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Abstract. The US and Canada have entered negotiations to modernize the Columbia River Treaty, signed in 1961. 9 

Key priorities are balancing flood risk, hydropower production, and improving aquatic ecosystem function while 10 

incorporating projected effects of climate change. In support of the US effort, Chegwidden et al. (2017) developed 11 

a large-ensemble dataset of past and future daily streamflows at 396 sites throughout the Columbia River Basin 12 

(CRB) and select other watersheds in western Washington and Oregon, using state-of-the art climate and 13 

hydrologic models. In this study, we use that dataset to present new analyses of the effects of future climate change 14 

on flooding using water year maximum daily streamflows. For each simulation, flood statistics are estimated from 15 

Generalized Extreme Value distributions fit to simulated water year maximum daily streamflows for 50-year 16 

windows of the past (1950-1999) and future (2050-2099) periods. Our results contrast with previous findings: we 17 

find that the vast majority of locations in the CRB are estimated to experience an increase in future streamflow 18 

magnitudes. The near-ubiquity of increases is all the more remarkable in that our approach explores a larger set 19 

of methodological variation than previous studies; however, like previous studies, our modeling system was not 20 

calibrated to minimize error in maximum daily streamflow, and may be affected by unquantifiable errors. We 21 

show that on the Columbia and Willamette rivers, increases in streamflow magnitudes are smallest downstream 22 

and grow larger moving upstream. For the Snake River, however, the pattern is reversed, with increases in 23 

streamflow magnitudes growing larger moving downstream to the confluence with the Salmon River tributary, 24 

and then abruptly dropping. We decompose the variation in results attributable to variability in climate and 25 

hydrologic factors across the ensemble, finding that climate contributes more variation in larger basins while 26 

hydrology contributes more in smaller basins. Equally important for practical applications like flood control rule 27 
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curves, the seasonal timing of flooding shifts dramatically on some rivers (e.g., on the Snake, 20th century floods 28 

occur exclusively in late spring, but by the end of the 21st century some floods occur as early as December) and 29 

not at all on others (e.g. the Willamette).  30 

 31 

1 Introduction 32 

Among natural disasters in the Northwest, flooding ranks second behind fire in federal disaster declarations1 since 33 

1953 despite extensive flood prevention infrastructure. The largest flood in modern times on the Columbia 34 

occurred in late spring (May-June) 1948, and obliterated the town of Vanport which lay on an island between 35 

Portland, OR and Vancouver, WA, permanently displacing its 18,500 residents2. Other disruptive floods in the 36 

region include the Heppner flood in 1903, one of the deadliest flash floods in US history (Byrd, 2014); floods on 37 

the Chehalis River in both December 20073 and January 20094 that closed Interstate 5, the main north-south 38 

transportation corridor through the Northwest, for several days each time at a cost of several $m per day to freight 39 

movement alone; and floods on the Willamette River in February 1996 and April 2019. The timing of typical 40 

floods varies widely across the region: low-elevation basins in western Washington and Oregon typically flood 41 

in November through February, whereas the snow-dominant basins east of the Cascades more typically flood in 42 

spring, sometimes as late as June (Berghuis et al. 2016). 43 

 44 

The Columbia River drains much of the Northwest, with the fourth largest annual  streamflow volume in the US 45 

and a drainage that includes portions of seven states plus the Canadian province of British Columbia (BC), an 46 

area of 668,000 km2 (Fig. 1). Its numerous federal and nonfederal dams provide flood protection, hydropower 47 

production, navigation, irrigation, and recreation services. A treaty between the US and Canada, signed in 1961, 48 

codified joint management of the river’s reservoirs (and funded construction of new reservoirs in BC) primarily 49 

to provide flood protection and hydropower production5. The US and Canada have entered negotiations to update 50 

 
1 https://www.fema.gov/data-visualization-summary-disaster-declarations-and-grants accessed 8/6/2019 
2 https://www.oregonlive.com/portland/2017/05/vanport_flood_may_30_1948_chan.html accessed 8/6/2019 
3 https://www.seattletimes.com/seattle-news/extensive-flooding-3-confirmed-deaths-hundreds-of-rescues/ 

accessed 8/6/2019 
4 https://www.seattletimes.com/seattle-news/despite-drying-cooling-trend-flooding-and-road-closures-continue/ 

accessed 8/6/2019 
5 https://www.state.gov/columbia-river-treaty/ accessed 8/6/2019 

https://www.fema.gov/data-visualization-summary-disaster-declarations-and-grants
https://www.oregonlive.com/portland/2017/05/vanport_flood_may_30_1948_chan.html
https://www.seattletimes.com/seattle-news/extensive-flooding-3-confirmed-deaths-hundreds-of-rescues/
https://www.seattletimes.com/seattle-news/despite-drying-cooling-trend-flooding-and-road-closures-continue/
https://www.state.gov/columbia-river-treaty/
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the treaty; the USA’s “key objectives include continued, careful management of flood risk; ensuring a reliable 51 

and economical power supply; and improving the ecosystem in a modernized Treaty regime.” (ibid.) Both 52 

countries have expressed an intention to include the effects of climate change on  streamflows, and clearly a key 53 

aspect of hydrologic change is to inform the treaty negotiations of the influence of climate change on the 54 

magnitude of flooding.  55 

 56 

While rising temperatures potentially affect all parts of the hydrologic cycle, in a snowmelt-dominated hydrologic 57 

system such as many of the Northwest’s river basins, warming directly affects snow accumulation and melt (e.g., 58 

Hamlet et al. 2005). Observational studies have shown consistent changes toward lower spring snowpack (Mote 59 

et al. 2018), earlier spring streamflow (Stewart et al. 2005), and lower summer  streamflow (Fritze et al. 2011) 60 

since the mid-20th century. Observations of trends in flooding in the US have generally failed to find any 61 

consistent trends (Lins and Slack 1999; Douglass et al. 2000; Sharma et al. 2018). Sharma et al. (2018) offer 62 

several possible explanations, chiefly “decreases in antecedent soil moisture, decreasing storm extent, and 63 

decreases in snowmelt”. The detection of trends in floods is complicated by the interaction of extreme events and 64 

nonstationarity (Serinaldi and Kilsby, 2015). Moreover, as a result of the substantial alteration of rivers to prevent 65 

flooding (e.g., by the construction of dams and levees) during the observational period, the best long-term records 66 

- i.e., on streams with the least modifications - are on rivers that were not producing sufficiently disruptive floods 67 

to lead decision-makers to construct flood protection structures. That is, as flooding of settlements, infrastructure, 68 

or other assets led to the investments in flood protection structures on most rivers, thereby altering the streamflow 69 

regime and dividing any gauged records into pre- and post- modification, the ones that were left unmodified 70 

tended to be small and/or remote. 71 

 72 

To interpret the ambiguous results from observed trends, Hamlet and Lettenmaier (2007) used the Variable 73 

Infiltration Capacity (VIC) hydrologic model forced twice with detrended observed daily weather for the period 74 

1916-2003, with about 1°C of temperature difference between the two. They then compared 20- and 100-year 75 

flood quantiles for basins at varying sizes in the western US and found a wide range of changes in flood magnitude 76 

ranging from large decreases to large increases (+/- 30%).  Broadly, the responses depended somewhat on basin 77 

winter temperature, with the coldest basins (<-6°C) showing reductions in flood magnitude owing to reduced 78 

snowpack, basins with moderate temperatures exhibiting a wide range of changes, and rain-dominant (>5°C) 79 

basins showing little change, though the warm basins in coastal areas of Washington, Oregon, and California 80 

showed increased flood magnitude.  81 
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 82 

