Reviewer #1
We thank the reviewer for these helpful suggestions to improve our manuscript.

This paper “Linking economic and social factors to peak flows in an agricultural watershed using
socio-hydrologic modeling” develops a coupled agent-based model to evaluate the impact of
conversion decision on flood reduction in a watershed. I think the scope fits quite well with the
journal and the authors explain their goal and method reasonably well. I do have some comments
which I hope can further improve the quality of the manuscript. I would recommend a minor to
moderate revision.

First, I think the authors can benefit well by enlarging their literature review into the “water
resources systems analysis” (WRSA) realm. The study of human-hydrologic cycle interaction
strat at the Harvard Water Program in the 1960s. A lot of classic issues (including the impact of
land use, land cover change) had been addressed extensive lyin WRSA literature. Compare to
“socio-hydrology,” WRSA also have a longer history of incorporating ABM into their modeling
framework. I would strongly encourage authors to identify more literature on this aspect.

We thank the reviewer for this helpful comment. This paper was written with the emerging
field of “socio-hydrology” strictly in mind. However, we realize that many other areas of
water resources research have also utilized ABMs. We feel that the purpose of this paper is
not to provide an elaborate and lengthy literature review. Most likely, one can probably
write an entire review paper on the subject of incorporating ABMs and humans in water
resources/hydrological analysis. We have cited some literature in the introduction (lines 71-
73) to make readers aware of the WRSA field. Also, some of the studies that we cite on lines
97-100 do come from the WRSA field (e.g. Schliiter and Pahl-wostl, 2007).

Second, following my above comment, studies of ABM become more and more popular in the
past decade. Methods used to quantify agents’ behavior have been improved a lot as well.
Methods proposed by the authors are not entirely new (Section 2.7.2, line 375-385) because it is
a Bayesian-based method (the authors even use the terminology: prior and posterior). Authors
are encouraged to broaden their literature about ABM that uses Bayesian theory to address
behavior uncertainty. The authors should highlight the different settings they used in their ABM
compare to other Bayesian-based ABM.

Lines 393-404: The approach that we are using is not a true Bayesian approach. We are not
using bayes rule/conditional probabilities to update any sort of probability distributions.
The farmer agents are simply using a weighted average formulation that includes a
variable taking into account their past land use configuration and several variables taking
into account new information such as profits or future crop price projections. This is
similar to a data assimilation approach such as the EnKF were the past model state is given
a certain weight and new observations are given a certain weight based on a computed
Kalman gain. Hence, we point to this field in lines 393-404 to indicate where this idea came
from. Many studies in ABM dealing with agriculture and water resource take an
optimization approach (e.g. Schreinemachers, P., Berger, T., 2011. An agent-based
simulation model of human—environment interactions in agricultural systems.) or a rule-



based approach (e.g. van Oel, P.R., Krol, M.S., Hoekstra, A.Y., Taddei, R.R., 2010.
Feedback mechanisms between water availability and water use in a semi-arid river basin:
A spatially explicit multi-agent simulation approach). We point out the different types of
models used in the paragraph on lines 380-392. Some studies do use Bayesian methods, but
these methods are usually paired with the main decision model (e.g. optimization). Ng et al
2011, “An agent-based model of farmer decision-making and water quality impacts at the
watershed scale under markets for carbon allowances and a second-generation biofuel
crop”, is one such study that uses Bayesian updating for updating farmer’s perceptions of
variables such as yields or crop prices.

We have updated the sentence on lines 396-398 so as not to confuse readers into thinking
that we are using Bayesian methods.

Third, I do have a suggestion about paper structure. Currently, the authors put the ABM
calibration in Section 5 which reads weird to me. The purpose of calibration and validation of the
model is to demonstrate the credibility, therefore, it should be put before the authors use the
model for any scenarios. I would suggest move Section 5 before the results. And add more
discussion about ABM validation (beyond line 711-720) because this topic is the most popular
issue in the ABM community nowaday.

This section has been moved prior to the results. Some further discussion and literature has
been added in the paragraphs between lines 627 and 654.

I have some minor comments below:

Line 71-73: This kind of argument really needs to incorporate the studies of Water Resources
Systems Analysis.

See comment above.
Line 137: You mean two “types” of agents?

Line 147-148: That is correct. The terminology in the manuscript has been changed from
“primary” to “types” so as to make this more clear.

Line 223-224: This does match with your equation (7) to (9) because I did not see minimize
flood damage objective function. Also, why the goal of the city agent is not "minimize the cost =
flood damage + contact fee?

Lines 240-241: In the current version of the model, a stronger focus was placed on
capturing the various decision variables that farmers may take into account, whereas the
decision-making of the city agent was kept rather simple. So the city agent isn’t
“minimizing” flood damage using an objective function with numerical optimization, but
rather the city agent is trying to reduce flooding based on a simplified linear equation,
displayed below. Flood damage is computed based on a sigmoid relationship plotted below
(left). This is described in detail in section S7 of the supplemental material. The city agent
then takes this flood damage and computes a new conservation goal (amount of new land



that the city agent would like to convert to conservation as a percentage of the total
watershed area) based on the linear relationship plotted below (right).
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The city agent is a feature that will be improved in further iterations of the model.
Introducing a cost function such as “cost = flood damage — flood reduction + contract fee”
is viable; however, this would require the city agent to have capability to simulate specific
flood events in order to estimate flood reduction for a given amount of conservation
implementation.

”Line 229: I think this is the first time you mention risk-aversion. You need a more detailed
description of what does it mean in your model.

Risk-aversion indicates the willingness of a farmer to change his/her land use under
uncertainty. Farmers with a high risk aversion will not want to change their previous land
use because they are trying to avoid risk (keeping their land use the same represents a
more predictable payoff to the farmer, even though their revenue may be smaller). Lines
176-182 were added to clarify this prior to the paragraph containing line 229 (now line
246).

Line 337: Since FAO has a physically-based crop model, you might want to test the sensitivity of
the current crop model on your results given that this will affect farm agents’ decisions.

Line 352: The crop yields in our model are computed using a robust regression model that
was formulated using temperature, precipitation, and yield data from 1960-2006. This
model gives a reasonable prediction of yields based on environmental conditions. Unlike a
physically-based model, there is no feasible way of testing the sensitivity of a regression-
based model. We are not changing any of the values associated with specific regression
coefficients. We do however take into account differences in yield based on soil types and
add stochastic variability based on local differences in environmental conditions.



We thank the reviewer for this good suggestion. One of the goals for the future is to
improve the crop model by introducing a physically-based crop model. This will allow us to
simulate yields in more detail based on finer level farm management techniques.

Listed below is the reference for the crop regression model that is currently used.

Tannura, M. A., Irwin, S. H. and Good, D. L.: Weather, Technology, and Corn and
Soybean Yields in the U.S. Corn Belt. [online] Available from:
https://farmdoc.illinois.edu/assets/marketing/morr/morr_08-01.pdf, 2008.

Line 402: How you define “neighbor?”

Line 421-422: If a farmer is located in subbasin A for example, he/she can make a certain
random number of neighboring connections with other farmers in that same subbasin. A
sentence was inserted at lines 422-423 to clarify the above. If a subbasin contains 10
farmers, one farmer might form 5 neighboring connections with farmers in that same
subbasin while another farmer may form only 2 connections. This process is described in
greater detail in section S3 of the supplement.

Line 564-Figure 6d: Why is there a jump in all three curves around 2012? The same question for
Figure 8d. I hope these comments help the authors for their revision.

