005). Troy et al., (2015) suggests that

574 one or a few model simulations out of an ensemble of simulations should match the real-world
575 observed data.

576 We conduct an indirect macro-level model calibration for determining an appropriate
577 range of farmer agent decision weights (Windrum et al., 2007). Since the subsidy program
578 offered by the city agent is similar to the federal Conservation Reserve Program (CRP), the
579 model was developed and calibrated to attempt to reproduce the range and variability of
580 conservation land seen in the CRP program. CRP data from 1986-2016 for the Central Iowa
581 Agricultural District was used in the calibration process and two main objectives functions were
582 used:

$$MAE = \frac{\sum_{i=1}^n |y_i - x_i|}{n} \quad (10)$$

583

$$Pearson's\ r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}} \quad (11)$$

584

585 In the first step of calibration, the focus was to determine an appropriate range of mean
586 *ConsMax* of the farmer agent population to match the magnitude of CRP land seen for central
587 Iowa. The model was simulated 360 times using 20 random sets of farmer agent decision
588 weights. Output from the first calibration step was filtered using a criteria of $r > 0.6$ and
589 $MAE < 25\%$, and the optimal *ConsMax* range was reduced to 0.05-0.07. In the second step of
590 calibration, the focus was to determine a singular optimal mean *ConsMax* value and narrow the
591 range for each decision weight. *ConsMax* was incremented by 0.001 within the range derived
592 from step 1, and 20 simulations were performed for each increment using decision weights
593 stochastically drawn from the uniform distribution $\mathcal{U}(0.05, 0.95)$ for a total of 400 simulations.
594 Output was filtered using a stricter criteria of $r > 0.7$ and $MAE < 25\%$. The final calibration

595 step involved 400 simulations with the optimal mean *ConsMax* value and stochastic sampling
596 from the reduced range of decision weights derived in step 2. Filtering with a criteria of $r > 0.75$
597 and $MAE < 12.5\%$ was performed to determine the final optimal decision weight ranges.

598 The optimal mean *ConsMax* value was determined to be 0.06 and the final optimal
599 decision weight ranges were determined to be: $W_{risk-averse} = (0.1, 0.43)$, $W_{futures} =$
600 $(0.07, 0.24)$, $W_{profit} = (0.07, 0.34)$, $W_{cons} = (0.18, 0.37)$, $W_{neighbor} = (0.05, 0.35)$. The
601 median r and MAE values of the simulations after filtering with the criteria in step three ($r >$
602 0.75 , $MAE < 12.5\%$) were 0.79 and 11% respectively. Sixty-six out of 400 simulations matched
603 this criteria in step three, whereas only seven matched this criteria in step one and 26 matched
604 this criteria in step two.

605 The model simulated conservation land generally aligns with trends in the observed
606 conservation land (Figure 106). Simulated conservation land is not maintained following a rise in
607 crop prices in the mid-1990s and from 2006-2013, which is similar to the observed data (red).
608 The drop in conservation land during these time periods occurs because the subsidy rate is not
609 modified rapidly enough in comparison to market forces to incentivize the farmer (Newton,
610 2017). ~~In 2008 and 2011, corn prices rose to a record high values, and farmer in the Midwest~~
611 ~~U.S. (e.g., Iowa, Minnesota) were converting significant portions of CRP land back into crop~~
612 ~~production (Marcotty, 2011; Seecchi and Babcock, 2007). It is estimated that when corn prices~~
613 ~~rise by \$1.00, 10–15% of CRP land in Iowa is converted back to production (Seecchi and~~
614 ~~Babcock, 2007).~~ The model does capture the smaller decrease in conservation land between
615 2007-2014, even though crop prices rose more dramatically than in the mid-1990s.

616
 617 Figure 106. Simulated conservation land from four model simulations with Pearson's $r > 0.8$ and
 618 MAE < 12.5% in comparison to observed conservation land.
 619

620 The onset of significant land conversion in the model is offset from the observations.
 621 Conservation land is implemented in the mid-1970s, while conservation land in the observation
 622 is implemented in the late-1980s. The CRP program did not come into existence until 1985,
 623 which partly explains this difference. A large rise in conservation land to roughly 4% occurs
 624 from 1975-1978, most likely due to a combination of decreasing crop prices from 1970-1974 and
 625 model spin up. This is similar to the rate of rise in conservation land that occurred under the CRP
 626 programs from 1985-1987 under a comparable period of decreasing crop prices.

627 Overall calibration does provide evidence that the model captures changes in CRP land
 628 during the appropriate time periods. However, the calibration technique does have limitations.

629 however, it does not provide evidence that any individual agent's decisions are valid. The
630 technique followed here was an indirect calibration approach, whereby the parameters are
631 determined based on the simulations that replicate the empirical data best (Fagiolo et al., 2006).
632 This technique can lead to equifinality since different parameter sets may reproduce the
633 historical observations with similar degrees of accuracy. Further, this calibration approach does
634 not provide evidence that any individual agent's decisions are valid. The stochastic nature of
635 human behavior coupled with path dependencies makes it difficult to predict individual agent
636 outcomes accurately (Berglund, 2015). In addition, it may be difficult to find sufficient data sets
637 to support a robust validation at the micro-level. For modeling land use decisions, data is
638 typically available at a larger scale such as county or state level rather than at the individual
639 agent-level (e.g. single farm) (An, 2012; Parker et al., 2008). This introduces difficulty in trying
640 to validate farm-level decisions with respect to farm-level finances (Section 2.7.2). Adding in
641 additional factors, such as Federal Market Loss Assistance and Loan Deficiency Payments, as
642 well as trying to characterize some of the other model parameters that were not a focus of this
643 calibration, may further improve results.

644 In light of the paper by Windrum et al. (2007), there has been much debate as to the
645 proper methodology and techniques to follow for ABM validation (Bharathy and Silverman,
646 2013; Hahn, 2013). To fully validate the current model, a more extensive process may be
647 necessary. Macal et al., (2007) introduced a framework for ABM validation that may provide for
648 a more comprehensive evaluation. This framework includes subject matter expert evaluation,
649 participatory simulation, model-to-model comparison, comparison against critical test cases,
650 invalidation tests, and comprehensive testing of the entire agent strategy and parameter space.
651 However, following this framework is very time costly, and thus most recent studies have

652 focused on empirical validation against real world macro level data, with some studies validating
653 at the individual agent level if data is available (Fagiolo et al., 2019; Guerini and Moneta, 2017;
654 Langevin et al., 2015; Schwarz and Ernst, 2009).

655 **45. Results**

656 **45.1 Crop Price Scenarios**

657 The 90th percentile peak discharge is 296.4 m³/s when no conservation is occurring in the
658 watershed (Figure 5Figure 7). The 90th percentile peak discharge decreases for all four decision
659 schemes and under all scenarios as the average conservation-mindedness ($Cons_{max}$) of the
660 population increases (Figure 5Figure 7). The low crop price scenario produces a larger decline in
661 peak discharge compared to the high crop price scenario, with the exception of the conservation
662 decision scheme (80% weight on conservation) in which both low and high crop price scenarios
663 produce a similar ensemble pattern (Figure 5Figure 7a).

