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Abstract. Lakes provide many important benefits to society including drinking water, flood attenuation, nutrition, and 

recreation. Anthropogenic environmental changes may affect these benefits by altering lake water levels. However, 

background climate oscillations such as the El Nino Southern Oscillation, and the North Atlantic Oscillation can obscure 

long-term trends in water levels, creating uncertainty over the strength and ubiquity of anthropogenic effects on lakes. Here 5 

we account for the effects of background climate variation and test for long-term (1992-2019) trends in water levels in 200 

globally-distributed large lakes using satellite altimetry data. The median percentage of water level variation associated with 

background climate variation was 58% with an additional 10% explained by seasonal variation and 25% by the long-term 

trend. The relative influence of specific axes of background climate variation on water levels varied substantially across and 

within regions. After removing the effects of background climate variation on water levels, long-term water level trend 10 

estimates were lower (median: +0.8 cm year-1) than calculated from raw water level data (median: +1.2 cm year-1). However, 

the trends became more statistically significant in 86% of lakes after removing the effects of background climate variation 

(the median p-value of trends changed from 0.16 to 0.02). Thus, robust tests for long-term trends in lake water levels which 

may or may not be anthropogenic will require prior isolation and removal of the effects of background climate variation.  

Our findings suggest that background climate variation often masks long-term trends in environmental variables, but can be 15 

accounted for through more comprehensive statistical analyses. 

 

1 Introduction: 

The water level of a lake is an integrative indicator of local and regional hydrology. By extension, variation in lake 

water levels through time captures the dynamic nature of the water cycle, particularly when coherent patterns are observed 20 

across many lakes (Crétaux et al., 2016; Molinos et al., 2015; Zhang et al., 2011). Water level variation is often associated 

with oscillatory dynamics in Earth’s hydroclimate such as the El Niño Southern Oscillation (ENSO) (Ghanbari and Bravo, 

2008; Stager et al., 2007), the Pacific Decadal Oscillation (PDO) (Benson et al., 2003; Wang et al., 2010), North Atlantic 

Oscillation (NAO) (Benson et al., 1998), and the Indian Ocean Dipole (IOD) (Marchant et al., 2007). For instance, water 

levels in multiple lakes in Poland can increase by 20 cm or more during the positive phase of the NAO (Wrzesiński et al., 25 

2018). When multiple axes of background climate variation overlap, the effects can be even more intense—due to strong 

oceanic temperature anomalies in the late 1990’s associated with both the ENSO and the IOD, water levels in eight East 

African Great Lakes went up by more than 1 m in less than a year (Mercier et al., 2002). This constituted a combined 

increase in water storage of more than 266 km3—more than half the volume of Lake Erie. 

Human activities can also directly affect lake water levels, creating variation that is independent of background 30 

climate dynamics (Aladin et al., 2009; Pekel et al., 2016; Rodell et al., 2018; Tao et al., 2015). For instance, in the 1970’s, 

the two main inflowing rivers to the Aral Sea were diverted in an attempt to irrigate cotton plantations in Central Asian 

deserts (Aladin et al., 2009; Micklin, 1988). As a result, the water level in the Aral Sea dropped by 2 m in the first decade 

following the onset of irrigation, and continued to decline as water use in the watershed intensified. In this case, attribution 
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of water level variation to human activity was robust because an abrupt change in surface water management coincided with 

a comparably abrupt change in the water level of downstream lakes. However, attributing water level variation to human 

activity is more difficult when anthropogenic effects are subtle relative to the effects of background climate variation (Corti 

et al., 1999). This challenge is especially salient when attributing water level variation to anthropogenic climate change 

(Hassanzadeh et al., 2012; Rodell et al., 2018), especially at the global scale (Rodell et al., 2018). Indeed, there is an ongoing 5 

debate about the global extent and strength of climate change effects on water level variation in lakes (Muller, 2018). 

Climate change can affect water levels through a complex web of forces linking surface temperature with hydrology 

(Block and Strzepek, 2012; Ramanathan et al., 2001; Rodell et al., 2018). While warming has been observed across the 

Earth’s surface, hydrological responses to warming are highly variable with some areas becoming wetter and others 

becoming dryer (Greve et al., 2014; Rodell et al., 2018; Wang et al., 2012). However, more than three-quarters of Earth’s 10 

land mass has seen no substantial change in total wetness or dryness in response to recent climate change (Greve et al., 2014; 

Greve and Seneviratne, 2015). Thus, the effects of climate change on water levels may be subtle relative to background 

climate variation (Jöhnk et al., 2004), calling for statistical approaches that can effectively account for the effects of 

background climate variation. Analyzing water levels from lakes worldwide may be especially helpful in reducing 

uncertainty about the potential contribution of background climatic variation to long-term trends. 15 

Here, we build off previous studies focused on specific lake regions (Clites et al., 2014; Molinos and Donohue, 

2014; Molinos et al., 2015; Pasquini et al., 2008) and attempt to disentangle the effects of background climate variation from 

other drivers of water levels in 200 globally distributed lakes using time series of remotely-sensed water levels from 1992 to 

2019. We investigate two key areas of uncertainty: (1) whether apparent anthropogenic water level trends in specific lakes 

can be explained by background climate variation, and (2) whether trends in water levels can be detected in specific lakes 20 

only after accounting for and removing the influence of background climate variation. We use boosted regression trees 

(BRTs) as a means of removing the effects of background climate variation on water levels in each lake, enabling us to 

achieve more robust quantification of the multi-decadal trends which may or may not be anthropogenic. This approach 

differs from other recently published approaches (Chanut et al., 1988; Molinos et al., 2015) in that it allows for nonlinear 

relationships, high levels of interactions between axes of climate variation, non-stationarity, and missing data. Finally, we 25 

assess patterns across lakes to generalize about which regions are most strongly influenced by background climate variation. 

