
Reviewer #1 

We thank the reviewer for these helpful suggestions to improve our manuscript. 

This paper “Linking economic and social factors to peak flows in an agricultural watershed using 
socio-hydrologic modeling” develops a coupled agent-based model to evaluate the impact of 
conversion decision on flood reduction in a watershed. I think the scope fits quite well with the 
journal and the authors explain their goal and method reasonably well. I do have some comments 
which I hope can further improve the quality of the manuscript. I would recommend a minor to 
moderate revision. 

First, I think the authors can benefit well by enlarging their literature review into the “water 
resources systems analysis” (WRSA) realm. The study of human-hydrologic cycle interaction 
strat at the Harvard Water Program in the 1960s. A lot of classic issues (including the impact of 
land use, land cover change) had been addressed extensive lyin WRSA literature. Compare to 
“socio-hydrology,” WRSA also have a longer history of incorporating ABM into their modeling 
framework. I would strongly encourage authors to identify more literature on this aspect. 

We thank the reviewer for this helpful comment. This paper was written with the emerging 
field of “socio-hydrology” strictly in mind. However, we realize that many other areas of 
water resources research have also utilized ABMs. We feel that the purpose of this paper is 
not to provide an elaborate and lengthy literature review. Most likely, one can probably 
write an entire review paper on the subject of incorporating ABMs and humans in water 
resources/hydrological analysis. We have cited some literature in the introduction (lines 71-
73) to make readers aware of the WRSA field. Also, some of the studies that we cite on lines 
97-100 do come from the WRSA field (e.g. Schlüter and Pahl-wostl, 2007).  

Second, following my above comment, studies of ABM become more and more popular in the 
past decade. Methods used to quantify agents’ behavior have been improved a lot as well. 
Methods proposed by the authors are not entirely new (Section 2.7.2, line 375-385) because it is 
a Bayesian-based method (the authors even use the terminology: prior and posterior). Authors 
are encouraged to broaden their literature about ABM that uses Bayesian theory to address 
behavior uncertainty. The authors should highlight the different settings they used in their ABM 
compare to other Bayesian-based ABM.  

Lines 393-404: The approach that we are using is not a true Bayesian approach. We are not 
using bayes rule/conditional probabilities to update any sort of probability distributions. 
The farmer agents are simply using a weighted average formulation that includes a 
variable taking into account their past land use configuration and several variables taking 
into account new information such as profits or future crop price projections. This is 
similar to a data assimilation approach such as the EnKF were the past model state is given 
a certain weight and new observations are given a certain weight based on a computed 
Kalman gain. Hence, we point to this field in lines 393-404 to indicate where this idea came 
from. Many studies in ABM dealing with agriculture and water resource take an 
optimization approach (e.g. Schreinemachers, P., Berger, T., 2011. An agent-based 
simulation model of human–environment interactions in agricultural systems.) or a rule-



based approach (e.g. van Oel, P.R., Krol, M.S., Hoekstra, A.Y., Taddei, R.R., 2010. 
Feedback mechanisms between water availability and water use in a semi-arid river basin: 
A spatially explicit multi-agent simulation approach). We point out the different types of 
models used in the paragraph on lines 380-392. Some studies do use Bayesian methods, but 
these methods are usually paired with the main decision model (e.g. optimization). Ng et al 
2011, “An agent-based model of farmer decision-making and water quality impacts at the 
watershed scale under markets for carbon allowances and a second-generation biofuel 
crop”, is one such study that uses Bayesian updating for updating farmer’s perceptions of 
variables such as yields or crop prices.  

We have updated the sentence on lines 396-398 so as not to confuse readers into thinking 
that we are using Bayesian methods.   

Third, I do have a suggestion about paper structure. Currently, the authors put the ABM 
calibration in Section 5 which reads weird to me. The purpose of calibration and validation of the 
model is to demonstrate the credibility, therefore, it should be put before the authors use the 
model for any scenarios. I would suggest move Section 5 before the results. And add more 
discussion about ABM validation (beyond line 711-720) because this topic is the most popular 
issue in the ABM community nowaday. 

This section has been moved prior to the results. Some further discussion and literature has 
been added in the paragraphs between lines 627 and 654.  

 I have some minor comments below:  

Line 71-73: This kind of argument really needs to incorporate the studies of Water Resources 
Systems Analysis. 

See comment above.  

Line 137: You mean two “types” of agents? 

Line 147-148: That is correct. The terminology in the manuscript has been changed from 
“primary” to “types” so as to make this more clear.  

Line 223-224: This does match with your equation (7) to (9) because I did not see minimize 
flood damage objective function. Also, why the goal of the city agent is not "minimize the cost = 
flood damage + contact fee?  

Lines 240-241: In the current version of the model, a stronger focus was placed on 
capturing the various decision variables that farmers may take into account, whereas the 
decision-making of the city agent was kept rather simple. So the city agent isn’t 
“minimizing” flood damage using an objective function with numerical optimization, but 
rather the city agent is trying to reduce flooding based on a simplified linear equation, 
displayed below. Flood damage is computed based on a sigmoid relationship plotted below 
(left). This is described in detail in section S7 of the supplemental material. The city agent 
then takes this flood damage and computes a new conservation goal (amount of new land 



that the city agent would like to convert to conservation as a percentage of the total 
watershed area) based on the linear relationship plotted below (right).  

 

The city agent is a feature that will be improved in further iterations of the model. 
Introducing a cost function such as “cost = flood damage – flood reduction + contract_fee” 
is viable; however, this would require the city agent to have capability to simulate specific 
flood events in order to estimate flood reduction for a given amount of conservation 
implementation.  

”Line 229: I think this is the first time you mention risk-aversion. You need a more detailed 
description of what does it mean in your model. 

Risk-aversion indicates the willingness of a farmer to change his/her land use under 
uncertainty. Farmers with a high risk aversion will not want to change their previous land 
use because they are trying to avoid risk (keeping their land use the same represents a 
more predictable payoff to the farmer, even though their revenue may be smaller). Lines 
176-182 were added to clarify this prior to the paragraph containing line 229 (now line 
246).  

Line 337: Since FAO has a physically-based crop model, you might want to test the sensitivity of 
the current crop model on your results given that this will affect farm agents’ decisions. 

Line 352: The crop yields in our model are computed using a robust regression model that 
was formulated using temperature, precipitation, and yield data from 1960-2006. This 
model gives a reasonable prediction of yields based on environmental conditions. Unlike a 
physically-based model, there is no feasible way of testing the sensitivity of a regression-
based model. We are not changing any of the values associated with specific regression 
coefficients. We do however take into account differences in yield based on soil types and 
add stochastic variability based on local differences in environmental conditions.  



We thank the reviewer for this good suggestion. One of the goals for the future is to 
improve the crop model by introducing a physically-based crop model. This will allow us to 
simulate yields in more detail based on finer level farm management techniques.   

Listed below is the reference for the crop regression model that is currently used. 

Tannura, M. A., Irwin, S. H. and Good, D. L.: Weather, Technology, and Corn and 
Soybean Yields in the U.S. Corn Belt. [online] Available from: 
https://farmdoc.illinois.edu/assets/marketing/morr/morr_08-01.pdf, 2008. 

Line 402: How you define “neighbor?” 

Line 421-422: If a farmer is located in subbasin A for example, he/she can make a certain 
random number of neighboring connections with other farmers in that same subbasin. A 
sentence was inserted at lines 422-423 to clarify the above. If a subbasin contains 10 
farmers, one farmer might form 5 neighboring connections with farmers in that same 
subbasin while another farmer may form only 2 connections. This process is described in 
greater detail in section S3 of the supplement.  

Line 564-Figure 6d: Why is there a jump in all three curves around 2012? The same question for 
Figure 8d. I hope these comments help the authors for their revision. 

In the scenarios plotted in figures 6d and 8d (now figures 8d and 10 d), the farmer is 
placing an 85% weight on the future price decision variable (𝜹𝜹𝜹𝜹𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇:𝒀𝒀). Most likely what 
is happening in this case is that prices are high during 2010-2013, but crop price forecasts 
are predicting a down turn in crop prices. If farmer agents are considering crop price 
forecasts several years into the future, conservation land begins increasing while crop 
prices are still high during 2012 and 2013.  Essentially, the farmers are changing their land 
use in anticipation of lower crop prices. The increase in conservation land will be more 
dramatic considering that farmer agents are placing such high weight on the future crop 
price forecasts.  
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Abstract: Hydrologic modeling studies most often represent humans through predefined actions 29 

and fail to account for human responses under changing hydrologic conditions. By treating both 30 

human and hydrologic systems as co-evolving, we build a socio-hydrological model that 31 

combines an agent-based model (ABM) with a semi-distributed hydrologic model. The curve 32 

number method is used to clearly illustrate the impacts of landcover changes resulting from 33 

decisions made by two different agent types. Aiming to reduce flooding, a city agent pays farmer 34 

agents to convert land into conservation. Farmer agents decide how to allocate land between 35 

conservation and production based on factors related to profits, past land use, and willingness. 36 

The model is implemented for a watershed representative of the mixed agricultural/small urban 37 

area land use found in Iowa, USA. In this preliminary study, we simulate scenarios of crop 38 

yields, crop prices, and conservation subsidies along with varied farmer parameters that illustrate 39 

the effects of human system variables on peak discharges. High corn prices lead to a decrease in 40 

conservation land from historical levels; consequently, mean peak discharge increases by 6%, 41 

creating greater potential for downstream flooding within the watershed. However, when corn 42 

prices are low and the watershed is characterized by a conservation-minded farmer population, 43 

mean peak discharge is reduced by 3%. Overall, changes in mean peak discharge, which is 44 

representative of farmer land use decisions, are most sensitive to changes in crop prices as 45 

opposed to yields or conservation subsidies. 46 

 47 

 48 

 49 

 50 

 51 
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1. Introduction 52 
 53 

Humans change the water cycle through actions that affect physical and chemical aspects 54 

of the landscape, and these changes occur from global to local scales and over varying time 55 

periods (Vorosmarty and Sahagian, 2000). Despite their significant impacts to the landscape, 56 

humans remain the most poorly represented variables in hydrologic models (Sivapalan et al., 57 