Modeling work using state-of-the-art hydrologic models has been applied to understand where and how flood 83 

magnitudes may change in the future. Tohver et al (2014) found widespread increases in flood magnitudes, 84 

especially in temperature-sensitive basins (mainly on the west side of the Cascades), but their approach used 85 

monthly GCM output so changes in daily precipitation would not be represented. Salathé et al. (2014) used a 86 

single global climate model (GCM), the ECHAM5, linked to a regional climate model to obtain high-resolution 87 

(in space and time) driving data for VIC over the period 1970-2069. As did Hamlet and Lettenmaier (2007), they 88 

compared the ratio of flood change (2050s vs 1980s) against mean historical winter temperature and found a 89 

majority of locations with a higher 100-year flood, in some cases by a factor of 2 or more; while they projected 90 

increases in every one of the warmer basins (>0°C), a substantial fraction of colder locations had decreases in 91 

flood magnitude. 92 

 93 

Chegwidden et al. (2019) describe the process used to generate the streamflow ensemble used here. In addition, 94 

they used analysis of variance (ANOVA) to analyze the different influences of choices of emissions scenario (as 95 

a Representative Concentration Pathway - RCP), GCM, internal (unforced) climate variability, downscaling 96 

method, and hydrologic model, and how those influences varied spatially across the domain and also seasonally 97 

and by hydrologic variable. They found that the RCP and GCM had the largest influence on the range of annual 98 

streamflow volume and timing, and hydrologic model had the largest influence on low streamflows. The 99 

hydrologic variables they considered were snowpack (maximum snow water equivalent and date of maximum 100 

SWE), annual streamflow volume, centroid timing (the date at which half the water year’s  streamflow has passed), 101 

and seasonal  streamflow volume; primary focus was on centroid timing, annual volume, and minimum 7-day 102 

streamflow. They did not examine high-flow extremes that can lead to flooding. The purpose of this paper is to 103 

address this important gap in our understanding of the future Northwest hydrology; to do so, we use the largest 104 

available ensemble of climate-hydrology scenarios. By using a large ensemble, we ensure a reasonable breadth of 105 

climatic and hydrological futures in order to better describe the range of possible future flooding and how it varies 106 

across the region with its diverse hydroclimates. We also note possible shortcomings associated with modeling 107 

future flooding. 108 
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2 Methods 109 

2.1 Hydrologic modeling data set 110 

To assess changing flood magnitudes under climate change, we analyzed changes in water year maximum daily 111 

streamflows in a large ensemble of streamflow simulations at 396 locations in the CRB (Figure 1) and select 112 

watersheds in western Oregon and Washington (Chegwidden et al., 2017). The simulations were constructed from 113 

permutations of modeling decisions on forcing datasets and hydrologic modeling. Specifically, choices included 114 

two RCPs (RCP4.5 and RCP8.5), ten GCMs, two methods of downscaling the climate model output to the 115 

resolution of the hydrologic models, and four hydrologic model implementations, for a total of 160 permutations. 116 

For our analysis, we extracted a more tractable dataset of 40 simulations per location, by only considering 117 

simulations with RCP 8.5 and the Multivariate Adaptive Constructed Analogs (MACA) downscaling method 118 

(Abatzoglou and Brown, 2012).   119 

 120 

The rationale for using a subset of the available data is as follows. First, the time-dependent set of greenhouse gas 121 

concentrations in RCP4.5 is fully included in RCP8.5, so any concentration of greenhouse gases on the RCP4.5 122 

path can be converted to a point on RCP8.5 (at a different time). We analyzed results for both RCP8.5 and RCP4.5, 123 

and found that to first order the changes in flood magnitude in RCP4.5 were approximately 2/3 those in RCP8.5, 124 

which is also roughly the ratio of global temperature change over the period considered (IPCC Summary for 125 

Policymakers, 2014). For clarity we show only the results for RCP8.5. Second, we considered only simulations 126 

using the MACA downscaling method because of the method’s ability to capture the daily GCM-simulated 127 

meteorology critical for assessing changes in extremes and its skill in topographically complex regions (Lute et 128 

al., 2015). The other downscaling approach used by Chegwidden et al. (2019), the Bias Correction and Statistical 129 

Downscaling (BCSD) method (Wood et al. 2004), produces probability distributions of daily precipitation 130 

inconsistent with the GCM response to forcings because the method stochastically disaggregates monthly data to 131 

daily data based on historical statistical properties of the daily data. This statistical property limits the ability of 132 

BCSD to reproduce changes in storm frequency in the future, making it a less attractive choice for daily extreme 133 

streamflow analysis (Hamlet et al. 2010; Guttman et al. 2014). 134 

 135 

Model output used in this study came from the following ten GCMs: CanESM2, CCSM4, CNRM-CM5, CSIRO-136 

Mk3-6-0, GFDL-ESM2M, HadGEM2-CC, HadGEM2-ES, Inmcm4, IPSL-CM5A-MR, and MIROC5. These ten 137 

GCMs were chosen primarily for their ability to accurately reproduce observed climate metrics during the 138 
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historical period mainly of the Northwest US but also at sub-continental and larger scales as assessed in Rupp et 139 

al. (2013) and RMJOC (2018). The four hydrologic model implementations originated from two distinct 140 

hydrologic models: the Variable Infiltration Capacity (VIC; Liang et al., 1994) model and the Precipitation Runoff 141 

Modeling System (PRMS; Leavesley et al., 1983). VIC and PRMS are process-based, energy balance models and 142 

were both run on the same 1/16th degree grid with output saved at a daily time step for the period 1950 to 2099. 143 

VIC is a macroscale semi-distributed hydrologic model that solves full water and energy balances, and in these 144 

simulations it also included a glacier model (Hamman & Nijssen, 2015). Three unique implementations of VIC 145 

were used with independently derived parameter sets (P1, P2, P3) marked by differences in calibrated parameters, 146 

calibration methodology, and meteorological and streamflow reference sets. PRMS is a distributed, deterministic 147 

hydrologic model which, in contrast to VIC, does not allow for subgrid heterogeneity; see Chegwidden et al 148 

(2019) for details. It is important to note that these hydrologic simulations and calibrations do not include reservoir 149 

models and have not been calibrated for daily, let alone maximum daily, flows, and these shortcomings may affect 150 

the results. 151 

2.2 Flood magnitude 152 

We assessed changes in flood magnitude in the Columbia River Basin by comparing water year maximum daily 153 

streamflows over a 150-year period (1950-2100). We estimated the 10, 5, 2, and 1% probability of occurrence 154 

(commonly referred to as the 10-, 20-, 50-, and 100-year flood, respectively) by fitting generalized extreme value 155 

(GEV) probability distributions to simulated water year maximum daily streamflows for 50-year windows of the 156 

past (1950-1999) and future (2050-2099) periods; see Figure 2 for an example. (We also looked at 30- and 75-157 

year windows, choosing 50 years as a balance between sample size favoring longer periods, and nonstationarity 158 

considerations favoring shorter periods.) We used Python’s scipy.stats.genextreme module (Jones et al., 2001) to 159 

fit a Gumbel distribution and estimate flood magnitudes for each return period. We assessed change in flood 160 

magnitude as the “discharge ratio” of the estimated future to past floods for a given return period; a ratio greater 161 

than 1 indicates an increase in flood magnitudes while a ratio less than 1 indicates a decrease. 162 

 163 

We describe how changes in flood magnitude vary by climatic zone across the PNW by using an efficient and 164 

internally consistent proxy for climatic zone: the centroid of timing – the day in the water year that half the annual 165 

volume of water has passed the stream location. The centroid of timing is a metric of snow dominance (e.g., 166 

Stewart et al. 2005) which is related to the spatial distribution of temperature and tends to decrease downstream. 167 