Our overall goal is to better understand the impact of large-scale background climate forcing on lakes in ways that will help 

communities manage the benefits derived from lakes in the face of global climate dynamics and anthropogenic influences. 

 

2 Methods 30 

2.1 Overview 

The 200 lakes included in our study contain much of the Earth’s liquid surface freshwater and a large proportion of 

freshwater biodiversity (Vadeboncoeur et al., 2011). They span a wide range of lake characteristics including surface area 

(23 to 377,002 km2), catchment area (93 to 2,764,126 km2), perimeter (62 to 15,829 km), latitude (-50.22 to 66.14 °N), and 
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elevation (-71 to 5,194 m above sea level) (Supplementary Material). All continents were represented except for Antarctica 

and Australia. According to the HydroLakes database (Messager et al., 2016), at least 78 of these lakes are reservoirs, and 18 

of them have some water level regulatory structure such as a dam. The global scope of this analysis builds off similar 

analyses which aimed to disentangle background climate variation’s influence on lake water levels using smaller numbers of 

lakes from specific regions (Mercier et al., 2002; Molinos et al., 2015) or specific lakes (Cohn and Robinson, 1975; Stager et 5 

al., 2005; Tomasion and Valle, 2000). 

Our first objective was to estimate trends in water levels in this global sample of lakes based on average annual 

water level. Annual water levels were used in the trend analysis instead of raw water levels so that trend residuals would not 

be serially autocorrelated. We calculated trends using Thiel-Sen non-parametric regression using the ‘zyp’ package in R. 

Thiel-Sen slopes represent the median of slopes derived from all pairwise combinations of points in a time series. The 10 

statistical significance of each trend (p-value) was calculated using a bootstrapped one sample Wilcox signed-rank test with 

1,000 repetitions where the input data for the test was the complete list of all slopes derived from all pairwise combinations 

of points in the time series. The number of pairwise slopes used in each repetition of the Wilcox signed-rank test was equal 

to the number of years of water level data for each lake.  

Our second objective was to characterize and account for the effects of background global climate variation on lake 15 

water levels. We did this by using boosted regression trees (BRTs) to model water level variation in each lake as a function 

of the year, the month of the year, and a large set of global climate indices. We calculated the relative importance of each 

global climate index in the models for each lake to assess its sensitivity to different axes of background climate variation. 

We use the partial dependence of water level variation on the year term in the model to reflect the long-term variation in 

water levels that is not attributable to background climate variation. We repeat the Thiel-Sen slope calculation and p-value 20 

calculation based on the partial dependence data for the year term as an estimate of the long-term trend that is not attributable 

to background climate variation. This remaining variation could be attributable to human activity, though we cannot draw 

causal conclusions or distinguish between the various aspects of human activity which can affect water levels. 

We derived the background global climate indices for each lake’s BRT using principal components analysis (PCA) 

applied to global variation in monthly earth surface air temperature data through time. This approach is widely applied in the 25 

climate sciences to global grids of temperature, pressure, or rainfall data, and is analogous to Empirical Orthogonal Function 

(EOF) analysis (Dommenget and Latif, 2008; Hannachi et al., 2009; Kim and Wu, 1999). Temperature time series at each 

pixel were included as separate variables in the PCA with each time step as a separate observation of those variables. We 

linearly detrended temperature variation at each pixel such that the temperature values were equivalent to the residuals from 

a Thiel-Sen regression through time. Temperatures were detrended because long-term temperature trends could be 30 

considered potentially related to anthropogenic climate change which we wanted to separate from the PCs representing 

background climate (Stenseth et al., 2003). Thus, the effect of all PCs on water levels in the BRTs were interpreted as the 

collective effects of background surface air temperature variation and its associated hydrological effects on lake levels. 



5 
 

Using the PCs was preferred over using the commonly recognized climate indexes (NAO, ENSO, IOD, etc.) 

directly in each lake’s BRTs for several reasons. First, many commonly recognized global climate indices are correlated 

which makes them problematic for simultaneous use as predictors, whereas the PCs used here are uncorrelated by definition. 

Second, using the commonly recognized global climate indices alone would miss a substantial amount of variation in air 

temperature that may still drive climate and hydrological variation in lakes but is not yet well-recognized. Third, many of the 5 

commonly recognized global climate indices are defined subjectively (e.g. average temperature difference between two 

subjectively defined areas of the ocean), whereas the PCs used here are less subjective.  