2012). Land cover and land use are commonly treated as fixed in time in many hydrologic 58 

models through the use of static parameters. When made dynamic, landscape change is often 59 

limited to predefined scenarios that are developed without consideration of how economics, local 60 

culture, or climate may combine to influence land use decisions. For example, the field of 61 

integrated water resources management (IWRM), which attempts to explore the interactions 62 

between humans and water, typically uses “scenario-based” approaches (Savenije and Van der 63 

Zaag, 2008). While scenario-based studies allow quantification of the impacts of a management 64 

decision on the hydrologic system, there are significant limitations (Elshafei et al., 2014; 65 

Sivapalan et al., 2012). Human and environmental systems are highly coupled with feedbacks 66 

from one system creating stress on the other system, which in turn affects the behavior of the 67 

first system. Therefore, representing management decisions as pre-determined will not reproduce 68 

the real-world variability that may arise as a result of complex feedbacks between the human 69 

system and the physical system.  70 

Arguments have emerged for socio-hydrologicalin the hydrological sciences and Water 71 

Resources Systems Analysis (WRSA) fields for modeling in which humans and the environment 72 

are treated as co-evolving (e.g., Di Baldassarre et al., 2013; Brown et al., 2015; Montanari, 2015; 73 

Rosengrant et al., 2002; Sivapalan et al., 2012; Sivapalan and Blöschl, 2015; Wainwright, 2008). 74 

In this way, models can account for disturbances to natural systems by humans and 75 
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simultaneously assess physical processes and economic and social issues. In the hydrologic 76 

literature, two approaches have been used to simulate coupled human and natural systems: a 77 

classic top-down approach and a bottom-up approach using agent-based modeling (ABM). In the 78 

first approach, all aspects of the human system are represented through a set of parametrized 79 

differential equations (e.g., Di Baldassarre et al., 2013; Elshafei et al., 2014; Viglione et al., 80 

2014). For example, Elshafei et al. (2014) characterizes the population dynamics, economics, 81 

and sensitivity of the human population to hydrologic change through differential equations to 82 

simulate the coupled dynamics of the human and hydrologic systems in an agricultural 83 

watershed. In contrast, the ABM approach consists of a set of algorithms that encapsulate the 84 

behaviors of agents and their interactions within a defined system, where agents can represent 85 

individuals, groups, companies, or countries (Axelrod and Tesfatsion, 2006; Borrill and 86 

Tesfatsion, 2011; Parunak et al., 1998). System agents can range from passive members with no 87 

cognitive function to individual and group decision-makers with sophisticated learning and 88 

communication capabilities. The ABM approach has several advantages over the traditional top 89 

down approach (Bonabeau, 2002). Agent-based models are able to capture emergent 90 

phenomenon that result from interactions between individual entities. In addition, simulating 91 

individual entities through ABM provides for a more natural description of a system in contrast 92 

to developing differential equations that capture the behavior of the system as a whole. ABMs 93 

also provide for greater modeling flexibility by allowing for different number of agents, various 94 

degrees of agent complexity, and behavioral differences among the agents. ABM has been used 95 

to study the influence of human decision making on hydrologic topics such as water balance and 96 

stream hydrology (Bithell and Brasington, 2009), flooding (Du et al., 2017; Jenkins et al., 2017; 97 

Yang et al., 2018), irrigation and water usage (Barreteau et al., 2004; Becu et al., 2003; Berger et 98 
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al., 2006; Berglund, 2015; van Oel et al., 2010; Schlüter and Pahl-wostl, 2007), water quality 99 

(Ng et al., 2011), and groundwater resources (Noel and Cai, 2017; Reeves and Zellner, 2010).  100 

A dominating topic in the hydrologic sciences that can be studied through use of ABMs 101 

is the issue of land use change impacts on hydrologic flows in intensively managed agricultural 102 

landscapes (Rogger et al., 2017). A number of studies have attempted to quantify the impact of 103 

land use change on streamflow (Ahn and Merwade, 2014; Frans et al., 2013; Naik and Jay, 2011; 104 

Schilling et al., 2010; Tomer and Schilling, 2009; Wang and Hejazi, 2011) Ahn and Merwade 105 

(2014) is one such study that found that 85% of streamflow stations in Georgia indicated a 106 

significant human impact on streamflow. Another study by Schilling et al., (2010) indicated a 107 

32% increase in the runoff ratio in the Upper Mississippi  River basin due to land use changes, 108 

mainly due to increases in soybean acreage. Results of Wang and Hejazi (2011) are consistent 109 

with Schilling et al., (2010). They found a clear spatial pattern of increased human impact on 110 

mean annual stream over the Midwestern states due to increases in cropland area.  111 

Given clear evidence that the human system has a significant effect on streamflow, we use a 112 

social-hydrologic modeling approach to better understand the effects of land-use changes driven 113 

by economic and human behavior on hydrologic responses, which would be otherwise difficult 114 

to observe with a hydrologic model alone.   115 

In this study, we develop a social-hydrologic model that simulates changes in conservation 116 

land area over time within an agriculturally-dominated watershed as a function of dynamic 117 

human and natural factors. Using a sensitivity analysis approach, we use this model to quantify 118 

the impact of economic and human factors on land use changes relating to conservation 119 

implementation and subsequently, how these land use changes impact the hydrologic system. We 120 

explore the following research questions: 121 
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1) To what degree do economic and agronomic factors (specifically crop prices, 122 

conservation incentives, and crop yields) impact the success of a conservation 123 

program designed to reduce peak flows?  124 

2) To what degree are hydrologic outcomes sensitive to various factors that commonly 125 

influence agricultural land use decisions?  126 

Using simulations of a historical 47 year period, we explore land use and hydrologic outcomes 127 

for a typical agricultural watershed in Iowa under the following six scenarios developed from 128 

economic data:  crop yields 11% above and below historical values, corn prices 19% above and 129 

below historical values, and conservation subsidy rates 27% above and below historical cash rent 130 

values. Additionally, we simulate land use and hydrologic outcomes for the historical period 131 

without any perturbations to these economic data for comparison purposes. The following model 132 

methodology is described using the ODD (Overview, Design Concepts, and Details) protocol 133 

developed by Grimm et al. (2006). 134 

2. Model Purpose 135 

 136 

The purpose of the model is to understand the impact of land use decisions by upstream 137 

farmers on flooding response in a downstream urban area under perturbations to extrinsic 138 

economic and natural factors (e.g. crop prices, land rental values, climate), as well as intrinsic 139 

factors (e.g. internal farmer behavior, local government incentives). System behavior under 140 

changes in extrinsic and intrinsic factors is analyzed using a scenario-based ensemble approach. 141 

 142 

2.1 State Variables and Scales 143 

 144 

The model links an agent-based model of human decision making with a rainfall-runoff 145 

model to simulate social and natural processes within highly-managed agricultural watersheds 146 
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(Figure 1). The agent-based model consists of two types of agents: a group of farmer agents and 147 

a city agent.  148 

The primary modeling domain consists of the watershed and the subbasins located within 149 

the watershed. The model user must define the subbasins based on external analyses of 150 

hydrologic flows and conditions. Each subbasin is populated by one or more farmer agents as 151 

specified by the user. A farmer agent modifies the land use of the subbasin in proportion to the 152 

subbasin area assigned to that agent. The most downstream subbasin in the watershed is 153 

populated by an urban center, which is represented by a city agent. The city agent impacts land 154 

use by providing subsidies to upstream farmer agents to change his/her land management.  155 

 156 

Figure 1. Flow of information within the agent-based model. 

 157 

2.1.1 Farmer agent state variables 158 
 159 
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The primary state variable for a farmer agent is the conservation parameter (𝐶𝑜𝑛𝑠𝑚𝑎𝑥), 160 

which characterizes the degree to which a farmer agent is “production-minded” versus 161 

“conservation-minded”. This concept is based on McGuire et al. (2013) who identified that 162 

US cornbelt farmers tend to fall along a spectrum from purely productivist to purely 163 

conservationist. 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 is randomly assigned to each farmer agent upon initialization and 164 

provides variation in farmer agent behavior based on how an individual agent may prefer to 165 

balance maximizing crop yields versus protecting the environment. 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 represents the 166 

maximum fraction of land a farmer is willing to put into conservation. The minimum value is 167 

0.0, in which case a farmer is purely production-minded and is unwilling to convert any 168 

production land into conservation. We set the maximum value at 10% (𝐶𝑜𝑛𝑠𝑚𝑎𝑥 = 0.10) based 169 

on the conservation practice used in this study (Section 2.7.1). Therefore, a farmer is purely 170 

conservation-minded at a parameter value of 0.1, and is willing to convert up to 10% of 171 

his/her production land into conservation. This range of values corresponds to the percentage 172 

of conservation land implemented over each of the last ten year for the entire state of Iowa 173 

(~5-6% conservation land) and the Central Iowa Agricultural District (~3-4% conservation 174 

land). 175 

A secondary state variable of importance to the farmer agent is risk aversion attitude 176 

(Prokopy et al., 2019). Risk aversion can be defined as the willingness to change land use 177 

under uncertainty. Farmers with a high risk aversion are unwilling to change their land use 178 

because they are trying to avoid risk. Keeping their land use consistent represents a more 179 

predictable payoff, even if the revenue may not be as great as another land use choice. 180 

Farmers that are more risk tolerant however, are more likely to adopt new practices such as 181 

conservation.  182 
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Farmer agents are further characterized by their decision-making preferences, which 183 

describe the relative importance that farmer agents place on different decision variables when 184 

adjusting their land use. The farmer agent decision characteristics are described in Sect. 2.7.2.  185 

Each farmer agent is assigned state variables characterizing the percent of different soil 186 

types associated with the farmer’s land. Corn crop productivity and crop production costs 187 