665

Figure 5Figure 7. Mean 90th percentile discharge for high and low crop price scenarios under (a) 85% weight on conservation goal, (b) 85% weight on future price, (c) 85% weight on past profit, and (d) 85% weight on risk aversion. Bars indicate the median (circle) and the 5th and 95th percentiles of discharge for all simulations at a specific $Cons_{max}$.

666 Under low crop prices, peak discharge reaches an average reduction of 8.18% (24.27 m³/s)
 667 when the average $Cons_{max}$ is 0.08-0.09 (conservation-minded population) and 4.67% (13.85
 668 m³/s) when the average $Cons_{max}$ is 0.04-0.06 (mixed population). The decrease in peak
 669 discharge corresponds with the 800-1000 hectares and 400-600 hectares converted to
 670 conservation by the conservation-minded and mixed farmer populations, respectively (Figure
 671 6Figure 8a, c, e, g). The production-minded populations ($Cons_{max}$ ~0.01-0.02) implement less
 672 than 200 hectares during the entire simulation period. These acreage values represent 6.5-8.2%,
 673 3.3-5.0%, and less than 2.0% of the entire watershed for the conservation-minded, mixed, and
 674 production-minded groups, respectively. Given that 10% of the watershed would be in
 675 conservation if native prairie strips were fully implemented, about 65-80% of a conservation-

676 minded population fully implements the practice over the simulation period under low crop
677 prices.

678 Under the high crop prices, mean peak discharge decreases by 5.6 % (16.6 m³/s) under the
679 future price weighting scheme and 2.9% (8.6 m³/s) under the past profit weighting schemes for
680 the highly conservation-minded population ([Figure 5](#)[Figure 7](#)b and c, respectively), with an even
681 smaller reduction seen for the risk-averse scenario. This represents approximately a 61% smaller
682 decrease in the peak discharge when crop prices are high and the population is conservation-
683 minded as compared to the low crop price scenario. Discharge remains largely unchanged for
684 these decision schemes because generally less than 300 hectares of land is allocated for
685 conservation when corn prices are high ([Figure 6](#)[Figure 8](#)d, f, and h). The small amount of
686 conservation land implemented is due to farmer agents receiving significantly more revenue
687 from crops than conservation subsidies. However, in the case of low crop prices, conservation
688 subsidies allow the farmer agents to approach break even because they are guaranteed a subsidy
689 that covers the cash rent for that land, whereas crop production leads to potential losses due to
690 corn prices being low relative to production costs. Even in these scenarios where farmer agents
691 are heavily considering profit related variables, populations dominated by production-minded
692 farmer agents are still inclined to leave land in production ([Figure 6](#)[Figure 8](#)c and e).

693 **Figure 6Figure 8.** Range of simulated conservation land within the watershed under low (left column) and high (right column) crop prices for conservation-minded populations (green), mixed populations (blue) and production-minded populations (red). Crop prices are plotted as bars for each crop price scenario. Results are for decision schemes of 85% weight on conservation behavior (a, b), 85% weight on future price (c, d), 85% weight on past profit (e, f), and 85% weight on risk aversion (g, h).

694 **45.2 Crop Yield Scenarios**

695 Under high and low crop yield scenarios, the 90th percentile peak discharge decreases by
 696 an average of 5.9% (17.4 m³/s) and 7.6% (22.7 m³/s), respectively, for the conservation-minded
 697 populations (Figure 7Figure 9). Thus, a smaller decrease in peak discharge occurs with low crop
 698 yields relative to low crop prices (Figure 5Figure 7). In the low crop yield scenario, conservation
 699 land was approximately 200 Ha less than in the low crop price scenario, particularly for the past
 700 profit and future price decision schemes (Figure 6Figure 8a, c, e, g and 8a10a, c, e, g).

701 Conversely, more conservation land is established under the high yield scenario compared to the
 702 high crop price scenario (Figure 6Figure 8b, d, f, h and 108b, d, f, h). As a result, mean peak

703 discharge decreases in the high yield scenario by 15.6% more compared to the high crop price
 704 scenario for the conservation-minded population.

705 **Figure 7**Figure 9. Mean 90th percentile discharge for high and low crop yield scenarios under (a)
 85% weight on conservation goal, (b) 85% weight on future price, (c) 85% weight on past profit,
 and (d) 85% weight on risk aversion. Bars indicate the median (circle) and the 5th and 95th
 percentiles of discharge for all simulations at a specific Cons_{\max} .

Figure 8**Figure 10.** Range of simulated conservation land within the watershed under low (left column) and high (right column) crop yields for conservation-minded populations (green), mixed populations (blue) and production-minded populations (red). Yearly crop yields are plotted as bars for crop yield scenario. Results are for decision schemes of 85% weight on conservation behavior (a, b), 85% weight on future price (c, d), 85% weight on past profit (e, f), and 85% weight on risk aversion (g, h).

45.3 Conservation Subsidy Scenarios

706 Under the low and high subsidies scenarios (not shown), the 90th percentile peak
 707 discharge decreases by an average of 5.8% (17.3 m³/s) and 7.6% (22.5 m³/s), respectively, for
 708 conservation-minded populations. Similar to the low crop yield scenario, high subsidies do not
 709 produce as large of a decrease in mean peak discharge as low crop prices (**Figure 5****Figure 7**). In
 710 the high subsidies scenario, conservation land was approximately 200-300 Ha less than in the
 711 low crop price scenario, specifically for the future price and past profit decision scheme. In
 712 comparison, low subsidies generate more conservation land than under high crop prices (**Figure**
 713 **6****Figure 8**b, d, f, h). As a result, mean peak discharge decreases in the low subsidy scenario by

714 14.8% more compared to the high crop price scenario for the conservation-minded population.
715 Differences in peak discharge reduction between the high subsidy and low yield scenarios were
716 insignificant, with less than 1% difference between these two scenarios.

717 **45.4 Decision Schemes**

718 The future price and past profit decision schemes display the largest spread in discharge
719 outcomes between scenarios ([Figure 5](#)[Figure 7](#), [79](#)). Mean peak discharge decreases on average
720 by 9% (~27.2 m³/s) relative to when no conservation occurs for both decision schemes under all
721 scenarios that encourage more conservation land (i.e. low crop prices, low yields, high subsidies)
722 ([Figure 5](#)[Figure 7](#)b, c and [7b](#)[9b](#), c). Under scenarios that encourage less conservation land, mean
723 peak discharge decreases by 5% (~15.4 m³/s). This spread in peak discharge results is not present
724 under the risk-averse and conservation decision schemes.