This temporal proxy of a hydrologic characteristic is effective in the Columbia Basin where most of the 168 
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precipitation occurs in winter and the relative magnitude and timing of the freshet from the spring thaw is a good 169 

indicator of importance of snowmelt to streamflow. An early centroid indicates that rain, which falls 170 

predominantly during the cooler, earlier part of the year, is the driver of the peak streamflows at the location, 171 

while a late centroid indicates that snowmelt during later spring months is the prime hydrological driver. We 172 

computed the centroid using the 1950-79 simulated years. Note that Chegwidden et al. (2019) also used the change 173 

in centroid as a hydrologic variable of interest; below, we discuss our results in the context of their findings. 174 

 175 

2.3 Model evaluation 176 

Comparing directly between gauged flows and modeled flows is inadvisable since the observed streamflows are 177 

substantially altered by regulation, which is not accounted for in the hydrological model. However, a set of 178 

streamflows called No Reservoirs No Irrigation (NRNI; RMJOC 2017) has been developed by federal agencies 179 

to support practical analysis. The NRNI dataset exists at ~190 sites across the Columbia River Basin for the years 180 

1928-2008, and streamflows are adjusted to correct for reservoir management and the diversions and evaporation 181 

associated with both the reservoirs and with irrigated agriculture. This dataset is suitable for comparisons with 182 

our modeling setup, and we have computed return period curves using GEV fits at all the NRNI locations (not 183 

shown) for the period common to both NRNI and our ensemble, viz., 1950-2008. From these fits we have 184 

estimated the 10-year and 100-year values (Figure 3). On the lower mainstem Columbia (Figs 3a and d), the return 185 

period curves are very close to those computed from NRNI and the means of simulations are almost all within 8% 186 

of the NRNI values. Individual hydrologic model configurations are not consistently biased across the basin nor 187 

across return periods; despite its different provenance, PRMS generally lies within the return period streamflows 188 

of the three VIC configurations rather than being consistently different from all VIC configurations, although the 189 

lowest values are from PRMS. On the Snake River, the mean of modeled high streamflows range from 5% above 190 

NRNI at Little Goose to 24% above at Oxbow for 10-year floods (and 14% to 41% for 100-year) but again no 191 

hydrologic model stands out as strongly biased. On the Willamette, however, the modeled 10-year and 100-year 192 

flood magnitudes lie almost entirely below NRNI and the means are too low by from 30% (T. W. Sullivan, 10-193 

year) to 50% (Hills Creek, 100-year). PRMS and the P2 calibration of VIC are consistently closer to NRNI on the 194 

Willamette. In general, the simulated flood statistics are least biased on larger river reaches where the hydrographs 195 

are less flashy. For the Columbia mainstem, modeled extreme high streamflows agree well with the NRNI dataset. 196 

 197 

We also examined the ensemble performance for 1950-2008 in the distribution of timing of peak daily streamflow 198 

for 28 locations along the Columbia, Snake, and Willamette (a subset is shown in Figure 4). At all locations we 199 
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examined, the median date (as well as earliest and latest quartiles) of annual maximum daily streamflow in the 200 

ensemble is within 10 days of the observed, from NRNI. The modeled distribution is shifted slightly later than 201 

NRNI on the lower Columbia and slightly earlier than NRNI on the Willamette. As with magnitudes, the 202 

agreement in timing suggests a robust modeling set-up since the comparison tests the ability of the combined 203 

climate-hydrologic modeling system to match observed, constrained only by the broad physics of the climate 204 

system and by meteorological bias correction (which cannot substantially change the timing of the day of the year 205 

most conducive to high streamflows). Although the modeled streamflows are calibrated, the statistical approach 206 

to calibrations is not sensitive to the extreme maximum daily  streamflow studied here. 207 

 208 

It is worth stressing that these results compare outputs of hydrologic models in which the inputs are simulated 209 

daily weather (which is then bias-corrected) rather than observed daily weather, and that the hydrologic models 210 

are calibrated to 7-day means rather than the daily values relevant here. In other words, we are evaluating the 211 

ability of the combination of simulations of weather and hydrologic response. The weaknesses evident in Figure 212 

4 pose a note of caution in interpreting our results, but a full diagnosis of the causes of the shortcomings (especially 213 

on the Willamette) is beyond the scope of this paper, as is the evaluation of our modeling system’s performance 214 

at other locations besides these rivers. 215 

3 Results 216 

3.1 Regional changes in flood ratio 217 

Figure 5 shows the changes in maximum daily discharge for all of the 396  streamflow locations for different 218 

return periods. The horizontal position of each circle represents the centroid of timing. The circles are semi-opaque 219 

so overlapping circles lead to a deeper saturation. Points on the same river are ordered from more to less snow 220 

dominant (i.e., right to left) traveling downstream; strings of circles in a smooth pattern usually indicate one of 221 

the larger rivers, highlighted in Figure 6.  Each circle in Figures 5 and 6 represents an average of 40 simulations: 222 

10 GCMs and 4 hydrologic model configurations.  223 

 224 

A striking result in Figure 5 is that, in contrast to the results of Tohver et al. (2014), the flood magnitude increases 225 

(i.e., the discharge ratio exceeds one) at nearly every streamflow location and return period (though not for every 226 

individual climate scenario, as shown in Figure 7). Broadly, the patterns are similar across all return periods 227 

though with slightly higher ratios for longer return periods, and subsequent figures will show only the 10- and 228 
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100-year floods. For the streamflow locations with centroid <125 or so (i.e. February 2), flood ratios are fairly 229 

concentrated about 1.25 for all return periods. For mixed rain-snow basins, roughly delineated by centroids 230 

between 125 and 160 (March 8 most years), flood ratios range widely from just below 1 to about 2.4 for the 10-231 

year and 3.2 for 50- and 100-year floods. For the longer return intervals, there is a wide range of projected changes 232 

in daily flood at many locations (indicated by the red coloring). This is undoubtedly partly due to the GEV fit 233 

extrapolating from 50 to 100 years. Finally, for the basins with streamflow centroid >160, the ratios have a smaller 234 

range, from slightly greater than 1 to a maximum that increases from about 2 for the 10-year, to about 2.75 for 235 

100-year. Tohver et al. (2014) distinguished basins by their DJF temperature, a rough proxy for our snow 236 

dominance metric, and found a substantial number of locations where the flood ratio for both 20-year and 100-237 

year flood was as much as 20% lower for the 2040s compared with a historical period. We return to this point in 238 

the conclusions. 239 

 240 

To understand better how flood magnitude changes along the length of a river, we focus (Figure 6) on a handful 241 

of significant rivers in the region: the mainstem Columbia, Willamette (along with major tributaries the McKenzie 242 

and Middle Fork Willamette), and Snake, and also on the Chehalis in southwest Washington (see Introduction). 243 

Flow locations and select numerical results are listed in Table 1. Many of the larger tributaries also have 244 

streamflow points in our dataset, so we can infer the role of tributaries in changing the flood magnitudes in the 245 

future, as discussed below. The Columbia River includes the most snow-dominant basins, with a centroid of >190 246 

days (early to mid April) in the Canadian portion of the basin. The flood ratio decreases almost uniformly along 247 

the length of the river, from 1.3 for the 10-year and >1.5 for the 100-year in the Canadian portion to just above 1 248 

at the last few points along the river (The Dalles, Bonneville, and Portland). Past flood events on the mainstem 249 

Columbia are exclusively associated with large spring snowmelt, and the large tributaries (the Yakima, Snake, 250 

and Willamette) contribute annual streamflow volume but rarely contribute peak streamflow at the same time; as 251 

shown below, the future flood timing changes but flood magnitudes change little in the lower Columbia owing to 252 

the fact that the Columbia integrates such diverse hydroclimates.  Like the Columbia, the Willamette also has 253 

flood ratios that decrease along the length of the river as it integrates more diverse hydroclimates, from 1.7 to 1.35 254 

for both return periods. The McKenzie River (points 15-17), one of the three tributaries that converge at Eugene 255 

to form the Willamette, is a highly spring-fed river with higher baseflow than is represented in the hydrologic 256 

models, though it is unclear how that difference would manifest in the flood statistics. Nonetheless, the 257 

combination of an important unrepresented process and the large errors in flood magnitudes relative to NRNI 258 