Our modelling approach is based on the recognition that much of the variation in water levels is directly or 

indirectly driven by global patterns in earth’s surface air temperature via the effects of global temperatures on hydrological 

fluxes (Dommenget and Latif, 2008). This relationship is well-supported because earth’s surface air temperature is a key 10 

control on earth’s hydrological cycle through the Clausius Clapeyron relation which, in turn, drives lake water budgets and 

water levels (Christensen et al., 2004; Fowler et al., 2007; Nijssen et al., 2001; Tierney et al., 2008). Earth’s surface air 

temperature may also be a key control on the positioning of atmospheric rivers which can also drive lake water budgets and 

water levels (Gimeno et al., 2014; Lorenzo et al., 2008). This assumption is empirically well-supported by studies showing 

earth surface air temperature variation described by ENSO, PDO and IOD is strongly associated with water level variation 15 

across the globe (Stager et al., 2007; Tierney et al., 2013; Wang et al., 2010). 

Disentangling the direct and indirect effects of earth surface air temperature variation on water level variation could 

be done using a reductionist approach, i.e. by constructing lake hydrological budgets with all of the water inputs and outputs 

and modelling the effect of human activity on each of those fluxes. But, for most lakes in our dataset, we lack the field 

measurements required to model the forces linking earth surface air temperature to water level variation for the entire 28-20 

year water level time series (Hegerl et al., 2015; Stenseth et al., 2003). So instead, we use BRTs which mimic the complex 

web of forces linking earth surface air temperature variation to water level variation. We use BRTs for this purpose because 

the model structure accommodates high levels of interactions among predictor variables and mimics the interactive and 

indirect effects we tried to capture. This approach also differs from other recently published approaches (Chanut et al., 1988; 

Molinos et al., 2015) in that it allows for nonlinear relationships, non-stationarity, and missing data. We fit BRTs separately 25 

for each lake because the influence of a particular climate oscillation could differ across lakes due to geographic forcing, 

orographic forcing or other local factors (Stenseth et al., 2003). We used backward elimination variable selection techniques 

to identify the PCs for each specific lake that, when fit against a training dataset, performed the best when predicting water 

level variation in a test dataset with which the model had not been fit. Then, we used the resulting BRTs to determine the 

relative importance of different axes of background climate variation separately for each lake.  30 

 

2.2 Data 

Water level data were acquired from the NASA/CNES Topex/Poseidon and Jason satellite missions via the Global 

Reservoir and Lake Monitoring (G-REALM) project version 2.3 (Crétaux and Birkett, 2006) and can be obtained from: 
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http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir. Although these altimeters were developed to map ocean 

surface height, they have also been used to detect water level changes in lakes (Birkett, 1995). Only a small subset of the 

world’s lakes can be monitored in this way because the space-borne sensors must pass directly over the lake with sufficient 

regularity to produce accurate and complete time series. The US Department of Agriculture (USDA) uses these data to 

monitor water level variation for many inland water bodies globally. The lakes in this study comprise the 200 lakes with the 5 

longest (>28 years) and highest temporal resolution time series (greatest number of samples per year). Validation of satellite 

altimeter data over inland water bodies is typically performed by comparing satellite altimeter measurements and in situ 

measurements. The root mean squared error of elevation variations derived from the NASA/CNES Topex/Poseidon and 

Jason-1 satellite missions is typically ~5 cm for large lakes based on the USDA G-REALM website 

(https://ipad.fas.usda.gov/cropexplorer/global_reservoir/validation.aspx). Thus, it is justifiable to use altimetry water level 10 

observations in place of in situ gauge measurements (Birkett et al., 2011). 

Water levels are typically measured every 10 days, but the exact dates on which water levels are measured vary 

from lake to lake. To make water level data temporally consistent, we linearly-interpolated each lake’s time series to the 

daily scale using the ‘deseasonalize’ and ‘zoo,’ packages in R (R Core Team, 2017). Monthly averages were calculated so 

that all lakes had time series of the same interval that also matches the temporal resolution of surface air temperature data 15 

used in the PCA. 70 of the 200 water level time series had a data gap from late 2002 through the middle of 2008. The 

missing data were not estimated, instead, our analyses treated these lakes in the same way as lakes with complete data.  

Monthly average land and ocean surface air temperature anomaly data were acquired from the Goddard Institute for 

Space Studies (GISS) Land Ocean Temperature Index analysis for a 2 x 2 degree grid with 1200 km smoothing (Hansen et 

al., 2010). These temperature data are derived from meteorological station observations distributed across the globe, and 20 

processed according to methods developed at the National Aeronautics and Space Administration (NASA) (Hansen et al., 

2010). They are publicly available at https://data.giss.nasa.gov/gistemp/.  

 

2.3 Principal components analysis 

We used PCA to distill the spatial complexity of surface air temperatures for inclusion in each lake’s BRT. PCA is 25 

an ordination-based statistical tool that converts potentially correlated variables into a set of orthogonal vectors that capture 

the variation across locations. PCA uses orthogonal linear transformation to identify vectors that account for as much of the 

total variation in a set of variables as possible. The first PC (PC1) explains the largest percentage of the variation in the 

underlying set of variables followed by the second (PC2), third (PC3), and so on. Each succeeding PC is linearly uncorrelated 

to the others and accounts for as much of the remaining variation as possible. PCA can, therefore, be used to summarize the 30 

consistent aspects of time dynamics across space and reduce redundant spatial variation (stemming from spatial 

autocorrelation and teleconnections) in temperature.  