725 The spread between the mean peak discharge under the different scenarios is smaller for
726 the future price decision scheme ([Figure 5](#)[Figure 7](#)b and [7b](#)[9b](#)) compared to the past profit
727 decision schemes ([Figure 5](#)[Figure 7](#)c and [7e](#)[9c](#)). This smaller spread may be due to uncertainty in
728 future crop price projections. For instance, future crop price projections may underestimate high
729 crop prices, but overestimate low crop prices, as is observed in previous USDA crop price
730 forecasts (Supplement S5). Thus, the farmer agents may be making decisions based on a smaller
731 range of crop prices when under the future price decisions compared to the past profit decision
732 scheme where they use realized crop prices. In addition, the future crop price decision scheme
733 results in greater variability in conservation land over short periods of time under all scenarios
734 ([Figure 6](#)[Figure 8](#)c,d and [8e](#)[10](#)c,d). This result is evident under the low crop price scenario, with
735 several short periods showing changes in conservation land of 200-400 ha as compared to the

736 past profit scenario where conservation land remains relatively steady. However, this result does
737 not lead to a larger spread (i.e. red and blue bars) within the mean peak discharge results.

738 The risk averse decision scheme produces the smallest changes in peak discharge under
739 all scenarios, with an average decrease of less than 2% ($6 \text{ m}^3/\text{s}$) and 3% ($9 \text{ m}^3/\text{s}$) for mixed and
740 conservation-minded populations, respectively ([Figure 5](#)[Figure 7d](#), [7d9d](#)). Because the farmer's
741 past practices are the primary factor in determining land conversion in this scheme, the farmer
742 agents implement a limited number of conservation acres ($\leq 200 \text{ ha}$), regardless of the scenario.
743 Therefore, changes in the economic variables are not having as large of an impact on the farmer
744 agents when they are strongly risk-averse.

745 Overall, the current city agent conservation goal of 5% new conservation land at
746 maximum flood damage did not have a significant impact on the total amount of land
747 implemented. Following two major flooding events, the conservation goal of the city agent
748 increases from less than 20 ha in 1975 to 620 ha in 1976. A similar event in 1977 increases the
749 conservation goal by another 500 ha for a total goal of approximately 1100 ha. These increases
750 correspond to the large and rapid onset of conservation land seen during those years ([Figure](#)
751 [6](#)[Figure 8a, c, e](#); [8a10a](#), c, e). When the population has a high average $Cons_{max}$, the conservation
752 goal of the city agent is nearly fulfilled during this period, particularly in the low crop price
753 scenario. In these cases, 900 ha of the conservation goal is implemented, and 200 ha remains
754 unimplemented. This results in the largest reduction in 90th percentile discharge under all
755 scenarios and decision schemes ([Figure 5](#)[Figure 7a](#), [7a9a](#)). When the population has a low
756 average $Cons_{max}$, the majority of the city agent's conservation goal remains unimplemented.
757 Thus, the goal remains at a constant 1000-1200 ha and discharge remains unchanged. The only
758 case where the city agent conservation goal limits the amount of land implemented is under the

759 conservation weighting scenario since conservation-minded farmers are inclined to add
760 conservation land on a yearly basis.

761 **45.5 Historical Comparison**

762 To gain an understanding of how each of the scenarios differs from the historical 1970-
763 2016 period, the mean peak discharge is compared against the historical scenario [\(Figure 11\)](#).
764 Recall that under the historical scenario, farmer agents make annual land use decisions as in the
765 other scenarios, but corn prices, conservation subsidies, and crop prices are unchanged from
766 historical observed values, which does not modify any economic or agricultural variables
767 [\(Figure 9\)](#). Overall, crop prices had the largest impact on mean peak discharge while changes in
768 subsidies had the smallest overall impact. When crop prices were low, mean peak discharge
769 decreased by 1-2% for mixed populations and 2-3% for conservation-minded populations under
770 the future price and past profit schemes compared to the historical scenario [\(Figure 9](#)[Figure 11a\)](#).
771 High crop prices result in an increase in peak discharge from the historical scenario, with an
772 increase of 1-3% for mixed populations, and 3-5% for conservation-minded populations. This
773 indicates that the farmer agents are more likely to convert land back to crop production under
774 high crop prices than convert land to conservation under low crop prices, which is a similar
775 conclusion to Claassen and Tegene, 1999.

776 The subsidy scenarios produced a similar pattern to the crop price scenarios, where a
777 larger change (increase) in mean peak discharge occurs under low subsidies than under high
778 subsidies [\(Figure 9](#)[Figure 11b\)](#). This pattern was not as clearly evident under the yield scenarios,
779 with similar changes resulting from high and low yields [\(Figure 9](#)[Figure 11c\)](#).

780

Figure 9 Figure 11. Percent Change in median 90th percentile discharge from the historical scenario for (a) high and low crop prices, (b) high and low subsidies, (c) high and low yields for the conservation, risk, future price, and past profit weighting schemes.

781

782 6. Conclusions

783 Scenarios of historical and low crop yields, as well as high and low corn prices and
 784 conservation subsidies, were simulated for an agricultural watershed in the Midwest US corn-

785 belt using an agent-based model of farmer decision making and a simple rainfall-runoff model.
786 The influence of different farmer agent decision components on model outcomes was also
787 explored. Model results demonstrate causations and correlations between human systems and
788 hydrologic outcomes, uncertainties, and sensitivities (specifically focused on high flows).

789 The primary findings from this study are:

- 790 • Crop prices had the largest impact on mean peak discharge, with a 61% larger reduction in
791 mean peak discharge under low crop prices in comparison to high crop prices.
- 792 • Changes in subsidy rates and crop yields produced a smaller impact on mean peak
793 discharge. Only a 25-30% difference in mean peak discharge was realized between high and
794 low subsidies, and high and low yields.
- 795 • Farmer agents more often made decisions to eliminate conservation land than to enter into
796 conservation contracts: a 3-5% increase in mean peak discharge occurred under high crop
797 prices, while only a 2-3% decrease in mean peak discharge occurred under low crop prices
798 compared to the historical simulation. Thus, even under low crop prices, the effectiveness of
799 the conservation program is limited either due to economic or behavioral factors.
- 800 • Hydrologic outcomes were most sensitive when farmer agents placed more weight on their
801 future price or past profit decision variables and least sensitive when farmer agents were
802 highly risk averse. For instance, under future price and past profit weighting scenarios, a 4%
803 and 7% difference in mean peak discharge is seen between high and low crop prices as
804 opposed to a 0-1% difference under the risk averse weighting scenario.

805
806 The ABM modeling approach demonstrated here can be used to advance fundamental
807 understanding of the interactions of water resources systems and human societies, particularly

808 focusing on human adaptation under future climate change. Our model indicates that external
809 factors can influence local streamflow, albeit in a complex and unpredictable way as the
810 information gets filtered through the complex decision making of local farmers. Social factors,
811 both local and external, introduce significant uncertainty in local hydrology outcomes, and by
812 ignoring them, water management plans will be inherently incomplete. Thus, multi-scale human
813 factors need to be explicitly considered when assessing the sustainability of long-term
814 management plans.

815
816 This study additionally demonstrates some of the advantages of the ABM approach. One
817 of the primary advantages of ABMs is the ability to capture emergent phenomenon (Bonabeau,
818 2002). For instance, in the model, the change in conservation area seen in the mid-1990s is larger
819 than during the period after 2007, despite the much larger volatility in crop prices after 2007.
820 While the primary reason behind this phenomenon may not be clear, the ABM captures this
821 change. The ABM also allows for specifying small scale differences between farmer agents such
822 as variations in conservation-mindedness, production costs, yields, cash rents, etc. Thus, using
823 ABMs allows for a very flexible modelling approach.