(Figure 3) are potentially problematic for simulating future changes in flooding. 259 
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 260 

In contrast to the Columbia and the Willamette, the Snake behaves oppositely: flood ratio increases downstream 261 

along the length of the river, until the confluence with the Salmon River, which drains a large mountainous area 262 

of central Idaho. On parts of the Snake the ratios are as high as 1.4 for 10-year and 1.6 for 100-year. Then after 263 

the confluence with the Salmon River, which has much lower change in discharge ratio, the ratios on the Snake 264 

drop to about 1.2 for 10-year and about 1.3 for the 100-year. Our hypothesis is that in the Snake above the Salmon 265 

River, the tributaries shift from snow-dominant to rain-dominant, so that a single storm can drive large rainfall-266 

driven increases (possibly with a snowmelt component) leading to larger synchronous discharges. The Salmon 267 

and Clearwater rivers retain less exposure to such shifts, and dilute the effects of single large storms on flooding. 268 

 269 

Each circle in Figures 5 and 6 represents an average of 40 simulations: 10 GCMs and 4 hydrologic model 270 

configurations. To better understand the range in results, Figure 7 shows the discharge ratio for all 40 simulations 271 

at each point on the mainstem Columbia. Although the mean flood ratio at the lowest two points is only barely 272 

above 1, several ensemble members have ratios less than one, and a few have ratios >1.5. Moving upstream, the 273 

range in results increases, as shown also by the color of the dots.  274 

3.2 Dependence of results on modeling choices 275 

As in Chegwidden et al (2019), we separate the results - here for the three largest rivers - into variations across 276 

GCM (Figure 8) and variations across hydrologic model configurations (Figure 9). The ranking of flood ratios by 277 

GCM changes substantially between basins and even within a basin, and does not correspond to the changes in 278 

seasonal precipitation. For the upper Columbia River, the models with the least warming - inmcm4 and GFDL-279 

ESM2M (Rupp et al 2017) - have almost no change in flood magnitude, but the HadGEM2-ES which warms 280 

considerably in summer produces a large decrease in flood magnitude. In the Willamette and Snake Rivers, the 281 

range of projected flood changes by different GCMs remains large from the headwaters to the mouth of the river, 282 

whereas for the Columbia the range diminishes considerably as one moves downriver. 283 

 284 

The variation of results depends less on hydrologic model than on GCM (Figure 9), though the differences across 285 

hydrological models are still substantial. For the Willamette, lower Snake, and both upper and lower Columbia, 286 

the PRMS model predicts substantially larger increases in flooding than the three calibrations of the VIC model. 287 

For the upper Snake, it predicts substantially smaller change than any VIC calibration. While it is perhaps not 288 

surprising that the three calibrations of VIC are close to each other, it is striking just how different are the 289 
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projections from PRMS at most locations on these three rivers. Chegwidden et al. (2019) found that the main 290 

contributors to differences in hydrologic variables (except low streamflows) generally were the climate scenarios 291 

(GCM and RCP), consistent with our findings here. (The order of models is similar in the equivalent figure for 292 

the 100-year return period, but we elected to show the 10-year figure since the 100-year figure is more difficult 293 

to decipher because the symbols overlap with those from other rivers.) 294 

 295 

To parse the contributions of climate factors (represented by the GCMs) and hydrologic factors (represented by 296 

the hydrologic models), we perform ANOVA on the 40 discharge ratios. The pie charts in Figure 10 show the 297 

proportion of the total variance explained by climate factors and hydrologic factors at different locations. For the 298 

Willamette River, the portion of uncertainty connected to the climate grows more important and the portion of 299 

uncertainty connected to the hydrologic variability less important going from the confluence of the three major 300 

tributaries at Eugene to the mouth. For the Snake and Columbia rivers, climate is responsible for virtually all of 301 

the variance in projections in the upper reaches, but only about half at the lowest point, similar to the Willamette. 302 

The Willamette basin is much smaller, and a large storm can affect the entire basin on the same day (Parker and 303 

Abatzoglou, 2016), whereas storms typically take a couple of days to move across the Snake and Columbia (and 304 

generally move upstream). With larger and more diverse contributing areas, differences in the rates with which 305 

the hydrological models transfer precipitation to the point of interest become more important. Unlike Chegwidden 306 

et al. (2019), we did not attempt to isolate the response to anthropogenic forcing from internal climate 307 

variability. Though several techniques for separating these two factors have been used (e.g., Hawkins and Sutton, 308 

2009; Rupp et al., 2017; Chegwidden et al., 2019), these techniques are either infeasible with our dataset or we 309 

question their suitability for the application to changes in extreme river flows. 310 

 311 

3.3 Change in timing 312 

Although in a broad hydrologic sense a flood is a flood regardless of what time of year it occurs, there are 313 

potentially significant ecological differences depending on time of year; for example, scouring the river bottom 314 

causing significant loss of salmon eggs (Goode et al. 2013). Moreover, water management policies are strongly 315 

linked to the calendar year (see Discussion). We computed the probability of flooding for (all 40) past and future 316 

simulations at all the points on the three rivers (Figure 6) as a function of day of year (Figure 11). For the 317 

Willamette, no significant change in timing occurs; however, for the upper Willamette, a single peak in likelihood 318 

in February becomes more diffuse. For the Snake, all locations see a shift toward earlier floods, consistent with 319 
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the transition to less snow-dominant and more rain-dominant. Whereas floods were historically concentrated in 320 

the period of mid-May to mid-July, the projected future flooding period spans December to June. For the 321 

Columbia, the mode in the flood timing shifts earlier by half a month in the upper Columbia to about a month in 322 

the lower Columbia. The distribution also broadens with an elongated tail towards winter such that there is low, 323 

but non-negligible, probability of floods occurring as early as January. The magnitudes of the 10- and 100-year 324 

flood events in the lower Columbia are not projected to increase substantially (Figures 6-9). However, the window 325 

during which a major flood could occur expands, with the likelihood of major flooding in May or April (or even 326 

as early as February) increasing.  327 

4 Discussion and conclusions 328 

Our study joins a small number of others in examining high-flow extremes using a large hydroclimate ensemble. 329 

Gangrade et al. (2020) used a similar ensemble approach analyzing hydrological projections for the Alabama-330 

Coosa-Tallapoosa River Basin with 11 dynamically downscaled and bias corrected GCMs (10 of which our 331 

studies share) and 3 hydrologic models (including VIC and PRMS). While they did not examine extreme daily 332 

streamflows, they did calculate changes in the 95th percentile of daily streamflow (Q95). Perhaps because of the 333 

hydroclimatic uniformity of that basin, they found very small differences in Q95 across hydrologic models, which 334 

contrasts with our results showing changes in flood magnitudes varying by watershed and distance downstream. 335 

Thober et al. (2018) conducted a similar study in some European river basins, but rather than using a climate 336 

ensemble they simply imposed uniform warming scenarios on a hydrologic model (i.e. a more straightforward 337 

temperature sensitivity analysis rather than an exploration of the range of future climate scenarios). Other, smaller 338 

ensemble studies of floods in different basins include Huang et al. (2018), with 4 GCMs and 3 hydrology models, 339 

and Vormoor et al (2015) with several parameterizations of one hydrology model.  340 

 341 

Returning to the Northwest, our findings contrast with earlier work. Salathe et al. (2014) found decreases in flood 342 

magnitude at a substantial number of sites, but our results show increases in flood magnitude at nearly every 343 

return period and location, which includes about 100 locations not included in their study. They also noted that 344 

directly downscaling the GCM outputs leads to a smaller range of results than when running the regional model 345 

as an intermediate step, so we infer that if we had had access to RCM simulations driven by all 20 of our RCP-346 

