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Abstract: 11 

 12 

The Amazon rainforest evapotranspiration (ET) flux provides climate regulating and moisture provisioning 13 

ecosystem services through a moisture recycling system. The dense complex canopy and deep root system 14 

creates an optimum structure to provide large ET fluxes to the atmosphere forming the source for precipitation. 15 

Extensive land use and land cover change (LULCC) from forest to agriculture in the arc of deforestation breaks 16 

this moisture recycling system. Crops such as soybean are planted in large homogeneous monocultures and the 17 

maximum rooting depth of these crops is far shallower than forest. This difference in rooting depth is key as 18 

forests can access deep soil moisture and show no signs of water stress during the dry season while in contrast 19 

crops are highly seasonal with a growing season dependant on rainfall. As access to soil moisture is a limiting 20 

factor in vegetation growth, we hypothesised that if crops could access soil moisture they would undergo less 21 

water stress and therefore would have higher evapotranspiration rates than crops which could not access soil 22 

moisture. 23 

 24 

We combined remote sensing data with modelled groundwater table depth (WTD) to assess whether vegetation 25 

in areas with a shallow WTD had higher ET than vegetation in deep WTD areas. We randomly selected areas of 26 

forest, savanna and crop with deep and shallow WTD and examined whether they differ on MODIS 27 

Evapotranspiration (ET), Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI), from 2001 to 28 

2012, annually and during transition periods between the wet and dry season. As expected, we found no 29 

differences in ET, LST, and EVI for forest vegetation between deep and shallow WTD, which because of their 30 

deep roots could access water and maintain evapotranspiration for moisture recycling during the entire year. We 31 

found significantly higher ET and lower LST in shallow WTD crop areas than in deep WTD during the dry 32 

season transition, suggesting that crops in deep WTD undergo higher water stress than crops in shallow WTD 33 

areas.  34 

 35 

The differences found between crop in deep and shallow WTD, however, are of low significance with regards 36 

the moisture recycling system as the difference resulting from conversion of forest to crop has an overwhelming 37 

influence (ET in forest is ≈ 2 mm day-1 higher than that in crops) and has the strongest impact on energy balance 38 

and ET. However, access to water during the transition between wet and dry seasons may positively influence 39 

growing season length in crop areas. 40 

 41 

42 
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 Introduction 43 

 44 

The Amazon rainforest has been reduced to 80% of its original size due to deforestation over the past few decades 45 

(Davidson et al., 2012). Land use and land cover change (LULCC) from forest and savanna to agricultural land 46 

disrupts the Amazonian water cycle due to changes in evapotranspiration, infiltration, and runoff (Fearnside, 1997; 47 

Lawrence and Vandecar, 2014). Changes in evapotranspiration result in major changes to the water energy balance, 48 

as forest vegetation has high evapotranspiration rates and is replaced with agricultural vegetation with lower 49 

evapotranspiration which results in a lower latent heat flux and higher sensible heat flux (Swann et al., 2015). In 50 

addition, a decline in evapotranspiration reduces the available atmospheric moisture which can reduce rainfall.  51 

Differences in vegetation structure are suggested to be the main drivers affecting the evapotranspiration rates. 52 

Three major land cover classes can be identified at the Amazon arc of deforestation; forest, savanna (Brazilian 53 

cerrado, here we use savanna to keep terms equal with the land cover classification used) and agriculture. Forest 54 

vegetation has the highest total leaf surface area while savanna has a lower leaf surface area owing to its mixed 55 

structure of grasses shrubs and trees with a more open canopy and agricultural vegetation usually has a lower leaf 56 

area (Asner et al., 2003; Costa et al., 2007). This difference in leaf area lowers the potential surface area for both 57 

interception evaporation and transpiration. In addition, the rooting depth of forest savanna and agricultural 58 

vegetation differs greatly (Costa and Foley, 2000). Forest vegetation have deep roots which facilitate access to 59 

deep soil moisture maintaining their supply of water necessary for photosynthesis even during the dry season. 60 

Therefore, forest evapotranspiration remains high throughout the year, unaffected by periods of low rainfall 61 

(Maeda et al., 2017; Staal et al., 2018). While the rooting depth of savanna tree species have been shown to be 62 

deep, the savanna landscape also contains more open shallow rooted shrubs and grasses. Following LULCC from 63 

forest or savanna to agriculture the new vegetation cover lacks deep roots and therefore no longer accesses deeper 64 

soil moisture. Over the past few decades, the developing agricultural industry driven by international demand 65 

encouraged extensive LULCC (Brando et al., 2014; Foley et al., 2007; Sampaio et al., 2007) concentrated along 66 

the southern and eastern edge of the Amazon in an area known as the arc of deforestation (Costa and Pires, 2010; 67 

Malhi et al., 2008). LULCC negatively impacts the ecosystem service provision of the Amazon including highly 68 

valuable services such as carbon storage and sequestration and moisture recycling and regulation. However, little 69 

is known whether LULCC that occurred in areas with a shallow WTD facilitates access to water and leads to 70 

higher vegetation productivity and evapotranspiration compared to areas with a deep WTD. Understanding the 71 

effect that LULCC has on evapotranspiration is important as the loss of evapotranspiration impacts both climate 72 

and precipitation on local and regional scales.  73 

 74 

Local climate can be impacted by LULCC due to changes in the energy balance as loss of evapotranspiration 75 

reduces latent heat and increases sensible heat. Studies in the Amazon have shown that temperatures increase on 76 

average 1.4 °C with a max of 7 °C following conversion to crop (Badger and Dirmeyer, 2015). The seasonal impact 77 

of LULCC is particularly strong during the dry season as crop evapotranspiration is at its lowest, latent heat flux 78 

can be reduced by 78% and the sensible heat flux can increase by 85% relative to forest (Ponte De Souza et al., 79 

2011). The loss of evapotranspiration impacts rainfall both locally and on the continental scale. Evapotranspiration 80 

returns water to the atmosphere where it can precipitate again either in situ or be carried further downwind (Eltahir 81 

and Bras, 1994). Large forests like the Amazon, because of their density and extent create large evapotranspiration 82 

fluxes, leading to underpressure over land and the pressure differences draw moisture towards land (Makarieva 83 
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and Gorshkov, 2007; Sheil, 2014). As high as 70% of rainfall in the Amazon and southern Brazil is a result of 84 