In the scenarios plotted in figures 6d and 8d (now figures 8d and 10 d), the farmer is
placing an 85% weight on the future price decision variable (6Cyysyres.y)- Most likely what
is happening in this case is that prices are high during 2010-2013, but crop price forecasts
are predicting a down turn in crop prices. If farmer agents are considering crop price
forecasts several years into the future, conservation land begins increasing while crop
prices are still high during 2012 and 2013. Essentially, the farmers are changing their land
use in anticipation of lower crop prices. The increase in conservation land will be more
dramatic considering that farmer agents are placing such high weight on the future crop
price forecasts.
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Abstract: Hydrologic modeling studies most often represent humans through predefined actions
and fail to account for human responses under changing hydrologic conditions. By treating both
human and hydrologic systems as co-evolving, we build a socio-hydrological model that
combines an agent-based model (ABM) with a semi-distributed hydrologic model. The curve
number method is used to clearly illustrate the impacts of landcover changes resulting from
decisions made by two different agent types. Aiming to reduce flooding, a city agent pays farmer
agents to convert land into conservation. Farmer agents decide how to allocate land between
conservation and production based on factors related to profits, past land use, and willingness.
The model is implemented for a watershed representative of the mixed agricultural/small urban
area land use found in lowa, USA. In this preliminary study, we simulate scenarios of crop
yields, crop prices, and conservation subsidies along with varied farmer parameters that illustrate
the effects of human system variables on peak discharges. High corn prices lead to a decrease in
conservation land from historical levels; consequently, mean peak discharge increases by 6%,
creating greater potential for downstream flooding within the watershed. However, when corn
prices are low and the watershed is characterized by a conservation-minded farmer population,
mean peak discharge is reduced by 3%. Overall, changes in mean peak discharge, which is
representative of farmer land use decisions, are most sensitive to changes in crop prices as

opposed to yields or conservation subsidies.
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1. Introduction

Humans change the water cycle through actions that affect physical and chemical aspects
of the landscape, and these changes occur from global to local scales and over varying time
periods (Vorosmarty and Sahagian, 2000). Despite their significant impacts to the landscape,
humans remain the most poorly represented variables in hydrologic models (Sivapalan et al.,
2012). Land cover and land use are commonly treated as fixed in time in many hydrologic
models through the use of static parameters. When made dynamic, landscape change is often
limited to predefined scenarios that are developed without consideration of how economics, local
culture, or climate may combine to influence land use decisions. For example, the field of
integrated water resources management (IWRM), which attempts to explore the interactions
between humans and water, typically uses “scenario-based” approaches (Savenije and Van der
Zaag, 2008). While scenario-based studies allow quantification of the impacts of a management
decision on the hydrologic system, there are significant limitations (Elshafei et al., 2014;
Sivapalan et al., 2012). Human and environmental systems are highly coupled with feedbacks
from one system creating stress on the other system, which in turn affects the behavior of the
first system. Therefore, representing management decisions as pre-determined will not reproduce
the real-world variability that may arise as a result of complex feedbacks between the human

system and the physical system.

Arguments have emerged fersocio-hydrelogicalin the hydrological sciences and Water

Resources Systems Analysis (WRSA) fields for modeling in which humans and the environment

are treated as co-evolving (e.g., Di Baldassarre et al., 2013; Brown et al., 2015; Montanari, 2015;
Rosengrant et al., 2002; Sivapalan et al., 2012; Sivapalan and Bléschl, 2015; Wainwright, 2008).

In this way, models can account for disturbances to natural systems by humans and
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simultaneously assess physical processes and economic and social issues. In the hydrologic
literature, two approaches have been used to simulate coupled human and natural systems: a
classic top-down approach and a bottom-up approach using agent-based modeling (ABM). In the
first approach, all aspects of the human system are represented through a set of parametrized
differential equations (e.g., Di Baldassarre et al., 2013; Elshafei et al., 2014; Viglione et al.,
2014). For example, Elshafei et al. (2014) characterizes the population dynamics, economics,
and sensitivity of the human population to hydrologic change through differential equations to
simulate the coupled dynamics of the human and hydrologic systems in an agricultural
watershed. In contrast, the ABM approach consists of a set of algorithms that encapsulate the
behaviors of agents and their interactions within a defined system, where agents can represent
individuals, groups, companies, or countries (Axelrod and Tesfatsion, 2006; Borrill and
Tesfatsion, 2011; Parunak et al., 1998). System agents can range from passive members with no
cognitive function to individual and group decision-makers with sophisticated learning and

communication capabilities. The ABM approach has several advantages over the traditional top

down approach (Bonabeau, 2002). Agent-based models are able to capture emergent

phenomenon that result from interactions between individual entities. In addition, simulating

individual entities through ABM provides for a more natural description of a system in contrast

to developing differential equations that capture the behavior of the system as a whole. ABMs

also provide for greater modeling flexibility by allowing for different number of agents, various

deqgrees of agent complexity, and behavioral differences among the agents. ABM has been used

to study the influence of human decision making on hydrologic topics such as water balance and
stream hydrology (Bithell and Brasington, 2009), flooding (Du et al., 2017; Jenkins et al., 2017,

Yang et al., 2018), irrigation and water usage (Barreteau et al., 2004; Becu et al., 2003; Berger et
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al., 2006; Berglund, 2015; van QOel et al., 2010; Schliter and Pahl-wostl, 2007), water quality

(Ng et al., 2011), and groundwater resources (Noel and Cai, 2017; Reeves and Zellner, 2010).

A dominating topic in the hydrologic sciences that can be studied through use of ABMs
is the issue of land use change impacts on hydrologic flows in intensively managed agricultural
landscapes (Rogger et al., 2017). A number of studies have attempted to quantify the impact of
land use change on streamflow (Ahn and Merwade, 2014; Frans et al., 2013; Naik and Jay, 2011;
Schilling et al., 2010; Tomer and Schilling, 2009; Wang and Hejazi, 2011) Ahn and Merwade
(2014) is one such study that found that 85% of streamflow stations in Georgia indicated a
significant human impact on streamflow. Another study by Schilling et al., (2010) indicated a
32% increase in the runoff ratio in the Upper Mississippi River basin due to land use changes,
mainly due to increases in soybean acreage. Results of Wang and Hejazi (2011) are consistent
with Schilling et al., (2010). They found a clear spatial pattern of increased human impact on
mean annual stream over the Midwestern states due to increases in cropland area.

Given clear evidence that the human system has a significant effect on streamflow, we use a
social-hydrologic modeling approach to better understand the effects of land-use changes driven
by economic and human behavior on hydrologic responses, which would be otherwise difficult

to observe with a hydrologic model alone.

In this study, we develop a social-hydrologic model that simulates changes in conservation
land area over time within an agriculturally-dominated watershed as a function of dynamic
human and natural factors. Using a sensitivity analysis approach, we use this model to quantify
the impact of economic and human factors on land use changes relating to conservation
implementation and subsequently, how these land use changes impact the hydrologic system. We

explore the following research questions:
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1) To what degree do economic and agronomic factors (specifically crop prices,
conservation incentives, and crop yields) impact the success of a conservation
program designed to reduce peak flows?

2) To what degree are hydrologic outcomes sensitive to various factors that commonly

influence agricultural land use decisions?

Using simulations of a historical 47 year period, we explore land use and hydrologic outcomes
for a typical agricultural watershed in lowa under the following six scenarios developed from
economic data: crop yields 11% above and below historical values, corn prices 19% above and
below historical values, and conservation subsidy rates 27% above and below historical cash rent

values. Additionally, we simulate land use and hydrologic outcomes for the historical period

without any perturbations to these economic data for comparison purposes. The following model
methodology is described using the ODD (Overview, Design Concepts, and Details) protocol

developed by Grimm et al. (2006).

2. Model Purpose

The purpose of the model is to understand the impact of land use decisions by upstream
farmers on flooding response in a downstream urban area under perturbations to extrinsic
economic and natural factors (e.g. crop prices, land rental values, climate), as well as intrinsic
factors (e.g. internal farmer behavior, local government incentives). System behavior under

changes in extrinsic and intrinsic factors is analyzed using a scenario-based ensemble approach.

2.1 State Variables and Scales
The model links an agent-based model of human decision making with a rainfall-runoff

model to simulate social and natural processes within highly-managed agricultural watersheds
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(Figure 1). The agent-based model consists of two types of agents: a_group of farmer agents and
a city agent.

The primary modeling domain consists of the watershed and the subbasins located within
the watershed. The model user must define the subbasins based on external analyses of
hydrologic flows and conditions. Each subbasin is populated by one or more farmer agents as
specified by the user. A farmer agent modifies the land use of the subbasin in proportion to the
subbasin area assigned to that agent. The most downstream subbasin in the watershed is
populated by an urban center, which is represented by a city agent. The city agent impacts land

use by providing subsidies to upstream farmer agents to change his/her land management.
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Figure 1. Flow of information within the agent-based model.

2.1.1 Farmer agent state variables



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

L77

178

179

180

181

182

The primary state variable for a farmer agent is the conservation parameter (Cons,,qy),
which characterizes the degree to which a farmer agent is “production-minded” versus
“conservation-minded”. This concept is based on McGuire et al. (2013) who identified that
US cornbelt farmers tend to fall along a spectrum from purely productivist to purely
conservationist. Cons,,,, is randomly assigned to each farmer agent upon initialization and
provides variation in farmer agent behavior based on how an individual agent may prefer to
balance maximizing crop yields versus protecting the environment. Cons,,,, represents the
maximum fraction of land a farmer is willing to put into conservation. The minimum value is
0.0, in which case a farmer is purely production-minded and is unwilling to convert any
production land into conservation. We set the maximum value at 10% (Cons,, 4, = 0.10) based
on the conservation practice used in this study (Section 2.7.1). Therefore, a farmer is purely
conservation-minded at a parameter value of 0.1, and is willing to convert up to 10% of
his/her production land into conservation. This range of values corresponds to the percentage
of conservation land implemented over each of the last ten year for the entire state of lowa
(~5-6% conservation land) and the Central lowa Agricultural District (~3-4% conservation

land).