(including the land rental value) vary for each soil type.  Thus, the soil types associated with a 188 

farmer agent’s land impact his/her revenue.  189 

2.1.2 City Agent State Variables 190 

The city agent is characterized by a conservation goal that defines the amount of acres of 191 

conservation land desired. The purpose of the conservation land is to reduce flooding in the city, 192 

and the conservation goal changes from year-to-year depending on prior hydrologic events. The 193 

damage that the city agent incurs from a flood event is defined by a flood damage function. A 194 

parameter, 𝐶𝑜𝑛𝑠𝐺𝑜𝑎𝑙𝑚𝑎𝑥, in the agent model defines how responsive the city agent is to prior 195 

hydrologic outcomes and determines by how much the city agent will change the conservation 196 

goal after experiencing a flood event (Section 2.8)  197 

 198 

2.2 Model Overview and Scheduling 199 

 200 

Each year, the agent-based model proceeds through monthly time steps to simulate the 201 

relevant decision making. The hydrologic module proceeds in shorter hourly time steps to 202 

capture flood discharge events associated with rainfall events. Figure 2 depicts the decision-203 

scheduling within the agent-based model. In January, the farmer agent calculates his/her 204 

preferred land division between production and conservation based on their risk aversion 205 

attitude, conservation-mindedness, newly acquired information about the global market (crop 206 
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prices, crop production costs, and crop insurance), conservation subsidies provided by the city 207 

agent, as well as recent farm performance (profits and yields) (Figure 2, purple box). 208 

 In February, the city agent contacts farmer agents in random order to establish new 209 

conservation contracts if an unmet conservation goal remains or to renew any expiring contracts 210 

(Figure 2, yellow box). If the farmer agent wants to add additional conservation acreage, a new 211 

contract is established for a 10 year period. The contract length is based on the Conservation 212 

Reserve Program (CRP), which is a program administered by the Farm Service Agency that 213 

promotes removal of environmentally-sensitive land from agricultural production in exchange 214 

for an annual subsidy payment. However, if the farmer agent wants fewer conservation hectares, 215 

expiring contracts are renewed for a smaller number of hectares or are ended. The farmer is 216 

obligated to fulfill any contracts that have not yet expired (i.e. contracts less than 10 years old). 217 

Any new acreage that has been established in conservation in addition to currently active 218 

contracts is subtracted from the city agent’s conservation goal that was established in January. 219 

The city agent contacts as many farmer agents as needed until the conservation goal is reached. 220 

If there are not enough farmer agents willing to enter into conservation contracts and the 221 

conservation goal is not reached, the goal rolls into the next year. Because the farmer agents’ 222 

land use decisions change on a yearly basis, it may be possible for the city agent to establish 223 

further contracts in the next year and fulfill the conservation goal. 224 
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 225 

Figure 2. Timeline of agent decisions and actions within the agent-based model. 

 

Prior to May, the farmer agent establishes any newly contracted conservation land on the 226 

historically poorest yielding land. The farmer agent makes no further decisions during May 227 

through August (Figure 2). The city agent continuously keeps track of any flooding that occurs 228 

during the May-August period (when the maximum discharge is assumed to occur) (Figure 2, 229 

orange box). The associated flood damage cost is calculated in September and used to calculate 230 

whether any further conservation land should be added (Figure 2, green box). If no flooding 231 

occurred, the conservation goal remains unchanged. In October, the farmer agent harvests his/her 232 

crop and calculates yields and profits for that year (Figure 2, blue box).  233 
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2.3 Design Concepts 234 

 235 

Emergence: Patterns in total conservation land and flood magnitude arise over time, depending 236 

on a number of variables. Agent decision-making parameters and behavioral characteristics (e.g. 237 

conservation-mindedness) influence the total acreage in conservation land, which in turn affects 238 

the magnitude of floods through changes in runoff productivity of the landscape.  239 

Objectives and Adaptation: The objective goal of the city agent is to reduce flood damage in 240 

the city. The city agent attempts to meet this objective goal through an incentive program in 241 

which farmer agents are paid to convert production land to a conservation practice that will 242 

reduce runoff. If the city agent incurs a large cost from flooding in a given year, the city agent 243 

adjusts his/her “conservation goal” upward in order to reduce minimize future flood damage 244 

from events of similar magnitude. The objective of the farmer agent is to balance a maximization 245 

of profits with conservation and risk-aversion attitude. The farmer agents incrementally adjust 246 

their land use on an annual basis by taking into account profit variables, risk-aversion, and 247 

conservation-mindedness.   248 

Stochasticity: Adjustments and stochastic variability are added to key agricultural variables, 249 

which include crop yields, production costs, cash rent values, and opportunity costs associated 250 

with conservation land in order to account for economic and environmental randomness within 251 

the system (Supplement S1.1, S1.2, S2). Random factors for these variables are drawn from 252 

uniform continuous distributions that are based on field data of crop yields, empirical survey 253 

data, and estimates published by Iowa State University Extension and Outreach. Changes in 254 

these distributions are also accounted for, depending on crop price levels.  255 

Learning: As will be outlined further in Sect. 2.7.2, each year, the farmer agents calculate profit 256 

differences between crop production and conservation subsidies. Farmer agents save this profit 257 
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difference information from the beginning of the simulation and use it to adjust their decision-258 

making space on an annual basis. The profit difference information is based on past crop prices, 259 

production costs, and conservation subsidies. 260 

2.4 Model Input 261 

 262 

2.4.1 Economic Inputs 263 

 264 

Inputs to the agent-based models are historical crop prices ($/MT), production costs 265 

($/Ha), cash rental rates ($/Ha), and federal government subsidy estimates ($/Ha). An example of 266 

these model inputs is shown in Fig. 3 in comparison to mean Iowa crop yields.  267 

2.4.2 Production Costs 268 

 269 

Production costs are treated as a time series input, with total costs per hectare for each 270 

year represented by one lumped value. Production costs used in this model application include 271 

machinery, labor, crop seed, chemicals, and crop insurance (Plastina, 2017).  In addition, it is 272 

assumed that all farmer agents rent their land, which significantly increases expenses as land 273 

rental costs account for approximately half of total production costs (Plastina, 2017).  274 

2.4.3 Conservation Subsidy and Costs 275 

The conservation subsidy is based on the CRP Contour Grass Strips practice (CP-15A) 276 

which includes annual land rental payments and 90% cost share for site preparation and 277 

establishment (USDA Conservation Reserve Program Practice CP-15A, 2011). Subsidies are 278 

calculated using annual inputs of historical cash rental rates. The cost of establishing and 279 

maintaining conservation land is based on analysis conducted by Tyndall et al., (2013). These 280 

costs are adjusted based on the land quality of each farmer agent (Supplement S1.2).  281 
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 282 

Figure 3. Example input time series of corn price, production cost, and cash rent as compared to 

mean crop yields. 

 

2.4.4 Federal Government Subsidies 283 

 Calculation of federal government crop subsidies for individual farmer agents were not 284 

included in the agent-based model due to the complexity and variety of commodity programs 285 

available to US farmers, each of which focuses on different aspects of revenue protection (e.g., 286 

protection against low crop prices, protection against revenue loss). Rather, federal crop 287 

subsidies are an input to the model and applied equally to each farmer agent. In this study, crop 288 
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subsidy inputs are based on historical estimates produced by Iowa State University Agricultural 289 

Extension (Hofstrand, 2018). 290 

2.4.5 Environmental Variables 291 

The hydrology module requires hourly liquid precipitation (mm) as an input to simulate 292 

discharge from short-term heavy rainfall events. The crop yield module requires inputs of mean 293 

monthly precipitation and temperature to estimate crop yields (Section 2.6). The module 294 

calculates mean monthly precipitation based on the hourly precipitation input, however, the user 295 

must provide an input of mean monthly temperatures (C).  296 

2.5 Hydrology Module 297 

A model structure that is designed to simulate peak flows was chosen for the hydrology 298 

module. Because the city agent in this model is impacted only by the maximum annual peak 299 

flow, precisely simulating the full time series of hydrologic flows as well as hydrologic 300 

components such as groundwater flow and evapotranspiration were not needed to meet the 301 

objectives of the current study. The modeling structure was designed based on a version of the 302 

U.S. Army Corps of Engineers’ Hydrologic Engineering Center Hydrologic Modeling System 303 

(HEC-HMS) (Scharffenberg, 2013) used by the City of Ames, Iowa for flood forecasting in the 304 

Squaw Creek watershed in central Iowa.  The Squaw Creek watershed represents the type of 305 

rural-urban conditions of interest for this study, and is a useful test-bed for this modeling 306 

application (Section 3). Further, calibrated parameters were available for the Squaw Creek 307 

watershed (Schmieg et al., 2011), providing a realistic baseline for the hydrology module. 308 

Using the configuration and parameters previously defined by Schmieg et al. (2011) for 309 

the Squaw Creek watershed, the model on average was within 12.7% of the observed peak 310 

discharge for 12 major events simulated. Six of these events were simulated within 3-8% of the 311 
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observation, while the least satisfactory simulation overestimated the observed peak discharge by 312 

33%. This error was most likely due to the high spatial variability of precipitation for that event. 313 

For the two most recent record flooding events that have occurred, the model underestimated the 314 

peak discharge by 6.2% (2008, observed: 356.7 m3s-1, simulated: 334.6 m3s-1) and 16.6% (2010, 315 

observed: 634.3 m3s-1, simulated 528.3 m3s-1), showing that the model is able to simulate the 316 

flooding events needed to run scenarios within the ABM with a fair degree of accuracy. The 317 

HEC-HMS model has also been successfully used for simulation of short term rainfall-runoff 318 

events and peak flow and flood analysis in other studies (Chu and Steinman, 2009; Cydzik and 319 

Hogue, 2009; Gyawali and Watkins, 2013; Halwatura and Najim, 2013; Knebl et al., 2005; 320 

Verma et al., 2010; Zhang et al., 2013).   321 

In the module, basin runoff is computed using the Soil Conservation Service (SCS) curve 322 

number (CN) method, runoff is converted to basin outflow using the SCS unit hydrograph (SCS-323 

UH) method, and channel flow is routed through reaches in the river network using the 324 

Muskingum method (Mays, 2011). A single area-weighted CN parameter is required for each 325 

subbasin and is the only hydrology module parameter that changes during the simulation if land 326 

cover changes. The SCS-UH method requires specification of subbasin area, time lag, and model 327 

timestep. The Muskingum method is based on the continuity equation and a discharge-storage 328 

relationship which characterizes the storage in a river reach through a combination of wedge and 329 

prism storage (Mays, 2011). The Muskingum method requires specification of three parameters 330 

for each reach within the river network: Muskingum X, Muskingum K, and the number of 331 

segments over which the method will be applied within the reach (Mays, 2011). Muskingum X 332 

describes the shape of the wedge storage within the reach whereas Muskingum K can be 333 

approximated as the travel time through the reach.  334 
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For the agricultural areas, empirically-derived CN values (Dziubanski et al., 2017) are 335 

used for native prairie strips; a CN = 82 is used for 100% row crop production; and a CN = 72 336 

is used for the conservation option implemented by the farmer agents. Urban areas are set to a 337 