824 The current model design contains limitations in both the hydrologic and agent-based
825 models that should be addressed in future model development. The curve number values that
826 were used to represent the conservation option were derived for small agricultural plots of
827 approximately 0.5-3 Ha in size. The question remains whether these CN values can be scaled up
828 to the size of a several hundred hectare farm plot and still produce reasonable discharge results.
829 In addition, there is no explicit spatial representation of farmer agents within each subbasin,
830 Coupling the agent-based model to a more robust hydrologic model may reduce some of these
831 hydrologic limitations. The Agro-IBIS model, which includes dynamic crop growth and a crop

832 management module, would be particularly well suited to further investigating various farm-
833 level decisions within an ABM on hydrologic outcomes (Kucharik, 2003).

834 From the agent-based modeling standpoint, the decision-making of the farmer and city
835 agent could be made more sophisticated by introducing certain state variables, further decision
836 components and longer planning horizons. Studies have identified variables such as farm size,
837 type of farm, age of farmer, off farm income, land tenure agreement, education from local
838 experts, among others, to be significant in determining adoption of conservation practices
839 (Arbuckle, 2017; Daloğlu et al., 2014; Davis and Gillespie, 2007; Lambert et al., 2007; McGuire
840 et al., 2015; Ryan et al., 2003; Saltiel et al., 1994; Schaible et al., 2015). The functionality of the
841 city agent could be expanded by introducing cost-benefit analysis capabilities. Cost-benefit
842 capabilities would allow the city agent to make more advanced decisions such as choosing
843 among a variety of flood reducing investments (Shreve and Kelman, 2014; Tesfatsion et al.,
844 2017). The model is capable of replicating historical trends in observed conservation land in
845 Iowa with a Pearson's $r > 0.75$ and a $MAE < 12.5\%$ for a select number of simulations;
846 however, more work is needed to try to validate the model on a micro-level (farm-level) scale.
847 Finally, future work should more fully explore the feedbacks from the hydrologic system to the
848 human system, which is one of the strengths of the agent-based modeling approach (An, 2012).

849 **Code Availability**

850 Model code can be obtained from the corresponding author.

851
852
853

854

855 **Author Contribution**

856 David Dziubanski and Kristie Franz were the primary model developers and prepared the
857 manuscript. William Gutowski aided with manuscript preparation and editing.

858 **Competing Interests**

859 The authors declare that they have no conflict of interest.

860 **Acknowledgments**

861 Funding for this project was provided by an Iowa State University College of Liberal Arts and
862 Sciences seed grant. We would like to thank all other seed grant participants, including Jean
863 Goodwin, Chris R. Rehmann, William W. Simpkins, Leigh Tesfatsion, Dara Wald, and Alan
864 Wanamaker.

865 **References**

866

867 Ahn, K. H. and Merwade, V.: Quantifying the relative impact of climate and human activities on
868 streamflow, *J. Hydrol.*, 515, 257–266, doi:10.1016/j.jhydrol.2014.04.062, 2014.

869 An, L.: Modeling human decisions in coupled human and natural systems : Review of agent-
870 based models, *Ecol. Modell.*, 229, 25–36, doi:10.1016/j.ecolmodel.2011.07.010, 2012.

871 An, L., Linderman, M., Qi, J., Shortridge, A. and Liu, J.: Exploring Complexity in a Human–
872 Environment System: An Agent-Based Spatial Model for Multidisciplinary and Multiscale
873 Integration, *Ann. Assoc. Am. Geogr.*, 95(1), 54–79, doi:10.1111/j.1467-8306.2005.00450.x,
874 2005.

875 Arbuckle, J. G.: Iowa Farm and Rural Life Poll 2016 Summary Report, Ames, IA., 2017.

876 Arbuckle, J. G., Morton, L. W. and Hobbs, J.: Understanding farmer perspectives on climate
877 change adaptation and mitigation: the roles of trust in sources of climate information, climate
878 change beliefs, and perceived risk, *Environ. Behav.*, 1–30, doi:10.1177/0013916513503832,

879 2013.

880 Asch, M., Boquet, M. and Nodet, M.: Nudging Methods, in Data Assimilation: Methods,
881 Algorithms, and Applications, pp. 120–123, SIAM., 2017.

882 Axelrod, R. and Tesfatsion, L.: A Guide for Newcomers to Agent-Based Modeling in the Social
883 Sciences, *Handb. Comput. Econ.*, 2, 1647–1659, doi:10.1016/S1574-0021(05)02044-7, 2006.

884 Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L. and Blöschl, G.: Socio-
885 hydrology: Conceptualising human-flood interactions, *Hydrol. Earth Syst. Sci.*, 17(8), 3295–
886 3303, doi:10.5194/hess-17-3295-2013, 2013.

887 Barreteau, O., Bousquet, F., Millier, C. and Weber, J.: Suitability of Multi-Agent Simulations to
888 study irrigated system viability: application to case studies in the Senegal River Valley, *Agric.*
889 *Syst.*, 80(3), 255–275, doi:10.1016/j.agrsy.2003.07.005, 2004.

890 Becu, N., Perez, P., Walker, a, Barreteau, O. and Page, C. L.: Agent based simulation of a small
891 catchment water management in northern Thailand, *Ecol. Modell.*, 170(2–3), 319–331,
892 doi:10.1016/S0304-3800(03)00236-9, 2003.

893 Berger, T.: Agent-based spatial models applied to agriculture: A simulation tool for technology
894 diffusion, resource use changes and policy analysis, *Agric. Econ.*, 25(2–3), 245–260,
895 doi:10.1016/S0169-5150(01)00082-2, 2001.

896 Berger, T. and Troost, C.: Agent-based Modelling of Climate Adaptation and Mitigation Options
897 in Agriculture, *J. Agric. Econ.*, 65(2), 323–348, doi:10.1111/1477-9552.12045, 2014.

898 Berger, T., Birner, R., Mccarthy, N., DíAz, J. and Wittmer, H.: Capturing the complexity of
899 water uses and water users within a multi-agent framework, *Water Resour. Manag.*, 21(1), 129–
900 148, doi:10.1007/s11269-006-9045-z, 2006.

901 Berglund, E. Z.: Using agent-based modeling for water resources planning and management, *J.*

902 Water Resour. Plan. Manag., 141(11), 1–17, doi:10.1061/(ASCE)WR.1943-5452.0000544, 2015.

903 Bharathy, G. K. and Silverman, B.: Holistically evaluating agent-based social systems models: A
904 case study., 2013.

905 Bithell, M. and Brasington, J.: Coupling agent-based models of subsistence farming with
906 individual-based forest models and dynamic models of water distribution, Environ. Model.
907 Softw., 24(2), 173–190, doi:10.1016/j.envsoft.2008.06.016, 2009.

908 Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems,
909 Proc. Natl. Acad. Sci. U. S. A., 99(3), 7280–7287, doi:10.1073/pnas.082080899, 2002.