GCM combinations, our range of results might have been larger. Another important difference may be in the 347 

spatiotemporal coherence of extreme precipitation, which in the RCM would be generated directly by the 348 
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interaction of synoptic-scale storms, topography, and to a small extent by surface water and energy balance; and 349 

in our study, by the interaction of the GCM-scale synoptic storms and constructed analogs derived from 350 

observations. A large ensemble would reduce the magnitude of that effect. In our study, the MACA statistical 351 

downscaling approach preserves much of the daily variability from the GCM, so the primary reason for the 352 

difference between our results and theirs is probably the fact that we analyzed 40 scenarios. Some locations, for 353 

example the points on the lower Columbia river, had a handful of ensemble members with decreasing flood 354 

magnitude. But averaging the entire ensemble nearly always resulted in an increase in flood magnitude. It is 355 

possible therefore that their study, repeated with a larger ensemble of hydrologic-climate model combinations, 356 

might have found ubiquitous increases in flood magnitude as ours did. 357 

 358 

Prior results (Hamlet and Lettenmaier 2007, Tohver et al. 2014, Salathe et al. 2014) suggested a decrease in flood 359 

magnitude in snowmelt-dominated basins like the Columbia, since reduced snowpack reduces the store of water 360 

available to be released quickly in a spring flood (like the May-June 1948 Vanport flood). In a subbasin of the 361 

Willamette, Surfleet and Tullos (2013) projected decreases in flood magnitude for return periods > 10 years in the 362 

Santiam River basin under a high-emissions scenario (SRES A1B, 2070-2099 vs. 1960-2010; 8 GCMs), 363 

attributing the decreases to fewer large rain-on-snow events. Our results for the Santiam River show an increase 364 

of 40% for both 10- and 100-year floods; this result includes rain-on-snow events, since they are represented in 365 

VIC, which computes the accumulation of water in the snowpack and determines whether sufficient energy has 366 

been provided to create a melt event. Our results point to ubiquitous increases in magnitude throughout the basin, 367 

even on the lower mainstem Columbia. We also project some large increases in flood magnitude in the coldest 368 

basins, including the headwaters of the Columbia, suggesting that the former results were missing some key 369 

details. It seems likely that any reduction in flood magnitude originating from the warming-induced reduction in 370 

spring snowpack is offset by other factors. While there is evidence that warmer future temperatures could 371 

engender slower melt rates (Musselman et al. 2017), the effect on high streamflow events is less clear. For 372 

example, Chegwidden et al (2020) showed that magnitudes of both rain- and snowmelt-driven floods are likely 373 

to increase across headwater basins in the Pacific Northwest through the 21st century. These results emphasize 374 

the necessity of revisiting reservoir rule curves, which are strongly tied to historical hydrographs, and also 375 

emphasize that changes in the seasonality of flooding can be dramatically different from the changes in the mean 376 

hydrograph. In particular, in the lower Snake and lower Columbia, changes in magnitude of flooding are modest 377 

but changes in timing of the earliest quartile of flood events is much larger than the 0.5-1 month shift in the mean 378 

hydrograph.  379 
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 380 

The evaluation of the modeling system in section 2.3 raises some concerns about the reliability of our results, 381 

especially as to flood magnitude on the Willamette mainstem, and also in smaller basins where we have not 382 

performed an evaluation. While this is a concern in an absolute sense, in a relative sense our results are probably 383 

more robust than those of earlier studies in the Northwest, for several reasons. First, previous studies have rarely 384 

provided the sort of evaluation of flood statistics that we show in section 2.3. Second, we used more 385 

methodological variations, which tend to broaden, not narrow, the spread of results, and yet we still obtained a 386 

narrowing of the spread of results to almost ubiquitous increases. Third, our use of a large ensemble samples a 387 

wide climate space by using GCMs as opposed to RCMs. Conventional wisdom and evidence from the weather 388 

and seasonal climate forecasting realms illustrate the utility of considering ensembles, and that generally the true 389 

outcome of a prediction lies near the middle of the ensemble. Our ANOVA analysis (Figure 10) shows that climate 390 

scenarios contribute a majority of the variation among results for most of the basin. Consequently, it is of great 391 

importance to sample the climate scenarios broadly, which currently only GCMs can do. Large ensembles of 392 

RCMs are rare; the 12-member NARCCAP ensemble (6 RCMs, 4 GCMs; Mearns et al. 2013), some of whose 393 

model runs were completed a decade ago, remains the largest, but has a spatial resolution of only 50km. CORDEX 394 

North America, similarly now has a comparable-size ensemble, but mostly still at 50 km (some at 0.22°), and was 395 

not available in such large numbers when we began our hydrologic simulations. At such spatial resolutions, RCMs 396 

would still have to be further downscaled and bias corrected to use in our hydrologic models (∼6km spatial 397 

resolution). In the tradeoff between breadth of climate scenarios and spatial resolution, these ensembles offer 398 

insufficient improvement in spatial resolution relative to our GCM ensemble to justify sacrificing the breadth in 399 

climate scenarios represented by choosing just 4 GCMs. While RCMs certainly have their place in such work and 400 

were used in some previous studies, using GCMs in this study allowed for a larger climate space to be sampled, 401 

thus adding to the robustness of our results. 402 

 403 

 404 
Although the likeliest outcome, as shown in Figure 7, is for smaller changes in flood magnitude in the lower 405 

Columbia than elsewhere, a prudent risk management strategy would consider the range of possibilities.  The 406 

validation (Figures 3 and 4) provides no a priori basis for excluding or under-weighting the projections from any 407 

hydrologic model. On the Willamette, a rain-dominant basin, our hydrologic simulations of flood magnitudes are 408 

biased low; possible causes for the low bias originate both in the climate and hydrological models. For example, 409 

a low bias in extreme daily precipitation may lead to an underestimation of the hydrologic response. We also note 410 
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that the hydrologic models were calibrated to 7-day means rather than daily values and may underestimate the 411 

daily response in smaller basins. Nevertheless, three physical processes contribute directly to the increase in 412 

magnitude: an increase in seasonal precipitation affecting soil saturation, an increase in extreme daily 413 

precipitation, and a warming-induced reduction in the snow-covered area in the wet season. In our results for the 414 

Willamette this reduction in snow-covered area reduces the buffering effect of snow accumulation during storms 415 

and more than offsets an increase in melt from rain-on-snow events. This mechanism is supported by Chegwidden 416 

et al (2020) who, using the same underlying dataset as our study, project a growth in both prevalence and 417 

magnitude of rain-driven floods at the expense of floods from snowmelt and rain-on-snow events. 418 

 419 

Our findings provide an initial indication of how existing flood risk management could respond to a warming 420 

climate. Reservoir management is guided by rule curves which are intended to reflect the changing priorities and 421 

risks during the year. For example, reservoirs used for flood control have rule curves that require reservoir levels 422 

to be lowered when approaching the time of year when flood likelihood increases, and reservoir levels may be 423 

raised as the likelihood decreases. For the Willamette, we found little change in the distribution of timing of flood 424 

events, which indicate that with the state of the science today, reservoir rule curves may need to be altered as to 425 

magnitude of flooding (which our results indicate will increase by 30-40%) but not timing; a reservoir model, 426 

along with further investigation of the low bias in observed flood magnitudes (Figure 3e and 3f) would be required 427 

for complete understanding of how flood risk (magnitude and timing) will actually change. For the Snake, larger 428 

shifts in the timing imply a need to completely re-evaluate the existing rule curves. For the Columbia, the mode 429 

in flood timing shifts earlier by half a month in the upper Columbia to about a month in the lower Columbia. The 430 

distribution also broadens, with an elongated tail towards winter such that there is low, but non-negligible, 431 

probability of floods occurring as early as January. These changes in timing imply a need for moderate alteration 432 

of rule curves for reservoirs in the Canadian portion of the Columbia Basin. 433 

 434 

Our results should not be taken as a precise prediction of flood magnitude change but rather as the best available 435 

projections given the current state of the science. Two important factors need to be considered when interpreting 436 

our results: first, in using RCP8.5, we selected the most extreme scenario of rising anthropogenic greenhouse gas 437 

concentrations. If efforts to stabilize the climate before 2050 are successful, the flood magnitudes shown here will 438 

undoubtedly be smaller (our analysis suggests most of the locations would see a change in flood magnitude about 439 