CN = 90 which is derived from the standard lookup tables for residential areas with lot sizes 338 

of 0.051 hectares or less, soil group C (USDA-Natural Resources Conservation Service, 339 

2004). Subbasin delineations and Muskingum parameters previously defined by Schmieg et al. 340 

(2011) are used. 341 

The model accepts point-scale rainfall data (e.g., rain gauge data) and calculates mean areal 342 

precipitation using the Thiessen Polygon gauge weighting technique (Mays, 2011). The Thiessen 343 

weights are entered as parameters to the module. For the initial testing presented in this paper, 344 

uniform precipitation over the entire watershed was assumed.   345 

Output from the hydrology module is discharge at the watershed outlet (m3 s-1). The 346 

hydrology module is run continuously but is designed primarily for simulation of peak flows, 347 

which generally occur during the summer in the study region; therefore, for simplicity, a constant 348 

baseflow is assumed and snow is ignored. Runoff, river routing processes, and discharge are 349 

computed on a timestep identical to the input rainfall data. The model is run at an hourly 350 

timestep in this study, but is capable of running at a 30-minute timestep.   351 

2.6 Crop Yield Module 352 

 353 

Crop yields are modeled with a multiple regression equation that takes into account 354 

monthly precipitation and temperature. The regression equation, which was developed using 355 

historical crop yield and meteorological data for Iowa from 1960-2006, can be represented as 356 

(Tannura et al., 2008): 357 
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𝑦𝑖𝑒𝑙𝑑𝑡 =  𝛽0 +  𝛽1(𝑦𝑒𝑎𝑟𝑡) +  𝛽2(𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐴𝑝𝑟𝑖𝑙 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

+ 𝛽3 (𝑀𝑎𝑦 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) +  𝛽4(𝐽𝑢𝑛𝑒 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

+ 𝛽5(𝐽𝑢𝑛𝑒 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)2 +  𝛽6(𝐽𝑢𝑙𝑦 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

+ 𝛽7(𝐽𝑢𝑙𝑦 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)2 +  𝛽8(𝐴𝑢𝑔𝑢𝑠𝑡 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

+ 𝛽9(𝐴𝑢𝑔𝑢𝑠𝑡 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)2 +  𝛽10(𝑀𝑎𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

+𝛽11(𝐽𝑢𝑛𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 𝛽12(𝐽𝑢𝑙𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

+𝛽13(𝐴𝑢𝑔𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) +  𝜀𝑡

 (1) 

Mean error of the above regression for Iowa over the 1960-2016 period is -0.395 MT/ha, 358 

and mean absolute error is +0.542 MT/ha. An error correction factor of +0.395 MT/ha was added 359 

to the yield for each year to correct for this error. The above regression model is only appropriate 360 

for reproducing mean historical crop yields. Since each farmer’s land can be composed of 361 

different soil types, adjustments are applied to the crop yield for each soil type to account for 362 

differences in soil productivity (Supplement S2).  363 

2.7 Farmer Agent Module 364 

 365 

2.7.1 Conservation option 366 
 367 

The conservation option implemented by farmer agents is native prairie strips, a practice 368 

in which prairie vegetation is planted in multiple strips perpendicular to the primary flow 369 

direction upland of and/or at the farm plot outlet (Dziubanski et al., 2017; Helmers et al., 370 

2012; Zhou et al., 2010). Either 10% or 20% of the total field size is converted into native 371 

prairie vegetation under this practice. Prairie strips have been shown to reduce runoff by an 372 

average of 37% (Hernandez-Santana et al., 2013), and have additional benefits of reducing 373 

nutrients (Zhou et al., 2014) and sediments (Helmers et al., 2012) in runoff. The greatest 374 

runoff reduction was realized under the 10% native prairie cover; therefore, the most 375 

conservation-minded farmers (𝐶𝑜𝑛𝑠𝑚𝑎𝑥 = 0.10) in the model potentially convert up to 10% of 376 

their total land into native prairie. 377 

2.7.2 Farmer agent land use decision process 378 
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 379 

Agents within an ABM can be modeled using a variety of decision models with varying 380 

degrees of complexity. Rules governing agent decision-making need to realistically capture 381 

human behavior without creating an excessively complex model (An, 2012; Zenobia et al., 382 

2009). An (2012) compiled a list of nine of the most common decision models used in agent-383 

based modeling studies. Examples of a few of these include micro economic models, space 384 

theory based models, cognitive models, and heuristic models. In micro-economic models, agents 385 

are typically designed to determine optimal resource allocation or production plans such that 386 

profit is maximized and constraints are obeyed (Berger and Troost, 2014). Example studies using 387 

optimization include Becu et al. (2003), Ng et al. (2011), Schreinemachers and Berger (2011). In 388 

heuristic-based models, agents are set up to  use “rules” to determine their final decision (Pahl-389 

wostl and Ebenhöh, 2004; Schreinemachers and Berger, 2006). The “rules” are typically 390 

implemented using conditional statements (e.g. if-then). Example studies using heuristics include 391 

Barreteau et al. (2004), Le et al. (2010), Matthews (2006), van Oel et al. (2010).  392 

We take a different approach from the aforementioned studies by modeling agent decision 393 

making using a nudging concept originating in the field of data assimilation (Asch et al., 2017). 394 

Agents nudge their decision based on outcomes (i.e. flood damage, farm profitability) from the 395 

previous year. Information relevant to an individual agent is mapped into the decision space 396 

through a weighting function that updates the previous year’s land use prior decision to create a 397 

new (posterior) decision for the current year. The approach used for both agents is different from 398 

optimization in that the agents are not trying to determine the best decision for each year. These 399 

types of agents behave based on the idea of “bounded rationality”. In this case, the rationality of 400 

the agents is limited by the complexity of the decision problem and their cognitive ability to 401 

process information about their environment (Simon, 1957). These agents try to find a 402 
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satisfactory solution for the current year, and are thus termed “satisficers” rather than optimizers 403 

(Kulik and Baker, 2008).  404 

At the start of each calendar year, a farmer agent decides how to allocate his/her land 405 

between production and conservation based on five variables: risk-aversion, crop price 406 

projections, past profits, conservation goal, and neighbor land decisions. These factors were 407 

chosen based on numerous studies indicating profits, economic incentives, conservation beliefs, 408 

beliefs in traditional practices, neighbor connections, and observable benefits to be the key 409 

factors influencing on-farm decision making related to conservation adoption (Arbuckle et al., 410 

2013; Arbuckle, 2017; Burton, 2014; Daloǧlu et al., 2014; Davis and Gillespie, 2007; Hoag et 411 

al., 2012; Lambert et al., 2007; Mcguire et al., 2015; Nowak, 1992; Pfrimmer et al., 2017; 412 

Prokopy et al., 2019; Ryan et al., 2003).  413 

A farmer agent’s decision of the total amount of land to be allocated into conservation, 𝐶𝑡 , 414 

for the current year 𝑡 is: 415 

 
𝐷𝑡 = 𝑊𝑟𝑖𝑠𝑘−𝑎𝑣𝑒𝑟𝑠𝑒[𝐶𝑡−1:𝑡−𝑋] +  𝑊𝑓𝑢𝑡𝑢𝑟𝑒𝑠[𝐷𝑡−1 +  𝛿𝐶𝑓𝑢𝑡𝑢𝑟𝑒𝑠:𝑌]

+ 𝑊𝑝𝑟𝑜𝑓𝑖𝑡[𝐷𝑡−1 + 𝛿𝐶𝑝𝑟𝑜𝑓𝑖𝑡:𝑋] +  𝑊𝑐𝑜𝑛𝑠[𝐷𝑡−1 + 𝛿𝐶𝑐𝑜𝑛𝑠] +  𝑊𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟[𝐶𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟]
 (2) 

where 𝐶𝑡−1:𝑡−𝑋 is the mean total amount of land allocated to conservation during the previous 𝑋 416 

years, 𝐷𝑡−1 is the prior conservation decision (total amount of land the farmer would have liked 417 

to implement in conservation) in year 𝑡 − 1, 𝛿𝐶𝑓𝑢𝑡𝑢𝑟𝑒𝑠:𝑌 is the decision based on crop price 418 

projections for 𝑌 years into the future, 𝛿𝐶𝑝𝑟𝑜𝑓𝑖𝑡:𝑋 is the decision based on the mean past profit of 419 

the previous 𝑋 years, 𝛿𝐶𝑐𝑜𝑛𝑠 is the decision based on the conservation goal of the farmer, and 420 

𝐶𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (Supplement S3) is the weighted mean conservation land of the farmer agent’s 421 

neighbors (Table 1). A given farmer can make a certain random number of neighboring 422 

connections with farmers that are located in the same subbasin (Supplement S3). The variable 𝑌 423 
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indicates that Oone farmer agent might consider his/her history of conservation land 424 

implemented over the last year, while another farmer agent might consider his/her conservation 425 

land implemented over the last 5 years. Similarly, the variable 𝑋 indicates that one farmer agent 426 

might take into account future crop projections for the next 5 years, while another farmer agent 427 

might take into account crop projections for the next 10 years.  428 

Decision weights alter how each of the five components factor into the farmer agent’s 429 

decision: 𝑊𝑟𝑖𝑠𝑘−𝑎𝑣𝑒𝑟𝑠𝑒 reflects the unwillingness to change past land use, 𝑊𝑓𝑢𝑡𝑢𝑟𝑒𝑠 reflects the 430 

consideration of future price projections, 𝑊𝑝𝑟𝑜𝑓 reflects the consideration of past profits, 𝑊𝑐𝑜𝑛𝑠 is 431 

the agent’s consideration of his/her conservation goal, and 𝑊𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 reflects the importance that 432 

the agent places on his neighbor’s decision (Table 2). Upon initializing each farmer agent, values 433 

are allocated for each decision weight such that: 434 

 𝑊𝑟𝑖𝑠𝑘−𝑎𝑣𝑒𝑟𝑠𝑒 + 𝑊𝑓𝑢𝑡𝑢𝑟𝑒𝑠 + 𝑊𝑝𝑟𝑜𝑓𝑖𝑡 + 𝑊𝑐𝑜𝑛𝑠 + 𝑊𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = 1 (3) 