910 Borrill, P. and Tesfatsion, L.: Agent-based modeling: the right mathematics for the social
911 sciences?, in The Elgar Companion to Recent Economic Methodology, pp. 228–258, New York,
912 New York., 2011.

913 Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A., Ostfeld, A., Hall, J., Characklis,
914 G. W., Yu, W. and Brekke, L.: Scientific Framework for Sustainable Water Management, Water
915 Resour. Res., 6110–6124, doi:10.1002/2015WR017114. Received, 2015.

916 Burton, R. J. F.: The influence of farmer demographic characteristics on environmental
917 behaviour: A review, J. Environ. Manage., 135, 19–26, doi:10.1016/j.jenvman.2013.12.005,
918 2014.

919 Chu, X. and Steinman, A.: Event and Continuous Hydrologic Modeling with HEC-HMS, J. Irrig.
920 Drain. Eng., 135(1), 119–124, doi:10.1061/(ASCE)0733-9437(2009)135:1(119), 2009.

921 Claassen, R. and Tegene, A.: Agricultural Land Use Choice: A Discrete Choice Approach,
922 Agric. Resour. Econ. Rev., 28(1), 26–36, doi:10.1017/s1068280500000940, 1999.

923 Cydzik, K. and Hogue, T. S.: Modeling postfire response and recovery using the hydrologic
924 engineering center hydrologic modeling system (HEC-HMS), J. Am. Water Resour. Assoc.,

925 45(3), doi:10.1111/j.1752-1688.2009.00317.x, 2009.

926 Daloğlu, I., Nassauer, J. I., Riolo, R. L. and Scavia, D.: Development of a farmer typology of
927 agricultural conservation behavior in the american corn belt, *Agric. Syst.*, 129, 93–102,
928 doi:10.1016/j.agrsy.2014.05.007, 2014.

929 Davis, C. G. and Gillespie, J. M.: Factors affecting the selection of business arrangements by
930 U.S. hog farmers, *Rev. Agric. Econ.*, 29(2), 331–348, doi:10.1111/j.1467-9353.2007.00346.x,
931 2007.

932 Du, E., Cai, X., Sun, Z. and Minsker, B.: Exploring the Role of Social Media and Individual
933 Behaviors in Flood Evacuation Processes: An Agent-Based Modeling Approach, *Water Resour.*
934 *Res.*, 53(11), 9164–9180, doi:10.1002/2017WR021192, 2017.

935 Duffy, M.: Conservation Practices for Landlords, Ames, IA., 2015.

936 Dziubanski, D. J., Franz, K. J. and Helmers, M. J.: Effects of Spatial Distribution of Prairie
937 Vegetation in an Agricultural Landscape on Curve Number Values, *J. Am. Water Resour.*
938 *Assoc.*, 53(2), 365–381, doi:10.1111/1752-1688.12510, 2017.

939 Elshafei, Y., Sivapalan, M., Tonts, M. and Hipsey, M. R.: A prototype framework for models of
940 socio-hydrology: Identification of key feedback loops and parameterisation approach, *Hydrol.*
941 *Earth Syst. Sci.*, 18(6), 2141–2166, doi:10.5194/hess-18-2141-2014, 2014.

942 Fagiolo, G., Windrum, P. and Moneta, A.: Empirical validation of agent-based models: A critical
943 survey, *Econ. Policy*, (May), 1–45 [online] Available from:
944 <http://www.lem.sssup.it/WPLem/files/2006-14.pdf>, 2006.

945 Fagiolo, G., Guerini, M., Lamperti, F., Moneta, A. and Roventini, A.: Validation of Agent-Based
946 Models in Economics and Finance BT - Computer Simulation Validation: Fundamental
947 Concepts, Methodological Frameworks, and Philosophical Perspectives, edited by C. Beisbart

948 and N. J. Saam, pp. 763–787, Springer International Publishing, Cham., 2019.

949 Frans, C., Istanbulluoglu, E., Mishra, V., Munoz-Arriola, F. and Lettenmaier, D. P.: Are climatic
950 or land cover changes the dominant cause of runoff trends in the Upper Mississippi River Basin?,
951 *Geophys. Res. Lett.*, 40(6), 1104–1110, doi:10.1002/grl.50262, 2013.

952 Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand,
953 T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B.,
954 Pe'er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N.,
955 Strand, E., Souissi, S., Stillman, R. a., Vabø, R., Visser, U. and DeAngelis, D. L.: A standard
956 protocol for describing individual-based and agent-based models, *Ecol. Modell.*, 198(1–2), 115–
957 126, doi:10.1016/j.ecolmodel.2006.04.023, 2006.

958 Guerini, M. and Moneta, A.: A method for agent-based models validation, *J. Econ. Dyn. Control*,
959 82, 125–141, doi:10.1016/j.jedc.2017.06.001, 2017.

960 Gyawali, R. and Watkins, D. W.: Continuous Hydrologic Modeling of Snow-Affected
961 Watersheds in the Great Lakes Basin Using HEC-HMS, *J. Hydrol. Eng.*, 18(January), 29–39,
962 doi:10.1061/(ASCE)HE.1943-5584.0000591., 2013.

963 Hahn, H. A.: The conundrum of verification and validation of social science-based models,
964 *Procedia Comput. Sci.*, 16, 878–887, doi:10.1016/j.procs.2013.01.092, 2013.

965 Halwatura, D. and Najim, M. M. M.: Environmental Modelling & Software Application of the
966 HEC-HMS model for runoff simulation in a tropical catchment, *Environ. Model. Softw.*, 46,
967 155–162, doi:10.1016/j.envsoft.2013.03.006, 2013.

968 Helmers, M. J., Zhou, X., Asbjornsen, H., Kolka, R., Tomer, M. D. and Cruse, R. M.: Sediment
969 Removal by Prairie Filter Strips in Row-Cropped Ephemeral Watersheds, *J. Environ. Qual.*,
970 41(5), 1531, doi:10.2134/jeq2011.0473, 2012.

971 Hernandez-Santana, V., Zhou, X., Helmers, M. J., Asbjornsen, H., Kolka, R. and Tomer, M.:
972 Native prairie filter strips reduce runoff from hillslopes under annual row-crop systems in Iowa,
973 USA, *J. Hydrol.*, 477, 94–103, doi:10.1016/j.jhydrol.2012.11.013, 2013.

974 Hoag, D., Luloff, A. E. and Osmond, D.: *How Farmers and Ranchers Make Decisions on*
975 *Conservation Practices*, Raleigh, NC., 2012.

976 Hofstrand, D.: *Tracking the Profitability of Corn Production*, Ames, IA., 2018.

977 Jenkins, K., Surminski, S., Hall, J. and Crick, F.: Assessing surface water flood risk and
978 management strategies under future climate change: Insights from an Agent-Based Model, *Sci.*
979 *Total Environ.*, 595, 159–168, doi:10.1016/j.scitotenv.2017.03.242, 2017.