A secondary state variable of importance to the farmer agent is risk aversion attitude

(Prokopy et al., 2019). Risk aversion can be defined as the willingness to change land use

under uncertainty. Farmers with a high risk aversion are unwilling to change their land use

because they are trying to avoid risk. Keeping their land use consistent represents a more

predictable payoff, even if the revenue may not be as great as another land use choice.

Farmers that are more risk tolerant however, are more likely to adopt new practices such as

conservation.
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Farmer agents are further characterized by their decision-making preferences, which
describe the relative importance that farmer agents place on different decision variables when

adjusting their land use. The farmer agent decision characteristics are described in Sect. 2.7.2.

Each farmer agent is assigned state variables characterizing the percent of different soil
types associated with the farmer’s land. Corn crop productivity and crop production costs
(including the land rental value) vary for each soil type. Thus, the soil types associated with a

farmer agent’s land impact his/her revenue.
2.1.2 City Agent State Variables

The city agent is characterized by a conservation goal that defines the amount of acres of
conservation land desired. The purpose of the conservation land is to reduce flooding in the city,
and the conservation goal changes from year-to-year depending on prior hydrologic events. The
damage that the city agent incurs from a flood event is defined by a flood damage function. A
parameter, ConsGoal,,,,, in the agent model defines how responsive the city agent is to prior
hydrologic outcomes and determines by how much the city agent will change the conservation

goal after experiencing a flood event (Section 2.8)

2.2 Model Overview and Scheduling

Each year, the agent-based model proceeds through monthly time steps to simulate the
relevant decision making. The hydrologic module proceeds in shorter hourly time steps to
capture flood discharge events associated with rainfall events. Figure 2 depicts the decision-
scheduling within the agent-based model. In January, the farmer agent calculates his/her
preferred land division between production and conservation based on their risk aversion

attitude, conservation-mindedness, newly acquired information about the global market (crop
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prices, crop production costs, and crop insurance), conservation subsidies provided by the city

agent, as well as recent farm performance (profits and yields) (Figure 2, purple box).

In February, the city agent contacts farmer agents in random order to establish new
conservation contracts if an unmet conservation goal remains or to renew any expiring contracts
(Figure 2, yellow box). If the farmer agent wants to add additional conservation acreage, a new
contract is established for a 10 year period. The contract length is based on the Conservation
Reserve Program (CRP), which is a program administered by the Farm Service Agency that
promotes removal of environmentally-sensitive land from agricultural production in exchange
for an annual subsidy payment. However, if the farmer agent wants fewer conservation hectares,
expiring contracts are renewed for a smaller number of hectares or are ended. The farmer is
obligated to fulfill any contracts that have not yet expired (i.e. contracts less than 10 years old).
Any new acreage that has been established in conservation in addition to currently active
contracts is subtracted from the city agent’s conservation goal that was established in January.
The city agent contacts as many farmer agents as needed until the conservation goal is reached.
If there are not enough farmer agents willing to enter into conservation contracts and the
conservation goal is not reached, the goal rolls into the next year. Because the farmer agents’
land use decisions change on a yearly basis, it may be possible for the city agent to establish

further contracts in the next year and fulfill the conservation goal.

10
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Figure 2. Timeline of agent decisions and actions within the agent-based model.

Prior to May, the farmer agent establishes any newly contracted conservation land on the

historically poorest yielding land. The farmer agent makes no further decisions during May

through August (Figure 2). The city agent continuously keeps track of any flooding that occurs

during the May-August period (when the maximum discharge is assumed to occur) (Figure 2,

orange box). The associated flood damage cost is calculated in September and used to calculate

whether any further conservation land should be added (Figure 2, green box). If no flooding

occurred, the conservation goal remains unchanged. In October, the farmer agent harvests his/her

crop and calculates yields and profits for that year (Figure 2, blue box).

11
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2.3 Design Concepts

Emergence: Patterns in total conservation land and flood magnitude arise over time, depending
on a number of variables. Agent decision-making parameters and behavioral characteristics (e.g.
conservation-mindedness) influence the total acreage in conservation land, which in turn affects
the magnitude of floods through changes in runoff productivity of the landscape.

Objectives and Adaptation: The ebjective-goal of the city agent is to reduce flood damage in
the city. The city agent attempts to meet this ebjeetive-goal through an incentive program in
which farmer agents are paid to convert production land to a conservation practice that will
reduce runoff. If the city agent incurs a large cost from flooding in a given year, the city agent
adjusts his/her “conservation goal” upward in order to reduce minimize-future flood damage
from events of similar magnitude. The objective of the farmer agent is to balance a-maximization
ef-profits with conservation and risk-aversion attitude. The farmer agents incrementally adjust
their land use on an annual basis by taking into account profit variables, risk-aversion, and
conservation-mindedness.

Stochasticity: Adjustments and stochastic variability are added to key agricultural variables,
which include crop yields, production costs, cash rent values, and opportunity costs associated
with conservation land in order to account for economic and environmental randomness within
the system (Supplement S1.1, S1.2, S2). Random factors for these variables are drawn from
uniform continuous distributions that are based on field data of crop yields, empirical survey
data, and estimates published by lowa State University Extension and Outreach. Changes in
these distributions are also accounted for, depending on crop price levels.

Learning: As will be outlined further in Sect. 2.7.2, each year, the farmer agents calculate profit

differences between crop production and conservation subsidies. Farmer agents save this profit

12
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difference information from the beginning of the simulation and use it to adjust their decision-
making space on an annual basis. The profit difference information is based on past crop prices,
production costs, and conservation subsidies.
2.4 Model Input
2.4.1 Economic Inputs

Inputs to the agent-based models are historical crop prices ($/MT), production costs
($/Ha), cash rental rates ($/Ha), and federal government subsidy estimates ($/Ha). An example of
these model inputs is shown in Fig. 3 in comparison to mean lowa crop yields.
2.4.2 Production Costs

Production costs are treated as a time series input, with total costs per hectare for each
year represented by one lumped value. Production costs used in this model application include
machinery, labor, crop seed, chemicals, and crop insurance (Plastina, 2017). In addition, it is
assumed that all farmer agents rent their land, which significantly increases expenses as land
rental costs account for approximately half of total production costs (Plastina, 2017).
2.4.3 Conservation Subsidy and Costs

The conservation subsidy is based on the CRP Contour Grass Strips practice (CP-15A)
which includes annual land rental payments and 90% cost share for site preparation and
establishment (USDA Conservation Reserve Program Practice CP-15A, 2011). Subsidies are
calculated using annual inputs of historical cash rental rates. The cost of establishing and
maintaining conservation land is based on analysis conducted by Tyndall et al., (2013). These

costs are adjusted based on the land quality of each farmer agent (Supplement S1.2).
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Figure 3. Example input time series of corn price, production cost, and cash rent as compared to
mean crop Yields.

2.4.4 Federal Government Subsidies

Calculation of federal government crop subsidies for individual farmer agents were not
included in the agent-based model due to the complexity and variety of commodity programs
available to US farmers, each of which focuses on different aspects of revenue protection (e.g.,
protection against low crop prices, protection against revenue loss). Rather, federal crop

subsidies are an input to the model and applied equally to each farmer agent. In this study, crop
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subsidy inputs are based on historical estimates produced by lowa State University Agricultural
Extension (Hofstrand, 2018).
2.4.5 Environmental Variables

The hydrology module requires hourly liquid precipitation (mm) as an input to simulate
discharge from short-term heavy rainfall events. The crop yield module requires inputs of mean
monthly precipitation and temperature to estimate crop yields (Section 2.6). The module
calculates mean monthly precipitation based on the hourly precipitation input, however, the user
must provide an input of mean monthly temperatures (C).
2.5 Hydrology Module

A model structure that is designed to simulate peak flows was chosen for the hydrology
module. Because the city agent in this model is impacted only by the maximum annual peak
flow, precisely simulating the full time series of hydrologic flows as well as hydrologic
components such as groundwater flow and evapotranspiration were not needed to meet the
objectives of the current study. The modeling structure was designed based on a version of the
U.S. Army Corps of Engineers’ Hydrologic Engineering Center Hydrologic Modeling System
(HEC-HMS) (Scharffenberg, 2013) used by the City of Ames, lowa for flood forecasting in the
Squaw Creek watershed in central lowa. The Squaw Creek watershed represents the type of
rural-urban conditions of interest for this study, and is a useful test-bed for this modeling
application (Section 3). Further, calibrated parameters were available for the Squaw Creek
watershed (Schmieg et al., 2011), providing a realistic baseline for the hydrology module.