The above decision scheme allows for varying decision weights, thus one farmer’s 435 

decision may be heavily weighted by future crop prices, whereas another farmer’s decision may 436 

be heavily weighted by past profits. If majority of a farmer’s decision is based on 𝑊𝑟𝑖𝑠𝑘−𝑎𝑣𝑒𝑟𝑠𝑒, 437 

then that farmer is less inclined to change his/her previous land use.  438 

The decision components for past profit and future crop prices are based on a partial 439 

budgeting approach that compares land use alternatives. Under this budgeting approach, farmer 440 

agents take into account added and reduced income, as well as added and reduced costs from 441 

changing an acre of land from crop production to conservation (Tigner, 2006). The result from 442 

performing this budget indicates the net gain or loss in income that a farmer agent may incur if 443 

they make the land conversion. 444 
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The past profits decision is solely based on outcomes that have been fully realized for the 445 

previous 𝑋 years. In this decision, the land allocated to conservation is based on the net amount 446 

of money that could have been earned per hectare of conservation land versus crop land and is 447 

calculated as:     448 

 𝛿𝐶𝑝𝑟𝑜𝑓𝑖𝑡:𝑋 = [𝐴 ∗  𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓
2 + 𝐵 ∗  𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 + 𝐶] ∙ 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 ∙ 𝐻𝑒𝑐𝑡𝑎𝑟𝑒𝑠𝑡𝑜𝑡 (4) 

where 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 is the difference in profit between a hectare of cropland and a hectare of 449 

conservation land (Table 1), 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 is the farmer agent’s maximum conservation parameter, 450 

𝐻𝑒𝑐𝑡𝑎𝑐𝑟𝑒𝑠𝑡𝑜𝑡 is the area of the agent’s land. In the case of 𝛿𝐶𝑝𝑟𝑜𝑓𝑖𝑡:𝑋, 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 is calculated 451 

using realized crop prices from previous years (Supplement S4). The future price decision 452 

variable, 𝛿𝐶𝑓𝑢𝑡𝑢𝑟𝑒𝑠:𝑌 , is also calculated using the same form of Eq. (4). However, 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 is 453 

calculated using projected crop prices for the 𝑌 upcoming growing seasons. These price 454 

projections are based on historical crop prices with an added adjustment calculated from 455 

historical errors in crop price forecasts produced by the U.S. Department of Agriculture 456 

(Supplement S5).  457 
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 458 

Figure 4. Example of percent conservation change for 𝛿𝐶𝑝𝑟𝑜𝑓𝑖𝑡 and 𝛿𝐶𝑓𝑢𝑡𝑢𝑟𝑒𝑠. Gray curves 

indicate negative percent change (decrease conservation land), black curves indicate positive 

percent change (increase conservation land). 

 459 

The first term in Eq. (4), the is a second-degree polynomial of form 𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 𝑦, 460 

is displayed in Fig. 4. At the start of each year, farmers may decide to alter their land use based 461 

on observed 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 from harvests in previous years (𝛿𝐶𝑝𝑟𝑜𝑓𝑖𝑡:𝑋) or calculated 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 462 

based on projected crop prices (𝛿𝐶𝑓𝑢𝑡𝑢𝑟𝑒𝑠:𝑌). If 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 is positive (i.e. greater profit is earned 463 

from crop production than conservation land), the farmer agent will potentially decrease the 464 

amount of land in conservation (gray curve). Likewise, under negative 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 , conservation 465 

land is potentially increased because revenue is lower from crop production (black curve). Half 466 

of the maximum allowable percent increase in conservation land is assumed to correspond to the 467 

median historical negative 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓, whereas half of the maximum allowable percent decrease 468 

in conservation land corresponds to the median historical positive 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 (Figure 4). We 469 

assume that farmer agents will not change land use when a very small profit difference between 470 
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the two possible options is observed because changing land use requires extra upfront time and 471 

resources (Duffy, 2015). Similarly, we assume that farmer agents will fully implement the 472 

maximum land conversion possible prior to reaching the most extreme 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 values. Three 473 

equations need to be simultaneously solved to determine coefficients 𝐴, 𝐵, 𝐶 (Supplement S4). 474 

The three equations are based on the 25th, median, and 75th percentiles of historical 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 475 

information. Thus, farmers are continually utilizing historical observations of 𝑃𝑟𝑜𝑓𝑖𝑡𝑑𝑖𝑓𝑓 to 476 

formulate their decision space through time.  477 

The use of a profit function (i.e. Eq. (4)) is meant to capture to effects of changes in crop 478 

prices on conservation land. In 2008 and 2011, corn prices rose to a record high values, and 479 

farmers in the Midwest U.S. (e.g., Iowa, Minnesota) were converting significant portions of CRP 480 

land back into crop production (Marcotty, 2011; Secchi and Babcock, 2007). It is estimated that 481 

when corn prices rise by $1.00, 10-15% of CRP land in Iowa is converted back to production 482 

(Secchi and Babcock, 2007).  Eq. (4) captures this transition between adding and removing 483 

conservation land based on crop price change, and it allows for variation in the decision-making 484 

between farmer agents since variables such as crop production costs vary from farm to farm.   485 

The total amount of agricultural land that a farmer converts to conservation in any given 486 

year based on his/her conservation goal (𝛿𝐶𝑐𝑜𝑛𝑠) is defined by the Bernoulli distribution: 487 

 𝑃(𝑛) =  𝑝𝑛(1 − 𝑝)1−𝑛        𝑛 ∈ {0,1} (5) 

Here, 𝑝 indicates the probability of fully implementing conservation land and 1 − 𝑝 indicates the 488 

probability of not implementing any conservation land. The variable 𝑛 is simply the support of 489 

the distribution that labels a success of full implementation as 1 and a failure of full 490 
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implementation as 0. The probability p of fully implementing conservation land is a function of 491 

the agent’s 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 parameter and is computed by: 492 

 𝑝 = 10 ∙  𝐶𝑜𝑛𝑠𝑚𝑎𝑥 (6) 

The probability 𝑝 scales from 0 at a 𝐶𝑜𝑛𝑠𝑚𝑎𝑥  of 0, to 1 at a 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 of 0.1. Therefore, farmer 493 

agents with a 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 of 0.05 and 0.1 will have a 50% and 100% probability of fully 494 

implementing (10% of total agricultural land) conservation land in any given year based on their 495 

conservation decision variable.                  496 

2.8 City Agent Module 497 

 498 

At the end of each year, the city agent collects discharge data and calculates the damage 499 

(Supplement S7) associated with the peak annual discharge at the watershed outlet for that year. 500 

In February of the next year, the flood damage for the previous year 𝑡 − 1 is used to compute the 501 

conservation goal of the city agent for the current year 𝑡.   502 

The conservation goal of the city agent is calculated as: 503 

 
𝐺𝑡 =  𝐺𝑡−1 + (𝐴𝑡𝑜𝑡 −  𝐶𝑡𝑜𝑡) ∙ 𝑃 (7) 

 
𝑃 =  𝑃𝑛𝑒𝑤 ∙ 𝐹𝐷𝑎𝑚 (8) 

 504 

 𝑃𝑛𝑒𝑤 =  
𝐶𝑜𝑛𝑠𝐺𝑜𝑎𝑙𝑚𝑎𝑥

𝐹𝐷𝑚𝑎𝑥
 

(9) 

where 𝐺𝑡 is the conservation goal for the new year 𝑡 (Table 1), 𝐺𝑡−1 is the unfulfilled hectares in 505 

conservation from the previous conservation goal for year 𝑡 − 1, 𝐴𝑡𝑜𝑡 is the total land area in the 506 

catchmentowned by the farmer agents, 𝐶𝑡𝑜𝑡 is the total number of hectares currently in 507 

conservation, 𝑃 is the percentage of new production land added into conservation, 𝑃𝑛𝑒𝑤 indicates 508 

how much land to add into conservation based on the flood damage 𝐹𝐷𝑎𝑚 for year 𝑡 − 1, and 509 

𝐶𝑜𝑛𝑠𝐺𝑜𝑎𝑙𝑚𝑎𝑥 is a parameter that indicates the new percentage of conservation land to be added 510 
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if maximum flood damage occurs (Table 2). Currently, 𝐶𝑜𝑛𝑠𝐺𝑜𝑎𝑙𝑚𝑎𝑥 is set to 5% of total land 511 

area in the watershed when maximum damage occurs.  512 

3. Scenario Analysis 513 

 514 

The study watershed is modeled after the Squaw Creek basin (~56200 Ha) located in 515 

central Iowa, USA (Figure 45). This basin is characterized by relatively flat hummocky 516 

topography and poorly drained soils with a high silt and clay content (~30-40% silt and clay) 517 

(Prior, 1991; USDA-Natural Resources Conservation Service (USDA-NRCS), 2015). The 518 

predominant land use is row crop agriculture (~70% of the total watershed area) with one major 519 

urban center at the outlet (Ames, Iowa), and several small communities upstream. Average 520 

annual precipitation is 32 inches (812 mm), with the heaviest precipitation falling during the 521 

months of May and June. The watershed is divided into 14 subbasins.   522 
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 523 

Figure 45. Squaw Creek watershed and subbasin division used in the hydrology module. Land 

cover data shown is from the National Land Cover Database (NLCD), 2016. 

