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Abstract.   

The Twente region in the east of the Netherlands has a network with twenty soil monitoring stations that has been utilized 

for validation of the Soil Moisture Active/Passive (SMAP) passive-only soil moisture products. Over the period from April 

2015 until December 2018, seven stations covered by the SMAP reference pixels have fairly complete data records. Spatially 15 

distributed soil moisture simulations with the Dutch national hydrological model have been utilized for the development of 

upscaling functions to translate the spatial mean of point measurements to the domain of the SMAP reference pixels. The 

native and upscaled spatial soil moisture means have been adopted as in situ references to assess the performance of the 

SMAP i) Single Channel Algorithm at Horizontal Polarization (SCA-H), ii) Single Channel Algorithm at Vertical 

Polarization (SCA-V), and iii) Dual Channel Algorithm (DCA) soil moisture estimates. In the case of the Twente network it 20 

was found that the SCA-V soil moisture retrieved SMAP observations collected in the afternoon had the best agreement with 

the in situ references leading to an unbiased Root Mean Squared Error (uRMSE) of 0.059 m3 m-3. This is larger than the 

mission target accuracy of 0.04 m3 m-3, which can be attributed to large over- and underestimation errors (>0.08 m3 m-3) in 

particular at the end of dry spells and during freezing, respectively. The strong vertical dielectric gradients associated with 

rapid soil freezing and wetting causes the disparity in soil depth characterized by SMAP and in situ that leads to the large 25 

mismatches. Once filtered for frozen conditions and antecedent rainfall the uRMSE improves to 0.043 m3 m-3.  

1 Introduction  

Science and professional communities rate the success of satellite missions, at least in part, by error metrics calculated between 

its data products and a reference. ESA’s Soil Moisture and Ocean Salinity (SMOS, Kerr et al. 2001) and NASA’s Soil Moisture 

Active Passive (SMAP, Entekhabi et al. 2010) mission apply a target accuracy of 0.04 m3 m-3 to the retrieval of soil moisture 30 

from L-band brightness temperature in the top 5 cm of soil. Comprehensive calibration and validation programmes (e.g. 

Jackson et al. 2013, Delwart et al. 2010) are, therefore, imperative to establishing a reference to which the retrieved soil 

moisture can be compared in an objective manner. This is, however, complicated by the disparity in spatial support provided 

by satellite observations and the techniques available to measure soil moisture in situ (Western and Blöschl 1999, Cosh et al. 

2015). Indeed, the area covered by measurements taken with most ground sampling techniques is a mere fraction of the area 35 

covered by satellite footprints (Jackson et al. 2012). Also, differences between soil depths that can be sampled reliably in situ 
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and observed with microwave radiometry contribute to this spatial-scale mismatch (e.g. Escorihuela et al. 2010, Zheng et al. 

2019). 

A strategy that can be adopted for validation of satellite-based soil moisture estimates is accepting the spatial-scale mismatch 

and focusing efforts on quantifying spatial sampling errors by introducing a third independent data set of the same quantity 

(e.g. Stoffelen et al. 1998, Miralles et al. 2010); referred to as Triple Collocation (TC). Recently, Chen et al. (2017) applied its 5 

classic and extended TC versions for validating SMAP L2 data products using data from sparse in situ monitoring networks 

and acknowledged its merits in correlation-based assessments, but they found that TC is unlikely able to correct RSMEs (root 

mean squared errors) for spatial sampling errors due to large biases between point and satellite-based estimates. This supports 

the choice for using sites with multiple measurement locations inside satellite footprints as the primary basis for assessing the 

performance of the SMAP L2 data products (Chan et al. 2016, Colliander et al. 2017). 10 

However, even with a network with a multitude of soil moisture monitoring stations, the question remains how to translate the 

collection of spatially distributed point measurements to the satellite footprint and how many stations are needed to establish 

a reliable spatial mean. Crow et al. (2012) provide a review of the upscaling of point measurements to satellite footprints. For 

instance, Famiglietti et al. (2008) applied stochastic analyses to surface soil moisture data sets collected during intensive field 

campaigns, and concluded that 30 samples are needed to estimate the spatial mean of 50 x 50 km2 domains (approximate size 15 

of satellite footprints) with an accuracy of 0.03 m3 m-3 with 95 % confidence. Brocca et al. (2010) used statistical and temporal 

stability analyses applied to year-round intensive field measurements to conclude that nearly 40 samples are needed to 

determine the catchment (60 x 60 km2) mean soil moisture with an accuracy of 0.02 m3 m-3. Other investigators (Mohanty and 

Skaggs 2001, Cosh et al. 2005, Martínez-Fernández and Ceballos 2005) have adopted the temporal stability concept to 

diagnose how well measurements taken at specific locations represent the spatial mean recorded by the network. However, De 20 

Lannoy et al. (2007) indicated that temporal stability may be less suited as upscaling strategy under complex hydrologic terrain 

with a strong soil layer stratification and/or spatially heterogeneous water management practices. Moreover, reliance on a 

limited number of measurement sites makes the spatial mean vulnerable to spatially varying rainfall and the continuity of the 

data streams.  

In summary, preferably more than 30 spatially independent measurements are suggested to establish a reliable reference for 25 

validation of satellite-based soil moisture estimates and no generally accepted upscaling protocol exists with which metrics 

can be derived without spatial sampling errors. This poses a challenge on validation activities as only a few monitoring 

networks with such high density of stations are available at a particular time mainly because of the difficulty in keeping all 

stations operational. This led to accepting an accuracy of 0.03 m3 m-3 for the spatial mean with a 70 % confidence, implying a 

requirement of at least eight monitoring stations within satellite footprints, and the application of an upscaling strategy based 30 

on weights assigned to individual measurements using Thiessen polygons (Colliander et al. 2017).  

The Twente soil moisture monitoring network, located in the central-eastern part of the Netherlands, is one of the regions that 

has been used for validation of the SMAP L2 passive-only soil moisture products (Colliander et al. 2017, Chan et al. 2018). 

The Twente network consisted of twenty locations where both soil moisture and temperature were measured at various depths. 
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However, not all stations could be utilized because some did not fall within the satellite validation footprint and other stations 

did not consistently deliver data as result of instrument failures, vandalism or changes in landownership. As a result, the 

requirement of eight operational stations was not always met. This was in particular the case for April to October 2015. Hence, 

a model-based upscaling strategy, similar to the one described in Crow et al (2005), was explored to be able to utilize the in-

situ measurements for validation of the SMAP L2 soil moisture estimates also for periods when the number of operational 5 

stations would fall short of the requirement.  

In this paper, we report on the development of a model-based upscaling method with scaling parameters derived directly from 

the mean and standard deviation of the in situ measured and model simulated soil moisture. We adopted the Dutch integrated 

water resources model (De Lange et al. 2014), called ‘Landelijke Hydrologisch Model’ (LHM, National Hydrological Model 

in Dutch) that simulates the transfer of water masses across the groundwater, unsaturated zone and surface water reservoirs. 10 

LHM simulated soil moisture matching in situ measurements from January 2015 till October 2018 were utilized to develop 

the upscaling functions, which were subsequently used to assess the performance of the SMAP L2 passive-only soil moisture 

product for the periods from April 2015 to December 2018.  

2. Study area and in situ measurements  

2.1. Twente region 15 

The monitoring stations are distributed across the central-eastern part of the Netherlands in the region known as ‘Twente’. 