Using the configuration and parameters previously defined by Schmieg et al. (2011) for
the Squaw Creek watershed, the model on average was within 12.7% of the observed peak

discharge for 12 major events simulated. Six of these events were simulated within 3-8% of the
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observation, while the least satisfactory simulation overestimated the observed peak discharge by
33%. This error was most likely due to the high spatial variability of precipitation for that event.
For the two most recent record flooding events that have occurred, the model underestimated the
peak discharge by 6.2% (2008, observed: 356.7 m®s?, simulated: 334.6 m3) and 16.6% (2010,
observed: 634.3 m®s?, simulated 528.3 m3s), showing that the model is able to simulate the
flooding events needed to run scenarios within the ABM with a fair degree of accuracy. The
HEC-HMS model has also been successfully used for simulation of short term rainfall-runoff
events and peak flow and flood analysis in other studies (Chu and Steinman, 2009; Cydzik and
Hogue, 2009; Gyawali and Watkins, 2013; Halwatura and Najim, 2013; Knebl et al., 2005;
Verma et al., 2010; Zhang et al., 2013).

In the module, basin runoff is computed using the Soil Conservation Service (SCS) curve
number (CN) method, runoff is converted to basin outflow using the SCS unit hydrograph (SCS-
UH) method, and channel flow is routed through reaches in the river network using the
Muskingum method (Mays, 2011). A single area-weighted CN parameter is required for each
subbasin and is the only hydrology module parameter that changes during the simulation if land
cover changes. The SCS-UH method requires specification of subbasin area, time lag, and model
timestep. The Muskingum method is based on the continuity equation and a discharge-storage
relationship which characterizes the storage in a river reach through a combination of wedge and
prism storage (Mays, 2011). The Muskingum method requires specification of three parameters
for each reach within the river network: Muskingum X, Muskingum K, and the number of
segments over which the method will be applied within the reach (Mays, 2011). Muskingum X
describes the shape of the wedge storage within the reach whereas Muskingum K can be

approximated as the travel time through the reach.
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For the agricultural areas, empirically-derived CN values (Dziubanski et al., 2017) are
used for native prairie strips; a CN = 82 is used for 100% row crop production; and a CN =72
is used for the conservation option implemented by the farmer agents. Urban areas are set to a
CN =90 which is derived from the standard lookup tables for residential areas with lot sizes
of 0.051 hectares or less, soil group C (USDA-Natural Resources Conservation Service,
2004). Subbasin delineations and Muskingum parameters previously defined by Schmieg et al.
(2011) are used.

The model accepts point-scale rainfall data (e.g., rain gauge data) and calculates mean areal
precipitation using the Thiessen Polygon gauge weighting technique (Mays, 2011). The Thiessen
weights are entered as parameters to the module. For the initial testing presented in this paper,
uniform precipitation over the entire watershed was assumed.

Output from the hydrology module is discharge at the watershed outlet (m® s™). The
hydrology module is run continuously but is designed primarily for simulation of peak flows,
which generally occur during the summer in the study region; therefore, for simplicity, a constant
baseflow is assumed and snow is ignored. Runoff, river routing processes, and discharge are
computed on a timestep identical to the input rainfall data. The model is run at an hourly
timestep in this study, but is capable of running at a 30-minute timestep.

2.6 Crop Yield Module

Crop yields are modeled with a multiple regression equation that takes into account
monthly precipitation and temperature. The regression equation, which was developed using
historical crop yield and meteorological data for lowa from 1960-2006, can be represented as

(Tannura et al., 2008):
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yield, = By, + B1(year;) + B,(September through April precipitation)
+ S5 (May precipitation) + B,(June precipitation)
+ Bs(June precipitation)? + Bs(July precipitation)
+ B, (July precipitation)? + Bg(August precipitation) 1)
+ Bo(August precipitation)? + B1,(May temperature)
+B,1(June temperature) + 1, (July temperature)
+p:3(August temperature) + &;

Mean error of the above regression for lowa over the 1960-2016 period is -0.395 MT/ha,
and mean absolute error is +0.542 MT/ha. An error correction factor of +0.395 MT/ha was added
to the yield for each year to correct for this error. The above regression model is only appropriate
for reproducing mean historical crop yields. Since each farmer’s land can be composed of
different soil types, adjustments are applied to the crop yield for each soil type to account for
differences in soil productivity (Supplement S2).

2.7 Farmer Agent Module

2.7.1 Conservation option

The conservation option implemented by farmer agents is native prairie strips, a practice
in which prairie vegetation is planted in multiple strips perpendicular to the primary flow
direction upland of and/or at the farm plot outlet (Dziubanski et al., 2017; Helmers et al.,
2012; Zhou et al., 2010). Either 10% or 20% of the total field size is converted into native
prairie vegetation under this practice. Prairie strips have been shown to reduce runoff by an
average of 37% (Hernandez-Santana et al., 2013), and have additional benefits of reducing
nutrients (Zhou et al., 2014) and sediments (Helmers et al., 2012) in runoff. The greatest
runoff reduction was realized under the 10% native prairie cover; therefore, the most
conservation-minded farmers (Cons,, 4, = 0.10) in the model potentially convert up to 10% of

their total land into native prairie.

2.7.2 Farmer agent land use decision process
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Agents within an ABM can be modeled using a variety of decision models with varying

deqgrees of complexity.

(An, 2012; Zenobia et al.,
2009). An (2012) compiled a list of nine of the most common decision models used in agent-
based modeling studies. Examples of a few of these include micro economic models, space
theory based models, cognitive models, and heuristic models. In micro-economic models, agents
are typically designed to determine optimal resource allocation or production plans such that
profit is maximized and constraints are obeyed (Berger and Troost, 2014). Example studies using
optimization include Becu et al. (2003), Ng et al. (2011), Schreinemachers and Berger (2011). In
heuristic-based models, agents are set up to use “rules” to determine their final decision (Pahl-
wostl and Ebenhéh, 2004; Schreinemachers and Berger, 2006). The “rules” are typically
implemented using conditional statements (e.g. if-then). Example studies using heuristics include
Barreteau et al. (2004), Le et al. (2010), Matthews (2006), van Oel et al. (2010).

We take a different approach from the aforementioned studies by modeling agent decision
making using a nudging concept originating in the field of data assimilation (Asch et al., 2017).
Agents nudge their decision based on outcomes (i.e. flood damage, farm profitability) from the
previous year. Information relevant to an individual agent is mapped into the decision space

through a weighting function that updates the previous year’s land use prior-decision to create a

new {posterior) decision for the current year. The approach used for both agents is different from
optimization in that the agents are not trying to determine the best decision for each year. These

types of agents behave based on the idea of “bounded rationality”. In this case, the rationality of
the agents is limited by the complexity of the decision problem and their cognitive ability to

process information about their environment (Simon, 1957). These agents try to find a
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satisfactory solution for the current year, and are thus termed “satisficers” rather than optimizers
(Kulik and Baker, 2008).

At the start of each calendar year, a farmer agent decides how to allocate his/her land
between production and conservation based on five variables: risk-aversion, crop price
projections, past profits, conservation goal, and neighbor land decisions. These factors were
chosen based on numerous studies indicating profits, economic incentives, conservation beliefs,
beliefs in traditional practices, neighbor connections, and observable benefits to be the key
factors influencing on-farm decision making related to conservation adoption (Arbuckle et al.,
2013; Arbuckle, 2017; Burton, 2014; Daloglu et al., 2014; Davis and Gillespie, 2007; Hoag et
al., 2012; Lambert et al., 2007; Mcguire et al., 2015; Nowak, 1992; Pfrimmer et al., 2017,
Prokopy et al., 2019; Ryan et al., 2003).

A farmer agent’s decision of the total amount of land to be allocated into conservation, C; ,

for the current year t is:

Dy = Wrisk—averse [Ct—l:t—X] + qutures [Dt—l + 5Cfutures:Y]

)
+ Wprofit [Dt—l + 6Cprofit:X] + I/Vcons [Dt—l + 6Ccons] + Wneighbor [Cneighbor]

where C;_,.;_x is the mean total amount of land allocated to conservation during the previous X
years, D,_, is the prior conservation decision (total amount of land the farmer would have liked
to implement in conservation) in year t — 1, §Cry¢yres.y 1S the decision based on crop price
projections for Y years into the future, 6C,,.f;..x IS the decision based on the mean past profit of
the previous X years, 6C.,, IS the decision based on the conservation goal of the farmer, and
Creighvor (Supplement S3) is the weighted mean conservation land of the farmer agent’s

neighbors (Table 1). A given farmer can make a certain random number of neighboring

connections with farmers that are located in the same subbasin (Supplement S3). The variable Y
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indicates that ©one farmer agent might consider his/her history of conservation land
implemented over the last year, while another farmer agent might consider his/her conservation

land implemented over the last 5 years. Similarly, the variable X indicates that one farmer agent

might take into account future crop projections for the next 5 years, while another farmer agent

might take into account crop projections for the next 10 years.