To identify which known oscillations in surface air temperature are related to individual PCs, we calculated a 

complete correlation matrix between each PC and all of the 43 major climate indices recognized by NOAA’s Earth System 
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Research Laboratory. For indices that aren’t updated to the present, we calculated the correlation over the longest time 

period over which each major climate index was available. Monthly time series of major climate indexes were sourced from 

https://www.esrl.noaa.gov/psd/data/climateindices/list/.  In cases where a PC is highly correlated to one of the major climate 

indices (PCs), we renamed it with a subscript (e.g., PCENSO) to facilitate interpretation. In all remaining cases, PCs were 

named with a numeric subscript which matched their order in the PCA (e.g. “PC18”) 5 

 

2.4 Boosted regression trees (BRTs) and model selection 

BRTs were used to model mean monthly water levels in the lakes as a function of year, the month of the year, and a 

large set of PCs. A BRT is an ensemble machine learning approach that differs from conventional statistical techniques 

which use a single parsimonious model. Instead, BRTs combine the strengths of standard regression trees and boosting—a 10 

method for aggregating many models to improve the predictive capacity. The main advantages of BRTs over other statistical 

models is that they have higher predictive performance, do not require data transformation or outlier elimination, 

automatically handle complex nonlinear relationships and interactions, and allow for many types of predictor variables and 

partial missing data. Through these interactions, the BRT allows for non-stationarity of the timeseries (e.g. the effect of each 

PC is allowed to change over time). We fit BRTs using the “dismo” and “gbm” packages (Hijmans et al., 2017) in R (R Core 15 

Team, 2017).  To cross validate the BRTs for each lake, we fit the model using a training dataset and then used the fit BRT 

to predict monthly water levels using the PC values from a test dataset. For each lake, we fit six starting models using six 

different training and test dataset combinations. To get these dataset combinations, we first split the lake level time series for 

each lake into training and test datasets along its time series using 40-60, 50-50, and 60-40 splits. We split the data serially 

along the time series into training and test datasets instead of by randomly selecting observations for the training and test 20 

datasets because the data are temporally autocorrelated and we wanted to ensure that the training and test datasets were 

independent. For each of the three splits, the starting model was fit twice, once using the first part of the split as a training 

dataset and the second part as a test dataset, and once using the second part of the split as a training dataset and the first part 

as a test dataset, resulting in a total of six train-test dataset combinations. For each lake’s six train-test dataset combinations, 

we repeatedly refit the starting model after dropping the PC with the lowest relative importance averaged across all six train-25 

test dataset combinations (see explanation of relative importance below) until the starting model had only 2 predictors—the 

minimum number of predictors allowed in a BRT. Each time a variable was dropped from one of the 6 starting models, we 

calculated the average change in predicted residual error sum of squares (PRESS; the sum of squares of the prediction 

residuals calculated using the test data) which resulted from dropping it.  

Variables which, when dropped from the model, resulted in an average increase in PRESS across the six starting 30 

models were selected in that lake’s “best BRT.” We combined information across models so that the selection of a variable 

did not depend on the arbitrary decisions of where to split the time series and whether to use the first or second part as the 

training dataset. All 336 PCs were used as predictors at the beginning of the model selection process because even very high 

order PCs can be important variables in a model (Phinyomark et al., 2015), and many of the high order PCs calculated here 
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were statistically distinguishable from random noise (Supplementary Material).Thus, the best BRT included the year, the 

month, and the combination of PCs from PC1 to PC336 which consistently improved its performance in cross validation. 336 

PCs was the maximum number of PCs which could be calculated from 336 monthly observations of temperature over the 28-

year span of the lake level time series. This best combination of PCs, specific to each lake, was used for determining the 

relative importance of the variables selected in the best model. We refit the best BRT for each lake to the full time series to 5 

calculate the final relative importance values of each PC. The relative importance of each predictor variable in the model is a 

function of the frequency with which it was included in the BRT’s individual regression trees and the improvement to the 

model that resulted from its inclusion (Elith et al., 2008). The relative importance of variables that were not selected in each 

lake’s best BRT was set to zero.  

 10 

3 Results 

We observed considerable variation in water levels within the 200 lakes in our analyses (Fig 1). Prior to accounting 

for the effects of background climate variation, water levels increased at a median rate of 1.2 cm year-1 (interquartile range: -

0.3 cm year-1 to 4.1 cm year-1) (Fig 1). Water levels were decreasing in 60 lakes (30 %), of which 14 were statistically 

significant (p<0.05 level), and increasing in 140 lakes (70 %), of which 51 were statistically significant (p<0.05 level). In 15 

total, 65 lakes (32.5 %) in our analyses had significant trends in water level (Fig 1). Given a significance level of α=0.05, we 

would expect only 10 of our 200 lakes to show “significant” trends by chance; thus, we observed far more significant long-

term trends than predicted by chance alone (Fig. 1). A comparable disparity was observed across a range of different 

arbitrary thresholds for statistical significance (i.e., 0.01, 0.05, and 0.1).  