Characteristics of this region include very little relief and the use of land for farming practices amongst various mid-sized 

urban conglomerates. Pastures make up for more than seventy percent of the agricultural fields and the remainder is mostly 

corn, wheat and potatoes. The growing season generally starts in April and ends around October/November depending on the 

weather and crop type. In this period, the pastures are either grazed by cattle or mowed four to six times. Forested areas are 20 

typically found on the gently rolling hills (< 50 m in height).  

Sandy, loamy, and peat soils are the main soil types (Dente et al. 2011). Sand and loamy sand are dominant near the surface 

and some peat remnants are spread across the domain. The subsurface consists mostly of glacial windblown sand deposits in 

the south and poorly drained soils in the north. The groundwater tables are rather shallow across the entire region; close to the 

surface during winters and 1 to 2 meters deep during summers. Water standing on the fields can be persistent in low-lying 25 

areas in the cold wet season and may also occur in the warm season after intensive rain.  

Climate in Twente is determined by a mixture of influences from the sea towards the west and land towards the east. Moist 

and warm (or cold in the summer) air is received from the sea direction, whereas dry and cold (or warm in the summer) air is 

blown from land. As a result, both winters and summers are generally mild and wet. However, fairly extreme cold and warm 

episodes may occur depending on the wind direction with temperatures well below -10 oC in winter or well above 30 oC uin 30 

summer, respectively. Figure 1 provides an impression of the prevailing weather conditions for the study period, from January 

2015 till February 2019, by showing monthly averages of daily mean, minimum and maximum 1.5 m air temperatures (Tmean, 
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Tmin and Tmax, respectively) along with monthly rainfall and reference crop evapotranspiration (ETref) sums. Data presented in 

the plot are derived from meteorological measurements collected at the three weather stations in the region (see Fig. 2) operated 

by the Royal Netherlands Meteorological Institute (KNMI). It should be noted that 2018 was an exceptional year with record 

high temperatures and evaporative demand, and low rainfall. 

2.2. Measurement networks 5 

Figure 2 displays the distribution of soil monitoring stations and KNMI weather stations and the extent of the SMAP reference 

pixels laid over a Landsat 8 true colour composite of 20 July 2013. Wind, temperature, radiation, precipitation, visibility, 

humidity and ETref observations for the Heino and Hupsel automated weather stations are available from 1989 onwards, and 

the Twenthe record even dates back to 1951. More information and data access can be obtained from 

http://www.knmi.nl/nederland-nu/klimatologie (last access: July 10th, 2019).  10 

The University of Twente (UT-ITC) soil monitoring network was developed in 2009. Twenty stations were setup to measure 

soil moisture and soil temperature every fifteen minutes with Decagon EC-TM ECH2O probes installed at nominal depths of 

5, 10, 20, and 40 cm below the surface. Budget constraints restricted the number of fully equipped stations, but every station 

included a sensor at 5 and 10 cm. A soil-specific calibration function was developed for the EC-TM probe under laboratory 

conditions with which an estimated accuracy of 0.023 m3 m-3. Readers are referred to Dente et al. (2012) and Dente et al. 15 

(2011) for additional information on the network development.  

Over time, the original location of a number of stations had to be changed for various reasons (e.g. vandalism, land 

use/ownership change). This and equipment failures caused gaps in the data records. In the fall of 2015, a concerted 

maintenance operation was undertaken to update the network. Activities included reinstallation of stations within the same 

field, in an adjacent field of the same landowner or in a neighboring parcel of a different landowner. The newly installed 20 

stations are equipped with five new Decagon 5TM probes at nominal depths of 5, 10, 20, 40 and 80 cm with the exception of 

station 04 (three probes) due to a shallow groundwater table and station 07 (four probes). Also, a new soil-specific calibration 

function was developed for the 5TM probe following the same procedure as described in Dente et al. (2011) with an accuracy 

of 0.027 m3 m-3 expected. Since the fall of 2017, stations 06, 19 and 20 are no longer operational and have been replaced by 

equipment installed at the premises of the KNMI weather stations Hupsel and Twenthe. Table S1 lists the stations, the 25 

vegetation cover, the sensor types and depth, and dates on which the locations of the stations were changed, when applicable.  

3. Spatial data  

3.1. SMAP and its passive-only soil moisture products 

The SMAP mission includes a radiometer that measures at a centre frequency of 1.4135 GHz (L-band) the four Stokes 

parameters of which two provide the horizontally (H) and vertically (V) polarized brightness temperatures (Tb), and the other 30 

two (T3 and T4) channels serve to correct for the Faraday rotation. Additional signal processing techniques have been embedded 
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within the design of SMAP to assist with the detection and mitigation of RFI (see Piepmeier et al. (2014) and Mohammed et 

al. (2016) for details). The SMAP radiometer observes at an angle of 40o with a 3-dB instantaneous field of view (IFOV) of 

38 km x 49 km on the earth surface from a sun-synchronous orbit every 2 to 3 days at nominal overpass times of 6:00 AM 

(descending) and 6:00 PM (ascending) near the equator (Piepmeier et al. 2017). All native gridded radiometer-based data 

products are placed on an Equal-Area Scalable Earth (EASE) grid projection version 2 (Brodzik et al. 2012, 2014) with a 5 

nominal 36 km x 36 km pixel size (Chan et al. 2016). Enhanced radiometer-based data products are available with a pixel size 

of 9 km x 9 km, which are created through application of the Backus-Gilbert optimal interpolation technique to the antenna 

temperatures of overlapping SMAP footprints (Chan et al. 2018).  

Soil moisture retrieval is performed using five algorithms applied to the calibrated and gridded L1C brightness temperature 

products, and ran through sets of processing steps and data streams responsible for the necessary inputs and flags for 10 

unfavourable land surface conditions (see O’Neill et al. (2018) for details). All five algorithms are based on the zeroth order 

radiative transfer approach described in Mo et al. (1982), whereby the most fundamental difference among them is the manner 

in which the vegetation effects are treated. Two Single Channel Algorithms (SCA) adopt the ancillary data approach (Jackson 

1993) to calculate the vegetation opacity and estimate the soil moisture content from either the H or V polarized Tb, hereafter 

referred to as SCA-H and SCA-V. The other three algorithms make use of the combination of H and V polarized Tb’s to derive 15 

simultaneously the vegetation opacity and soil moisture content. The Dual Channel Algorithm (DCA) and Extended DCA (E-

DCA) accomplish this by iteratively minimizing cost functions composed of the observed and modelled Tb, whereas the 

Microwave Polarization Ratio Algorithm (MPRA, Owe et al. 2008) uses closed-form relationships. Previous analyses (Chan 

et al. 2016) have shown that the E-DCA and MPRA provide essentially the same results as the DCA; therefore, only the 

retrievals obtained using the SCA-H, SCA-V and DCA are evaluated here.  20 

To optimize the number of covered soil moisture monitoring stations, the SMAP team developed a validation grid processing 

procedure that allows centring the footprint on any location along the defined 3 km grid lines (Colliander et al. 2017). Figure 

2 shows the three SMAP reference pixels selected for the Twente network, coded SMAP 3606, SMAP 3306 and SMAP 4371. 