980 Knebl, M. R., Yang, Z., Hutchison, K. and Maidment, D. R.: Regional scale flood modeling
981 using NEXRAD rainfall , GIS , and HEC-HMS / RAS : a case study for the San Antonio River
982 Basin Summer 2002 storm event, *J. Environ. Manage.*, 75, 325–336,
983 doi:10.1016/j.jenvman.2004.11.024, 2005.

984 Kucharik, C. J.: Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the
985 U.S. Corn Belt: Simulations of the interannual variability in maize yield, *Earth Interact.*, 7(14),
986 1–33, doi:10.1175/1087-3562(2003)007<0001:EOAPAM>2.0.CO;2, 2003.

987 Kulik, B. and Baker, T.: Putting the organization back into computational organization theory: a
988 complex Perrowian model of organizational action, *Comput. Math. Organ. Theory*, 14, 84–119,
989 doi:10.1007/s10588-008-9022-6, 2008.

990 Lambert, D. M., Sullivan, P., Claassen, R. and Foreman, L.: Profiles of US farm households
991 adopting conservation-compatible practices, *Land use policy*, 24(1), 72–88,
992 doi:10.1016/j.landusepol.2005.12.002, 2007.

993 Langevin, J., Wen, J. and Gurian, P. L.: Simulating the human-building interaction:

994 Development and validation of an agent-based model of office occupant behaviors, *Build.*
995 *Environ.*, 88, 27–45, doi:10.1016/j.buildenv.2014.11.037, 2015.

996 Le, Q., Park, S. and Vlek, P.: Ecological Informatics Land Use Dynamic Simulator (LUDAS): A
997 multi-agent system model for simulating spatio-temporal dynamics of coupled human –
998 landscape system 2. Scenario-based application for impact assessment of land-use policies, *Ecol.*
999 *Inform.*, 5(3), 203–221, doi:10.1016/j.ecoinf.2010.02.001, 2010.

1000 Macal, C. M., North, M. J., Cirillo, R., Koratorav, V., Thimmapuram, P. and Veselka, T.:
1001 Validation of an Agent-based Model of Deregulated Electric Power Markets Abstract EMCAS
1002 (Electricity Market Complex Adaptive System) is an agent-based simulation model of the
1003 electric power market designed to investigate market restructuring and deregul. [online]
1004 Available from:
1005 <http://www2.econ.iastate.edu/tesfatsi/EmpValidACE.MacalNorth.ElectricPower.pdf>, 2007.

1006 Marcotty, J.: High crop prices a threat to nature?, *StarTribune*, 11th November, 2011.

1007 Matthews, R.: The People and Landscape Model (PALM): Towards full integration of human
1008 decision-making and biophysical simulation models, *Ecol. Model.*, 194, 329–343,
1009 doi:10.1016/j.ecolmodel.2005.10.032, 2006.

1010 Mays, L.: *Water Resources Engineering*, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ., 2011.

1011 McGuire, J., Morton, L. W. and Cast, A. D.: Reconstructing the good farmer identity: Shifts in
1012 farmer identities and farm management practices to improve water quality, *Agric. Human*
1013 *Values*, 30(1), 57–69, doi:10.1007/s10460-012-9381-y, 2013.

1014 McGuire, J. M., Wright, L., Arbuckle, J. G. and Cast, A. D.: Farmer identities and responses to
1015 the social-biophysical environment, *J. Rural Stud.*, 39, 145–155,
1016 doi:10.1016/j.jrurstud.2015.03.011, 2015.

1017 Montanari, A.: Debates-Perspectives on socio-hydrology: Introduction, *Water Resour. Res.*,
1018 51(6), 4768–4769, doi:10.1002/2015WR017430, 2015.

1019 Naik, P. K. and Jay, D. a.: Distinguishing human and climate influences on the Columbia River:
1020 Changes in mean flow and sediment transport, *J. Hydrol.*, 404(3–4), 259–277,
1021 doi:10.1016/j.jhydrol.2011.04.035, 2011.

1022 Newton, J.: Change on the Horizon for the Conservation Reserve Program?, [online] Available
1023 from: [https://www.fb.org/market-intel/change-on-the-horizon-for-the-conservation-reserve-](https://www.fb.org/market-intel/change-on-the-horizon-for-the-conservation-reserve-program)
1024 program (Accessed 15 January 2018), 2017.

1025 Ng, T. L., Eheart, J. W., Cai, X. and Braden, J. B.: An agent-based model of farmer decision-
1026 making and water quality impacts at the watershed scale under markets for carbon allowances
1027 and a second-generation biofuel crop, *Water Resour. Res.*, 47(9), doi:10.1029/2011WR010399,
1028 2011.

1029 Noel, P. H. and Cai, X.: On the role of individuals in models of coupled human and natural
1030 systems : Lessons from a case study in the Republican River Basin, *Environ. Model. Softw.*, 92,
1031 1–16, doi:10.1016/j.envsoft.2017.02.010, 2017.

1032 Nowak, P.: Why farmers adopt production technology, *Soil Water Conserv.*, 47(1), 14–16, 1992.

1033 van Oel, P. R., Krol, M. S., Hoekstra, A. Y. and Taddei, R. R.: Feedback mechanisms between
1034 water availability and water use in a semi-arid river basin: A spatially explicit multi-agent
1035 simulation approach, in *Environmental Modelling & Software*, vol. 25, pp. 433–443, Elsevier
1036 Ltd., 2010.

1037 Ormerod, P. and Rosewell, B.: Validation and Verification of Agent-Based Models in the Social
1038 Sciences, *Epistemol. Asp. Comput. Simul. Soc. Sci.*, 5466, 130–140, doi:10.1007/978-3-642-
1039 01109-2_10, 2009.

1040 Pahl-wostl, C. and Ebenhöh, E.: Heuristics to characterise human behaviour in agent based
1041 models., 2004.

1042 Parker, D. C., Hessl, A. and Davis, S. C.: Complexity, land-use modeling, and the human
1043 dimension: Fundamental challenges for mapping unknown outcome spaces, *Geoforum*, 39(2),
1044 789–804, doi:10.1016/j.geoforum.2007.05.005, 2008.

1045 Parunak, H. V. D., Savit, R. and Riolo, R. L.: Multi-agent systems and agent-based simulation,
1046 Proc. First Int. Work. Multi-Agent Syst. Agent-Based Simul., 10–25, doi:10.1007/b71639, 1998.

1047 Pfrimmer, J., Gigliotti, L., Stafford, J. and Schumann, D.: Motivations for Enrollment Into the
1048 Conservation Reserve Enhancement Program in the James River Basin of South Dakota, *Hum.*
1049 *Dimens. Wildl.*, 22(4), 1–8, doi:10.1080/10871209.2017.1324069, 2017.

1050 Plastina, A.: Estimated Costs of Crop Production in Iowa - 2017, Ames, IA., 2017.

1051 Prior, J.: Landforms of Iowa, 1st ed., University of Iowa Press, Iowa City, Iowa., 1991.

1052 Prokopy, L. S., Floress, K., Arbuckle, J. G., Church, S. P., Eanes, F. R., Gao, Y., Gramig, B. M.,
1053 Ranjan, P. and Singh, A. S.: Adoption of agricultural conservation practices in the United States:
1054 Evidence from 35 years of quantitative literature, *J. Soil Water Conserv.*, 74(5), 520–534,
1055 doi:10.2489/jswc.74.5.520, 2019.