Decision weights alter how each of the five components factor into the farmer agent’s

decision: Wy;sx—averse reflects the unwillingness to change past land use, Wy ¢y, reflects the
consideration of future price projections, W, reflects the consideration of past profits, W, is
the agent’s consideration of his/her conservation goal, and Wy,.;4npor reflects the importance that

the agent places on his neighbor’s decision (Table 2). Upon initializing each farmer agent, values

are allocated for each decision weight such that:

Wrisk—averse ¥ Wrutures ¥ Wororic + Weons + Waeighbor = 1 (3)

The above decision scheme allows for varying decision weights, thus one farmer’s
decision may be heavily weighted by future crop prices, whereas another farmer’s decision may
be heavily weighted by past profits. If majority of a farmer’s decision is based on Wik _ gverses

then that farmer is less inclined to change his/her previous land use.

The decision components for past profit and future crop prices are based on a partial
budgeting approach that compares land use alternatives. Under this budgeting approach, farmer
agents take into account added and reduced income, as well as added and reduced costs from
changing an acre of land from crop production to conservation (Tigner, 2006). The result from
performing this budget indicates the net gain or loss in income that a farmer agent may incur if

they make the land conversion.
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The past profits decision is solely based on outcomes that have been fully realized for the
previous X years. In this decision, the land allocated to conservation is based on the net amount
of money that could have been earned per hectare of conservation land versus crop land and is

calculated as:

8Chroritx = [A* Profitas’ + B * Profitgss + C| - Conspay - Hectaresy,;  (4)
where Profity;sr is the difference in profit between a hectare of cropland and a hectare of
conservation land (Table 1), Cons,,,, is the farmer agent’s maximum conservation parameter,
Hectacres,,, is the area of the agent’s land. In the case of §Cyyofir.x, Profity;ss is calculated
using realized crop prices from previous years (Supplement S4). The future price decision
variable, §Crypyres:y » 1S also calculated using the same form of Eq. (4). However, Profitgfy is
calculated using projected crop prices for the Y upcoming growing seasons. These price
projections are based on historical crop prices with an added adjustment calculated from
historical errors in crop price forecasts produced by the U.S. Department of Agriculture

(Supplement S5).
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Figure 4. Example of percent conservation change for §Cy.rir.and §Crypyres. Gray curves

indicate negative percent change (decrease conservation land), black curves indicate positive
percent change (increase conservation land).

The first term in Eq. (4), the-is-a second-degree polynomial of form Ax? + Bx + C = vy,

is displayed in Fig. 4. At the start of each year, farmers may decide to alter their land use based

on observed Profity;sr from harvests in previous years (6Cpyo5ir.x) OF calculated Profitff
based on projected crop prices (6Cryiyres:v). If Profity;ss is positive (i.e. greater profit is earned
from crop production than conservation land), the farmer agent will potentially decrease the
amount of land in conservation (gray curve). Likewise, under negative Profitg;ss , cOnservation

land is potentially increased because revenue is lower from crop production_(black curve). Half

of the maximum allowable percent increase in conservation land is assumed to correspond to the

median historical negative Profity;sr, whereas half of the maximum allowable percent decrease

in conservation land corresponds to the median historical positive Profit; ¢ (Figure 4). We

assume that farmer agents will not change land use when a very small profit difference between
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the two possible options is observed because changing land use requires extra upfront time and

resources (Duffy, 2015). Similarly, we assume that farmer agents will fully implement the

maximum land conversion possible prior to reaching the most extreme Profity;sf values. Three

equations need to be simultaneously solved to determine coefficients A, B, C (Supplement S4).

The three equations are based on the 25th, median, and 75th percentiles of historical Profity;ss

information. Thus, farmers are continually utilizing historical observations of Profit,;¢¢ to

formulate their decision space through time.

The use of a profit function (i.e. Eq. (4)) is meant to capture to effects of changes in crop

prices on conservation land. In 2008 and 2011, corn prices rose to a record high values, and

farmers in the Midwest U.S. (e.q., lowa, Minnesota) were converting significant portions of CRP

land back into crop production (Marcotty, 2011; Secchi and Babcock, 2007). It is estimated that

when corn prices rise by $1.00, 10-15% of CRP land in lowa is converted back to production

(Secchi and Babhcock, 2007). Eq. (4) captures this transition between adding and removing

conservation land based on crop price change, and it allows for variation in the decision-making

between farmer agents since variables such as crop production costs vary from farm to farm.

The total amount of agricultural land that a farmer converts to conservation in any given
year based on his/her conservation goal (6C.,,) is defined by the Bernoulli distribution:
P(m)=p"1-p)'™ n €01} (5)
Here, p indicates the probability of fully implementing conservation land and 1 — p indicates the
probability of not implementing any conservation land. The variable n is simply the support of

the distribution that labels a success of full implementation as 1 and a failure of full
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implementation as 0. The probability p of fully implementing conservation land is a function of
the agent’s Cons,, 4, parameter and is computed by:
p =10" Cons,qy (6)

The probability p scales from 0 at a Cons,,4, 0f 0, to 1 ata Cons,,,, Of 0.1. Therefore, farmer
agents with a Cons,, 4, of 0.05 and 0.1 will have a 50% and 100% probability of fully
implementing (10% of total agricultural land) conservation land in any given year based on their
conservation decision variable.
2.8 City Agent Module

At the end of each year, the city agent collects discharge data and calculates the damage
(Supplement S7) associated with the peak annual discharge at the watershed outlet for that year.
In February of the next year, the flood damage for the previous year t — 1 is used to compute the
conservation goal of the city agent for the current year t.

The conservation goal of the city agent is calculated as:

Gy = Giq + (Atot - Ctot) P (7)
P = P, " FDam (8)

b ConsGoal,y,
new T FDmax 9

where G; is the conservation goal for the new year t (Table 1), G;_, is the unfulfilled hectares in
conservation from the previous conservation goal for year t — 1, A, IS the total land area n-the

catehmentowned by the farmer agents, C;,; is the total number of hectares currently in

conservation, P is the percentage of new production land added into conservation, B,,,, indicates
how much land to add into conservation based on the flood damage FDam for year t — 1, and

ConsGoal,,,, IS a parameter that indicates the new percentage of conservation land to be added
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if maximum flood damage occurs (Table 2). Currently, ConsGoal,,,, is set to 5% of total land
area in the watershed when maximum damage occurs.
3. Scenario Analysis

The study watershed is modeled after the Squaw Creek basin (~56200 Ha) located in
central lowa, USA (Figure 45). This basin is characterized by relatively flat hummocky
topography and poorly drained soils with a high silt and clay content (~30-40% silt and clay)
(Prior, 1991; USDA-Natural Resources Conservation Service (USDA-NRCS), 2015). The
predominant land use is row crop agriculture (~70% of the total watershed area) with one major
urban center at the outlet (Ames, lowa), and several small communities upstream. Average
annual precipitation is 32 inches (812 mm), with the heaviest precipitation falling during the

months of May and June. The watershed is divided into 14 subbasins.
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Figure 45. Squaw Creek watershed and subbasin division used in the hydrology module. Land
cover data shown is from the National Land Cover Database (NLCD), 2016.

In this model application, 100 farmer agents are implemented (~7 farmers per subbasin)
with 121 hectares total for each farmer. The total acreage per farmer compares reasonably well
with average farm size for the state of lowa in 2017, which was 140 hectares (USDA National
Agricultural Statistics Service, 2018). Soil types and the area of land associated with each soil

type are randomly assigned to each farmer agent upon model initialization. Assigning different
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soil types creates heterogeneous conditions under which farmer agents must operate (Supplement
S2) and affects the profitability of each farmer agent differently.

Six scenarios are run: high and low yield (+11% from historical yield), high and low
corn prices (£19% from historical prices) and high and low conservation subsidies (£27% from
historical cash rent). The watershed was also simulated under historical conditions, in which no
economic variables were changed, for comparison purposes. The above percentages were
computed using trends and mean absolute deviations of historical economic data. For instance,
based on the crop regression model (Section 2.6), crop yields display a relatively linear increase
with time. The mean absolute deviation of crop yield was then computed using the linear time
trend as a central tendency. The mean absolute deviation was determined to be 11%, thus the
yield scenarios are +11% from the historical yield. The same approach was used for the crop
price and conservation subsidy scenarios. A linear and cubic function were found to provide a
good estimate of the central tendency of historical cash rent and crop prices, respectively, for
those calculations. In addition, four different farmer decision schemes are created in which an
80% weight was assigned to one decision variable, with all other variable weights set to 5%
(Table 3). Each scenario is tested with each decision scheme and system outcomes under
different farmer behaviors are assessed.