SMAP 3606 is the reference pixel based on the native 36 km resolution. SMAP 3306 with a 33 km resolution originates from 

the development of the enhanced data products (Colliander et al. 2018). SMAP 4371 evolved from a reconsideration of the 25 

shape of footprint and has a 36 km resolution. As indicated in Table 1 and shown in Fig. 2, SMAP 3606 and 3306 are quite 

similar and are both represented by thirteen monitoring stations, while SMAP pixel 4371 is represented by a total of seventeen 

stations. Note that stations less than five kilometres from the periphery are also assigned to that reference pixel and that not all 

stations were continuously operational during the study period. For this research, the SMAP soil moisture retrievals (version 

R164020) for the three reference pixels have been analysed from April 2015 till December 2018.  30 

3.2. LHM soil moisture simulations  

The LHM (Landelijk Hydrologisch Model) is the national implementation of the Netherlands Hydrological Instrument (NHI, 

De Lange et al. 2014), which is an integrated framework that couples physically-based modelling approaches for the 
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groundwater, unsaturated and surface water flow. MODFLOW (Harbaugh et al. 2017) is used to simulate groundwater flow 

and a meta version of the Soil Water Atmosphere Plant (SWAP, Van Dam et al. 2008) model, called MetaSWAP (Van Walsum 

and Groenendijk 2008), is adopted to compute the unsaturated soil water flow with a quasi-steady state solution of Richards’ 

equation. Readers are referred to De Lange et al. (2014) and www.nhi.nu (last access: July 10th, 2019) for more information 

on NHI.  5 

The national NHI implementation, viz. LHM, consists of boundary conditions and atmospheric forcings derived from a 

comprehensive set of data layers for which various research institutes in the Netherlands are responsible. For instance, 

subsurface information follows from the national hydrogeological database with a pixel spacing of 100 m 

(https://www.dinoloket.nl/regis-ii-het-hydrogeologische-model last access: July 10th, 2019). The Dutch class pedotransfer 

function applied to the 500 m resolution soil map provides the soil physical characteristics (Wösten et al. 2013). A 5 m 10 

resolution LIDAR-based Digital Terrain Model is included as elevation data (http://www.ahn.nl/index.html, last access: July 

10th, 2019) and the land use information is adopted from the national 25 m resolution land use map (Hazeu et al. 2014). Daily 

rainfall and ETref are the two primary atmospheric forcings obtained from KNMI as 1 km gridded data products. The 

precipitation data is based on gauge-adjusted rain radar observations (Overeem et al. 2009) and the spatial ETref data is obtained 

via thin plate spline interpolation of the ETref available for the thirty-five automated weather stations operated by KNMI in the 15 

Netherlands (https://data.knmi.nl/datasets/EV24/2, last access: July 10th, 2019), of which three are shown in Fig. 2.  

The LHM simulations used for this investigation cover the period from January 2015 till October 2018. The initial conditions 

are obtained by spinning the model up for one year starting from long term climatology states. The LHM model structure 

provides daily soil moisture simulations of the root zone with a nominal depth of 0.4 m for the Twente region on a 250 m 

resolution grid.  20 

4. From point to footprint scale  

4.1. Method 

Soil moisture measured in situ is only representative of a small domain whereas model simulations provide spatial distributions 

across scales. The assumption is that the spatial soil moisture variability simulated by LHM projected on the in situ 

measurements can be used to obtain a reference representative for the satellite footprint. Figure 3 illustrates this spatial-scale 25 

mismatch between the in situ monitoring stations, the LHM grid and the reference pixels of SMAP.  

However, spatial-scale mismatch is not the only cause of biases between the climatologies of in situ measurements and model 

simulations. Also, the model physics employed and the specific application (e.g. atmospheric forcings, boundary conditions, 

soil and vegetation parameters) contribute. The method selected for the transformation from point to footprint scale is based 

on matching the mean and standard deviation (1st and 2nd statistical moments) of the in situ measured and LHM simulated soil 30 

moisture records as was done previously by, for instance, Draper et al. (2009) for the assessment of satellite derived soil 

moisture over Australia.  
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The first step is to convert the statistical moments of the LHM simulations into those of in situ measurements within the 

satellite footprint, according to,  

𝜃𝑚,f
𝑖 (𝑡) = 𝜇𝑖 +

𝜎𝑖

𝜎𝑚,p
[𝜃𝑚,𝑓(𝑡) − 𝜇𝑚,p]         (1) 

where θ (m3 m-3) stands for the spatial mean soil moisture content within the SMAP footprint of the indicated data source at 

time t, μ (m3 m-3)and σ (m3 m-3) stand for the temporal mean and standard deviation of θ(t), subscripts i, m,p and m,f indicate that 5 

the variable is derived from the in situ measurements, model grid cells where the monitoring stations are located, and all model 

grid cells covering the SMAP footprint, respectively, and superscript i indicates that the variable is transformed into the in situ 

measured climatology. 

After transformation of the LHM soil moisture data to the in situ measured statistics, the step from point-scale to footprint 

representative measurements is taken as follows,  10 

𝜃𝑖,𝑓(𝑡) = 𝜇𝑚,𝑓
𝑖 +

𝜎𝑚,f
𝑖

𝜎𝑖
(𝜃𝑖(𝑡) − 𝜇𝑖)          (2) 

where subscript i,f indicates that the in situ soil moisture is considered representative for the satellite footprint.  

From Eq. (2) a linear relationship between 𝜃𝑖,𝑓 and 𝜃𝑖 can be identified of the following form,  

𝜃𝑖,𝑓(𝑡) = a + b𝜃𝑖(𝑡)           (3) 

with, 15 

𝑎 = 𝜇𝑚,𝑓
𝑖 −

𝜎𝑚,𝑓
𝑖

𝜎𝑖
𝜇𝑖           (3a) 

𝑏 =
𝜎𝑚,𝑓

𝑖

𝜎𝑖
             (3b) 

The parameterization of a and b can be simplified by recognizing that 𝜇𝑚,𝑓
𝑖  and 𝜎𝑚,𝑓

𝑖  can be obtained from Eq. (1) as follows, 

𝜇𝑚,𝑓
𝑖 = 𝜇𝑖 +

𝜎𝑖

𝜎𝑚,𝑝
(𝜇𝑚,𝑓 − 𝜇𝑚,𝑝)          (4a) 

𝜎𝑚,𝑓
𝑖 =

𝜎𝑖

𝜎𝑚,𝑝
𝜎𝑚,𝑓            (4b) 20 

Substitution of Eq (4b) into Eq. (3b) gives  

𝑏 =
𝜎𝑚,𝑓

𝑖

𝜎𝑖
=

𝜎𝑖
𝜎𝑚,𝑝

𝜎𝑚,𝑓

𝜎𝑖
=

𝜎𝑚,𝑓

𝜎𝑚,𝑝
           (5) 

Using Eq. (5) together with Eq. (4a) to eliminate 𝜇𝑚,𝑓
𝑖  and 𝜎𝑚,𝑓

𝑖   from Eq. (3a) yields after some rearrangements, 

𝑎 = 𝜇𝑖 (1 −
𝜎𝑚,𝑓

𝜎𝑚,𝑝
) +

𝜎𝑖

𝜎𝑚,𝑝
(𝜇𝑚,𝑓 − 𝜇𝑚,𝑝)         (6) 

Equation (3) forms the upscaling function with a and b given by Eq. (6) and Eq. (5), respectively. The advantage of the 25 

mathematical rearrangements leading to Eq. (5) and Eq. (6) is that upscaling functions can be determined directly from the 

statistical moments (1st and 2nd) of in situ measured and model simulated soil moisture. Interesting to note is that the slope of 

the upscaling function, b, is independent of the in situ measurements. This implicates that the choice on the in situ 

measurements affects primarily the offset, a, of the upscaling function as will be shown in the following sections.  
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4.2.Comparison of spatial soil moisture means 

The application of the method described by Eqs. (1)- (3) depends on the availability of data from the individual measurement 

stations. As indicated in Sect. 2.2, the data record of the Twente soil moisture monitoring network has several gaps and also 

the three SMAP footprints cover different numbers of stations. Table 1 indicates for the stations present within the three SMAP 

footprints the availability and continuity (e.g. changes in the location of stations) of the 5 cm soil moisture data. The table 5 

shows that for each of the three footprints there are seven stations available with a fairly complete record and that after the 

Spring 2016 the data availability improved considerably.  