Amazonian evapotranspiration (van der Ent and Savenije, 2011). This evapotranspiration precipitation cycle is 85 

highly important in both maintaining the forest itself but also providing precipitation to non forested areas. LULCC 86 

reduces the evapotranspiration and breaks this moisture recycling system resulting in lower rainfall locally and 87 

downwind. The seasonal loss of evapotranspiration in crop areas during the dry season is of great significance, 88 

evidence already suggests that LULCC has resulted in a lengthening of the dry season (Costa and Pires, 2010; 89 

Debortoli et al., 2017). Model simulations predict that if deforestation continues by 2050 the loss of 90 

evapotranspiration will result in a negative effect further reducing forest cover and evapotranspiration (Foley et 91 

al., 2007; Spracklen et al., 2012). The conversion of forest and savanna to agricultural land in Brazil is driven by 92 

an increasing demand for agricultural production which has almost doubled since 2000 (Zalles et al., 2019); 93 

however, losses in evapotranspiration could lead to subsequent losses in agricultural productivity as rainfall is 94 

reduced and the growing season is shortened (Oliveira et al., 2013).  95 

 96 

Crops in the Amazon arc of deforestation are predominantly rainfed and as such impacted by the high seasonality 97 

in rainfall unseen in forest vegetation. Forest vegetation provides an optimum structure for evapotranspiration due 98 

to its tall complex, dense canopy and deep root systems which can access deep soil moisture stores and maintain 99 

high transpiration rates even during periods of low rainfall (Nepstad et al., 1994; Sheil, 2014). Savanna has a mixed 100 

composition, with both trees and grass layers, more open canopy and lower leaf area. Savanna trees can have a 101 

deep rooting depth (> 10 m) facilitating access to deep soil water (Canadell et al., 1996). Agricultural crops are 102 

known to contribute much less to evapotranspiration as a result of their shorter canopy and simpler structure 103 

(Fearnside, 1997). In addition, agricultural crops lack the deep root systems of forest which are credited for 104 

maintaining evapotranspiration throughout the dry season (Nepstad et al., 1994). In theory, if vegetation continues 105 

to access the water table within the root zone then this vegetation will continue to transpire during periods of 106 

reduced rainfall. Thus limited access to soil moisture is an important limiting factor for photosynthesis and 107 

transpiration. Shallow water table depths across South America are widely distributed and correspond to an area 108 

of approximately 36% of the Amazon (Fan and Miguez-Macho, 2010). We hypothesize that areas of shallow water 109 

table depth (WTD) allow shallow rooted vegetation to access soil moisture, potentially facilitating vegetation 110 

productivity and higher evapotranspiration when compared to areas of deep WTD. Experimental manipulation of 111 

WTD using sub irrigation systems of soybean demonstrated that shallow WTD benefitted productivity and 112 

increased yield (Kahlown et al., 2005; Mejia et al., 2000). In the Amazonian arc of deforestation, irrigation of 113 

crops is relatively uncommon  (Lathuillière et al., 2012) and increases in agricultural productivity have been 114 

achieved primarily by increasing the area of crops (Oliveira et al., 2013). If agricultural vegetation can access soil 115 

moisture in these shallow WTD areas it could potentially increase the growing season length and productivity 116 

without the need for investment in irrigation systems. In turn, less land would be required to achieve the same 117 

agricultural output. During the wet season, soybean can reach rates of evapotranspiration similar to that of forest 118 

(Costa and Foley, 2000). Some studies have suggested that the difference in annual ET between forest and 119 

agricultural crops is primarily due to access to water during the dry season (Costa et al., 2007). 120 

 121 

In this study, we use a number of freely available remote sensing products in combination with modelled water 122 

table depth to investigate if naturally occurring shallow water table depth could increase evapotranspiration 123 
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compared to deep water table depth. We expect the greatest influence to be seen in crop areas as they have the 124 

shallowest rooting depth and are most dependent on precipitation. As reported in other studies the influence of 125 

WTD should not be visible for deep rooted vegetation (Nepstad et al., 1994) like forest and some savanna species. 126 

As savanna has mixed vegetation and rooting depths, we expected to find some differences in ET as a result of 127 

deep and shallow WTD. We expect that the differences as a result of WTD will be greater in the transition periods 128 

between wet and dry seasons as rainfall as a water source is limited. In areas of shallow WTD, the saturated zone 129 

is closer to the root zone of vegetation. In these locations we, therefore, expect crop vegetation to be buffered 130 

against the reduction in rainfall during the dry season transition and experience drought conditions later, thus 131 

delaying the decline of transpiration due to the dry season. Similarly, during the wet season transition, we expect 132 

that areas of shallow WTD will have higher productivity as crop vegetation may access the shallow WTD to 133 

supplement their demand when rainfall is low, therefore growing sooner than areas with deep WTD, effectively 134 

shortening the dry season. Finally, we discuss whether differences found in ET between deep and shallow WTD 135 

are important for moisture recycling, vegetation productivity and what are the implications for future LULCC.   136 
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2 Methods 137 

2.1 Study Area 138 

The study area is located in the southern Amazon, mostly in the northern region of Mato Grosso and incorporating 139 

the border area with Pará (Figure 1). Mato Grosso is classified into three major biomes with rainforest in the North, 140 

cerrado (a vegetation type that resembles savanna) in the central region and wetlands in the southwest (Kastens et 141 

al., 2017; Lathuillière et al., 2012). The climate has two seasons, the wet season in the austral winter and the dry 142 

season in austral summer, the dry season lasts around 5 months with an annual average rainfall of 2000 mm and 143 

monthly mean temperatures between 22 - 26 °C (Arvor et al., 2014). This precipitation level is within the natural 144 

range supporting both savanna (700 to 2000 mm/year), and forest (1000-2500 mm/year).  Mean elevation over the 145 

study area is 345 m ± 100 m with a maximum of 700 m and a minimum of 100 m. Runoff in the Amazon basin is 146 

usually low with groundwater convergence accounting for as high as 90% of streamflow (Miguez-Macho and Fan, 147 

2012). Mean WTD of the study area is 12 m with approximately 20 % shallow (< 2 m). The maximum WTD is 60 148 

- 70 m. This region is well known as a dynamic agricultural frontier – the arc of deforestation – with high rates of 149 