1056 Reeves, H. W. and Zellner, M. L.: Linking MODFLOW with an agent-based land-use model to
1057 support decision making., *Ground Water*, 48(5), 649–60, doi:10.1111/j.1745-6584.2010.00677.x,
1058 2010.

1059 Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., Chaplot, V.,
1060 Gallart, F., Glatzel, G., Hall, J., Holden, J., Holko, L., Horn, R., Kiss, A., Quinton, J. N.,
1061 Leitinger, G., Lennartz, B., Parajka, J., Peth, S., Robinson, M., Salinas, J. L., Santoro, A.,
1062 Szolgay, J., Tron, S. and Viglione, A.: Land use change impacts on floods at the catchment scale:

1063 Challenges and opportunities for future research, *Water Resouces Res.*, 53(June 2013), 5209–
1064 5219, doi:10.1002/2017WR020723. Received, 2017.

1065 Rosengrant, M., Cai, X. and Cline, S.: World water and food to 2025., 2002.

1066 Ryan, R. L., Erickson, D. L. and De Young, R.: Farmers' Motivation for Adopting Conservation
1067 Practices along Riparian Zones in a Mid-western Agricultural Watershed, *J. Environ. Plan.*
1068 *Manag.*, 46(1), 19–37, doi:10.1080/713676702, 2003.

1069 Saltiel, J., Bauder, J. W. and Palakovich, S.: Adoption of Sustainable Agricultural Practices:
1070 Diffusion, Farm Structure, and Profitability, *Rural Sociol.*, 59(2), 333–349, 1994.

1071 Savenije, H. H. G. and Van der Zaag, P.: Integrated water resources management: Concepts and
1072 issues, *Phys. Chem. Earth*, 33(5), 290–297, doi:10.1016/j.pce.2008.02.003, 2008.

1073 Schaible, G. D., Mishra, A. K., Lambert, D. M. and Panterov, G.: Factors influencing
1074 environmental stewardship in U.S. agriculture: Conservation program participants vs. non-
1075 participants, *Land use policy*, 46, 125–141, doi:10.1016/j.landusepol.2015.01.018, 2015.

1076 Scharffenberg, W. A.: Hydrologic Modeling System User's Manual, United State Army Corps
1077 Eng. [online] Available from: http://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.0.pdf, 2013.

1079 Schilling, K. E., Chan, K. S., Liu, H. and Zhang, Y. K.: Quantifying the effect of land use land
1080 cover change on increasing discharge in the Upper Mississippi River, *J. Hydrol.*, 387(3–4), 343–
1081 345, doi:10.1016/j.jhydrol.2010.04.019, 2010.

1082 Schlüter, M. and Pahl-wostl, C.: Mechanisms of Resilience in Common-pool Resource
1083 Management Systems : an Agent-based Model of Water Use in a River Basin, *Ecol. Soc.*, 12(2)
1084 [online] Available from: <http://www.ecologyandsociety.org/vol12/iss2/art4/>, 2007.

1085 Schmieg, S., Franz, K., Rehmann, C. and van Leeuwen, J. (Hans): Reparameterization and

1086 evaluation of the HEC-HMS modeling application for the City of Ames, Iowa, Ames, IA., 2011.

1087 Schreinemachers, P. and Berger, T.: Land use decisions in developing countries and their
1088 representation in multi-agent systems, *L. Use Sci.*, 1(1), 29–44,
1089 doi:10.1080/17474230600605202, 2006.

1090 Schreinemachers, P. and Berger, T.: An agent-based simulation model of human–environment
1091 interactions in agricultural systems, *Environ. Model. Softw.*, 26(7), 845–859,
1092 doi:10.1016/j.envsoft.2011.02.004, 2011.

1093 Schwarz, N. and Ernst, A.: Agent-based modeling of the diffusion of environmental innovations
1094 - An empirical approach, *Technol. Forecast. Soc. Change*, 76(4), 497–511,
1095 doi:10.1016/j.techfore.2008.03.024, 2009.

1096 Secchi, S. and Babcock, B. A.: Impact of High Corn Prices on Conservation Reserve Program
1097 Acreage., *Iowa Ag Rev.*, 13(2), 4–7, 2007.

1098 Shreve, C. M. and Kelman, I.: Does mitigation save? Reviewing cost-benefit analyses of disaster
1099 risk reduction, *Int. J. Disaster Risk Reduct.*, 10, 213–235, doi:10.1016/j.ijdrr.2014.08.004, 2014.

1100 Simon, H.: *Models of Man*, John Wiley & Sons, New York, New York., 1957.

1101 Sivapalan, M. and Blöschl, G.: Time scale interactions and the coevolution of humans and water,
1102 *Water Resour. Res.*, 51(9), 6988–7022, doi:10.1002/2015WR017896, 2015.

1103 Sivapalan, M., Savenije, H. H. G. and Blöschl, G.: Socio-hydrology: A new science of people
1104 and water, *Hydrol. Process.*, 26(8), 1270–1276, doi:10.1002/hyp.8426, 2012.

1105 Tannura, M. A., Irwin, S. H. and Good, D. L.: Weather, Technology, and Corn and Soybean
1106 Yields in the U.S. Corn Belt. [online] Available from:
1107 <http://www.farmdoc.uiuc.edu/marketing/reports>, 2008.

1108 Tesfatsion, L., Rehmann, C. R., Cardoso, D. S., Jie, Y. and Gutowski, W. J.: An agent-based

1109 platform for the study of watersheds as coupled natural and human systems, *Environ. Model.*
1110 *Softw.*, 89, 40–60, doi:10.1016/j.envsoft.2016.11.021, 2017.

1111 Tigner, R.: *Partial Budgeting: A Tool to Analyze Farm Business Changes*, Ames, IA., 2006.

1112 Tomer, M. D. and Schilling, K. E.: A simple approach to distinguish land-use and climate-
1113 change effects on watershed hydrology, *J. Hydrol.*, 376(1–2), 24–33,
1114 doi:10.1016/j.jhydrol.2009.07.029, 2009.

1115 Troy, T., Pavao-Zuckerman, M. and Evans, T.: Debates—Perspectives on socio-hydrology:
1116 Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation, *Water Resour. Res.*,
1117 51, 4806–4814, doi:10.1002/2015WR017046, 2015.

1118 Tyndall, J. C., Schulte, L. A., Liebman, M. and Helmers, M.: Field-level financial assessment of
1119 contour prairie strips for enhancement of environmental quality, *Environ. Manage.*, 52(3), 736–
1120 747, doi:10.1007/s00267-013-0106-9, 2013.

1121 USDA-Natural Resources Conservation Service (USDA-NRCS): *National Engineering*
1122 *Handbook*, Part 630, Washington, DC., 2004.

1123 USDA-Natural Resources Conservation Service (USDA-NRCS): *Field Office Technical Guide*,
1124 [online] Available from: <http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/fotg/>
1125 (Accessed 9 April 2016), 2015.