Ideally, satellite-based soil moisture estimates are validated against a reference established based on as many spatially 

distributed samples as possible over a time period as long as possible. To investigate whether both criteria can be met, we 

assessed the agreement between pairs of spatial means composed of measurements from i) the seven stations (hereafter 7-10 

station mean) with the most complete records since SMAP operations began and ii) all stations (hereafter all-station mean) 

within the respective footprints, available as a complete set for a shorter duration. Figure 4 shows for footprints 3306 and 3606 

(hereafter 3306 & 3606) the available spatial means for the period October 2016 to October 2018. The plot illustrates an 

obvious similarity between the soil moisture time series even though they are determined from different sets of soil moisture 

stations. However, biases exist as a result of spatially variable hydro-meteorological conditions, e.g. soil types, groundwater 15 

tables, rainfall and evapotranspiration. Hence, an ‘unbiased 7-station mean’ obtained by matching the mean and standard 

deviation is also given in Fig. 4.  

Table 2 provides the error metrics computed between pairs of the 7-station (biased and unbiased) and all-station means for 

footprints 3606 & 3306 and 4371. In general, the metrics confirm the visual interpretation of Fig. 4. A very high correlation, r 

> 0.99, was found between the spatial means and the mismatch is largely determined by a systematic bias. For instance, for 20 

footprint 4371, a RMSE of 0.055 m3 m-3 is obtained and the bias is 0.054 m3 m-3. After removal of the biases, as was done for 

the unbiased 7-station, the RMSE (RMSE-b) reduces to 0.009 m3 m-3 for footprint 4371 and to 0.013 m3 m-3 for footprint 3306 

& 3606. From these low RMSE-b values it can be concluded that with the linear equation, the 7-station mean can be used to 

mimic the all-station mean with a relatively small uncertainty. In the remainder of the manuscript, we utilize the unbiased 7-

station mean as one of the validation references. 25 

Further, it should be noted that more than twice as many matchups are available for footprint 3306 & 3606 (592 #) as compared 

to 4371 (262 #). This is explained by changes in the location of the stations (e.g. 19 and 6) within footprint 4371, which 

compromises the integrity of spatial mean soil moisture and making it unsuitable for the analysis presented in this section.  
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5. Development of upscaling functions  

5.1. Measurements versus simulations 

In this section we evaluate the agreement between the spatial soil moisture means derived from the in situ measurements and 

the LHM simulations for the SMAP footprints. Figure 5 presents results for January 2015 till October 2018 the LHM simulated 

and in situ measured spatial mean for footprint 3306 & 3606, whereby the LHM soil moisture is the mean of the simulations 5 

for the grid cells where the monitoring stations are located. The two references based on the in situ measurements are i) the 

all-station mean, and ii) the unbiased 7-station mean introduced in Sect. 4.2.  

In general, Fig. 5 illustrates that the measured seasonal cycle of wet winters (November to mid-March) and dry summers (mid-

May to mid-October) is well reproduced by the LHM simulations. Also, the shorter time scale wetting and drying events 

measured at the monitoring stations coincide with the simulated events. As such, it may be concluded that the LHM root zone 10 

simulations capture the dynamics of soil moisture measured at a 5 cm soil depth.  

However, systematic discrepancies can be noted as well. For instance, the measured winter soil moisture is typically higher 

than the LHM simulations, while this is the opposite for summers. This may be attributed to the difference in soil layer 

thickness for which information is provided. In the case of the in situ measurements, the probes have an 4 cm influence zone 

(e.g. Benninga et al. 2018) and, thus, provide information for the 1 - 9 cm soil layer, while the LHM root zone layer has for 15 

the Twente region a nominal depth of 40 cm. This explains the overestimation by LHM in the summer and partly the 

underestimation in the winter as the larger soil reservoir takes longer to fill up/to deplete, and has also more direct interactions 

with the groundwater. The winter underestimation is also caused by the fact that in reality the saturated soil moisture content 

near the surface is higher than prescribed in LHM due to an elevated organic matter content and standing water that may occur.  

Exceptions of the LHM winter underestimation occur when the soil is frozen. Under those circumstances, the water in the soil 20 

becomes ice and the dielectric constant of the soil mixture measured by the probes drops considerably, while the simulated 

soil moisture remains unaffected; a good example is February 2018. An exception to the summer overestimation by LHM is 

found for 2018, which was such a dry period that forced depletion of the LHM root zone to moisture levels similar to those 

measured at a 5 cm soil depth.  

Comparable observations can be made for the LHM simulated and in situ measured spatial means of footprint 4371, but a time 25 

series plot is omitted here for brevity. Instead Fig. 6 presents scatter plots with the LHM simulated spatial mean of footprint 

4371 against the in situ measured a) unbiased 7-station and b) all-station mean, in which the matchups for individual years are 

separated. Two additional scatter plots (c and d) are provided for which the mean and standard deviation of the LHM 

simulations are matched to those of the in situ measured spatial means. The error metrics, r, RMSE and bias, computed between 

the matchups are given in the lower right corner of the individual plots.  30 

The scatter plots show a linear relationship between the LHM simulated root zone soil moisture and the measured references 

for the 5 cm soil depth over the range from 0.2 m3 m-3 up to 0.7 m3 m-3. The discontinuity at 0.2 m3 m-3 can be attributed to the 

summer matchups, in particular those from 2018. Under normal circumstances, the 5 cm soil moisture decreases quite fast 
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early in the summer after which further drying is constrained by the available water itself. The root zone soil moisture simulated 

by LHM remains at a higher level longer partly due to a water supply from the deeper layers fed by the groundwater reservoir. 

However, during prolonged dry episodes the groundwater table drops to levels where the supply from the deep layers is cutoff 

leading to an accelerated decrease in the LHM simulated root zone soil moisture.   

Carranza et al. (2018) made similar observations based on an analysis of the Twente measurements taken at 5 and 40 cm, and 5 

referred to this as the (de)coupling of surface and subsurface soil moisture. An interesting implication of the coupled situation 

under wet conditions is that satellite observed surface soil moisture, such as the SMAP products, can be used as proxy for the 

root zone soil moisture. Indeed, Pezij et al. (accepted for publication) adopt this assumption by assimilating the SMAP L3 9-

km product into the LHM. Note that this is only justifiable for coupled surface-subsurface conditions, which occurs mostly in 

regions with sufficiently shallow groundwater tables.  10 

Regardless of the imperfections in the matchups described above, the agreement found between the simulations and 

measurements can be considered good, with r > 0.88. Yet, the RMSEs computed from matchups with the unbiased 7-station 

and all-station spatial means are, with 0.084 m3 m-3 and 0.061 m3 m-3 respectively, somewhat unsatisfactory as it is larger than 

the accuracy requirement defined for the SMAP mission. Even after matching of the statistical moments of the LHM time 

series to those of the in situ measured references, the RMSE remains above the SMAP requirement with 0.061 m3 m-3 and 15 

0.047 m3 m-3, respectively.  