To test the sensitivity of the hydrologic system to farmer types, the conservation
parameter (Cons,,,,) Of the farmer agents is varied using a stratified sampling approach. Each
farmer agent is randomly assigned a Cons,,,, value from a predefined normal distribution:

(ConSimax: Ocons,,,,)- 1he lowest distribution is defined as V'(0.01, 0.01) and the highest

distribution is defined as V' (0.09, 0.01). Any farmer agent that is assigned a parameter value

less than O or greater than 0.1 is modified to have a value of 0 or 0.1, respectively. Twelve
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simulations are performed for each conservation parameter distribution, with a total of 17
conservation parameter distributions. Thus, the first 12 simulations consist of farmer agents with
Consy,qx Chosen from '(0.01, 0.01). For the next 12 simulations, the mean Cons,,,, is shifted
up by 0.05, with Cons,,,, chosen from ' (0.015,0.01). A total of 204 simulations are
conducted for each decision scheme under each scenario (Table 3).

Each simulation is run using 47 years of historical climate and market data, with the
exception of federal crop subsidies, which are based on 16 years of historical estimates produced
by lowa State University Agricultural Extension (Hofstrand, 2018; Table 4). It is assumed that
federal crop subsidy payments from 1970-2000 are similar to levels seen from year 2000-2005
due to relative stability in long-term crop prices and production costs. The hourly 47 year
precipitation time series data was obtained from the Des Moines, lowa airport Automated
Surface Observing System. Historical 47 year time series of corn prices, crop production costs,
and land rental values are used as economic inputs into the model and were obtained from lowa
State University Agricultural Extension and Illinois FarmDoc (Table 4).

45. Model Calibration and Validation

Calibrating and validating the social part of social-hydrologic models is difficult due to
reasons that include lack of sufficiently detailed empirical data or system complexity at various
scales (An, 2012; Ormerod and Rosewell, 2009; Troy et al., 2015). Validation of agent-based
models is usually performed on what are termed the micro and macro levels. The micro level
involves comparing individual agent behaviors to real world empirical data whereas the macro
level involves comparing the model’s aggregate response to system-wide empirical data (An et

al., 2005; Berger, 2001; Troy et al., 2015; Xiang et al., 2005). Troy et al., (2015) suggests that
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one or a few model simulations out of an ensemble of simulations should match the real-world
observed data.

We conduct an indirect macro-level model calibration for determining an appropriate
range of farmer agent decision weights (Windrum et al., 2007). Since the subsidy program
offered by the city agent is similar to the federal Conservation Reserve Program (CRP), the
model was developed and calibrated to attempt to reproduce the range and variability of
conservation land seen in the CRP program. CRP data from 1986-2016 for the Central lowa
Agricultural District was used in the calibration process and two main objectives functions were

used:

n J— .
MAE = Zl:lly% (10)

2iei(i — )i — y)
\/Z?=1(xi - x)? \/Z?=1(Yi - y)?

Pearson'sr =

(11)

In the first step of calibration, the focus was to determine an appropriate range of mean
ConsMax of the farmer agent population to match the magnitude of CRP land seen for central
lowa. The model was simulated 360 times using 20 random sets of farmer agent decision
weights. Output from the first calibration step was filtered using a criteria of » > 0.6 and
MAE < 25%, and the optimal ConsMax range was reduced to 0.05-0.07. In the second step of
calibration, the focus was to determine a singular optimal mean ConsMax value and narrow the
range for each decision weight. ConsMax was incremented by 0.001 within the range derived
from step 1, and 20 simulations were performed for each increment using decision weights
stochastically drawn from the uniform distribution U(0.05, 0.95) for a total of 400 simulations.

Output was filtered using a stricter criteria of r > 0.7 and MAE < 25%. The final calibration
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step involved 400 simulations with the optimal mean ConsMax value and stochastic sampling
from the reduced range of decision weights derived in step 2. Filtering with a criteria of r > 0.75
and MAE < 12.5% was performed to determine the final optimal decision weight ranges.

The optimal mean ConsMax value was determined to be 0.06 and the final optimal
decision weight ranges were determined to be: Wy.igx_aperse = (0.1,0.43) , Wryeyres =
(0.07,0.24), Wyrorie = (0.07,0.34), Weons = (0.18,0.37), Wieignbor = (0.05,0.35). The
median r and MAE values of the simulations after filtering with the criteria in step three (r >
0.75, MAE < 12.5%) were 0.79 and 11% respectively. Sixty-six out of 400 simulations matched
this criteria in step three, whereas only seven matched this criteria in step one and 26 matched
this criteria in step two.

The model simulated conservation land generally aligns with trends in the observed
conservation land (Figure £86). Simulated conservation land is not maintained following a rise in
crop prices in the mid-1990s and from 2006-2013, which is similar to the observed data (red).

The drop in conservation land during these time periods occurs because the subsidy rate is not

modified rapidly enough in comparison to market forces to incentivize the farmer (Newton,

Babeoek2007)-The model does capture the smaller decrease in conservation land between

2007-2014, even though crop prices rose more dramatically than in the mid-1990s.

31



616
517
618
619
620
621
622
623
624
625
626

627

Fzs

— QObserved
5+ —— Simulated - 250
r=0.8-0.85
~ | R'=06507
S 4| MAE <0.005 200 <
O =
= =
1 »
c 3 - 150 "‘q‘;
2 ki
m | S
a.
% 2 - 100 Q.
0 (o]
: h
o (&)
(&)
1 - 50
AL 0

70 1980 1990 2000 2010
Year

Figure 206. Simulated conservation land from four model simulations with Pearson’s r > 0.8 and
MAE < 12.5% in comparison to observed conservation land.

The onset of significant land conversion in the model is offset from the observations.
Conservation land is implemented in the mid-1970s, while conservation land in the observation
is implemented in the late-1980s. The CRP program did not come into existence until 1985,
which partly explains this difference. A large rise in conservation land to roughly 4% occurs
from 1975-1978, most likely due to a combination of decreasing crop prices from 1970-1974 and
model spin up. This is similar to the rate of rise in conservation land that occurred under the CRP
programs from 1985-1987 under a comparable period of decreasing crop prices.

Overall calibration does provide evidence that the model captures changes in CRP land

during the appropriate time periods. However, the calibration technique does have limitations.
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technique followed here was an indirect calibration approach, whereby the parameters are

determined based on the simulations that replicate the empirical data best (Fagiolo et al., 2006).

This technigue can lead to equifinality since difference parameter sets may reproduce the

historical observations with similar degrees on accuracy. Further, this calibration approach does

not provide evidence that any individual agent’s decisions are valid. The stochastic nature of

human behavior coupled with path dependencies makes it difficult to predict individual agent

outcomes accurately (Berglund, 2015). In addition, it may be difficult to find sufficient data sets

to support a robust validation at the micro-level. For modeling land use decisions, data is
typically available at a larger scale such as county or state level rather than at the individual
agent-level (e.g. single farm) (An, 2012; Parker et al., 2008). This introduces difficulty in trying
to validate farm-level decisions with respect to farm-level finances (Section 2.7.2)._ Adding in
additional factors, such as Federal Market Loss Assistance and Loan Deficiency Payments, as
well as trying to characterize some of the other model parameters that were not a focus of this
calibration, may further improve results.

In light of the paper by Windrum et al. (2007), there has been much debate as to the

proper methodology and techniques to follow for ABM validation (Bharathy and Silverman,

2013; Hahn, 2013). To fully validate the current model, a more extensive process may be

necessary. Macal et al., (2007)_introduced a framework for ABM validation that may provide for

a more comprehensive evaluation. This framework includes subject matter expert evaluation,

participatory simulation, model-to-model comparison, comparison against critical test cases,

invalidation tests, and comprehensive testing of the entire agent strategy and parameter space.