LULCC, where forest and savanna are converted for extensive agriculture, mostly cattle ranching and soy 150 

production (Kastens et al., 2017). Mato Grosso is the leading producer of agricultural crops such as soybean in 151 

Brazil (Gusso et al., 2014). We chose a 750 km x 750 km study area which is centrally located in the arc of 152 

deforestation and has large areas of primary forest (73 %), savanna (19 %) and crops (3 %).  153 

 154 

 155 

Figure 1: Study area on the arc of deforestation the Amazon, in Northern Mato Grosso. Inlayed image shows MODIS 156 
land cover classification map (2001) for the three land cover classes analysed. Forest – Green, Savanna – Beige, Crop – 157 
Yellow and Other - Grey. Due to the sinusoidal projection of MODIS satellite data, the study area looks distorted. 158 

 159 
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2.2 Datasets 160 

2.2.1 Remote sensing data 161 

Remote sensing offers excellent tools for monitoring changes in vegetation over large regions as it provides full 162 

geographic coverage, high temporal frequency at spatial scales relevant to most Earth system processes (Chambers 163 

et al., 2007). Here we use three separate products from the Moderate Resolution Imaging Spectrometer (MODIS), 164 

namely MODIS Evapotranspiration (MOD16A2), MODIS Land Surface Temperature (MOD11A2), and MODIS 165 

Enhanced Vegetation Index (MOD13A2), to assess the influence of WTD on evapotranspiration. MODIS remote 166 

sensing products were used as they offer a moderate spatial resolution and a high temporal resolution which is 167 

ideal for examination of seasonal processes. We chose to perform the analysis for the currently available MODIS 168 

land cover archive using data from 2001 to 2012. In addition, this period represents a time with high variability of 169 

precipitation extremes in which the Amazon experienced droughts, floods and could depict the variability the 170 

system experiences (Nobre et al., 2016). Data was downloaded from the NASA data sharing portal 171 

(earthdata.nasa.gov). Data was rescaled to 1 km resolution, no additional post-processing was conducted.  172 

 173 

MODIS Evapotranspiration (hereafter ET) data (Mu et al., 2011) provides 8 day accumulated evapotranspiration 174 

at 500 m resolution (rescaled to 1 km). The ET dataset is one of the best available datasets due to its relatively 175 

high spatial and temporal resolution as such it has been widely used to investigate the effect of land use change on 176 

evapotranspiration in the Amazon (Loarie et al., 2011; Neill et al., 2013; Vergopolan and Fisher, 2016). The 177 

baseline algorithm to the MODIS ET product is based on the Penman-Monteith equation, and combines parameters 178 

such as land cover, leaf area index (LAI), Albedo and Fraction of Photosynthetically Active Radiation (FPAR) 179 

directly observed with or modelled from MODIS data, with reanalysis data on Radiation, Air Temperature and 180 

Humidity from the Global Modelling and Assimilation Office (Mu et al., 2011). The MODIS ET products were 181 

previously tested over the Amazon by comparing its outputs with eddy covariance tower data, showing that the 182 

product is more accurate over longer temporal scales (monthly timesteps) and larger areas (e.g. drainage basin) 183 

(Ruhoff et al., 2013; Velpuri et al., 2013). While MODIS ET product is known to be underperforming at fine 184 

temporal resolutions and newer novel methods show promising results at nine flux sites across the Amazon (Xu et 185 

al., 2019), we believe that the application of the new method for our question on the influence of WTD and our 186 

time series analysis was beyond the scope of this study. This is also the reason why we chose to also analyse the 187 

effects of WTD on satellite retrieved EVI and LST. As with these additional products differences might be 188 

detectable, and potentially show a signal to the effects of WTD on the water cycle.  189 

MODIS Land Surface Temperature (hereafter LST) provides an 8 day mean day time land surface temperature in 190 

degrees Kelvin at 1 km resolution. LST data are produced by detection of thermal infrared radiation between 3 – 191 

15 µm spread across 15 bands of the thermal sensor on board the MODIS satellite system and temperatures are 192 

modelled based on land cover classification with a clear sky accuracy of 1 degree K (Wan, 2014). MODIS LST 193 

data was converted to degrees Celsius. Evapotranspiration in the Amazon has been shown to result in a net cooling 194 

effect (Bonan, 2008) therefore, areas with lower LST will be observed in areas of higher ET (Eltahir and Bras, 195 

1994). 196 

MODIS Enhanced Vegetation Index (hereafter EVI) provides an observation on vegetation greenness at a 197 

frequency of 16 days and 500 m resolution (rescaled to 1 km). EVI is a vegetation index that measures greenness 198 

as a proxy for productivity (Huete et al., 2002). It was developed to improve upon the normalized difference 199 



7 

 

vegetation index (NDVI), as EVI is less sensitive to saturation in highly dense canopies as those in the Amazon, 200 

and EVI also corrects for canopy background effects and atmospheric aerosol effects (Huete et al., 2002). This 201 

MODIS product offers an observation of vegetation productivity as it measures “greenness” and is correlated to 202 

photosynthesis/evapotranspiration (Mu et al., 2011). Thus vegetation with adequate access to water near their root 203 

zone will have a comparatively higher EVI than vegetation which is water stressed. This higher EVI, in turn, would 204 

correspond to areas of higher ET. 205 

In addition, we also used the MODIS land cover product for selection of our analysis sites (see below). MODIS 206 

land cover  (hereafter land cover) provides a classification of global land cover at 1 km resolution, and it is annually 207 

updated. For this study, we only used pixels that were classified as the same land cover type during the entire study 208 

period 2001 - 2012. The study area chosen provides a sufficient number of representative pixels for random 209 

selection of each land cover type. The use of stable land cover classes was necessary to determine and describe 210 

the patterns of ET, LST, and EVI over time and assess the effects of WTD on such trends without the confounding 211 

effect of land cover change. Further, we used MODIS land cover as it is the same land cover classification map as 212 

used for the MODIS ET product (Friedl et al., 2010) to avoid effects of land cover classification errors from 213 

different maps.   214 

Over the Amazon cloud cover and shadows are an issue, especially in the wet season. Pixels with high cloud cover 215 

were excluded from the analysis. The high seasonal difference in cloud cover is clear, at each time step we used a 216 

spatial mean of only available pixels, due to our large sample size we still have enough pixels for the analysis (see 217 

figure SI.10.1). We compared the cloud cover per land cover class, and found no bias or significant differences 218 

between deep and shallow areas. 219 

Topography might influence the MODIS data in an number of ways. Elevation can influence  meteorological 220 

forcing (i.e. temperature and vapor pressure) which is used to calculate ET. Topography can also influence water 221 

availability on a pixel due to slope and catchment size of the surrounding area, impacting water available to 222 

vegetation therefore influencing ET and EVI. Serious errors due to topography are filtered by MODIS quality 223 

control dataset and these pixels were excluded from our analysis. We used SRTM (Shuttle Radar Topography 224 