5.2. Accounting for bimodality when deriving upscaling parameters  

The utility of the LHM simulations for development of the upscaling functions depends on the linearity between simulated 

and in situ measured soil moisture. Section 5.1 showed that a linear relationship that worked well for wet conditions that does 

not capture the data collected under dry circumstances. This suggests that the density distribution of the soil moisture simulated 20 

by LHM has bimodal characteristics. To assess this bimodality, the estimated density distribution of LHM soil moisture was 

reproduced using the weighed sum of two normal probability density functions (pdfs) formulated as follows, 

𝑔(𝑥) = 𝛼𝑓(𝑥, 𝜇1, 𝜎1) + (1 − 𝛼)𝑓(𝑥, 𝜇2, 𝜎2)         (7a) 

with 

𝑓(𝑥, 𝜇, 𝜎) =  
1

𝜎√2𝜋
𝑒

(−
(𝑥−𝜇)2

2𝜎2 )
          (7b) 25 

where x is taken here as 𝜃𝑚,𝑝, α is a weighing parameter and subscripts 1 and 2 represent the statistical moments of pdf 1 and 

pdf 2. Equation (7) is matched to the density distribution (bin size 0.01 m3 m-3) estimated from the LHM soil moisture 

simulations by fitting the parameters α, 𝜇1, 𝜇2, 𝜎1 and 𝜎2. The r is selected as the objective function, which is optimized using 

the Generalized Reduced Gradient (GRG, Lasdon et al. 1978) method implemented in the Solver add-in of MS Excel. Figure 

7 shows the density estimated from the LHM soil moisture simulations and calculated using the weighed sum of two normal 30 

distributed pdfs (hereafter bimodal pdf) with the individual contributions of the two pdfs presented as well. Table 3 lists the 

fitting parameters for footprints 3606 & 3306 and 4371; both are obtained with a r larger than 0.989. 
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Figure 7 illustrates that the bimodal pdf matches the density of the LHM soil moisture simulations reasonably well, which is 

also supported by the large r. The underlying fitted pdfs include a pdf (pdf 1) with a 𝜇 larger than 0.32 m3 m-3 and a small 𝜎 

of 0.036 m3 m-3, and a pdf (pdf 2) with a 𝜇 smaller than 0.24 m3 m-3 and a 𝜎 larger than 0.057 m3 m-3. Even though attribution 

is difficult, pdf 1 may be interpreted as the winter situation during which the dynamic soil moisture range is constrained by 

shallow groundwater tables on the down (dry) side and porosity on the up (wet) side. Hence, pdf 2 may be considered as the 5 

summer situation.  

With the established modes of the density of LHM soil moisture simulations, the available data can be split into sets that have 

a normal distribution. Subsequently, Eqs. (5) and (6) can be applied to arrive at parameters, a and b, for the upscaling function, 

Eq. (3). Here, the threshold > 𝜇1 − 2𝜎1 taken to extract the set representing pdf 1, which implicates a value of 0.251 m3 m-3 

for footprint 3606 & 3306 and 0.259 m3 m-3 for footprint 4371. Table 4 lists the scaling parameters calculated using the pdf 1 10 

set with the unbiased 7-station and the all-station mean as reference. In addition, the parameters calculated with the complete 

data set are provided. Important to note here is that the slope, b, of the upscaling function is independent of the selected in situ 

reference as demonstrated in Sect. 4.1.  

6. Validation  

6.1 Time series 15 

Figure 8 shows time series of the SMAP estimates of a) SCA-H, b) SCA-V and c) DCA, for reference pixel 3606 and the 

native all-station mean in situ soil moisture for the complete study period regardless of gaps in the time series of in situ 

measurements, along with the mean daily minimum air temperature and daily rainfall measured at the three KNMI weather 

stations. The results for the SMAP footprints 3306 and 4371 are included in the supplement in Figs. S1 and S2, respectively.  

In general, the time series of the SMAP and in situ soil moisture display a great similarity on a seasonal scale, particularly for 20 

the SCA estimates. Both the SMAP and in situ soil moisture are high during winters mainly due to a weak evaporative demand, 

see Fig. 1. This evaporative demand is much stronger during summers resulting in lower SMAP and in situ soil moisture levels. 

In the SCA series the dry-down events can be recognized, which is less the case for the DCA record. Overall, the DCA 

estimates have a larger apparent volatility than the SCA soil moisture and the SCA-H soil moisture reaches its upper limit 

under wet conditions more frequent than the SCA-V estimates.  25 

For all three algorithms, large mismatches between the SMAP estimates and in situ measurements manifest themselves as i) 

overestimations after rain events demarcating the end of dry spells, and ii) underestimations during winters. Examples of the 

former are obvious in the fall of 2016 and in August 2018. The winter underestimations coincide with sub-zero temperatures 

that are not masked via the SMAP freeze/thaw flag that is derived from global land model simulations and the frost depth is 

too shallow to also affect the in situ sensors. On the other hand, there is a reasonable agreement between the SMAP estimates 30 

and in situ measurements when frost in the soil does reach the sensors, see for instance February/March 2018.  
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6.2 Matchups 

A quantitative assessment of the three SMAP products is made for matchups for which the data from all stations contributing 

to the unbiased 7-station mean are available. These matchups were used to compute the r, bias and uRMSE defined in the 

appendix and presented in Figs. 9, 10 and 11, respectively. The r is provided for the three SMAP reference pixels, for the 

morning and afternoon overpasses, and for the unbiased 7-station and all-station mean soil moisture as reference. Here, no 5 

differentiation is made between the different implementations of the upscaling method as it does not affect the agreement 

between matchups due to its linear nature. The upscaling method does influence the biases and uRMSEs, and are, therefore, 

given for the native in situ references and the references whereby the upscaling parameters are derived using i) the full set of 

LHM simulations (hereafter LHM-all), and ii) the LHM simulations belonging only to the wet regime (hereafter LHM-pdf1). 

A selection of scatter plots showing SMAP soil moisture retrievals versus references based on measurements is given in Fig. 10 

12 for reference pixel 4371. The full set of plots is presented as supplement in Figs. S3-S8. In total 601 matchups are available 

for SMAP’s morning overpasses for reference pixel 3606, 621 matchups for 3306, and 666 matchups for 4371. The number 

for the afternoon passes was 719, 731 and 722 matchups for reference pixels 3606, 3306 and 4371, respectively.  

The overall results of the assessment represented by the error metrics and scatter plots are in line with the previous validation 

reports by the SMAP validation team (e.g. Chan et al. 2016, Colliander et al. 2018, Chan et al. 2018). The soil moisture 15 

retrieved with the SCA-V yields consistently better r and uRMSE than the estimates with the SCA-H and DCA. The DCA 

matchups have a larger spread with an average r of 0.764, than found for the SCA-V and SCA-H, with an average r of 0.838 

and 0.818, respectively. The SCA-H performs slightly less than SCA-V in terms of r and this lower performance is comparable 

to the one found for the DCA in terms of uRMSE. This is attributable to a more frequent saturation of the SCA-H estimates, 

which is particularly clear from the scatter plots for the afternoon overpasses, see Fig. 12 x–iii and x-iv. As the assumption of 20 

vertically uniform temperature and dielectric profiles is generally considered to have a higher validity near dawn (O’Neill et 

al. 2018), it was unexpected that the error metrics are consistently in favour of the afternoon over the morning matchups. On 

the hand, Jackson et al. (2012) also found a better agreements between afternoon SMOS retrievals and in situ measurements. 

This is further discussed in Sect. 7.2.  