1126 USDA: *Conservation Reserve Program*. [online] Available from:
1127 www.nrcs.usda.gov/programs/crp, 2011.

1128 USDA National Agricultural Statistics Service: *2018 Iowa Agricultural Statistics*, Des Moines,
1129 Iowa., 2018.

1130 Verma, A. K., Jha, M. K. and Mahana, R. K.: Evaluation of HEC-HMS and WEPP for
1131 simulating watershed runoff using remote sensing and geographical information system, *Paddy*

1132 Water Environ., 8, 131–144, doi:10.1007/s10333-009-0192-8, 2010.

1133 Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A.

1134 and Bloßschl, G.: Insights from socio-hydrology modelling on dealing with flood risk - Roles of

1135 collective memory, risk-taking attitude and trust, J. Hydrol., 518, 71–82,

1136 doi:10.1016/j.jhydrol.2014.01.018, 2014.

1137 Vorosmarty, C. and Sahagian, D.: Anthropogenic Disturbance of the Terrestrial Water Cycle,

1138 Bioscience, 50(9), 753–765, doi:[http://dx.doi.org/10.1641/0006-3568\(2000\)050\[0753:ADOTTW\]2.0.CO;2](http://dx.doi.org/10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2), 2000.

1140 Wainwright, J.: Can modelling enable us to understand the rôle of humans in landscape

1141 evolution?, Geoforum, 39(2), 659–674, doi:10.1016/j.geoforum.2006.09.011, 2008.

1142 Wang, D. and Hejazi, M.: Quantifying the relative contribution of the climate and direct human

1143 impacts on mean annual streamflow in the contiguous United States, Water Resour. Res., 47(9),

1144 doi:10.1029/2010WR010283, 2011.

1145 Windrum, P., Fagiolo, G. and Moneta, A.: Empirical Validation of Agent-Based Models:

1146 Alternatives and Prospects, J. Artif. Soc. Soc. Simul., 10(2), 2007.

1147 Xiang, X., Kennedy, R. and Madey, G.: Verification and Validation of Agent-based Scientific

1148 Simulation Models, Agent-Directed Simul. Conf., 47–55 [online] Available from:

1149 http://www.nd.edu/~nom/Papers/ADS019_Xiang.pdf, 2005.

1150 Yang, L. E., Scheffran, J., Süsser, D., Dawson, R. and Chen, Y. D.: Assessment of Flood Losses

1151 with Household Responses: Agent-Based Simulation in an Urban Catchment Area, Environ.

1152 Model. Assess., 23(4), 369–388, doi:10.1007/s10666-018-9597-3, 2018.

1153 Zenobia, B., Weber, C. and Daim, T.: Artificial markets : A review and assessment of a new

1154 venue for innovation research, Technovation, 29, 338–350,

1155 doi:10.1016/j.technovation.2008.09.002, 2009.

1156 Zhang, H. L., Wang, Y. J., Wang, Y. Q., Li, D. X. and Wang, X. K.: The effect of watershed
1157 scale on HEC-HMS calibrated parameters: A case study in the Clear Creek watershed in Iowa,
1158 US, *Hydrol. Earth Syst. Sci.*, 17(7), 2735–2745, doi:10.5194/hess-17-2735-2013, 2013.

1159 Zhou, X., Helmers, M. J., Asbjornsen, H., Kolka, R. and Tomer, M. D.: Perennial Filter Strips
1160 Reduce Nitrate Levels in Soil and Shallow Groundwater after Grassland-to-Cropland
1161 Conversion, *J. Environ. Qual.*, 39(6), 2006, doi:10.2134/jeq2010.0151, 2010.

1162 Zhou, X., Helmers, M. J., Asbjornsen, H., Kolka, R., Tomer, M. D. and Cruse, R. M.: Nutrient
1163 removal by prairie filter strips in agricultural landscapes, *J. Soil Water Conserv.*, 69, 54–64,
1164 doi:10.2489/jswc.69.1.54, 2014.

1165

1166

1167

1168

1169

1170

1171

1172

Variable	Description	Unit
$C_{t-1:t-X}$	Mean total amount of land allocated to conservation during the previous X years	Hectares
D_{t-1}	Previous year's conservation land decision	Hectares
$\delta C_{futures:Y}$	Conservation decision based on crop price projections for Y years into the future	Hectares
$\delta C_{profit:X}$	Conservation decision based on mean past profit of previous X years	Hectares
δC_{cons}	Conservation decision based on conservation goal	Hectares
$C_{neighbor}$	Weighted mean conservation land of the farmer agent's neighbors	Hectares
$Profit_{diff}$	Differences in profit between an acre of crop and an acre of conservation land	(\$/Hectare)
$Hectares_{tot}$	Total land owned by farmer agent	Hectares
G_t	Government agent conservation goal for the current year t	Hectares
G_{t-1}	Unfulfilled conservation land from the previous year's t-1 conservation goal	Hectares
A_{tot}	Total agricultural land in watershed	Hectares
C_{tot}	Total land currently in conservation	Hectares
P	Total conservation land to be added to the goal as a percentage of production land	Dimensionless
P_{new}	Variable describing change in conservation goal with flood damage	(1/\$)

1173

1174

1175

Table 1. Variables in farmer and city agent equations.

Agent Model Parameters	Description	Range
$W_{risk-averse}$	Weight placed on farmer agent's previous land use	0.0 - 1.0
$W_{futures}$	Weight placed on farmer agent's decision based on future crop price	0.0 - 1.0
W_{profit}	Weight placed on farmer agent's decision based on past profit	0.0 - 1.0
W_{cons}	Weight placed on farmer agent's decision based on his/her conservation goal	0.0 - 1.0
$W_{neighbor}$	Weight placed on farmer agent's decision based on his/her neighbor's decisions	0.0 - 1.0
$Cons_{max}$	Farmer's conservation goal - used to describe the farmer's conservation-mindedness	0.0 - 0.1
X	Number of previous years a farmer agent takes into account for his/her land decision	1 - 5
Y	Number of future years a farmer agent takes into account for his/her land decision	5 - 10
$ConsGoal_{max}$	Conservation goal at maximum flood damage	0.0 - 0.1

1176

Table 2. Primary agent model parameters in decision-making equations.

1177

1178

Decision Scheme	Decision Weight				
	Conservation Goal	Futures	Past Profit	Risk Aversion	Neighbor
Conservation	0.8	0.05	0.05	0.05	0.05
Future price	0.05	0.8	0.05	0.05	0.05
Past profit	0.05	0.05	0.8	0.05	0.05
Risk averse	0.05	0.05	0.05	0.8	0.05

1179

Table 3. Decision weighting scheme tested with each scenario.

1180

Model Inputs	Years	Unit
Historical Cash Rent	1970-2016	(\$/Hectare)
Federal Subsidies	2000-2016	(\$/Hectare)
Historical Production Costs	1970-2016	(\$/Hectare)
Historical Corn Prices	1970-2016	(\$/MT)
Precipitation	1970-2016	(mm/hr)

Table 4. Model Inputs.

1181