 

In this model application, 100 farmer agents are implemented (~7 farmers per subbasin) 524 

with 121 hectares total for each farmer. The total acreage per farmer compares reasonably well 525 

with average farm size for the state of Iowa in 2017, which was 140 hectares (USDA National 526 

Agricultural Statistics Service, 2018). Soil types and the area of land associated with each soil 527 

type are randomly assigned to each farmer agent upon model initialization. Assigning different 528 
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soil types creates heterogeneous conditions under which farmer agents must operate (Supplement 529 

S2) and affects the profitability of each farmer agent differently.  530 

Six scenarios are run: high and low yield (±11% from historical yield), high and low 531 

corn prices (±19% from historical prices) and high and low conservation subsidies (±27% from 532 

historical cash rent). The watershed was also simulated under historical conditions, in which no 533 

economic variables were changed, for comparison purposes. The above percentages were 534 

computed using trends and mean absolute deviations of historical economic data. For instance, 535 

based on the crop regression model (Section 2.6), crop yields display a relatively linear increase 536 

with time. The mean absolute deviation of crop yield was then computed using the linear time 537 

trend as a central tendency. The mean absolute deviation was determined to be 11%, thus the 538 

yield scenarios are ±11% from the historical yield. The same approach was used for the crop 539 

price and conservation subsidy scenarios. A linear and cubic function were found to provide a 540 

good estimate of the central tendency of historical cash rent and crop prices, respectively, for 541 

those calculations. In addition, four different farmer decision schemes are created in which an 542 

80% weight was assigned to one decision variable, with all other variable weights set to 5% 543 

(Table 3). Each scenario is tested with each decision scheme and system outcomes under 544 

different farmer behaviors are assessed.  545 

To test the sensitivity of the hydrologic system to farmer types, the conservation 546 

parameter (𝐶𝑜𝑛𝑠𝑚𝑎𝑥) of the farmer agents is varied using a stratified sampling approach. Each 547 

farmer agent is randomly assigned a 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 value from a predefined normal distribution: 548 

(𝐶𝑜𝑛𝑠𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝜎𝐶𝑜𝑛𝑠𝑚𝑎𝑥

). The lowest distribution is defined as 𝒩(0.01, 0.01) and the highest 549 

distribution is defined as 𝒩(0.09, 0.01). Any farmer agent that is assigned a parameter value 550 

less than 0 or greater than 0.1 is modified to have a value of 0 or 0.1, respectively. Twelve 551 
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simulations are performed for each conservation parameter distribution, with a total of 17 552 

conservation parameter distributions. Thus, the first 12 simulations consist of farmer agents with 553 

𝐶𝑜𝑛𝑠𝑚𝑎𝑥 chosen from 𝒩(0.01, 0.01). For the next 12 simulations, the mean 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 is shifted 554 

up by 0.05, with 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 chosen from 𝒩(0.015, 0.01). A total of 204 simulations are 555 

conducted for each decision scheme under each scenario (Table 3). 556 

Each simulation is run using 47 years of historical climate and market data, with the 557 

exception of federal crop subsidies, which are based on 16 years of historical estimates produced 558 

by Iowa State University Agricultural Extension (Hofstrand, 2018; Table 4). It is assumed that 559 

federal crop subsidy payments from 1970-2000 are similar to levels seen from year 2000-2005 560 

due to relative stability in long-term crop prices and production costs. The hourly 47 year 561 

precipitation time series data was obtained from the Des Moines, Iowa airport Automated 562 

Surface Observing System. Historical 47 year time series of corn prices, crop production costs, 563 

and land rental values are used as economic inputs into the model and were obtained from Iowa 564 

State University Agricultural Extension and Illinois FarmDoc (Table 4).  565 

45. Model Calibration and Validation 566 

Calibrating and validating the social part of social-hydrologic models is difficult due to 567 

reasons that include lack of sufficiently detailed empirical data or system complexity at various 568 

scales (An, 2012; Ormerod and Rosewell, 2009; Troy et al., 2015). Validation of agent-based 569 

models is usually performed on what are termed the micro and macro levels. The micro level 570 

involves comparing individual agent behaviors to real world empirical data whereas the macro 571 

level involves comparing the model’s aggregate response to system-wide empirical data (An et 572 

al., 2005; Berger, 2001; Troy et al., 2015; Xiang et al., 2005). Troy et al., (2015) suggests that 573 
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one or a few model simulations out of an ensemble of simulations should match the real-world 574 

observed data.  575 

We conduct an indirect macro-level model calibration for determining an appropriate 576 

range of farmer agent decision weights (Windrum et al., 2007). Since the subsidy program 577 

offered by the city agent is similar to the federal Conservation Reserve Program (CRP), the 578 

model was developed and calibrated to attempt to reproduce the range and variability of 579 

conservation land seen in the CRP program. CRP data from 1986-2016 for the Central Iowa 580 

Agricultural District was used in the calibration process and two main objectives functions were 581 

used: 582 

 
𝑀𝐴𝐸 =  

∑ |𝑦𝑖  −  𝑥𝑖|𝑛
𝑖=1

𝑛
 (10) 

 583 

 𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝑟 =  
∑ (𝑥𝑖 − 𝑥̅ )(𝑦𝑖 −  𝑦̅ )𝑛

𝑖=1

√∑ (𝑥𝑖 −  𝑥̅ )2𝑛
𝑖=1 √∑ (𝑦𝑖 −  𝑦̅ )2𝑛

𝑖=1

 (11) 

 584 

In the first step of calibration, the focus was to determine an appropriate range of mean 585 

𝐶𝑜𝑛𝑠𝑀𝑎𝑥 of the farmer agent population to match the magnitude of CRP land seen for central 586 

Iowa. The model was simulated 360 times using 20 random sets of farmer agent decision 587 

weights. Output from the first calibration step was filtered using a criteria of 𝑟 > 0.6 and 588 

𝑀𝐴𝐸 < 25%, and the optimal 𝐶𝑜𝑛𝑠𝑀𝑎𝑥 range was reduced to 0.05-0.07. In the second step of 589 

calibration, the focus was to determine a singular optimal mean 𝐶𝑜𝑛𝑠𝑀𝑎𝑥 value and narrow the 590 

range for each decision weight. 𝐶𝑜𝑛𝑠𝑀𝑎𝑥 was incremented by 0.001 within the range derived 591 

from step 1, and 20 simulations were performed for each increment using decision weights 592 

stochastically drawn from the uniform distribution 𝒰(0.05, 0.95) for a total of 400 simulations. 593 

Output was filtered using a stricter criteria of 𝑟 > 0.7 and 𝑀𝐴𝐸 < 25%. The final calibration 594 
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step involved 400 simulations with the optimal mean 𝐶𝑜𝑛𝑠𝑀𝑎𝑥 value and stochastic sampling 595 

from the reduced range of decision weights derived in step 2. Filtering with a criteria of 𝑟 > 0.75 596 

and 𝑀𝐴𝐸 < 12.5% was performed to determine the final optimal decision weight ranges. 597 

The optimal mean 𝐶𝑜𝑛𝑠𝑀𝑎𝑥 value was determined to be 0.06 and the final optimal 598 

decision weight ranges were determined to be: 𝑊𝑟𝑖𝑠𝑘−𝑎𝑣𝑒𝑟𝑠𝑒 = (0.1, 0.43) , 𝑊𝑓𝑢𝑡𝑢𝑟𝑒𝑠 =599 

(0.07, 0.24), 𝑊𝑝𝑟𝑜𝑓𝑖𝑡 = (0.07, 0.34), 𝑊𝑐𝑜𝑛𝑠 = (0.18, 0.37), 𝑊𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = (0.05, 0.35). The 600 

median 𝑟 and 𝑀𝐴𝐸 values of the simulations after filtering with the criteria in step three (𝑟 >601 

0.75, 𝑀𝐴𝐸 < 12.5%) were 0.79 and 11% respectively. Sixty-six out of 400 simulations matched 602 

this criteria in step three, whereas only seven matched this criteria in step one and 26 matched 603 

this criteria in step two.  604 

The model simulated conservation land generally aligns with trends in the observed 605 

conservation land (Figure 106). Simulated conservation land is not maintained following a rise in 606 

crop prices in the mid-1990s and from 2006-2013, which is similar to the observed data (red). 607 

The drop in conservation land during these time periods occurs because the subsidy rate is not 608 

modified rapidly enough in comparison to market forces to incentivize the farmer (Newton, 609 

2017). In 2008 and 2011, corn prices rose to a record high values, and farmer in the Midwest 610 

U.S. (e.g., Iowa, Minnesota) were converting significant portions of CRP land back into crop 611 

production (Marcotty, 2011; Secchi and Babcock, 2007). It is estimated that when corn prices 612 

rise by $1.00, 10-15% of CRP land in Iowa is converted back to production (Secchi and 613 

Babcock, 2007). The model does capture the smaller decrease in conservation land between 614 

2007-2014, even though crop prices rose more dramatically than in the mid-1990s.  615 
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 616 

Figure 106. Simulated conservation land from four model simulations with Pearson’s r > 0.8 and 617 

MAE < 12.5% in comparison to observed conservation land. 618 

 619 

The onset of significant land conversion in the model is offset from the observations.  620 

Conservation land is implemented in the mid-1970s, while conservation land in the observation 621 

is implemented in the late-1980s. The CRP program did not come into existence until 1985, 622 

which partly explains this difference. A large rise in conservation land to roughly 4% occurs 623 

from 1975-1978, most likely due to a combination of decreasing crop prices from 1970-1974 and 624 

model spin up. This is similar to the rate of rise in conservation land that occurred under the CRP 625 

programs from 1985-1987 under a comparable period of decreasing crop prices.   626 

Overall calibration does provide evidence that the model captures changes in CRP land 627 

during the appropriate time periods. However, the calibration technique does have limitations.  628 
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however, it does not provide evidence that any individual agent’s decisions are valid.The 629 

technique followed here was an indirect calibration approach, whereby the parameters are 630 

determined based on the simulations that replicate the empirical data best (Fagiolo et al., 2006). 631 

This technique can lead to equifinality since difference parameter sets may reproduce the 632 

historical observations with similar degrees on accuracy. Further, this calibration approach does 633 

not provide evidence that any individual agent’s decisions are valid. The stochastic nature of 634 

human behavior coupled with path dependencies makes it difficult to predict individual agent 635 

outcomes accurately (Berglund, 2015). In addition, it may be difficult to find sufficient data sets 636 

to support a robust validation at the micro-level. For modeling land use decisions, data is 637 

typically available at a larger scale such as county or state level rather than at the individual 638 

agent-level (e.g. single farm) (An, 2012; Parker et al., 2008). This introduces difficulty in trying 639 

to validate farm-level decisions with respect to farm-level finances (Section 2.7.2). Adding in 640 

additional factors, such as Federal Market Loss Assistance and Loan Deficiency Payments, as 641 

well as trying to characterize some of the other model parameters that were not a focus of this 642 

calibration, may further improve results.   643 

In light of the paper by Windrum et al. (2007), there has been much debate as to the 644 

proper methodology and techniques to follow for ABM validation (Bharathy and Silverman, 645 