With regard to the different implementations of the upscaling strategy, it is clear that the largest impact is found for the bias 25 

(Fig. 10) and only a minor effect can be noted across the uRMSEs (Fig. 11). Moreover, the upscaling strategy affects the bias 

negatively; the biases are larger when the SMAP estimates are assessed against the upscaled in situ references. This is partly 

because the bias of the SMAP soil moisture towards native in situ references is already fairly small and the application of the 

upscaling method apparently only adds uncertainty. An alternative way to interpret this is that the collection of stations within 

the Twente network is representing the spatial mean soil moisture observed by SMAP fairly well. This is supported by the 30 

small differences in the error metrics computed with the unbiased 7-station and all-station soil moisture means for reference 

pixels 3306 and 3606. This also applies to a lesser extent for reference pixel 4371, for which the uRMSE computed with the 

all-station mean as reference is on average more than 0.005 m3 m-3 lower than when the unbiased 7-station mean is used. A 
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possible explanation for this difference in performance is the number of stations present within the reference pixels. For pixels 

3306 and 3606, soil moisture data from on average 11.0 stations contribute to the all-station mean, for pixel 4371 this is 13.7. 

The latter has almost twice as many spatially distributed measurements in comparison to those used for the unbiased 7-station 

mean.  

Despite all efforts to construct a reliable spatial mean and upscale the collection of point measurements towards the domain of 5 

the SMAP reference pixel, it is unfortunate to have to conclude that the accuracy requirements of 0.04 m3 m-3 (uRMSE) is not 

met using the in situ references derived from the Twente measurements. An important factor contributing to the large uRMSEs 

is that in Twente soil moisture measurements cover the full dynamic range from saturated to dry soil. This makes it more 

challenging to meet uRMSE requirement in comparison to regions with a naturally small soil moisture range as is the case in 

arid regions for instance. The best performance with the Twente in situ reference is achieved when the SCA-V estimates of 10 

pixel 4371 are assessed against the native all-station resulting in an uRMSE of 0.059 m3 m-3. This is larger than the 0.054 m3 

m-3 and 0.056 m3 m-3 uRMSE reported in Colliander et al. (2017) and Chan et al. (2018) using matchups constructed from the 

2015 and 2016 measurements. It should, however, be noted that in this paper we have analysed the period from April 2015 up 

to December 2018, during which in 2018 record dry conditions were encountered. Under those circumstances the vertical soil 

moisture gradients are strong, which may add to the disparity between soil moisture measured in-situ and estimated via SMAP 15 

observations. In the discussion section the error structure and the conditions leading to larger uRMSE will be analysed in more 

detail. 

7. Discussion  

7.1 Error distribution 

The error metrics reported in Sect. 6.2 indicate that none of the SMAP products fulfills the uRSME target accuracy using the 20 

Twente measurements. Yet, the time series of the SMAP estimates and the in situ references in Fig. 8 demonstrates an 

agreement that is up to the level that the effect of rain events on the soil moisture content can be identified. On the other hand, 

large mismatches between the SMAP estimates and in situ reference are encountered on various occasions. Here, we investigate 

the overall error structure by constructing histograms from the differences between the SMAP estimates and in situ references 

shown in Fig. 13. Further, theoretical normal pdfs, Eq. (7b), are derived by fitting the μ and σ for each histogram. The 25 

histograms and pdfs are only provided for the SCA-V retrievals from pixel 4371, a) morning and b) afternoon, and with the 

native i) unbiased 7-station and ii) all station mean as reference. 

From a comparison of the histograms and pdfs it follows that the tails hold larger densities, whereby the number of 

overestimations is larger than the number of underestimation. This implies that the relatively large number of outliers inflates 

the ‘squared root’-based error metric, uRMSE, which is also supported by the lower magnitude of the σ fitted to the histograms. 30 

For instance, the lowest uRMSE of 0.059 m3 m-3 is found for the SCA-V 4371 afternoon estimates against the all-station mean, 

while the σ fitted through histogram is 0.051 m3 m-3
 for this case.  
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7.2 Mismatch occurrence 

Outliers, e.g. large differences between the SMAP estimates and in situ references, are an important cause for the larger 

uRMSEs than SMAP’s target accuracy. Patterns in the occurrence of mismatches are highlighted in Fig. 14 via time series of 

unbiased differences between SMAP SCA-V 4371 estimates and the all-station mean exceeding twice the target accuracy, > 

0.08 m3 m-3. The results from SMAP’s morning and afternoon overpasses are separated in the plot and the daily minimum air 5 

temperature (Tmin) and the all-station mean soil moisture are provided as reference for the environmental conditions. 

Figure 14 shows three large groups of matchups where SMAP overestimates the in situ reference, namely winter 2015/16, fall 

2016 and summer/fall 2018. In the latter two, dry spells were ended by a sequence of substantial rain events that exposed the 

disparity in sampling depth between SMAP and the in situ sensors. Indeed, the in situ sensors of Twente network installed at 

a 5 cm soil depth effectively monitor the 1 - 9 cm soil layer below the surface (Benninga et al. 2018), while SMAP’s sampling 10 

depth is generally considered to be shallower and depends on the soil moisture content (e.g. Colliander et al. 2017, Zheng et 

al. 2019). After a dry episode has ended, the soil moisture content in the subsurface will be low and increases towards the 

surface, causing the overestimation by SMAP. Similar findings are reported in Shellito et al. (2016) through quantification of 

SMAP and in situ soil drying. 

However, the winter 2015/16 overestimation was not preceded by a drought. In fact, it was quite wet (see Fig. 1) small scale 15 

flooding of agricultural parcels across the Twente region. Standing water lowers the L-band emissivity and we expect that this 

contributed to SMAP’s overestimation during the winter of 2015/16. 

As suggested in Sect. 6.1, the large underestimations by SMAP can often be associated with frozen conditions. Notably, ice 

has a dielectric constant comparable to that of dry soil and, therefore, the SMAP estimates decrease as the ice content in the 

soil increases. In situ sensors also quantify the soil moisture content by measuring the dielectric constant and are likewise 20 

influenced by the ice content, see February/March 2018. However, the in situ sensors provide measurements over a larger soil 

depth and are only weakly affected when the frost depth is shallow. Hence, also the underestimation by SMAP follows from 

a difference in sampling depth. The SMAP soil moisture processor includes a freeze/thaw flag that is derived from global 

surface temperature simulations of the Goddard Earth Observing System model, version 5 (GEOS-5), which is inevitably 

subject to uncertainties and cannot capture all frost events.  25 

Figure 14 provides an opportunity to discuss the unexpected superior error metrics found for the afternoon over the morning 

matchups. It is self-evident that the soil moisture estimated from morning SMAP observations are more susceptible to frost 

and, thus, to underestimation of the in situ reference because air and surface temperatures are lower than in the afternoon. 

However, also the SMAP overestimations in the fall of 2016 and summer/fall of 2018 are more severe for SMAP’s morning 

observations, e.g. compare the tails of the histograms in Figs. 13 a) and b). A possible explanation could be that when the soil 30 

surface is wetter than the subsurface, the SMAP soil moisture in the afternoon will be drier due to evaporation and, therefore, 

closer to in situ reference. In any case, the temperature and dielectric constant stratification across the soil-vegetation system 

https://doi.org/10.5194/hess-2019-471
Preprint. Discussion started: 9 October 2019
c© Author(s) 2019. CC BY 4.0 License.



15 

 

is not the decisive factor that makes morning satellite observations more favourable for microwave radiometry based soil 

moisture monitoring over Twente. 