Mission) data to examine elevation and calculate the topographic wetness index (an integrated measure of water 225 

accumulation) of our studied pixels. No significant differences were found between elevation of  deep and shallow 226 

WTD areas of forest or savanna. Crop elevation was found to be significantly different between deep and shallow 227 

areas for half of our randomisations. However, the difference in mean elevation was only 10 m leading us to 228 

believe that this will not have a strong impact on the meteorological forcing data or ET. We found no significant 229 

differences in the topographic wetness index between deep and shallow land covers (see figure SI.9.4).  230 

Finally, Tropical Rainfall Measuring Mission (hereafter TRMM) 3B42 provides daily precipitation at a resolution 231 

of  0.25 0 (downloaded from earthdata.nasa.gov).  We calculated daily mean rainfall of our study area using the 232 

TRMM data which was then used to calculate the seasonality of rainfall, i.e. start of the dry season and the wet 233 

season across the study area and not per pixel (see below for further details). 234 

2.2.2 Water table depth 235 

Water table depth (WTD) values were extracted from the Fan et al. (2010) equilibrium WTD model of South 236 

America at 30 arc seconds (~ 1 km). The model was created as a long term mean water table depth using a 237 

combination of literature reported depths and national databases of groundwater table depth most of which are 238 
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from drinking water wells from areas of high population. This data is interpolated using a groundwater model 239 

forced by present day climate, terrain, and sea level.. We used the output of the model to obtain WTD data, which 240 

was projected to the same sinusoidal projection of the MODIS data. The equilibrium WTD model is intended for 241 

use in dynamic simulations, and although our study is not the intended use of the WTD model, it is the best 242 

currently available.  As the WTD model output is in “equilibrium” it gives a better indication of the annual average 243 

WTD compared to interpolated WTD measurements which may be biased depending on when they were recorded. 244 

The authors compared their WTD calculations with values reported in the literature and found good agreement for 245 

shallower WTD; however, the model overestimated deep WTD. We selected two broad WTD classes in order to 246 

further reduce some of the uncertainty around this key parameter: Shallow <2 m and Deep >8 m (and we will refer 247 

to these as such from hereafter). Figure 2. shows a theoretical graphical representation of the difference between 248 

forest (deep rooting depth), savanna (mix rooting depth), and crop (shallow rooting depth) land cover classes. 249 

These depths were selected as they represent rooting depth values for crop and forest vegetation from literature 250 

(Fan et al., 2016; Moreira et al., 2000; Nepstad et al., 1994; Setiyono et al., 2008).  251 

2.3 Sampling design 252 

2.3.1 Spatial sampling 253 

We chose to avoid pixels which experienced LULCC during the study period as we wanted to use the full time 254 

series for each pixel. We used MODIS land cover to identify pixels of each land cover class which remained 255 

unchanged between years and used these for analysis. We combined three land cover classes with the two water 256 

table depths and analysed the following classes: Forest Deep, Forest Shallow, Savanna Deep, Savanna Shallow, 257 

Crop Deep, and Crop Shallow. 258 

For each class, we randomly selected 1000 pixels and performed this random selection 20 times to account for the 259 

effect of the randomization process in the results. This random selection method increased computational 260 

efficiency by limiting the number of total pixels examined and producing comparable group sizes for statistical 261 

analysis. During the wet season the number of usable pixels was as low as 200 – 300 pixels per class for some 262 

time steps while in the dry season the number of usable pixels was above 900 (see supplemental information fig 263 

SI.8.1).    264 

 265 

 266 

Figure 2: Diagram showing that forest (A) root depth can reach until the saturated zone in both shallow (< 2 m) and 267 
deep (> 8 m) WTD, savanna (B)  has a mixed rooting depth with only tree roots reaching deep WTD and  crop (C) 268 
vegetation has a low maximum rooting depth (crops having a maximum rooting depth of 2 m and savanna having a 269 
maximum rooting depth > 10 m (Canadell et al., 1996). Shallow roots can reach the saturated zone in shallow WTD (< 270 
2 m); however, they cannot reach the saturated zone in deep WTD (> 8 m). 271 
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2.3.2 Data analysis 272 

The Amazon arc of deforestation is located in a region that has two major seasons defined by the difference in 273 

rainfall, the wet season from October to March (approximately 1500 mm) and the dry season from April to 274 

September (approximately 400 mm). The difference in rainfall can have significant impacts as the area can be 275 

prone to both seasonal flooding and droughts. In recent years the Amazon arc of deforestation has undergone an 276 

increased frequency of extreme weather events with drought in 2005, 2010 and flooding in 2009, 2012 (Nobre et 277 

al., 2016). These extreme climatic conditions can have a large influence on ET, and vegetation distribution as 278 

waterlogging of soils can lead to anoxia in the root zone. Due to the selection of only consistently classified pixels 279 

the influence of waterlogging can be avoided as over time these areas will fall under different classifications. 280 

Investigation into the drivers of these extreme variations and how each land cover class is influenced is however 281 

beyond the scope of this study.  282 

   283 

Analysis of the data was conducted using three primary time periods. We compared mean daily values of ET, EVI 284 

and LST between deep and shallow WTD as this gives an indication of the influence of WTD on our land cover 285 

classes without considering the seasonal variation. We then compared ET, EVI and LST of our land cover classes 286 

during the dry season transition (DST) and wet season transition (WST) periods.  287 

 288 

 For each year we calculated the DST and WST using mean daily precipitation of our study area from TRMM with 289 

the anomalous accumulation method of Liebmann et al., (2007). This method uses the following equation: 290 

𝐴(𝑛) =  ∑[𝑅(𝑛) − 𝑅̅]