2013; Hahn, 2013). To fully validate the current model, a more extensive process may be 646 

necessary. Macal et al., (2007) introduced a framework for ABM validation that may provide for 647 

a more comprehensive evaluation. This framework includes subject matter expert evaluation, 648 

participatory simulation, model-to-model comparison, comparison against critical test cases, 649 

invalidation tests, and comprehensive testing of the entire agent strategy and parameter space. 650 

However, following this framework is very time costly, and thus most recent studies have 651 
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focused on empirical validation against real world macro level data, with some studies validating 652 

at the individual agent level if data is available (Fagiolo et al., 2019; Guerini and Moneta, 2017; 653 

Langevin et al., 2015; Schwarz and Ernst, 2009). 654 

45. Results  655 

45.1 Crop Price Scenarios 656 

The 90th percentile peak discharge is 296.4 m3/s when no conservation is occurring in the 657 

watershed (Figure 5Figure 7). The 90th percentile peak discharge decreases for all four decision 658 

schemes and under all scenarios as the average conservation-mindedness (𝐶𝑜𝑛𝑠𝑚𝑎𝑥) of the 659 

population increases (Figure 5Figure 7). The low crop price scenario produces a larger decline in 660 

peak discharge compared to the high crop price scenario, with the exception of the conservation 661 

decision scheme (80% weight on conservation) in which both low and high crop price scenarios 662 

produce a similar ensemble pattern (Figure 5Figure 7a). 663 

 664 
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 665 

Figure 5Figure 7. Mean 90th percentile discharge for high and low crop price scenarios under (a) 

85% weight on conservation goal, (b) 85% weight on future price, (c) 85% weight on past profit, 

and (d) 85% weight on risk aversion. Bars indicate the median (circle) and the 5th and 95th 

percentiles of discharge for all simulations at a specific 𝐶𝑜𝑛𝑠𝑚𝑎𝑥. 

 

Under low crop prices, peak discharge reaches an average reduction of 8.18% (24.27 m3/s) 666 

when the average 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 is 0.08-0.09 (conservation-minded population) and 4.67% (13.85 667 

m3/s) when the average 𝐶𝑜𝑛𝑠𝑚𝑎𝑥 is 0.04-0.06 (mixed population).  The decrease in peak 668 

discharge corresponds with the 800-1000 hectares and 400-600 hectares converted to 669 

conservation by the conservation-minded and mixed farmer populations, respectively (Figure 670 

6Figure 8a, c, e, g). The production-minded populations (𝐶𝑜𝑛𝑠𝑚𝑎𝑥 ~0.01-0.02) implement less 671 

than 200 hectares during the entire simulation period. These acreage values represent 6.5-8.2%, 672 

3.3-5.0%, and less than 2.0% of the entire watershed for the conservation-minded, mixed, and 673 

production-minded groups, respectively. Given that 10% of the watershed would be in 674 

conservation if native prairie strips were fully implemented, about 65-80% of a conservation-675 
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minded population fully implements the practice over the simulation period under low crop 676 

prices. 677 

Under the high crop prices, mean peak discharge decreases by 5.6 % (16.6 m3/s) under the 678 

future price weighting scheme and 2.9% (8.6 m3/s) under the past profit weighting schemes for 679 

the highly conservation-minded population (Figure 5Figure 7b and c, respectively), with an even 680 

smaller reduction seen for the risk-averse scenario. This represents approximately a 61% smaller 681 

decrease in the peak discharge when crop prices are high and the population is conservation-682 

minded as compared to the low crop price scenario. Discharge remains largely unchanged for 683 

these decision schemes because generally less than 300 hectares of land is allocated for 684 

conservation when corn prices are high (Figure 6Figure 8d, f, and h). The small amount of 685 

conservation land implemented is due to farmer agents receiving significantly more revenue 686 

from crops than conservation subsidies. However, in the case of low crop prices, conservation 687 

subsidies allow the farmer agents to approach break even because they are guaranteed a subsidy 688 

that covers the cash rent for that land, whereas crop production leads to potential losses due to 689 

corn prices being low relative to production costs. Even in these scenarios where farmer agents 690 

are heavily considering profit related variables, populations dominated by production-minded 691 

farmer agents are still inclined to leave land in production (Figure 6Figure 8c and e). 692 
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 693 

Figure 6Figure 8. Range of simulated conservation land within the watershed under low (left 

column) and high (right column) crop prices for conservation-minded populations (green), mixed 

populations (blue) and production-minded populations (red). Crop prices are plotted as bars for 

each crop price scenario. Results are for decision schemes of 85% weight on conservation 

behavior (a, b), 85% weight on future price (c, d), 85% weight on past profit (e, f), and 85% 

weight on risk aversion (g, h). 

45.2 Crop Yield Scenarios 694 

Under high and low crop yield scenarios, the 90th percentile peak discharge decreases by 695 

an average of 5.9% (17.4 m3/s) and 7.6% (22.7 m3/s), respectively, for the conservation-minded 696 

populations (Figure 7Figure 9). Thus, a smaller decrease in peak discharge occurs with low crop 697 

yields relative to low crop prices (Figure 5Figure 7). In the low crop yield scenario, conservation 698 

land was approximately 200 Ha less than in the low crop price scenario, particularly for the past 699 

profit and future price decision schemes (Figure 6Figure 8a, c, e, g and 8a10a, c, e, g). 700 

Conversely, more conservation land is established under the high yield scenario compared to the 701 

high crop price scenario (Figure 6Figure 8b, d, f, h and 108b, d, f, h). As a result, mean peak 702 
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discharge decreases in the high yield scenario by 15.6% more compared to the high crop price 703 

scenario for the conservation-minded population.   704 

 705 

Figure 7Figure 9. Mean 90th percentile discharge for high and low crop yield scenarios under (a) 

85% weight on conservation goal, (b) 85% weight on future price, (c) 85% weight on past profit, 

and (d) 85% weight on risk aversion. Bars indicate the median (circle) and the 5th and 95th 

percentiles of discharge for all simulations at a specific 𝐶𝑜𝑛𝑠𝑚𝑎𝑥. 
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Figure 8Figure 10. Range of simulated conservation land within the watershed under low (left 

column) and high (right column) crop yields for conservation-minded populations (green), mixed 

populations (blue) and production-minded populations (red). Yearly crop yields are plotted as 

bars for crop yield scenario. Results are for decision schemes of 85% weight on conservation 

behavior (a, b), 85% weight on future price (c, d), 85% weight on past profit (e, f), and 85% 

weight on risk aversion (g,h). 

 

45.3 Conservation Subsidy Scenarios 

 

Under the low and high subsidies scenarios (not shown), the 90th percentile peak 706 

discharge decreases by an average of 5.8% (17.3 m3/s) and 7.6% (22.5 m3/s), respectively, for 707 

conservation-minded populations. Similar to the low crop yield scenario, high subsidies do not 708 

produce as large of a decrease in mean peak discharge as low crop prices (Figure 5Figure 7). In 709 

the high subsidies scenario, conservation land was approximately 200-300 Ha less than in the 710 

low crop price scenario, specifically for the future price and past profit decision scheme. In 711 

comparison, low subsides generate more conservation land than under high crop prices (Figure 712 

6Figure 8b, d, f, h). As a result, mean peak discharge decreases in the low subsidy scenario by 713 
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14.8% more compared to the high crop price scenario for the conservation-minded population. 714 

Differences in peak discharge reduction between the high subsidy and low yield scenarios were 715 

insignificant, with less than 1% difference between these two scenarios. 716 

45.4 Decision Schemes  717 

The future price and past profit decision schemes display the largest spread in discharge 718 

outcomes between scenarios (Figure 5Figure 7, 79). Mean peak discharge decreases on average 719 

by 9% (~27.2 m3/s) relative to when no conservation occurs for both decision schemes under all 720 

scenarios that encourage more conservation land (i.e. low crop prices, low yields, high subsidies) 721 

(Figure 5Figure 7b, c and 7b9b, c). Under scenarios that encourage less conservation land, mean 722 

peak discharge decreases by 5% (~15.4 m3/s). This spread in peak discharge results is not present 723 

under the risk-averse and conservation decision schemes.  724 

The spread between the mean peak discharge under the different scenarios is smaller for 725 

the future price decision scheme (Figure 5Figure 7b and 7b9b) compared to the past profit 726 

decision schemes (Figure 5Figure 7c and 7c9c). This smaller spread may be due to uncertainty in 727 

future crop price projections. For instance, future crop price projections may underestimate high 728 

crop prices, but overestimate low crop prices, as is observed in previous USDA crop price 729 

forecasts (Supplement S5). Thus, the farmer agents may be making decisions based on a smaller 730 

range of crop prices when under the future price decisions compared to the past profit decision 731 

scheme where they use realized crop prices. In addition, the future crop price decision scheme 732 

results in greater variability in conservation land over short periods of time under all scenarios 733 

(Figure 6Figure 8c,d and 8c10c,d). This result is evident under the low crop price scenario, with 734 

several short periods showing changes in conservation land of 200-400 ha as compared to the 735 
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past profit scenario where conservation land remains relatively steady. However, this result does 736 

not lead to a larger spread (i.e. red and blue bars) within the mean peak discharge results. 737 

The risk averse decision scheme produces the smallest changes in peak discharge under 738 

all scenarios, with an average decrease of less than 2% (6 m3/s) and 3% (9 m3/s) for mixed and 739 

conservation-minded populations, respectively (Figure 5Figure 7d, 7d9d). Because the farmer’s 740 

past practices are the primary factor in determining land conversion in this scheme, the farmer 741 

agents implement a limited number of conservation acres (≤ 200 ha), regardless of the scenario. 742 

Therefore, changes in the economic variables are not having as large of an impact on the farmer 743 

agents when they are strongly risk-averse.  744 

Overall, the current city agent conservation goal of 5% new conservation land at 745 

maximum flood damage did not have a significant impact on the total amount of land 746 

implemented. Following two major flooding events, the conservation goal of the city agent 747 

increases from less than 20 ha in 1975 to 620 ha in 1976. A similar event in 1977 increases the 748 

conservation goal by another 500 ha for a total goal of approximately 1100 ha. These increases 749 

correspond to the large and rapid onset of conservation land seen during those years (Figure 750 