In an attempt to quantify the negative impact of frozen conditions and antecedent rainfall on SMAP’s performance, uRMSEs 

have been calculated using validation sets excluding matchups for which the Tmin did not or the daily amount of rainfall did 

exceed a certain threshold. Figure 15 presents the uRMSE against the Tmin or the rainfall threshold for morning (Fig. 15a) and 5 

afternoon (Fig. 15b) SMAP SCA-V soil moisture estimates of reference pixel 4371. The figure illustrates that the agreement 

between SMAP and in situ is considerably less on days with rainfall for both morning and afternoon SMAP estimates. Impact 

of frozen conditions is comparable on the morning SMAP estimates but of much less significance for the afternoon retrievals 

for the reasons discussed above. When validation sets are filtered for both frost (Tmin < 2 oC) and rainfall, the uRMSE drops 

even further to 0.053 m3 m-3 for the morning and 0.043 m3 m-3 for the afternoon SMAP estimates (dashed lines in Fig. 15). 10 

The latter becomes quite close to the mission’s target accuracy.  

8. Conclusion 

In this paper, we report on the validation of Soil Moisture Active/Passive (SMAP) passive-only soil moisture products using 

in situ measurements collected from April 2015 until December 2018 by the Twente monitoring network situated in the east 

of the Netherlands and model simulations by the Dutch National Hydrological Model (LHM). The monitoring network 15 

consisted of twenty measurement locations during the study period. However, not all stations provided data continuously due 

to inevitable equipment failures and changes in landownership forcing re-installation of instrumentation. Seven stations that 

were within the SMAP reference pixels and had fairly complete data records can be identified. This number is insufficient to 

construct a reliable spatial mean according to criteria defined by the SMAP validation team. Spatially distributed soil moisture 

simulations performed by the LHM are employed to translate the sample mean of a collection of point measurements to the 20 

domain of the SMAP reference pixels. To this aim, we have derived a set of equations to compute the parameters of a linear 

scaling function that uses the mean and standard deviation of time series of the in situ measured and model simulated spatial 

soil moisture means. With this approach biases in these statistical moments between the two datasets are accounted for. The 

upscaling strategy has been applied to an unbiased spatial mean soil moisture computed from the in situ measurements 

collected by the seven stations with fairly complete records and the spatial mean soil moisture calculated from all available 25 

measurements.  

We have adopted the native and upscaled spatial mean soil moisture as in situ references to assess the SMAP soil moisture 

estimates obtained with the i) Single Channel Algorithm at Horizontal polarization (SCA-H), ii) Single Channel Algorithm at 

Vertical polarization (SCA-V) and iii) Dual Channel Algorithm (DCA). In line with previous validation reports, we find that 

the SCA-V is the best performing algorithm. SMAP’s afternoon soil moisture estimates are systematically in closer agreement 30 

with the in situ references than the morning estimates. This can be in part attributed to the fact the most severe over- and 

underestimations are found for the estimates retrieved from SMAP’s morning observations. The large overestimation errors 
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(> 0.08 m3 m-3) typically occur at the end of dry spells when the soil moisture is higher near surface than in the subsurface. 

Large underestimation errors (< 0.08 m3 m-3) are noticed in periods with sub-zero air temperatures causing local freezing, 

which are not all identified by the SMAP freeze/thaw flag that is derived from global land model simulations. Both under- and 

overestimations essentially follow from the disparity in the soil depth characterized by SMAP and in situ as frost and soil 

wetting coincide with strong vertical dielectric/soil moisture gradients, and the satellite probes the soil from the surface, while 5 

the sensors are installed 5 cm below the surface. 

The large over- and underestimations contribute to the fact that SMAP’s target accuracy of 0.04 m3 m-3 is not achieved using 

any of the in situ references derived from the Twente measurements. The best unbiased root mean squared error (uRMSE) of 

0.059 m3 m-3 is obtained for the SMAP’s SCA-V afternoon estimates assessed against the native all-station mean. This can 

reduce to 0.043 m3 m-3 when matchups are filtered for frozen conditions and antecedent rainfall. The upscaled in situ references 10 

do not results in better metrics. Notably, the application of the upscaling strategy has a negative impact on the bias, which is 

somewhat inevitable due to the already good agreement between the in situ measurements and SMAP retrievals.  

Despite the fact that the error metrics found in this case study exceed the target accuracy, we are of the opinion that SMAP is 

a reliable source of soil moisture information for the Twente region. The large mismatches found are caused primarily by 

inherent differences in the soil moisture content observed by SMAP and in situ that are governed by different processes that 15 

control the exchange mass and heat at the land-atmosphere interface. As such, the mismatches must not be considered as errors, 

but treated as hydro-meteorological information that can be used for improving model simulations and making better informed 

decisions to facilitate more skillful management of available natural resources.  

Data availability  

The SMAP soil moisture retrieved for the reference pixels, the in situ soil moisture measurements of the Twente network, the 20 

LHM soil moisture simulations used for the research presented in the articles are available at: doi to be added 

Appendix 

Pearson’s product moment correlation coefficient (r), bias or Mean Error (ME), Root Mean Squared Error (RMSE), and 

unbiased Root Mean Squared Error (uRMSE) are the metrics used for the assessments presented in this manuscript. These 

metrics can be expressed as follows,  25 

𝑟 =
∑ (𝑦𝑖−𝑦̅)𝑛

𝑖=1  ∑ (𝑥𝑖−𝑥̅)𝑛
𝑖=1

√∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1 √∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

          (A1) 

𝑏𝑖𝑎𝑠 = ME =
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)𝑛

𝑖=1           (A2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)

𝑛
𝑖=1           (A3) 
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u𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ ((𝑦𝑖 − 𝑀𝐸) − 𝑥𝑖)𝑛

𝑖=1          (A4) 

where x stands for the reference, y for the estimated quantity, n is the total number of samples, i indicate an individual 

realization and the bar stands for the mean of the respective quantity.    
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List of tables 

Table 1. Data availability of the Twente monitoring stations within SMAP footprints. Q1, Q2, Q3, and Q4 refer to quartiles 1 

(January-March), 2 (April-June), 3 (July-September)and 4 (October-December). ‘√’ indicates that the station is used for 

determining the reference for the SMAP footprint, ‘x’ indicates that the data is available for that specific period and station, and ‘-5 
‘ means that the two previous qualifications are not applicable. Dark grey shaded cells suggest that the location of the station was 

changed; exact dates are given in Table S1. Italic and light grey station ID’s highlight that records over period 2015-2018 are fairly 

complete. 

Table 2. Error metrics computed from matchups of the spatial soil moisture means derived from measurements collected at seven 

stations and all stations within the respective footprint. N stands for the number of matchups, r is Pearson product moment 10 
correlation coefficient, a and b are coefficients of a linear function, y = a + b x, between the two footprint averages derived as given 

by Eqs. (3a) & (3b), and uRMSE is computed between the unbiased 7-station and all-station means.  