𝑑𝑎𝑦

𝑛=1

 291 

Where R(n) is daily precipitation and 𝑅 is the average daily precipitation. Calculation of the anomalous 292 

accumulation begins at the driest month of the year, when the difference between daily precipitation and annual 293 

average is summed to a running total of the anomalous accumulation (A). The wet season onset is defined as the 294 

beginning of the longest period where the anomalous accumulation remains positive while the dry season onset is 295 

defined as the day after this anomalous accumulation reaches its maximum (Figure 3). These onset points of the 296 

dry and wet seasons were applied to find the closest time stamp from each MODIS product in the time series. We 297 

then considered the DST to last on average 8 repeats in the MODIS record (5 for EVI due to the lower frequency 298 

of the product) and the WST 7 repeats (4 for EVI). We used an average value for each remote sensing product 299 

over these transition periods to assess the difference between shallow and deep WTD on evapotranspiration. 300 
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 301 

 302 

Figure 3 Mean annual precipitation of the study area calculated from TRMM with 7 day average for graphical 303 
smoothing. wet season transition (WST) and dry season transition (DST) periods are represented in lighter blue. The 304 
vertical lines represent the average start and end dates, however exact dates were calculated per year between July 2001 305 
and July 2012. Red line represents anomalous accumulation method A(n) from Liebmann et al. (2007). 306 

The WST and DST periods were selected as LULCC in the arc of deforestation is correlated with a lengthening of 307 

the dry season in particular delays in the WST (Butt et al., 2011; Dubreuil et al., 2012; Fu et al., 2013). Recently, 308 

evapotranspiration has been shown to draw moist air over the Amazon triggering the wet season before migration 309 

of the ICTZ (Wright et al., 2017). In this study, we focus our analysis on differences in the DST and the WST.  310 

During the DST, there is already significant drydown (anomalous accumulation is at a maximum, and precipitation 311 

already went down before, see figure 3) which should be apparent in vegetation without access to deeper water 312 

sources.  Further into the dry season, other factors may cause a decline in transpiration as well, like heat stress. 313 

During the WST, we focus on the recovery of the vegetation, which should be faster when they have access to 314 

deeper water sources, like deep roots or a shallow WTD. Thus shallow rooted vegetation in shallow WTD areas 315 

may have higher access to water as their root zone is closer to the water table this will likely produce higher ET, 316 

EVI and lower LST during the DST than shallow rooted vegetation in deep WTD areas. This is because the WTD 317 

is much deeper and further from the vegetation rooting zone, which leads to a lack of access to water and the 318 

vegetation will likely be stressed. Similarly, during the WST, shallow rooted vegetation in shallow WTD may 319 

exhibit higher ET, EVI and lower LST than that in deep WTD because vegetation cannot yet be sustained by 320 

precipitation alone.. We do not expect these differences with deeply rooted vegetation 321 

We tested whether ET, LST, and EVI followed a normal distribution using the Kolmogorov–Smirnov test. This 322 

test served two purposes, to assess whether parametric statistics could be used and also indicate whether the WTD 323 

influences the frequency distribution of ET, LST, and EVI. Since a large number of response variables were not 324 

normally distributed, we chose to use non-parametric methods. Therefore, Wilcoxon rank sum test was used to 325 
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test whether there was a significant difference in median ET, LST, and EVI due to the deep and shallow water 326 

table. 327 

We further examined the frequency distribution of deep and shallow WTD of each of the datasets using the 328 

methodology of Wilcox (2012) where the lower and upper quantiles of the distribution are compared. Wilcox’s 329 

method utilises bootstrapping in order to compare the distribution of the 10th and 90th quantile using the Wilcoxon–330 

Mann–Whitney test. Due to our large sample size, 100 bootstrapped datasets were used. 331 

Statistical analysis between each deep and shallow land cover pair was performed separately each year for all 20 332 

randomisations e.g. differences in forest ET was tested for significance 12 years * 20 randomisations. For one 333 

year, the difference in ET, EVI or LST was considered statistically significant when more than 66.7% of 334 

randomisations were significant and an overall significance was determined if the majority (>50 %) of the years 335 

were significant. Statistical analysis was performed using Matlab R2018a (The MathWorks Inc., Natick, USA) 336 

statistical toolbox and Wilcox (2012) quantile distribution tool.    337 

3. Results  338 

The following results section is split into three subsections, one for each of the MODIS products used in the 339 

analysis. Each of the subsections and accompanying figures follows the same structure. Each figure uses three 340 

panels for the three time periods on the analysis A) annual daily mean, B) daily mean during DST, C) daily mean 341 

during WST. Each panel has three pairs of box plots which represent the deep and shallow WTD data for forest, 342 

savanna and crop.   343 

3.1 Effect of ground water depth on Evapotranspiration 344 

None of the three land cover classes had significant differences in the average daily evapotranspiration (ETdaily) 345 

between deep and shallow WTD areas (Figure 4A). However, while we did not find consistent significant 346 

differences, in both forest and crop ETdaily we do see a trend towards higher ETdaily in shallow WTD areas for both 347 

(average ± standard deviation: Forest Deep = 3.953 ± 0.08 mm day-1, Forest Shallow 3.967 ± 0.09 mm day-1; Crop 348 

Deep = 1.697 ± 0.07 mm day-1, Crop Shallow= 1.713 ± 0.08 mm day-1).  Interestingly, we found significant 349 

differences for Savanna at the extremes of the distributions, depicted by the arrows in Figure 4A. Both the 10th and 350 

90th quantiles of ETdaily were significantly higher in deep WTD areas than in shallow (difference of 10th = 0.017mm 351 

day-1, difference of 90th = 0.02 mm day-1, see supplemental information table S.2.4  for all the quantile analyses).  352 

 353 
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 354 

Figure 4. (A) Average daily evapotranspiration (ET) annually ETdaily, (B) during the dry season transition period ETDST, 355 
(C) during the wet season transition ETWST. Red boxes represent deep WTD Blue boxes represent shallow WTD. 356 
Significant results are shown by the green filled boxes if significance was found with both Wilcoxon Rank (WR) and 357 
Kolmogorov–Smirnov (KS). Significant differences in 10th and 90th quantile are depicted by the arrows.  358 