However, following this framework is very time costly, and thus most recent studies have
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focused on empirical validation against real world macro level data, with some studies validating

at the individual agent level if data is available (Fagiolo et al., 2019; Guerini and Moneta, 2017;

Langevin et al., 2015; Schwarz and Ernst, 2009).
45. Results

45.1 Crop Price Scenarios

The 90" percentile peak discharge is 296.4 m®/s when no conservation is occurring in the
watershed (Figure-SFigure 7). The 90" percentile peak discharge decreases for all four decision
schemes and under all scenarios as the average conservation-mindedness (Cons,,,,) of the
population increases (Figure-5Figure 7). The low crop price scenario produces a larger decline in
peak discharge compared to the high crop price scenario, with the exception of the conservation
decision scheme (80% weight on conservation) in which both low and high crop price scenarios

produce a similar ensemble pattern (Figure-5Figure 7a).
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Figure-5Figure 7. Mean 90th percentile discharge for high and low crop price scenarios under (a)
85% weight on conservation goal, (b) 85% weight on future price, (c) 85% weight on past profit,
and (d) 85% weight on risk aversion. Bars indicate the median (circle) and the 5™ and 95™
percentiles of discharge for all simulations at a specific Cons,, .-

Under low crop prices, peak discharge reaches an average reduction of 8.18% (24.27 m%/s)
when the average Cons,, 4, 1S 0.08-0.09 (conservation-minded population) and 4.67% (13.85
m3/s) when the average Cons,, 4, is 0.04-0.06 (mixed population). The decrease in peak
discharge corresponds with the 800-1000 hectares and 400-600 hectares converted to
conservation by the conservation-minded and mixed farmer populations, respectively (Figure
6Figure 8a, c, e, g). The production-minded populations (Cons,,,, ~0.01-0.02) implement less
than 200 hectares during the entire simulation period. These acreage values represent 6.5-8.2%,
3.3-5.0%, and less than 2.0% of the entire watershed for the conservation-minded, mixed, and
production-minded groups, respectively. Given that 10% of the watershed would be in

conservation if native prairie strips were fully implemented, about 65-80% of a conservation-
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minded population fully implements the practice over the simulation period under low crop

prices.

Under the high crop prices, mean peak discharge decreases by 5.6 % (16.6 m®/s) under the
future price weighting scheme and 2.9% (8.6 m®/s) under the past profit weighting schemes for
the highly conservation-minded population (Figure-5Figure 7b and c, respectively), with an even
smaller reduction seen for the risk-averse scenario. This represents approximately a 61% smaller
decrease in the peak discharge when crop prices are high and the population is conservation-
minded as compared to the low crop price scenario. Discharge remains largely unchanged for
these decision schemes because generally less than 300 hectares of land is allocated for
conservation when corn prices are high (Figure-6Figure 8d, f, and h). The small amount of
conservation land implemented is due to farmer agents receiving significantly more revenue
from crops than conservation subsidies. However, in the case of low crop prices, conservation
subsidies allow the farmer agents to approach break even because they are guaranteed a subsidy
that covers the cash rent for that land, whereas crop production leads to potential losses due to
corn prices being low relative to production costs. Even in these scenarios where farmer agents
are heavily considering profit related variables, populations dominated by production-minded

farmer agents are still inclined to leave land in production (Figure-6Figure 8c and e).
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Figure-6Figure 8. Range of simulated conservation land within the watershed under low (left
column) and high (right column) crop prices for conservation-minded populations (green), mixed
populations (blue) and production-minded populations (red). Crop prices are plotted as bars for
each crop price scenario. Results are for decision schemes of 85% weight on conservation

behavior (a, b), 85% weight on future price (c, d), 85% weight on past profit (e, f), and 85%
weight on risk aversion (g, h).

45.2 Crop Yield Scenarios

Under high and low crop yield scenarios, the 90™ percentile peak discharge decreases by
an average of 5.9% (17.4 m®/s) and 7.6% (22.7 m%/s), respectively, for the conservation-minded
populations (Figure7Figure 9). Thus, a smaller decrease in peak discharge occurs with low crop
yields relative to low crop prices (Figure-5Figure 7). In the low crop yield scenario, conservation
land was approximately 200 Ha less than in the low crop price scenario, particularly for the past
profit and future price decision schemes (Figure-6Figure 8a, c, e, g and 8al0a, ¢, €, Q).
Conversely, more conservation land is established under the high yield scenario compared to the

high crop price scenario (Figure-6Figure 8b, d, f, h and 108b, d, f, h). As a result, mean peak
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703  discharge decreases in the high yield scenario by 15.6% more compared to the high crop price
704  scenario for the conservation-minded population.
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Figure—ZFigure 9. Mean 90th percentile discharge for high and low crop yield scenarios under (a)
85% weight on conservation goal, (b) 85% weight on future price, (c) 85% weight on past profit,
and (d) 85% weight on risk aversion. Bars indicate the median (circle) and the 5" and 95™
percentiles of discharge for all simulations at a specific Cons,;, 4.
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Figure-8Figure 10. Range of simulated conservation land within the watershed under low (left

column) and high (right column) crop yields for conservation-minded populations (green), mixed

populations (blue) and production-minded populations (red). Yearly crop yields are plotted as

bars for crop yield scenario. Results are for decision schemes of 85% weight on conservation

behavior (a, b), 85% weight on future price (c, d), 85% weight on past profit (e, f), and 85%
weight on risk aversion (g,h).

45.3 Conservation Subsidy Scenarios

Under the low and high subsidies scenarios (not shown), the 90" percentile peak
discharge decreases by an average of 5.8% (17.3 m3/s) and 7.6% (22.5 m®/s), respectively, for
conservation-minded populations. Similar to the low crop yield scenario, high subsidies do not
produce as large of a decrease in mean peak discharge as low crop prices (Figure-5Figure 7). In
the high subsidies scenario, conservation land was approximately 200-300 Ha less than in the
low crop price scenario, specifically for the future price and past profit decision scheme. In
comparison, low subsides generate more conservation land than under high crop prices (Figure

6Figure 8b, d, f, h). As a result, mean peak discharge decreases in the low subsidy scenario by
39
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14.8% more compared to the high crop price scenario for the conservation-minded population.
Differences in peak discharge reduction between the high subsidy and low yield scenarios were
insignificant, with less than 1% difference between these two scenarios.

45.4 Decision Schemes

The future price and past profit decision schemes display the largest spread in discharge
outcomes between scenarios (Figure-5Figure 7, 79). Mean peak discharge decreases on average
by 9% (~27.2 m®/s) relative to when no conservation occurs for both decision schemes under all
scenarios that encourage more conservation land (i.e. low crop prices, low yields, high subsidies)
(Figure-5Figure 7b, ¢ and #b9b, c). Under scenarios that encourage less conservation land, mean
peak discharge decreases by 5% (~15.4 m%/s). This spread in peak discharge results is not present
under the risk-averse and conservation decision schemes.

The spread between the mean peak discharge under the different scenarios is smaller for
the future price decision scheme (Figure-5Figure 7b and #b9b) compared to the past profit
decision schemes (Figure-5Figure 7c and #€9c¢). This smaller spread may be due to uncertainty in
future crop price projections. For instance, future crop price projections may underestimate high
crop prices, but overestimate low crop prices, as is observed in previous USDA crop price
forecasts (Supplement S5). Thus, the farmer agents may be making decisions based on a smaller
range of crop prices when under the future price decisions compared to the past profit decision
scheme where they use realized crop prices. In addition, the future crop price decision scheme
results in greater variability in conservation land over short periods of time under all scenarios
(Figure-6Figure 8c,d and 8e10c,d). This result is evident under the low crop price scenario, with

several short periods showing changes in conservation land of 200-400 ha as compared to the
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736 past profit scenario where conservation land remains relatively steady. However, this result does
737 not lead to a larger spread (i.e. red and blue bars) within the mean peak discharge results.
738 The risk averse decision scheme produces the smallest changes in peak discharge under
739  all scenarios, with an average decrease of less than 2% (6 m%/s) and 3% (9 m®/s) for mixed and
‘740 conservation-minded populations, respectively (Figure-5Figure 7d, 7d9d). Because the farmer’s
741 past practices are the primary factor in determining land conversion in this scheme, the farmer
742  agents implement a limited number of conservation acres (< 200 ha), regardless of the scenario.
743 Therefore, changes in the economic variables are not having as large of an impact on the farmer
744 agents when they are strongly risk-averse.
745 Overall, the current city agent conservation goal of 5% new conservation land at
746 maximum flood damage did not have a significant impact on the total amount of land
747 implemented. Following two major flooding events, the conservation goal of the city agent
748 increases from less than 20 ha in 1975 to 620 ha in 1976. A similar event in 1977 increases the
749  conservation goal by another 500 ha for a total goal of approximately 1100 ha. These increases
50  correspond to the large and rapid onset of conservation land seen during those years (Figure
51  6Figure 8a, ¢, e; 8al10a, ¢, €). When the population has a high average Cons,,,, the conservation
752  goal of the city agent is nearly fulfilled during this period, particularly in the low crop price
753  scenario. In these cases, 900 ha of the conservation goal is implemented, and 200 ha remains
754 unimplemented. This results in the largest reduction in 90" percentile discharge under all
‘755 scenarios and decision schemes (Figure-5Figure 7a, #a9a). When the population has a low
756 average Cons,,,,, the majority of the city agent’s conservation goal remains unimplemented.
757  Thus, the goal remains at a constant 1000-1200 ha and discharge remains unchanged. The only

758  case where the city agent conservation goal limits the amount of land implemented is under the
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conservation weighting scenario since conservation-minded farmers are inclined to add
conservation land on a yearly basis.
45.5 Historical Comparison

To gain an understanding of how each of the scenarios differs from the historical 1970-
2016 period, the mean peak discharge is compared against the historical scenario (Figure 11).