Changes in water levels from 1992 to 2019 displayed a moderate level of regional consistency in the direction and 20 

magnitude of water level trends (Fig 2). In particular, lakes in the Middle East and the Southwest United States tended to 

have decreasing water levels (Fig 2).  Lakes in Canada and Europe tended to have weak or increasing water level trends. 

Water level trends in East Asia and Africa were highly variable from lake to lake (Fig 2).  

BRTs performed well for most lakes in our cross-validation and model optimization procedure; the median PRESS 

of the best model was 7.0 cm (interquartile range: 3.5-85.7 cm) across lakes. Two lakes with known anthropogenic water 25 

level dynamics, both of which are reservoirs on the Mekong River in China performed poorly in cross validation because 

they had water level increases >50 m as a result of dam construction in the middle of the time series (Nuozhadu and 

Xiaowan Dams). Across lakes, the best model included a median of 11 of the 336 PCs (interquartile range: 3-19 PCs) that 

were fed into our model selection procedure. 154 out of 336 PCs were never selected in any lake, and the overall frequency 

of inclusion across lakes decreased with PC order (Kendall’s tau = -0.75, p < 0 .01). The median percentage of water level 30 

variation associated with background climate variation was 58% (inner quartile range: 33-74%) with an additional 10% 

(inner quartile range: 4-22%) explained by seasonal variation and 25% (inner quartile range: 13-50%) explained by the long-

term trend. 
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The relative importance of each specific predictor variable varied substantially from lake to lake. Based on the 

median relative importance values across lakes, the year and the month most strongly influenced water level variability. PC1, 

PC4, PC5, and PC6 were the predictor variables with the third (2.6), fourth (1.6), fifth (1.5), and sixth (1.4) highest median 

relative importance in the best performing BRTs (Fig 3). PC1 was strongly correlated with the Multivariate El Nino Index 

(MEI; Kendall’s tau = 0.68, p <0.01); PC4 was correlated with the Atlantic Multidecadal Oscillation (AMO; Kendall’s tau = 5 

0.26, p <0.01); PC5 was correlated with the Arctic Oscillation (AO; Kendall’s tau = 0.30, p <0.01); PC6 was correlated with 

the Indian Ocean Dipole (IOD; Kendall’s tau = 0.21, p <0.01); so we renamed them here as PCENSO, PCAMO, PCAO, and 

PCIOD (Fig 3-4). These four PCs together encompass 22.0% of the variation in surface air temperature anomalies according 

to the eigenvalues from the PCA (PCENSO = 9.2%, PCAMO = 5.5%, PCAO = 4.0%, and PCIOD = 3.3%). PCENSO, PCAMO, PCAO, 

and PCIOD were selected in the best models for 107, 78, 69, and 70 lakes, respectively, but the direction of their effects 10 

differed among lakes (Fig 3). Many of the remaining PCs of high mean relative importance across waterbodies were only 

moderately correlated to indices from NOAA (Kendall’s correlation coefficient < 0.2). For instance, PC18 was not 

substantially correlated with any climate index recognized by NOAA (maximum Kendall’s tau = 0.14, p <0.01), yet 

exhibited the 11th highest median relative importance in explaining water levels across lakes (Fig 5). 

PCENSO, PCAMO, PCAO, and PCIOD were strongly related to water level variation in lakes around the world but the 15 

strength and directionality of those effects were regionally concentrated (Fig 6). The strongest effects of PCENSO were 

concentrated in the tropics where it had positive effects on water levels (Fig 6).  PCAMO was more positively associated with 

water levels in the Midwest United States, and negatively associated with water levels in Northern Canada and East Africa. 

PCAO was also selected in the best models of lakes that were regionally concentrated; it was positively associated with water 

levels in Central Asia while it was negatively associated with water levels in parts of Canada, Alaska, Northern Europe, 20 

Brazil, and East Africa (Fig 6). PCIOD was positively associated with water levels in Europe (Fig 6). 

After removing the effects of background climate variation on water levels using the fitted BRTs, water level trend 

estimates were shallower compared to estimates from the original time series (Fig 1). The median water level trend across 

lakes dropped from +1.2 to +0.8 cm year-1 after correcting for background climate variation (Fig 1). Even though they were 

lower on average, the trends became more statistically significant in 86% of lakes (Fig 1). Indeed, the median p-value of 25 

water level trends across lakes changed from 0.16 to 0.02 after removing the effects of background climate variation (Fig 1). 