1/3 smaller, for RCP4.5; e.g., a ratio of 1.3 (30% increase) for RCP8.5 would correspond to a ratio of 1.2 for 440 

RCP4.5). 441 
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 442 

The second important factor in interpreting our results is that the actual river system in the Northwest includes 443 

many dams, a majority of which have flood control as a primary (or at least a top) objective. As a result, actual 444 

streamflows (and the changes in streamflow) at a given point in the river would be altered by reservoir 445 

management. Translating these changes in flood magnitude into actual changes would require a reservoir model 446 

for the basin or subbasin of relevance. One could then compute optimal rule curves for the major flood control 447 

reservoirs (perhaps time-evolving every couple of decades, to reflect the likely changes in scientific understanding 448 

and emissions trajectory). Even without that additional analysis, however, our results stress that the magnitude 449 

and/or timing of flood events will change throughout the basin. In other words, what worked for flood control in 450 

the past will not work as well in the future.   451 

 452 

This study may have some utility in framing and quantifying the possible changes in flood risk as the Columbia 453 

River Treaty is in renegotiation, but further work would be needed to assign probabilities to future flood 454 

magnitude. Such work includes (a) a deeper understanding of the underlying model differences to explain 455 

differences in model sensitivities (our analysis in section 2.3 shows that PRMS performs about as well as the three 456 

calibrations of VIC for simulating past peak streamflows, but more work would be needed to understand the 457 

reasons for divergence in future projections), (b) applying different statistical and/or dynamical downscaling 458 

methods, and (c) using a more sophisticated approach to evaluating extremes in a nonstationary climate (as 459 

advocated by Serinaldi and Kilsby, 2015). The mechanisms of flooding in the upper Columbia and elsewhere are 460 

also a key question arising from this work; this and other work is needed to decipher the cause of the discharge 461 

ratio patterns we found along the major rivers. Furthermore, a new generation of GCM outputs (CMIP6, Eyring 462 

et al. 2016) already has data available from over 25 GCMs; in the near future, it would be feasible to apply a 463 

newer multi-model hydrologic modeling approaches (e.g., Clark et al., 2015) to the new generation of GCMs, 464 

though perhaps no significant changes would result.  465 

 466 

Nonetheless, with current knowledge the fact that very few locations would see a decrease in flood risk under any 467 

climate/hydrologic scenario is a strong statement of the need to update all aspects of flood preparation: the 468 

definition of N-year (especially 100-year) return period streamflows, flood plain mapping, and reservoir rule 469 

curves, to name a few. Moreover, the challenges that the renegotiated Columbia River Treaty faces in accounting 470 

for climate change now appear to include the necessity of incorporating the likely increase in flood risk throughout 471 

the region.  472 
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 473 

Generally, this study shows how complex the spatial and temporal patterns of change can be in a mixed rain-and-474 

snow basin. Basins of similar size and hydrological response to warming exist on most continents, so our results 475 

provide a warning against using a small number of climate scenarios or a single hydrologic model to estimate 476 

changes in flood risk in other basins.  477 

 478 
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Figure captions. 616 

 617 

Figure 1. Domain of hydrologic simulations used in this paper, with colors indicating elevation of each grid cell, 618 

major rivers highlighted in blue, and numbers indicating locations of  streamflow points highlighted in Figures 6-619 

11, and Table 1. See Chegwidden et al. (2017, 2019) for all  streamflow locations plotted in Figure 5.  620 

Figure 2. Generalized Extreme Value fit of annual maximum daily streamflow from 50 years of simulation using 621 

output from one GCM (HadGEM2-ES), one hydrologic model (PRMS), for the Willamette River at Portland. Red 622 

and blue dots/ lines indicate the annual values and GEV fit for the 1950-99 ‘past’ and 2050-99 ‘future’ periods. 623 

 624 

Figure 3. Comparison of 10-year (a, b, c) and 100-year (d, e, f) flood magnitudes from the observationally derived 625 

NRNI and the 40 climate-hydrologic model simulations, for 1950-2008, for select locations on the rivers as shown. 626 

 627 

Figure 4. Statistical representations of the variation through the water year of the timing of flood events, 1950-628 

2008, for NRNI (blue) and the 40 simulations of 1950-2008 with the climate-hydrology modeling system (green). 629 

To create each curve, the dates of the 5 highest  streamflows in the period of record are tallied, and the resulting 630 

distributions smoothed. Long dashed lines indicate median date, short dashed lines the lowest and highest 631 

quartiles. MCD= Mica Dam (upper Columbia), TDA= The Dalles (lower Columbia, between the confluences of 632 

the Snake and Willamette), LGS = Little Goose (lower Snake), BRN=Brownlee, SVN=T. W. Sullivan (lower 633 

Willamette near Portland), DEX=Dexter (middle fork Willamette). 634 

 635 

Figure 5. Discharge ratios (future:past) versus centroid of timing (day on which 50% of water-year streamflow 636 

has passed, an indicator of snow dominance) for all 396 locations and four return periods. For each location, the 637 

average of 40 ensemble member ratios calculated from GEV distribution fitting from 50-year windows for the 638 

future (2050-2099) and past (1950-1999) time periods is shown. Points are sized by average daily  streamflow 639 

and colored by the coefficient of variation of the 40 ratios. 640 

 641 

Figure 6. As in Figure 5 but only for points on the indicated rivers. Dashed lines indicate tributaries: 9-12 are on 642 

the Middle Fork Willamette, 15-17 on the McKenzie; tributaries of the Snake are the Grand Ronde (14), 643 

Clearwater (17) and Salmon (24). In the lower panel, the Grand Ronde and Salmon are clearly distinguished by a 644 

black circle around their perimeter. Table 1 translates the codes in the legend into named locations and shows the 645 
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numerical values represented in the figure. As is evident from both snow-dominance and size, locations are 646 

ordered downstream to upstream from left to right for each river. 647 

648 

Figure 7. Averaged (large circles) and individual ensemble member (small colored circles) discharge ratios for 649 

simulated  streamflow locations along the mainstem Columbia River for the 10-year (top) and 100-year (bottom) 650 

return periods. As shown in the legend, the color of the dots distinguishes results by hydrologic model setup.  651 

652 

Figure 8. Average ratios of all 40 ensemble members (large circles) and the average of 4 hydrologic model 653 

results for each GCM (symbols), shown for simulated  streamflow locations along the Willamette (top), Snake 654 

(middle), and the mainstem Columbia (bottom) for 100-year return periods. GCMs are ordered in the legend 655 

by their ranking in Rupp et al. (2017), representing their ability to simulate Northwest climate. 656 

657 

Figure 9. As in Figure 8 but averaged by hydrologic model, for 10-year return period, and combined into one 658 

panel. 659 

660 

Figure 10. ANOVA results for select locations on the indicated rivers, for climate and hydrologic factors (and 661 

the residual). Charts are numbered to correspond with their location in Figure 6, with the most-downstream 662 

location at the top. 663 

664 

Figure 11. Statistical representations of the variation through the water year of the timing of flood events. For 665 

each of the 40 simulations, the dates of the 5 highest streamflows in the 50-year past (blue) and future (green) 666 

windows are tallied, and the resulting distributions smoothed. Long dashed lines indicate median date, short 667 

dashed lines the lowest and highest quartiles. 668 

669 

670 
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 671 

 672 

Table 1 Information about locations featured in this paper - location, river, and discharge ratios 673 

   
10-year flood discharge 

ratios 

100-year flood discharge 

ratios 

River UW Key Description Avg. 
Coeff. 

of Var. 
Min Max Avg. 