Recall that under the historical scenario, farmer agents make annual land use decisions as in the

other scenarios, but corn prices, conservation subsidies, and crop prices are unchanged from

historical observed values.

{Figure-9)-Overall, crop prices had the largest impact on mean peak discharge while changes in
subsidies had the smallest overall impact. When crop prices were low, mean peak discharge
decreased by 1-2% for mixed populations and 2-3% for conservation-minded populations under
the future price and past profit schemes compared to the historical scenario (Figure-SFigure 11a).
High crop prices result in an increase in peak discharge from the historical scenario, with an
increase of 1-3% for mixed populations, and 3-5% for conservation-minded populations. This
indicates that the farmer agents are more likely to convert land back to crop production under
high crop prices than convert land to conservation under low crop prices, which is a similar
conclusion to Claassen and Tegene, 1999.

The subsidy scenarios produced a similar pattern to the crop price scenarios, where a
larger change (increase) in mean peak discharge occurs under low subsidies than under high
subsidies (Figure-9Figure 11b). This pattern was not as clearly evident under the yield scenarios,

with similar changes resulting from high and low yields (Figure-9Figure 11c).
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781

782 6. Conclusions
783 Scenarios of historical and low crop yields, as well as high and low corn prices and

784 conservation subsidies, were simulated for an agricultural watershed in the Midwest US corn-
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belt using an agent-based model of farmer decision making and a simple rainfall-runoff model.

The influence of different farmer agent decision components on model outcomes was also

explored. Model results demonstrate causations and correlations between human systems and

hydrologic outcomes, uncertainties, and sensitivities (specifically focused on high flows).

The primary findings from this study are:
Crop prices had the largest impact on mean peak discharge, with a 61% larger reduction in
mean peak discharge under low crop prices in comparison to high crop prices.
Changes in subsidy rates and crop yields produced a smaller impact on mean peak
discharge. Only a 25-30% difference in mean peak discharge was realized between high and
low subsidies, and high and low yields.
Farmer agents more often made decisions to eliminate conservation land than to enter into
conservation contracts: a 3-5% increase in mean peak discharge occurred under high crop
prices, while only a 2-3% decrease in mean peak discharge occurred under low crop prices
compared to the historical simulation. Thus, even under low crop prices, the effectiveness of
the conservation program is limited either due to economic or behavioral factors.
Hydrologic outcomes were most sensitive when farmer agents placed more weight on their
future price or past profit decision variables and least sensitive when farmer agents were
highly risk averse. For instance, under future price and past profit weighting scenarios, a 4%
and 7% difference in mean peak discharge is seen between high and low crop prices as

opposed to a 0-1% difference under the risk averse weighting scenario.

The ABM modeling approach demonstrated here can be used to advance fundamental

understanding of the interactions of water resources systems and human societies, particularly
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focusing on human adaptation under future climate change._ Our model indicates that external

factors can influence local streamflow, albeit in a complex and unpredictable way as the

information gets filtered through the complex decision making of local farmers. Social factors,

both local and external, introduce significant uncertainty in local hydrology outcomes, and by

ignoring them, water management plans will be inherently incomplete. Thus, multi-scale human

factors need to be explicitly considered when assessing the sustainability of long-term

management plans.

This study additionally demonstrates some of the advantages of the ABM approach. One

of the primary advantages of ABMs is the ability to capture emergent phenomenon (Bonabeau,

2002). For instance, in the model, the change in conservation area seen in the mid-1990s is larger

than during the period after 2007, despite the much larger volatility in crop prices after 2007.

While the primary reason behind this phenomenon may not be clear, the ABM captures this

change. The ABM also allows for specifying small scale differences between farmer agents such

as variations in conservation-mindedness, production costs, vields, cash rents, etc. Thus, using

ABMIs allows for a very flexible modelling approach.

The current model design contains limitations in both the hydrologic and agent-based
models that should be addressed in future model development. The curve number values that
were used to represent the conservation option were derived for small agricultural plots of
approximately 0.5-3 Ha in size. The question remains whether these CN values can be scaled up
to the size of a several hundred hectare farm plot and still produce reasonable discharge results.
In addition, there is no explicit spatial representation of farmer agents within each subbasin,
Coupling the agent-based model to a more robust hydrologic model may reduce some of these

hydrologic limitations. The Agro-1BIS model, which includes dynamic crop growth and a crop
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management module, would be particularly well suited to further investigating various farm-
level decisions within an ABM on hydrologic outcomes (Kucharik, 2003).

From the agent-based modeling standpoint, the decision-making of the farmer and city
agent could be made more sophisticated by introducing certain state variables, further decision
components and longer planning horizons. Studies have identified variables such as farm size,
type of farm, age of farmer, off farm income, land tenure agreement, education from local
experts, among others, to be significant in determining adoption of conservation practices
(Arbuckle, 2017; Daloglu et al., 2014; Davis and Gillespie, 2007; Lambert et al., 2007; Mcguire
et al., 2015; Ryan et al., 2003; Saltiel et al., 1994; Schaible et al., 2015). The functionality of the
city agent could be expanded by introducing cost-benefit analysis capabilities. Cost-benefit
capabilities would allow the city agent to make more advanced decisions such as choosing
among a variety of flood reducing investments (Shreve and Kelman, 2014; Tesfatsion et al.,
2017). The model is capable of replicating historical trends in observed conservation land in
lowa with a Pearson’s r > 0.75and a MAE < 12.5% for a select number of simulations;
however, more work is needed to try to validate the model on a micro-level (farm-level) scale.
Finally, future work should more fully explore the feedbacks from the hydrologic system to the
human system, which is one of the strengths of the agent-based modeling approach (An, 2012).
Code Availability

Model code can be obtained from the corresponding author.
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1174
1175

1176

1177

Variable Description Unit
Ci1:tx Mean total amount of land allocated to conservation during the previous X years Hectares
Di1 Previous year's conservation land decision Hectares
SCsuturesy Conservation decision based on crop price projections for Yyears into the future Hectares
5Cpmfit;x Conservation decision based on mean past profit of previous X years Hectares
6Ccons Conservation decision based on conservation goal Hectares
Cneighbor Weighted mean conservation land of the farmer agent's neighbors Hectares

Profitgis Differences in profit between an acre of crop and an acre of conservation land (S/Hectare)
Hectaresot Total land owned by farmer agent Hectares
G Government agent conservation goal for the current yeart Hectares
Gt Unfullfilled conservation land from the previous year's t-1 conservation goal Hectares
Acot Total agricultural land in watershed Hectares
Ciot Total land currently in conservation Hectares
P Total conservation land to be added to the goal as a percentage of productionland Dimensionless
Phew Variable describing change in conservation goal with flood damage (1/9)

Table 1. Variables in farmer and city agent equations.

Agent Model Parameters Description Range
W isk-averse Weight placed on farmer agent's previous land use 0.0-1.0
Wiutures Weight placed on farmer agent's decision based on future crop price 0.0-1.0
meﬁt Weight placed on farmer agent's decision based on past profit 0.0-1.0
W ons Weight place on farmer agent's decision based on his/her conservation goal 0.0-1.0
W eighbor Weight placed on farmer agent's decision based on his/her neighbor's decisions 0.0-1.0
Cons max Farmer's conservation goal - used to describe the farmer's conservation-mindedness 0.0-0.1
X Number of previous years a farmer agent takes into account for his/her land decision 1-5

Y Number of future years a farmer agent takes into account for his/her land decision 5-10

ConsGoal yax Conservation goal at maximum flood damage 0.0-0.1

Table 2. Primary agent model parameters in decision-making equations.
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Decision Weight

Decision Scheme Conservation

Futures Past Profit Risk Aversion Neighbor
Goal
Conservation 0.8 0.05 0.05 0.05 0.05
Future price 0.05 0.8 0.05 0.05 0.05
Past profit 0.05 0.05 0.8 0.05 0.05
Risk averse 0.05 0.05 0.05 0.8 0.05
1179 Table 3. Decision weighting scheme tested with each scenario.
1180
Model Inputs Years Unit
Historical Cash Rent 1970-2016 (S/Hectare)
Federal Subsidies 2000-2016 (S/Hectare)
Historical Production Costs 1970-2016 (S/Hectare)
Historical Corn Prices 1970-2016 (S/MT)
Precipitation 1970-2016  (mm/hr)
Table 4. Model Inputs.
1181
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