For instance, prior to removing the effects of background climate variation, Becharof Lake in Alaska had an increasing trend 

(+0.40 cm year-1) with relatively low statistical significance (p-value = 0.15). However, after accounting for the effects of 

background climate variation, the trend was not substantially affected (from +0.40 cm year-1 to +0.51 cm year-1) but became 

substantially more statistically significant (p-value from 0.15 to <0.01). Based on inspection of the time series of water levels 30 

in Lake Becharof, we suspect that the strong climate oscillations affecting lake levels throughout the time series, in particular 

the water level local minima in 1998 and 2017 as well as the local maxima in 2003 and 2013 masked the long-term trend 

(Fig 7). In contrast, prior to removing the effects of background climate variation, Gods Lake in Canada had an increasing 

trend (+1.26 cm year-1) with a relatively low statistical significance (p-value = 0.35). However, after accounting for the 
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effects of background climate variation, the trend flipped sign and was much weaker (from +1.26 cm year-1 to -0.10 cm year-

1) and less statistically significant (p-value from 0.35 to 0.58). Based on inspection of the time series, we suspect that a series 

of three local water level minima early in the lake level time series in 1996, 2000, and 2004 created a specious appearance of 

a long-term trend in Gods Lake (Fig 7) that went away when those minima were attributed to background climate. 

 5 

4 Discussion: 

We detected long-term trends in water levels before and after accounting for background climate variation in most 

lakes in our analyses. The evidence of trends in the majority of lakes belies reports that most of the Earth has experienced no 

consistent changes in annual wetness and dryness (Greve et al., 2014; Greve and Seneviratne, 2015). This contrast highlights 

the potential for waterbody surface levels to serve as integrative metrics of regional water budgets, thereby enhancing our 10 

ability to detect hydrological changes.  

Background climate variation had significant effects on water levels in most large lakes between 1992 and 2019. 

Infrequently, the effects of multiple axes of background climate variation gave rise to the appearance of long-term trends 

which became less significant once background climate variation was factored out. But more often, background climate 

variation masked underlying trends in water levels which were detected when the effects of background climate were 15 

factored out (Table S2). Thus, attempting to detect anthropogenic effects on water levels using water level time series 

without accounting for background climate variation may over- or under- estimate the multi-decadal water level trends in 

lakes. 

The trends in water levels estimated here differed widely among lakes, presumably reflecting the heterogeneity of 

underlying changes in regional hydrological fluxes. Rising water levels in the majority of lakes may be attributable to 20 

increases in precipitation within their watersheds (Bintanja and Selten, 2014; Chadwick et al., 2013; IPCC, 2014; O’Gorman 

et al., 2012). However, even in watersheds which have experienced increased precipitation, greater inputs of water may be 

offset or even exceeded by increases in evapotranspiration (Dorigo et al., 2012; Vinukollu et al., 2011; Vörösmarty et al., 

2000; Vörösmarty and Sahagian, 2006) that yield net decreases in water levels.  

Not all of the lakes with significant trends in water levels followed the “wet gets wetter and dry gets dryer” pattern 25 

that is often predicted to occur with climate change (Wang et al., 2012). According to such predictions, surface water storage 

would be expected to decrease in many dry mid-latitude and subtropical regions, and to increase at high latitudes and in 

humid mid-latitude regions (IPCC, 2014). Several lakes with the strongest decreases in water levels (Aral, Mosul, Powell, 

Rakshastal, Salton, Tharthar, and Urmia) are indeed located in relatively dry regions (average long-term discharge / 

watershed area < 5000 cm3 s-1 km-2). Furthermore, several lakes with the strongest increases in water levels (Zeyaskoye and 30 

Atitlan) are located in relatively wet regions (average long-term discharge / watershed area > 5000 cm3 s-1 km-2). However, 

the intensification of wet-dry contrasts was violated in many places as some lakes in wet regions got dryer (Vermelha, 

Winnebago, and Woods) and some lakes in dry regions got wetter (Balkash, Cabora Bassa, Kapachagayskoye, Kariba, and 

Ulungar). This finding adds to others showing that a range of hydrological fluxes contradict the “wet gets wetter and dry gets 
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dryer” pattern over land (Byrne et al., 2015). As a specific example from our study, Lake Turkana had a significant increase 

in water level from 1992 to 2019 despite being in a very dry region. Thus, intensification of contrasts in precipitation may be 

a useful heuristic for predicting water level trends in some regions, but is clearly inapplicable at the global scale (Greve et 

al., 2014; Greve and Seneviratne, 2015).  

The changes in water levels in response to the four most important PCs (PCENSO, PCAMO, PCAO, and PCIOD) often 5 

matched the direction of change predicted from the hydrological changes associated with these particular climate 

oscillations. For instance, we observed strong negative relationships between PCENSO and water levels for many waterbodies 

in Sub-Saharan Africa, the Equatorial Americas, and Central Canada, as would be predicted based on studies of the global 

effects of ENSO on precipitation (Dai and Wigley, 2000; Ropelewski and Halpert, 1987). We also observed water level 

changes in North America as a function of PCAMO that are consistent with predictions from observed regional changes in 10 

rainfall associated with AMO (Wang et al., 2017). However, we also detected relationships between water levels and PCs 

that were not consistent with the known hydrological effects of the ENSO, AO, AMO, and IOD. For example, we found that 

PCAO had a strong effect on water levels in East Africa, where the AO is not typically considered to be a major driver of 

hydrological fluxes. However, the correlation between PCAO and the AO was relatively weak, so the apparent influence of 

PCAO could be driven by climate variation that was captured by PCAO and not the actual AO index.  15 

 58% of the explained variation in water levels (median across lakes) could be attributed to large-scale climate 

drivers as represented by the 336 PCs derived from air temperature records. We included higher order PCs because they 

might have accounted for additional variation in water levels. But we note that higher order PCs encompassed far less of the 

variation in surface air temperatures and they were included in far fewer of the lakes’ best water level models, so their 

implications for water levels are far weaker. For example, PC100 explained only 0.1% of variation in global surface air 20 

temperatures, and was included in our best performing model for 4 lakes albeit with very low explanatory contribution in 

those cases. Thus, excluding high-order PCs is unlikely to lead to substantial improvements or changes to our conclusions. 