 359 

Clear differences in seasonality occur between the different land cover types (see supplemental information figures 360 

SI.3.1, SI.3.2 and SI.3.3). During the wet season mean ET of all land cover types can be above 4 mm day-1. Both 361 

crop and savanna show clear suppression of ET during the dry season.  362 

 363 

Crop ET during the DST (hereafter ETDST) was significantly higher in shallow than deep WTD areas (average ± 364 

standard deviation ET: Deep = 2.196 ± 0.11 mm day-1, Shallow = 2.26 ± 0.12 mm day-1, see the green filled boxes 365 

in Fig 4B). Again we observed significant differences at the extremes of the distribution for savanna, on average 366 

the 10th quantile of ETDST was higher in shallow (average difference = 0.003 mm day-1) and on average the 90th 367 

quantile of ETDST was higher in shallow (average difference = 0.005 mm day-1).   368 

ET during the WST (hereafter ETWST), while on average ETWST was higher in shallow WTD areas than in deep 369 

WTD areas (average difference: Forest = 0.01 mm day-1; Savanna = 0.01 mm day-1; Crop = 0.06 mm day-1) this 370 

difference was not significant (Figure 4C).  371 

 372 

3.2 Effect of ground water depth on Land Surface Temperature  373 

We found that the distribution of the average land surface temperature (LSTdaily) was significantly different only 374 

for savanna and the 90th quantile of crop. Deep WTD areas of savanna showed a distribution skewed towards lower 375 

temperatures (average ± standard deviation LST: Deep = 31.705 °C ± 0.38, Shallow = 31.848 °C ± 0.37), see yellow 376 

filled boxes in Figure 5A. The 90th quantile of crop LSTdaily deep WTD areas was on average 0.1 °C higher than in 377 

shallow WTD areas. Although this is only part of the distribution, it indicates that the warmest crop areas are found 378 

in deep WTD.   379 
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 381 

 382 

Figure 5. (A) Average daily land surface temperature (LST) annually LSTdaily, (B) during the dry season transition 383 
period LSTDST, (C) during the wet season transition LSTWST. Red boxes represent deep WTD Blue boxes represent 384 
shallow WTD. Yellow filled boxes represent a statistical difference in skewness, calculated by Kolmogorov–Smirnov, 385 
and green filled boxes represent statistical differences by both Wilcoxon-rank and Kolmogorov–Smirnov. Significant 386 
differences in 10th and 90th quantile are depicted by the arrows. 387 

 388 

LST shows clear seasonal differences between the different land covers. Crop LST has the highest range in LST 389 

with the warmest period coming towards the end of the dry season (August/September). (Supplemental 390 

information figure S.5.1, S.5.2 and S.5.3). During the DST, we found that crop in deep WTD areas had a 391 

significantly higher LST than in shallow WTD areas (average ± standard deviation LST: Deep = 31.256 ± 0.29 392 

°C, Shallow = 30.864 ± 0.31 °C, green filled boxes in Figure 5B).  In addition, the 10th quantile of the crop 393 

distributions was significantly higher by 0.42 °C in deep WTD areas than in shallow. During these periods we 394 

found again a significant difference in the distribution of savanna, where deep savanna distribution was skewed 395 

towards lower LST values. No significant differences were found during the WST (Figure 5C).  396 

3.3 Effect of ground water depth on Enhanced Vegetation Index 397 

We found significant differences in daily average EVI (EVIdaily) between deep and shallow WTD only in crop 398 

(average ± standard deviation EVI: Deep = 0.352 ± 0.01; Shallow = 0.357 ± 0.01), with shallow WTD areas EVI 399 

being higher than that of deep WTD areas (Figure 6A green filled boxes).  400 
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 402 

Figure 6. (A) Average enhanced vegetation index (EVI) annually EVIdaily, (B) during the dry season transition period 403 
EVIDST, (C) during the wet season transition EVIWST. Red boxes represent deep WTD Blue boxes represent shallow 404 
WTD. Green filled boxes represent statistical differences by both Wilcoxon-rank and Kolmogorov–Smirnov tests. 405 
Significant differences in 90th quantile are depicted by the arrows. 406 

 407 

Seasonality in EVI is shown in Supplemental information figure S.7.1, S.7.2 and S.7.3. Crop EVI shows the highest 408 

variation among land cover types. When looking at the DST (May/June) of crop EVI it seems that the response is 409 

delayed in shallow WTD compared to deep WTD; for the WST (October/November) it seems that EVI in shallow 410 

areas increases faster than in deep WTD areas. 411 

Mean EVI during the DST (EVIDST) for crop showed a trend towards higher EVI in shallow WTD areas; however, 412 

this difference was only significant in 5 of the 11 years and therefore is not considered consistent enough to be 413 

statistically significant (average ± standard deviation EVI: Deep = 0.352 ± 0.01, Shallow = 0.3656 ± 0.01. Figure 414 

6B, Table S.6.8). The 90th quantile EVI of crop was significantly higher in shallow WTD areas than deep. During 415 

the WST (EVIWST), crop was the only different class where EVI was significantly higher in shallow WTD areas 416 

that in deep WTD areas (average ± standard deviation  EVI: Deep = 0.364 ± 0.01,  Shallow = 0.378 ± 0.02, green 417 

filled boxes in Figure 6C).  418 

4 Discussion 419 

In this study, we tested the hypothesis that areas of shallow water table depth (WTD) would have higher 420 

evapotranspiration when compared to areas of deep WTD. As crop vegetation has the shallowest roots (< 2 m) we 421 

expect to see the largest influence of WTD in crop vegetation. In areas of deep WTD the root zone is far from the 422 

saturated zone resulting in less uptake of deep soil water, while in areas of shallow WTD the root zone is close to 423 

the saturated zone therefore providing the crops access to ground water.  However, we found no support for this 424 

as the annual daily mean ET was not different between crop in deep and shallow WTD areas. One potential 425 

explanation is that since crops experience high seasonality, this annual variability may override differences 426 
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between deep and shallow WTD areas in the daily average values of ET. For example, average crop ET reaches a 427 

maximum of 3.5 mm day-1 in the wet season while the dry season ET reaches a minimum of  0.4 mm day-1. 428 