Coeff. 

of Var. 
Min Max 

Chehalis CHEGR 
Chehalis R nr 

Grand Mound 
1.21 0.09 1.03 1.42 1.34 0.18 0.87 2.07 

Chehalis CHE 
Chehalis R at 

Porter 
1.21 0.08 1.03 1.40 1.31 0.16 0.91 1.89 

Willamette SVN T.W. Sullivan 1.33 0.09 1.07 1.64 1.39 0.22 0.87 2.39 

Willamette WILPO Portland 1.34 0.09 1.08 1.69 1.40 0.23 0.86 2.47 

Willamette WILLA Newberg 1.34 0.09 1.09 1.66 1.40 0.22 0.88 2.44 

Willamette SLM Salem 1.37 0.09 1.10 1.70 1.43 0.22 0.84 2.52 

Willamette ALBO Albany 1.40 0.09 1.11 1.73 1.47 0.20 0.89 2.40 

Willamette HARO Harrisburg 1.45 0.10 1.18 1.86 1.50 0.22 0.88 2.37 

Willamette JASO 
Middle fork @ 

Jasper 
1.50 0.14 1.20 2.13 1.57 0.23 0.93 2.68 

Willamette DEX Dexter 1.55 0.16 1.17 2.33 1.61 0.22 1.05 2.67 
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10-year flood discharge 

ratios 

100-year flood discharge 

ratios 

River UW Key Description Avg. 
Coeff. 

of Var. 
Min Max Avg. 

Coeff. 

of Var. 
Min Max 

Willamette HCR Hills Creek 1.57 0.18 1.15 2.46 1.60 0.25 1.10 3.18 

Willamette WILNF Oakridge 1.57 0.18 1.16 2.45 1.63 0.24 1.09 2.88 

Willamette EUGO 

WR at 

Eugene 

(NWP) 

1.50 0.12 1.26 2.04 1.54 0.22 0.88 2.57 

Willamette WAV Walterville 1.54 0.13 1.29 2.13 1.55 0.18 1.04 2.23 

Willamette LEA Leaburg 1.56 0.14 1.28 2.23 1.56 0.18 1.05 2.34 

Willamette VIDO 
McKenzie nr 

Vida 
1.57 0.15 1.28 2.32 1.58 0.19 1.02 2.41 

Willamette COT 
Cottage 

Grove 
1.25 0.11 0.97 1.69 1.39 0.29 0.78 2.38 

Snake IHR Ice Harbor 1.20 0.13 0.92 1.75 1.26 0.28 0.79 2.84 

Snake LMN 
Lower 

Monumental 
1.20 0.13 0.92 1.76 1.26 0.28 0.78 2.77 

Snake LGS Little Goose 1.19 0.13 0.92 1.77 1.26 0.28 0.78 2.83 
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10-year flood discharge 

ratios 

100-year flood discharge 

ratios 

River UW Key Description Avg. 
Coeff. 

of Var. 
Min Max Avg. 

Coeff. 

of Var. 
Min Max 

Snake LWG 
Lower 

Granite 
1.19 0.13 0.92 1.77 1.25 0.29 0.78 2.89 

Snake ANA Anatone 1.24 0.14 0.95 1.74 1.29 0.29 0.78 2.84 

Snake LIM Lime Point 1.23 0.14 0.94 1.73 1.28 0.30 0.76 2.81 

Snake HCD Hells Canyon 1.40 0.18 1.01 2.11 1.55 0.38 0.87 3.62 

Snake OXB Oxbow 1.41 0.18 1.01 2.11 1.56 0.38 0.86 3.65 

Snake BRN 
Brownlee 

Dam 
1.41 0.18 1.01 2.12 1.56 0.37 0.86 3.63 

Snake WEII Weiser,ID 1.39 0.18 1.02 2.09 1.53 0.35 0.86 3.28 

Snake SNYI Nyssa, OR 1.40 0.18 1.04 2.16 1.52 0.33 0.89 3.21 

Snake SWAI Murphy, ID 1.37 0.19 0.98 2.09 1.48 0.33 0.84 3.24 

Snake CJSTR 
CJ Strike 

Dam 
1.37 0.19 0.97 2.08 1.48 0.32 0.86 3.08 

Snake SKHI King Hill, ID 1.37 0.19 0.96 2.08 1.48 0.32 0.85 2.84 
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10-year flood discharge 

ratios 

100-year flood discharge 

ratios 

River UW Key Description Avg. 
Coeff. 

of Var. 
Min Max Avg. 

Coeff. 

of Var. 
Min Max 

Snake 

SNKBL

WLSAL

MON 

Hagerman, 

ID 
1.35 0.18 0.93 2.05 1.46 0.31 0.83 2.66 

Snake BUHL Buhl, ID 1.35 0.19 0.91 2.05 1.46 0.32 0.73 2.54 

Snake KIMI Kimberly, ID 1.33 0.19 0.89 2.03 1.44 0.33 0.74 2.47 

Snake MILI Milner, ID 1.33 0.19 0.88 2.04 1.44 0.34 0.73 2.52 

Snake MINI Minidoka, ID 1.33 0.19 0.86 2.02 1.45 0.33 0.70 2.53 

Snake AMFI 

Neeley 

American 

Falls 

1.32 0.19 0.85 1.99 1.45 0.34 0.67 2.69 

Snake BFTI 
nr Blackfoot, 

ID 
1.31 0.19 0.84 1.96 1.43 0.34 0.67 2.72 

Snake SNAI 
nr Blackfoot, 

ID 
1.30 0.19 0.84 1.95 1.43 0.34 0.67 2.69 

Snake SHYI Shelley, ID 1.29 0.18 0.84 1.92 1.40 0.33 0.69 2.62 

Snake LORI Lorenzo, ID 1.28 0.19 0.86 1.91 1.38 0.34 0.69 2.52 
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10-year flood discharge 

ratios 

100-year flood discharge 

ratios 

River UW Key Description Avg. 
Coeff. 

of Var. 
Min Max Avg. 

Coeff. 

of Var. 
Min Max 

Snake HEII Heise, ID 1.28 0.18 0.86 1.91 1.37 0.33 0.70 2.53 

Snake PALI 
Irwin 

Palisades 
1.28 0.19 0.87 1.95 1.37 0.34 0.71 2.60 

Snake JKSY Jackson, WY 1.26 0.15 0.89 1.73 1.35 0.30 0.80 2.46 

Snake SRMO Moose, WY 1.25 0.13 0.91 1.59 1.35 0.25 0.83 2.34 

Grand 

Ronde 
TRY Troy 1.48 0.19 1.09 2.55 1.68 0.34 1.01 4.38 

Salmon WHB White Bird 1.07 0.13 0.83 1.57 1.09 0.33 0.72 2.81 

Columbia CRVAN Vancouver 1.03 0.09 0.90 1.22 1.05 0.13 0.80 1.49 

Columbia BON Bonneville 1.03 0.09 0.90 1.21 1.05 0.13 0.80 1.49 

Columbia TDA The Dalles 1.03 0.08 0.90 1.20 1.05 0.13 0.81 1.52 

Columbia JDA John Day 1.02 0.08 0.90 1.19 1.05 0.13 0.80 1.51 

Columbia MCN McNary Dam 1.02 0.08 0.89 1.18 1.05 0.13 0.80 1.45 
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10-year flood discharge 

ratios 

100-year flood discharge 

ratios 

River UW Key Description Avg. 
Coeff. 

of Var. 
Min Max Avg. 