6Figure 8a, c, e; 8a10a, c, e). When the population has a high average 𝐶𝑜𝑛𝑠𝑚𝑎𝑥, the conservation 751 

goal of the city agent is nearly fulfilled during this period, particularly in the low crop price 752 

scenario. In these cases, 900 ha of the conservation goal is implemented, and 200 ha remains 753 

unimplemented. This results in the largest reduction in 90th percentile discharge under all 754 

scenarios and decision schemes (Figure 5Figure 7a, 7a9a). When the population has a low 755 

average 𝐶𝑜𝑛𝑠𝑚𝑎𝑥, the majority of the city agent’s conservation goal remains unimplemented. 756 

Thus, the goal remains at a constant 1000-1200 ha and discharge remains unchanged. The only 757 

case where the city agent conservation goal limits the amount of land implemented is under the 758 
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conservation weighting scenario since conservation-minded farmers are inclined to add 759 

conservation land on a yearly basis. 760 

45.5 Historical Comparison 761 

To gain an understanding of how each of the scenarios differs from the historical 1970-762 

2016 period, the mean peak discharge is compared against the historical scenario (Figure 11). 763 

Recall that under the historical scenario, farmer agents make annual land use decisions as in the 764 

other scenarios, but corn prices, conservation subsidies, and crop prices are unchanged from 765 

historical observed values. , which does not modify any economic or agricultural variables 766 

(Figure 9). Overall, crop prices had the largest impact on mean peak discharge while changes in 767 

subsidies had the smallest overall impact. When crop prices were low, mean peak discharge 768 

decreased by 1-2% for mixed populations and 2-3% for conservation-minded populations under 769 

the future price and past profit schemes compared to the historical scenario (Figure 9Figure 11a). 770 

High crop prices result in an increase in peak discharge from the historical scenario, with an 771 

increase of 1-3% for mixed populations, and 3-5% for conservation-minded populations. This 772 

indicates that the farmer agents are more likely to convert land back to crop production under 773 

high crop prices than convert land to conservation under low crop prices, which is a similar 774 

conclusion to Claassen and Tegene, 1999. 775 

The subsidy scenarios produced a similar pattern to the crop price scenarios, where a 776 

larger change (increase) in mean peak discharge occurs under low subsidies than under high 777 

subsidies (Figure 9Figure 11b). This pattern was not as clearly evident under the yield scenarios, 778 

with similar changes resulting from high and low yields (Figure 9Figure 11c). 779 
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 780 

Figure 9Figure 11. Percent Change in median 90th percentile discharge from the historical 

scenario for (a) high and low crop prices, (b) high and low subsidies, (c) high and low yields for 

the conservation, risk, future price, and past profit weighting schemes. 

 781 

6. Conclusions 782 

Scenarios of historical and low crop yields, as well as high and low corn prices and 783 

conservation subsidies, were simulated for an agricultural watershed in the Midwest US corn-784 
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belt using an agent-based model of farmer decision making and a simple rainfall-runoff model. 785 

The influence of different farmer agent decision components on model outcomes was also 786 

explored. Model results demonstrate causations and correlations between human systems and 787 

hydrologic outcomes, uncertainties, and sensitivities (specifically focused on high flows).  788 

The primary findings from this study are:  789 

 Crop prices had the largest impact on mean peak discharge, with a 61% larger reduction in 790 

mean peak discharge under low crop prices in comparison to high crop prices.  791 

 Changes in subsidy rates and crop yields produced a smaller impact on mean peak 792 

discharge. Only a 25-30% difference in mean peak discharge was realized between high and 793 

low subsidies, and high and low yields.  794 

 Farmer agents more often made decisions to eliminate conservation land than to enter into 795 

conservation contracts: a 3-5% increase in mean peak discharge occurred under high crop 796 

prices, while only a 2-3% decrease in mean peak discharge occurred under low crop prices 797 

compared to the historical simulation. Thus, even under low crop prices, the effectiveness of 798 

the conservation program is limited either due to economic or behavioral factors. 799 

 Hydrologic outcomes were most sensitive when farmer agents placed more weight on their 800 

future price or past profit decision variables and least sensitive when farmer agents were 801 

highly risk averse. For instance, under future price and past profit weighting scenarios, a 4% 802 

and 7% difference in mean peak discharge is seen between high and low crop prices as 803 

opposed to a 0-1% difference under the risk averse weighting scenario.  804 

 805 

The ABM modeling approach demonstrated here can be used to advance fundamental 806 

understanding of the interactions of water resources systems and human societies, particularly 807 
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focusing on human adaptation under future climate change. Our model indicates that external 808 

factors can influence local streamflow, albeit in a complex and unpredictable way as the 809 

information gets filtered through the complex decision making of local farmers. Social factors, 810 

both local and external, introduce significant uncertainty in local hydrology outcomes, and by 811 

ignoring them, water management plans will be inherently incomplete. Thus, multi-scale human 812 

factors need to be explicitly considered when assessing the sustainability of long-term 813 

management plans.  814 

  815 

 This study additionally demonstrates some of the advantages of the ABM approach. One 816 

of the primary advantages of ABMs is the ability to capture emergent phenomenon (Bonabeau, 817 

2002). For instance, in the model, the change in conservation area seen in the mid-1990s is larger 818 

than during the period after 2007, despite the much larger volatility in crop prices after 2007.  819 

While the primary reason behind this phenomenon may not be clear, the ABM captures this 820 

change. The ABM also allows for specifying small scale differences between farmer agents such 821 

as variations in conservation-mindedness, production costs, yields, cash rents, etc. Thus, using 822 

ABMs allows for a very flexible modelling approach.  823 

The current model design contains limitations in both the hydrologic and agent-based 824 

models that should be addressed in future model development. The curve number values that 825 

were used to represent the conservation option were derived for small agricultural plots of 826 

approximately 0.5-3 Ha in size. The question remains whether these CN values can be scaled up 827 

to the size of a several hundred hectare farm plot and still produce reasonable discharge results. 828 

In addition, there is no explicit spatial representation of farmer agents within each subbasin, 829 

Coupling the agent-based model to a more robust hydrologic model may reduce some of these 830 

hydrologic limitations. The Agro-IBIS model, which includes dynamic crop growth and a crop 831 
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management module, would be particularly well suited to further investigating various farm-832 

level decisions within an ABM on hydrologic outcomes (Kucharik, 2003).  833 

From the agent-based modeling standpoint, the decision-making of the farmer and city 834 

agent could be made more sophisticated by introducing certain state variables, further decision 835 

components and longer planning horizons. Studies have identified variables such as farm size, 836 

type of farm, age of farmer, off farm income, land tenure agreement, education from local 837 

experts, among others, to be significant in determining adoption of conservation practices 838 

(Arbuckle, 2017; Daloǧlu et al., 2014; Davis and Gillespie, 2007; Lambert et al., 2007; Mcguire 839 

et al., 2015; Ryan et al., 2003; Saltiel et al., 1994; Schaible et al., 2015). The functionality of the 840 

city agent could be expanded by introducing cost-benefit analysis capabilities. Cost-benefit 841 

capabilities would allow the city agent to make more advanced decisions such as choosing 842 

among a variety of flood reducing investments (Shreve and Kelman, 2014; Tesfatsion et al., 843 

2017).  The model is capable of replicating historical trends in observed conservation land in 844 

Iowa with a Pearson’s r > 0.75 and a  𝑀𝐴𝐸 < 12.5% for a select number of simulations; 845 

however, more work is needed to try to validate the model on a micro-level (farm-level) scale. 846 

Finally, future work should more fully explore the feedbacks from the hydrologic system to the 847 

human system, which is one of the strengths of the agent-based modeling approach (An, 2012). 848 

Code Availability 849 

Model code can be obtained from the corresponding author. 850 

 851 

 852 

 853 

 854 
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Variable Description Unit

Ct-1:t-X Mean total amount of land allocated to conservation during the previous X years Hectares

Dt-1 Previous year's conservation land decision Hectares

δCfutures:Y Conservation decision based on crop price projections for Y years into the future Hectares

δCprofit:X Conservation decision based on mean past profit of previous X years Hectares

δCcons Conservation decision based on conservation goal Hectares

Cneighbor Weighted mean conservation land of the farmer agent's neighbors Hectares

Profitdiff Differences in profit between an acre of crop and an acre of conservation land ($/Hectare)

Hectares tot Total land owned by farmer agent Hectares

Gt Government agent conservation goal for the current year t Hectares

Gt-1 Unfullfilled conservation land from the previous year's t-1 conservation goal Hectares

Atot Total agricultural land in watershed Hectares

Ctot Total land currently in conservation Hectares

P Total conservation land to be added to the goal as a percentage of production land Dimensionless

Pnew Variable describing change in conservation goal with flood damage (1/$)  1173 

Table 1. Variables in farmer and city agent equations. 1174 

 1175 

Agent Model Parameters Description Range

Wrisk-averse Weight placed on farmer agent's previous land use 0.0 - 1.0

Wfutures Weight placed on farmer agent's decision based on future crop price 0.0 - 1.0

Wprofit Weight placed on farmer agent's decision based on past profit  0.0 - 1.0

Wcons Weight place on farmer agent's decision based on his/her conservation goal 0.0 - 1.0

Wneighbor Weight placed on farmer agent's decision based on his/her neighbor's decisions 0.0 - 1.0

Consmax Farmer's conservation goal - used to describe the farmer's conservation-mindedness 0.0 - 0.1

X Number of previous years a farmer agent takes into account for his/her land decision 1 - 5

Y Number of future years a farmer agent takes into account for his/her land decision 5 - 10

ConsGoalmax Conservation goal at maximum flood damage 0.0 - 0.1  

Table 2. Primary agent model parameters in decision-making equations. 1176 
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 1178 

Conservation 

Goal
Futures Past Profit Risk Aversion Neighbor

0.05

0.05

0.05

0.05

Decision Weight

Decision Scheme

Future price 0.05 0.8 0.05 0.05

0.05 0.05 0.05 0.8

Conservation 0.8

Risk averse

0.05 0.05

Past profit

0.05

0.05 0.05 0.8 0.05

 

Table 3. Decision weighting scheme tested with each scenario. 1179 

 1180 

Model Inputs Years Unit

Historical Cash Rent 1970-2016 ($/Hectare)

Federal Subsidies 2000-2016 ($/Hectare)

Historical Production Costs 1970-2016 ($/Hectare)

Historical Corn Prices 1970-2016 ($/MT)

Precipitation 1970-2016 (mm/hr)  

Table 4. Model Inputs. 
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