Table 3. Parameters of the bimodal probability density functions fitted to density distribution of LHM soil moisture simulations of 

the grid cells where monitoring stations are located. Note that the results for the two footprints are separated because they contain 

different sets of monitoring stations.  15 

Table 4. Upscaling parameters, a and b, calculated by applying Eqs. (5) and (6), respectively, to the complete data and a set 

representing pdf 1 with the unbiased 7-station and the all-station mean as references. The pdf 1 set holds 828 and 747 samples for 

footprints 3606 & 3306 and 4731, respectively and the complete set includes 1146 and 1003 samples, respectively. 
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Table 2. Error metrics computed from matchups of the spatial soil moisture means derived from measurements collected at seven 

stations and all stations within the respective footprint. N stands for the number of matchups, r is Pearson product moment 

correlation coefficient, a and b are coefficients of a linear function, y = a + b x, between the two footprint averages derived as given 

by Eqs. (3a) & (3b), and uRMSE is computed between the unbiased 7-station and all-station means.  5 

  SMAP footprint 

metric units 4371 3306 & 3606 

N # 262 592 

Bias m3 m-3 -0.054 -0.012 

RMSE m3 m-3 0.055 0.022 

r - 0.994 0.994 

a m3 m-3 0.031 0.035 

b - 1.094 0.919 

uRMSE m3 m-3 0.009 0.013 
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Table 3. Parameters of the bimodal probability density functions fitted to density distribution of LHM soil moisture simulations of 

the grid cells where monitoring stations are located. Note that the results for the two footprints are separated because they contain 

different sets of monitoring stations.  

Footprint α μ1 μ2 σ1 σ2 

 - m3 m-3 

3606 & 3306 0.493 0.323 0.240 0.036 0.065 

4371 0.672 0.331 0.219 0.036 0.057 

 

  5 
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Table 4. Upscaling parameters, a and b, calculated by applying Eqs. (5) and (6), respectively, to the complete data and a set 

representing pdf 1 with the unbiased 7-station and the all-station mean as references. The pdf 1 set holds 828 and 747 samples for 

footprints 3606 & 3306 and 4731, respectively and the complete set includes 1146 and 1003 samples, respectively.   

Footprint Parameter 

pdf 1 set complete set 

Unb. 7-station 

mean 

All-station 

mean 

Unb. 7-station 

mean 

All-station 

mean 

3606 & 

3306 

a (m3 m-3) -0.0397 -0.0387 -0.0325 -0.0317 

b (-) 0.915 0.915 0.960 0.960 

4371 
a (m3 m-3) -0.103 -0.086 -0.070 -0.062 

b (-) 1.082 1.082 1.062 1.062 
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data from SMAP morning overpasses and b) the SMAP afternoon overpasses; i) includes the unbiased 7-station mean as reference, 

and ii) includes the all-station mean as reference.  35 

Figure 14. Time series of measured soil moisture (all-station mean), daily minimum air temperature and unbiased differences 

between SMAP SCA-V retrievals for reference pixel 4371 and the all-station mean exceeding 2σ (>0.08 m3 m-3). 
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when matchups are not filtered, the dashed line is the uRMSE achieved when matchups are filtered on both Tmin (< 2 oC) and rainfall 

(0 mm).  
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Figure 1. Monthly averages of daily mean (Tmean), minimum (Tmin) and maximum (Tmax) air temperature, and monthly sums of 

rainfall and reference evapotranspiration (ETref) all derived from measurements collected at the three KNMI weather stations Heino, 

Hupsel and Twenthe.  
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 Figure 2. Delineation of the SMAP reference pixels 4371, 3306 and 3606, and the locations of the UT-ITC soil monitoring and the 

KNMI weather stations lain over a Landsat 8 true colour composite of 20 July 2013 (Image courtesy of the U.S. Geological Survey). 

Double digits indicate the soil moisture station ID and names (Heino, Hupsel, Twenthe) refer to the weather stations. Station with 

underlined ID numbers are still operational. Coordinates are given in latitude/longitude (datum: WGS84). 

  5 
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Figure 3. Schematic illustration of the spatial scale mismatch between in situ monitoring stations, hydrological model grid and SMAP 

reference pixel (satellite footprint). 
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Figure. 4. Spatial soil moisture means for SMAP reference pixels 3306 & 3606 from October 2016 up to October 2018. 
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Figure 5. Spatial soil moisture mean for SMAP reference pixel 3306 & 3606 from January 2015 up to October 2018 derived from i) 

measurements collected at all available stations, ii) unbiased measurements from the 7 stations operating fairly continuously and iii) 

LHM simulations for the locations where stations are situated.  
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Figure 6. LHM simulated spatial mean soil moisture against references deduced from in situ measurements for SMAP reference 

pixel 4371; a) and b) show the native LHM simulations versus the unbiased 7-station mean and all-station mean, respectively; c) and 

d) presented the same as a) and b) only LHM soil moisture is scaled to the statistical moments (1st and 2nd) of the in situ references.  
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Figure 7. Density of soil moisture estimated from LHM simulations (bin size 0.01 m3 m-3) and calculated using a weighed sum of two 

normal distributed pdfs. a) shows the density for reference pixels 3306&3606 and b) that of reference pixel 4371.  

  

0 0.1 0.2 0.3 0.4 0.5

Soil moisture (m3 m-3)

0.00

0.03

0.06

0.09

D
e
n
si

ty
 (

-)

0 0.1 0.2 0.3 0.4 0.5

Soil moisture (m3 m-3)

0.00

0.03

0.06

0.09

D
e
n
si

ty
 (

-)

LHM

PDF 1

PDF 2

bimodal PDF

(b)(a)

https://doi.org/10.5194/hess-2019-471
Preprint. Discussion started: 9 October 2019
c© Author(s) 2019. CC BY 4.0 License.



36 

 

Figure 8. Time series of daily minimum air temperature, daily rainfall sums, all-station mean soil moisture, and SMAP retrievals 

for reference pixel 3606 and a) Single Channel Algorithm at H polarization (SCA-H), b) Single Channel Algorithm at V polarization 

(SCA-V), and c) Dual Channel Algorithm (DCA).  
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Figure 9. Pearson product moment correlation coefficient computed between SMAP soil moisture and in situ references.  
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Figure 10. Bias computed between SMAP soil moisture retrieved and in situ references; a) the metrics for reference pixel 3306, b) 

for reference pixel 3606 and c) for reference pixel 4371.  
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Figure 11. Unbiased Root Mean Squared Error (uRMSE) computed between SMAP soil moisture retrieved and in situ references; 

a) the metrics for reference pixel 3306, b) for reference pixel 3606 and c) for reference pixel 4371. 
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Figure 12. Scatter plots of SMAP soil moisture retrievals for reference pixel 4371 versus in situ references available from April 2015 

till December 2018, a), b), and c) indicate SMAP estimates derived using SCA-H, SCA-V and DCA, respectively; i and ii are for 

SMAP’s morning overpass, and iii and iv are for the afternoon overpasses; i and iii include references based on the unbiased 7 

station mean soil moisture, and ii and iv use the all-station mean as references.  
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Figure 13. Histograms constructed from the differences between the SMAP SCA-V retrievals for reference pixel 4371 versus in situ 

references, and probability distribution functions (PDFs) obtained by fitting the mean (μ) and standard deviation (σ); a) uses the 

data from SMAP morning overpasses and b) the SMAP afternoon overpasses; i) includes the unbiased 7-station mean as reference, 

and ii) includes the all-station mean as reference.  
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Figure 14. Time series of measured soil moisture (all-station mean), daily minimum air temperature and unbiased differences 

between SMAP SCA-V retrievals for reference pixel 4371 and the all-station mean exceeding 2σ (>0.08 m3 m-3).  
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Figure 15. uRMSEs against the daily minimum 1.5 m air temperature (Tmin) and rainfall threshold used to filter out matchups for 

suspected frozen conditions and conditions with an disparity between SMAP’s sensing depth and the depth at which soil moisture is 

measured. a) shows the results for the morning estimates and b) the afternoon estimates. The straight line is the uRMSE obtained 

when matchups are not filtered, the dashed line is the uRMSE achieved when matchups are filtered on both Tmin (< 2 oC) and rainfall 5 
(0 mm).  
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