The performance of the BRTs might be improved by including lag effects (Hansen et al., 1998; Hidalgo and Dracup, 2003). 

However, the computation time required to include lag effects was prohibitive. 

 Our interpretations of the statistical patterns reported herein require several caveats. First, there is substantial debate 25 

over which aspect of human activity (e.g. climate change, land use change, dam construction/management) is most important 

for driving water levels (Gyau-Boakye, 2001; Lenters, 2001; Mercier et al., 2002; Ricko et al., 2011; Wurtsbaugh et al., 

2017). Our modelling approach does not discern whether the trends we calculated are anthropogenic or which aspects of 

human activity are driving water level trends. Hence, future work is needed to disentangle the various anthropogenic forces 

which may influence water levels. Detecting anthropogenic water level trends and distinguishing between the effects of 30 

different aspects of human activity on water levels could be achieved by including water level dynamics in Earth system 

models. To date, lake ecosystems are generally oversimplified in such models in which lakes are often assumed to be 

relatively static, inert bodies on the landscape. 
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Second, we interpreted the trend in the partial dependence values for the year term in each lake’s BRT as being 

potentially anthropogenic. However, we cannot exclude the possibility that anthropogenic water level variation was 

attributed to background climate PCs themselves in cases where PCs are highly correlated with human activity. Human 

water extraction may consistently be a larger proportion of total water fluxes during certain phases of the ENSO cycle, for 

example. In the BRTs, this aspect of anthropogenic water level variation would have been captured by PCENSO rather than the 5 

year term, and would have been erroneously attributed to background climate variation. However, if the correlation between 

human water extraction and ENSO changed over time, it would be correctly attributed to the year variable in the BRTs, in 

general accordance with our simplified interpretations.  

Third, we distinguish between anthropogenic climate change and background climate variation in our 

interpretations because background climate indices like those used here are generally considered to be modes of natural 10 

variation. However, human activity may influence background climate variation as well, perhaps making certain phases of 

various climate oscillations more likely (Cai et al., 2015; Capotondi and Sardeshmukh, 2017; Timmermann et al., 1999). We 

partially accounted for this by removing any linear trend through time in temperature prior to the PCA. Detrending the 

temperature data in this way helped to separate the background climate indices from any ongoing climate change. However, 

more complex interactions between climate change and background climate variation would not be removed by this 15 

approach, as in a scenario where climate change enhances both positive and negative phases of background climate 

oscillations yet has no impact on trends of the mean. Research on such complex relationships is still inconclusive (Allen and 

Ingram, 2002; Cane, 2005; Collins, 2000; Guilyardi et al., 2009; van Oldenborgh et al., 2005), so we performed only linear 

detrending of PCs. We also recognize that our 28-year time series could also reflect longer-period climate oscillations such 

as the Pacific Decadal Oscillation, but the limited duration of altimeter-based satellite monitoring of lake levels precludes 20 

testing for such influences. 

The lakes represented in our study comprise a substantial portion of the global liquid surface freshwater on the planet. 

Our study includes the ten most voluminous freshwater lakes on Earth’s surface (Baikal, Tanganyika, Superior, Michigan, 

Huron, Malawi, Victoria, Great Bear, Ontario, Great Slave), which collectively contain more freshwater (total 80,241 km3) 

than has been withdrawn from the environment by humans at the global scale over the last 20 years (Food and Agriculture 25 

Organization of the United Nations, 2016). But the lakes in this study are not representative of all lakes, which tend to have 

smaller surface area and shallower maximum depths on average. Thus, the relative importance of background climate 

oscillations in the remainder of lakes other than the 200 large lakes studied here over the last 28 years remains uncertain and 

should be investigated further. 

Our modelling approach could be widely applied to disentangle the effects of background climate on other 30 

hydrological changes including streamflow and pan evaporation rates. The novel statistical method presented here using 

BRTs could be used to describe or factor out the effects of long-term variation in background climate variation on a wide 

variety of environmental variables including fires, floods, heatwaves, and droughts—all of which have been shown to be 

sensitive to climate teleconnections (Chen et al., 2016; Lau and Kim, 2012; Stenseth et al., 2003).  Instead of using common 
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climate indices, we encourage the use of the complete set of PCs calculated here, because important climate oscillations 

could otherwise be missed. To illustrate this point, the PC with the 11th highest median relative importance in explaining 

water level variation was not strongly correlated with any of the reported NOAA climate indices (Fig 5).  