Coeff. 

of Var. 
Min Max 

Columbia CLKEN 
Clover Island 

@ Kennewick 
1.03 0.10 0.82 1.22 1.11 0.14 0.84 1.49 

Columbia CHJ Chief Joseph 1.06 0.11 0.83 1.25 1.15 0.15 0.85 1.70 

Columbia GCL 
Grand 

Coulee 
1.06 0.11 0.83 1.25 1.14 0.14 0.84 1.66 

Columbia PRD Priest Rapids 1.04 0.10 0.82 1.22 1.11 0.13 0.84 1.54 

Columbia WAN Wanapum 1.04 0.10 0.82 1.22 1.11 0.14 0.84 1.58 

Columbia RIS Rock Island 1.04 0.10 0.82 1.23 1.12 0.14 0.84 1.60 

Columbia RRH Rocky Reach 1.05 0.10 0.83 1.23 1.13 0.14 0.84 1.61 

Columbia WEL Wells Dam 1.05 0.10 0.83 1.24 1.14 0.14 0.85 1.63 

Columbia ARD 

Hugh 

Keenleyside 

(Arrow) 

1.13 0.12 0.87 1.43 1.24 0.21 0.69 1.83 

Columbia RVC Revelstoke 1.19 0.12 0.91 1.62 1.36 0.23 0.69 2.08 
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10-year flood discharge 

ratios 

100-year flood discharge 

ratios 

River UW Key Description Avg. 
Coeff. 

of Var. 
Min Max Avg. 

Coeff. 

of Var. 
Min Max 

Columbia MCD Mica Dam 1.22 0.12 0.94 1.66 1.41 0.24 0.72 2.12 

Columbia DONAL Donald 1.28 0.14 1.02 1.79 1.55 0.25 0.94 2.38 

Columbia CRNIC Nicholson 1.25 0.13 0.98 1.61 1.47 0.23 0.94 2.39 

Clearwater SPD Spalding, ID 1.15 0.15 0.85 1.78 1.32 0.30 0.80 2.63 

Clearwater DWR 
Dworshak 

Dam, ID 
1.14 0.12 0.86 1.55 1.30 0.24 0.89 2.22 

Santiam JFFO 
Santiam R nr 

Jefferson 
1.40 0.10 1.14 1.81 1.41 0.25 0.81 2.27 

Kootenay COR 
Corra Linn 

Dam, BC 
1.08 0.12 0.85 1.31 1.15 0.16 0.79 1.67 

Kootenai LIB 
Libby Dam, 

MT 
1.17 0.14 0.92 1.52 1.32 0.22 0.85 2.01 

Kootenay BFE 
Bonner's 

Ferry, ID 
1.13 0.13 0.89 1.45 1.26 0.20 0.83 2.02 

Pend 

Oreille 
ALF 

Albeni Falls, 

ID 
1.26 0.14 0.96 1.68 1.65 0.30 1.02 2.97 
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10-year flood discharge 

ratios 

100-year flood discharge 

ratios 

River UW Key Description Avg. 
Coeff. 

of Var. 
Min Max Avg. 

Coeff. 

of Var. 
Min Max 

Flathead CFM 
Columbia 

Falls, MT 
1.24 0.13 0.94 1.63 1.65 0.26 1.01 3.19 

Flathead HGH 
Hungry Horse 

Dam, MT 
1.30 0.13 1.04 1.70 1.78 0.29 1.16 3.56 

Yakima KIOW Yakima, WA 1.82 0.21 1.35 3.11 2.28 0.30 1.57 4.39 

 674 
 675 
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564 

565 
566 

Figure 1. Domain of hydrologic simulations used in this paper, with colors indicating elevation of each grid cell, 567 
major rivers highlighted in blue, and numbers indicating locations of streamflow points highlighted in Figures 4-568 
9, and Table 1. See Chegwidden et al. (2017, 2019) for all streamflow locations plotted in Figure 3. Digital ele-569 
vation data are in the public domain, obtained from https://www2.usgs.gov/science/cite-view.php?cite=1530 570 
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571 
Figure 2. Generalized Extreme Value fit of annual maximum daily flow from 50 years of simulation using output 572 
from one GCM (HadGEM2-ES), one hydrologic model (PRMS), for the Willamette River at Portland. Red and 573 
blue dots/ lines indicate the annual values and GEV fit for the 1950-99 ‘past’ and 2050-99 ‘future’ periods. 574 



Figure 3. Comparison of 10-year (a, b, c) and 100-year (d, e, f) flood magnitudes from the observationally derived 
NRNI and the 40 climate-hydrologic model simulations, for 1950-2008, for select locations on the rivers as shown.



Figure 4. Statistical representations of the variation through the water year of the timing of flood events, 1950-2008, 
for NRNI (blue) and the 40 simulations of 1950-2008 with the climate-hydrology modeling system (green). To 
create each curve, the dates of the 5 highest streamflows in the period of record are tallied, and the resulting 
distributions smoothed. Long dashed lines indicate median date, short dashed lines the lowest and highest quartiles. 
MCD= Mica Dam (upper Columbia), TDA= The Dalles (lower Columbia, between the confluences of the Snake and 
Willamette), LGS = Little Goose (lower Snake), BRN=Brownlee, SVN=T. W. Sullivan (lower Willamette near 
Portland), DEX=Dexter (middle fork Willamette).
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575 
576 

Figure 5. Discharge ratios (future:past) versus centroid of timing (day on which 50% of water-year flow has 577 
passed, an indicator of snow dominance) for all 396 locations and four return periods. For each location, the 578 
average of 40 ensemble member ratios calculated from GEV distribution fitting from 50-year windows for the 579 
future (2050-2099) and past (1950-1999) time periods is shown. Points are sized by average daily streamflow and 580 
colored by the coefficient of variation of the 40 ratios. 581 
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582 

583 
Figure 6. As in Figure 5 but only for points on the indicated rivers. Dashed lines indicate tributaries: 9-12 are on 584 
the Middle Fork Willamette, 15-17 on the McKenzie; tributaries of the Snake are the Grand Ronde (14), Clear-585 
water (17) and Salmon (24). In the lower panel, the Grand Ronde and Salmon are clearly distinguished by a black 586 
circle around their perimeter. Table 1 translates the codes in the legend into named locations and shows the nu-587 
merical values represented in the figure. As is evident from both snow-dominance and size, locations are ordered 588 
downstream to upstream from left to right for each river. 589 
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590 
591 Figure 7. Averaged (large circles) and individual ensemble member (small colored circles) discharge ratios for 

592 simulated streamflow locations along the mainstem Columbia River for the 10-year (top) and 100-year (bottom) 

593 return periods. As shown in the legend, the color of the dots distinguishes results by hydrologic model setup.  
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Figure 8. Average ratios of all 40 ensemble members (large circles) and the average of 4 hydrologic model re-594 
sults for each GCM (symbols), shown for simulated streamflow locations along the Willamette (top), Snake 595 
(middle), and the mainstem Columbia (bottom) for 100-year return periods. GCMs are ordered in the legend 596 
by their ranking in Rupp et al. (2017), representing their ability to simulate Northwest climate. 597 
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598 
599 
600 
601 Figure 9: as in Figure 8 but averaged by hydrologic model, for 10-year return period, and combined into one 

602 panel. 
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603Figure 10. ANOVA results for select locations on the indicated rivers, for climate and hydrologic factors (and the 

604 residual). Charts are numbered to correspond with their location in Figure 4, with the most-downstream location 

605 at the top. The Snake enters the Columbia after location #59. 
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606 

Figure 11. Statistical representations 

of the variation through the water year 

of the timing of flood events. For each 

of the 40 simulations, the dates of the 

5 highest flows in the 50-year past 

(blue) and future (green) windows are 

tallied, and the resulting distributions 

smoothed. Long dashed lines indicate 

median date, short dashed lines the 

lowest and highest quartiles. 
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