Interestingly we found significant differences in annual mean LST and EVI for crop. For LST, we found that the 429 

upper 90th quantile was 0.11 °C higher in deep than in shallow WTD areas. While this difference is only found in 430 

the 90th quantile of the distribution it does indicate that LST in deep WTD areas can reach higher temperatures 431 

than shallow WTD areas. In addition, we found that crops in shallow WTD areas had a significantly higher EVI 432 

than in deep WTD. Crop EVI in shallow WTD areas is 1.2 % higher than in deep WTD. This provides support to 433 

our hypothesis that crop would have higher EVI in shallow WTD compared to deep WTD areas. The maximum 434 

rooting depth for most crops in the region is 2 m, in shallow WTD areas this means the root zone is close to the 435 

WTD and would have access to water while in deep WTD the roots are far from the saturated zone. This access to 436 

water in shallow WTD areas could also lead to higher ET and therefore evaporative cooling could explain the 437 

cooler temperatures in the 90th quantile.  438 

 439 

The second part of our hypothesis was that the effect of WTD would be most evident during the transition periods 440 

between wet and dry seasons when rainfall is reduced and vegetation activity is limited by access to soil moisture. 441 

We found support for this hypothesis during the DST. In the DST, crop ET was significantly higher in shallow 442 

WTD areas and crop LST was significantly lower in shallow WTD areas, while in crop EVI we saw a trend towards 443 

higher EVI in shallow WTD areas (significant differences were only found in 5 of the 11 years). While the 444 

difference in crop ET is not large (0.063 mm day-1, 2.9 % higher in shallow); during the DST, the results are 445 

important as they indicate that crops in the shallow WTD areas have a delayed response to lower rainfall and have 446 

a relatively longer growing season. Further evidence of this delayed response can be seen in the EVI seasonality 447 

graphs (see figure SI.7.3) where the response of shallow crop to the DST seems delayed compared to deep areas. 448 

Crop LST further supports our hypothesis as LST in deep WTD areas was 0.39 °C higher than in shallow WTD 449 

areas, while no significant effects were found in EVI. Therefore cooler temperatures in shallow WTD areas are 450 

expected to be the result of higher evaporative cooling from ET. These relatively low differences in ET as measured 451 

with MODIS data might also be due to the ET product itself. The ET model used for MODIS is not optimised for 452 

comparison over relatively small spatial extents and short temporal scales (Ruhoff et al., 2013). In addition, the 453 

ET model does not take into account soil water storage and ET is based largely on atmospheric forcing and global 454 

land cover parameterisation. Therefore the differences we found for the DST may be underestimated in the MODIS 455 

ET values. 456 

 457 

Ponte De Souza et al. (2011) highlighted that one of the strongest impacts of LULCC from forest to crop was due 458 

the simultaneous 85% increase in sensible heat flux and 78% reduction in latent heat recorded during the dry 459 

season. Studies examining the change in LST due to LULCC found that LST increased by 6 °C from forest to crop 460 

(Silvério et al., 2015)  and 1.5 °C from savanna to crop (Loarie et al., 2011). Further global models estimated an 461 

increase of 5 °C during the summer season for the Amazon, due to a shift from forest to grass (Brovkin et al., 2009; 462 

Dekker et al., 2010). This increase in temperature could be influenced by WTD and land cover change; in shallow 463 

WTD areas this may result in a less severe temperature change while in deep WTD it could lead to a greater change 464 

in temperature; however, WTD was not used as input for these modelling studies. Our results show a maximum 465 

temperature of 30 °C in forest compared to a maximum temperature of 38  °C in crops. 466 
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 467 

We also expected that the influence of WTD would be important during the WST, as in this period rainfall is 468 

increasing. In areas of shallow WTD, vegetation with a root zone close to the water table may still access water to 469 

supplement if rainfall is not sufficient. Therefore, vegetation growth may be accelerated in comparison to areas of 470 

deep WTD which rely more directly on precipitation. Crop EVI was significantly higher in shallow than deep 471 

WTD areas by about 3.8 %, and this was the only data for which we found a significant difference. Looking at the 472 

seasonality of EVI (figure SI.7.3) during the WST EVI is increasing faster in shallow WTD areas than in deep 473 

WTD. EVI measures vegetation greenness and could be an indication of more rapid growth in shallow WTD areas. 474 

As EVI data is directly observed and not modelled the differences are solely reliant on differences in reflected 475 

radiation. It may be that smaller differences between deep and shallow WTD areas are more easily detectable using 476 

this data. Along the arc of deforestation observations of a lengthening dry season since the 1970s, are linked to a 477 

delay in the WST (Butt et al., 2011; Fu et al., 2013). This delay correlates with LULCC and the large reduction 478 

this has on ET (Debortoli et al., 2017). Although the difference in WTD seen in crops does not have a strong 479 

influence on ET when compared to the difference in ET between the land cover classes, evidence of earlier or 480 

faster growth due to the shallow WTD could be beneficial on a local scale. 481 

 482 

These results are even more relevant when comparing the effects of WTD in crop and forest. As forest has been 483 

shown to maintain ET throughout the seasons (Kunert et al., 2017) as its deep roots access deeper groundwater 484 

(Gash and Nobre, 1997; Nepstad et al., 1994), we hypothesised that no change should be observed in ET, LST, 485 

and EVI. Indeed, we found no significant differences across the three MODIS products, both annually or during 486 

the DST and WST. While this does not directly support our hypothesis about the role of WTD for shallow rooted 487 

vegetation, this does help validate that our approach reflects our knowledge of the system for vegetation with deep 488 

roots.  489 

 490 

Savanna is a complex land cover type because its natural structure makes it is challenging to classify with remote 491 

sensing data (Gibbes et al., 2010). MODIS classification accuracy of savanna is about 40 %, about half of that of 492 

forest and crop (90 % and 80 % respectively) (Friedl et al., 2010). Savanna includes both trees and grasses, which 493 

through the deep roots of trees may access moisture directly and facilitate moisture uptake via hydraulic 494 

redistribution (Oliveira et al., 2005) and large areas of shallow root grasses without trees would be negatively 495 

affected by water stress. A number of the findings for savanna were not in line with our proposed hypothesis. The 496 

distribution between shallow and deep LST was significantly different, with deep WTD areas having a skewed 497 

distribution towards lower temperatures. In our hypothesis, we expected to find lower temperature where shallow 498 