Wherever water levels are affected by background climate and human activity, there is the potential to affect lake 

ecosystems and the benefits that humans derive from them (Clites et al., 2014). More than two billion people live in water 5 

stressed regions of the world where human demand for surface freshwater exceeds the available supply (Mekonnen and 

Hoekstra, 2016; Vörösmarty et al., 2000, 2010). Meeting the competing demands for surface freshwater, especially in water 

scarce regions and in the face of anthropogenic environmental change, is a key challenge for society. Our capacity to 

disentangle the effects of background climate oscillations on water levels is key to sustaining our freshwater resources, 

especially in the face of climate change (Clites et al., 2014; Gronewold et al., 2013). By applying this BRT statistical 10 

approach, we partially disentangled the effects of background global climate indices on water levels. Many of the large lakes 

in our analyses were remarkably resilient to long-term changes from 1992 to 2019. Thus, large lakes may be an increasingly 

important resource as water scarcity intensifies in the future. Abrupt changes in water levels in large lakes remain possible 

due to human activities and climate change, but our analyses suggest that we have not yet observed such changes in many of 

Earth’s largest lakes. 15 

 

5 Conclusions:  

 On average, water levels in the world’s large lakes are increasing but are highly variable from lake to lake. 

Background climate variability often masks these long-term trends in water levels and occasionally gives rise to the 

appearance of false trends that wane after background climate variation is factored out. Background climate variation alone 20 

can explain a large proportion of water level variability in lakes worldwide due to the strong influence of earth surface air 

temperatures on lake levels via climate-lake level teleconnections. These findings highlight further opportunities to 

investigate the specific mechanisms that couple climate and lake levels. The novel statistical method presented here using 

BRTs could be used to describe or factor out the effects of long-term variation in background climate variation on a wide 

variety of environmental variables including fires, floods, heatwaves, and droughts. Tests for long-term trends in 25 

environmental variables which may or may not be anthropogenic will likely benefit from prior isolation and removal of the 

effects of background climate variation using this method. 
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 5 

Figure 1: The change in each lake’s water level trend (a, b) and their trend p-value (c, d) which resulted from removing the 

effects of background climate variation on water level variation in 200 globally distributed large lakes. After removing the 

effects of background climate variation on water levels, long-term water level trend estimates (grey) were slightly more 

conservative overall compared to rates calculated from the raw water level data (black). The median value of water level 

trends across lakes changed from +1.2 cm year-1 to +0.8 cm year-1 after removing the effects of background climate variation. 10 

The trends became more statistically significant in most (76%, grey lines above the curve) but not all lakes (24%, black lines 

below the curve) after accounting for the effects of background climate variation. The median p-value of water level trends 

across lakes changed from 0.16 to 0.02 after removing the effects of background climate variation. Lakes are ranked 

independently in panels (a) and (c). 

15 
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Figure 2: Long-term trends in water levels prior to removing the effects of background climate variation. Some lakes 

including those in the southwest United States, parts of Africa, and the Middle-East show regionally-consistent patterns in 

water levels. 

  5 
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Figure 3: The relative influence of different axes of background climate variation (PCs) on water level variation. Empty dots 

represent lakes for which the PC was not selected in its “best model.” The opacity of each colored pixel in each map is 

related to the significance of the correlation between the PC and temperature at that pixel with less significant correlations 

appearing white. 5 
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Figure 4: Time series of background climate variation for the three PCs that were most influential in the best models of water 

level variation on average across lakes. PCs (PCAMO, PCAO, PCENSO, and PCIOD) and their corresponding climate indexes 

(AMO, AO, ENSO, and IOD) are transformed to their z-scores so that they can be more easily compared on the same, unit-

less scale. The dots represent raw values and the lines represent locally-weight scatter plot (LOWESS)-smoothed time series. 5 
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Figure 5: PC18 is an example of a PC which was important for explaining water levels but was not strongly correlated with 

any of the climate indices recognized by NOAA. In panel (a), Empty dots represent lakes for which PC18 was not selected in 

its “best model.” The opacity of each colored pixel in each map is related to the significance of the correlation between the 

PC and temperature at that pixel with less significant correlations appearing white. In panel (b), the dots represent raw values 5 

of PC18 and in panels (b) and (c), the lines represent LOWESS-smoothed values.  
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Figure 6: Regional consistently in the directionality of PCENSO, PCAMO, PCAO, and PCIOD effects on water level variation. 

Each line represents a LOWESS-smoothed relationship between water level variation in a specific lake and PCENSO. Water 

levels have been transformed into z-scores so that they may all be plotted on the same axis.   
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 5 

Figure 7: Water level time series for two North American lakes which show the potential for background climate variation to 

mask long-term trends (Becharof Lake) and the potential for climate variation to give rise to the false appearance of long-term 

trends (Gods Lake). The water level trend in Becharof Lake in Alaska became more significant after accounting for 

background climate variation and the water level trend in Gods Lake in Manitoba became less significant after accounting for 

background climate variation. Raw data are shown here but all trends were calculated based on annual averages. The black 10 

line is the raw water level data and the red line is the partial dependence of water level on the year term in the boosted 

regression trees.  
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