WTD occurs or no differences in temperature. A similar trend was found in ET where the 10 th and 90th quantiles 499 

of the distribution were significantly higher in deep WTD areas. The difference in ET was very small, less than 1 500 

% difference between deep and shallow WTD areas. Water logging of soils has been shown to be an important 501 

factor in determining vegetation distribution (Ridolfi et al., 2006; Rossatto et al., 2012). Although we believe that 502 

larger flooding event leading to changes in vegetation composition are removed from our study due to the selection 503 

of pixels that during the time series were always classified as one land cover type, shorter periods of water logging 504 

may occur in shallow WTD areas. However, much higher spatial and temporal resolution imagery would be needed 505 

to identify this possibility.  506 
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 507 

The differences found for crop support our hypothesis that shallow WTD areas may facilitate water uptake 508 

compared with areas of deep WTD during the transition between wet and dry seasons. Previous crop production 509 

studies have shown that artificially maintaining a shallow WTD through sub irrigation systems can increase the 510 

productivity of crops such as soy (Kahlown et al., 2005; Mejia et al., 2000) but this has not been previously shown 511 

in the naturally occurring shallow WTD areas of the arc of deforestation in the Amazon. In deep WTD areas, crop 512 

vegetation undergoes more severe water stress compared with shallow WTD further reducing evapotranspiration 513 

and its potential impact on the moisture recycling system. At the regional scale, the difference between deep and 514 

shallow WTD is not that important. The most significant differences in ET are driven by deforestation and strong 515 

annual variations in rainfall. Although not analysed specifically in this study, the remote sensing data clearly shows 516 

these distinctions between different land cover classes and high seasonal and inter-annual variability. On a local 517 

scale, the difference between deep and shallow WTD on crop may be of great importance. During the DST crop 518 

areas in shallow WTD maintained higher ET. This difference may be important for overall productivity as the dry 519 

season influence is delayed and as a result, is increasing the growing season length. This could facilitate natural 520 

double cropping systems without the need for investment in irrigation which is still an uncommon practice in the 521 

Amazon arc of deforestation (Lathuillière et al., 2012). Agricultural intensification is a pathway to increasing the 522 

sustainability of agriculture in the arc of deforestation if it prevents or reduces deforestation or facilitates 523 

reforestation (Oliveira et al., 2013). If agricultural productivity can be increased by focusing on already cleared 524 

shallow WTD areas, areas of deep WTD could be reforested or returned to secondary forest. Reforestation of 525 

previously degraded or logged forest has been shown to return to near natural levels of ET within a few years 526 

(Davidson et al., 2012; Hölscher et al., 1997). The patterns seen in crop vegetation may be caused by factors not 527 

considered in this paper. Spatially explicit details about specific crops or agricultural practices were not known for 528 

the study. Planting of soybean is determined by the WST and can vary between September and October (Gusso et 529 

al., 2014). It is possible that the differences seen in shallow WTD could be the result of earlier sowing and double 530 

cropping systems. However, it may be that these agricultural management decisions are implemented more often 531 

in shallow WTD because of the higher availability of soil water. 532 

 533 

This study is a first approach into gaining a better understanding on the influence of shallow WTD on shallow 534 

rooted vegetation and it heavily relies on models and remote sensing data which are most appropriate for analyses 535 

at larger spatial and temporal scales.  536 

The results presented here are limited by the inherent uncertainty of the data used, both in the WTD model and the 537 

remote sensing data. Although we believe that the WTD model used here is the best currently available, due to 538 

limited data availability it was created using data located mostly in the coastal regions of the continent with very 539 

few observations from near our study site (Fan and Miguez-Macho, 2010). In this study, the authors note that there 540 

is an overestimation of deep WTD areas when validated against literature reported values. We believe that by the 541 

use of a conservative definition of deep WTD >8 m the model outputs are appropriate for our purposes. As 542 

discussed above, the remote sensing data has obvious limitations but does provide some insights into how depth 543 

of the water table at a local scale might affect water transfer and evaporative processes. Nonetheless, the second 544 

main source of uncertainty is in the MODIS land cover classification. We chose to use this land cover classification 545 

as the ET and LST products use this classification in their algorithm. Although the classes used are broad and do 546 
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not reflect the full complexity and heterogeneity of the arc of deforestation, they are robust enough for our 547 

purposes. As the influence of WTD on ET is most relevant on smaller scales, further research in these areas could 548 

focus on the smaller spatial scales and validate sites with accurate classification and WTD measurements.  549 

 550 

5 Conclusion 551 

This study aimed to investigate if naturally occurring shallow water table depth supported higher ET compared to 552 

deep WTD. In particular if shallow rooted crop vegetation would have higher ET due to increased access to soil 553 

water in shallow WTD areas as the distance from the root zone to the saturated zone is shorter. Comparison of EVI 554 

showed evidence to support this hypothesis as daily mean EVI was significantly higher in shallow WTD crop 555 

areas. However, the difference between deep and shallow WTD is overshadowed by the clear differences between 556 

land cover classes. Although not the focus of this study, differences in ET, LST and EVI were largest between 557 

land cover classes. In terms of larger scale processes like moisture recycling, LULCC is far more impactful than 558 

WTD differences. The main driver of LULCC is agricultural expansion. So although our results are not directly 559 

relevant at regional or continental scales on a local scale shallow WTD areas are more productive than deep WTD.  560 

The influence of WTD on crop vegetation was concentrated during the transition periods between wet and dry 561 

seasons. We found higher ET and lower LST during the DST and higher EVI during the WST for crop in shallow 562 

WTD areas. This higher vegetation productivity of crops due to the shallow WTD help effectively increases the 563 

growing season length. The higher productivity in shallow WTD areas may facilitate natural double cropping 564 

increasing the agricultural efficiency of the areas. These local scale effects can become significant when scaled to 565 

the level of the Amazon. Deforestation rates grew as high as 28,000 km2 year-1 in 2004 (Davidson et al., 2012). 566 

Any LULCC which occurs in areas of deep WTD are leading to inefficiencies in agricultural production and higher 567 

impacts to the moisture recycling system.   568 

The results presented here help to demonstrate that the LULCC impacts can vary spatially due to differences in 569 

WTD. Future studies investigating the impact of LULCC should incorporate WTD to help disentangle the full 570 

impact on the moisture recycling system.  571 

  572 
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