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Abstract. Monte Carlo (MC) methods have been widely used in uncertainty analysis and parameter identification for
hydrological models. The main challenge with these approaches is, however, the prohibitive number of model runs required
to get an adequate sample size which may take from days to months especially when the simulations are run in distributed
mode. In the past, emulators have been used to minimize the computational burden of the MC simulation through direct
estimation of the residual-based response surfaces. Here, we apply emulators of MC simulation in parameter identification
for a distributed conceptual hydrological model using two likelihood measures, i.e. the absolute bias of model predictions
(Score) and another based on the time relaxed limits of acceptability concept (pLoA). Three machine learning models
(MLMs) were built using model parameter sets and response surfaces with limited number of model realizations (4000). The
developed MLMs were applied to predict pLoA and Score for a large set of model parameters (95000). The behavioural
parameter sets were identified using a time relaxed limits of acceptability approach based on the predicted pLoA values; and
applied to estimate the quantile streamflow predictions weighted by their respective Score. The three MLMs were able to
adequately mimic the response surfaces directly estimated from MC simulations with an R? value of 0.7 to 0.92. Similarly,
the models identified using the coupled ML emulators and the limits of acceptability approach have performed very well in
reproducing the median streamflow prediction both during the calibration and validation periods with an average Nash-

Sutcliffe efficiency value of 0.89 and 0.83, respectively.

1 Introduction

Conceptual hydrological models have wide range of applications in solving various water quantity and quality related
problems. A conceptual model typically comprises one or more calibration parameters as part of the user’s perception of the
hydrological processes in the catchment and the corresponding simplifications that are assumed to be acceptable for the
intended modelling purpose (Beven, 1989; Refsgaard et al., 1997). One of the major challenges in using conceptual models,
however, is the identification of model parameters to a particular catchment (e.g. Bardossy and Singh, 2008). The failure to
set parameter values in accordance to their theoretical bounds, the interaction between these parameters, as well as the
absence of a unique best set of parameters are some of the causes of parameter uncertainty (Abebe and Price, 2003; Renard
et al., 2010). In light of the different sources of uncertainty, previous studies have pointed out the need for a rigorous
uncertainty analysis and communicating model simulation results in terms of uncertainty bounds rather than with only crisp
values (e.g. Uhlenbrook et al., 1999).

In the past, various uncertainty analysis techniques have been proposed to infer model parameter values from

observations, including the generalized likelihood uncertainty estimation (GLUE) methodology (Beven and Binley, 1992),
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the dynamic identifiability analysis framework (DYNIA) (Wagener et al., 2003), the Shuffled Complex Evolution
Metropolis algorithm (SCEM) (Vrugt et al., 2003), and the Bayesian inference (Kuczera and Parent, 1998; Yang et al., 2007).
The GLUE methodology was inspired by the generalized sensitivity analysis concept of Hornberger and Spear (1981) and it
is the most widely used uncertainty analysis framework in hydrology (Stedinger et al., 2008; Xiong et al., 2008; Shen et al.,
2012). The residual-based version of this framework allows the user to choose a likelihood and the threshold value for
identification of behavioural and non-behavioural models. The limits of acceptability based GLUE methodology (GLUE
LoA) (Beven, 2006) overcomes limitations of the residual-based GLUE, that arise from the subjectivity in choosing the
likelihood and the threshold value, by setting error bounds around the observed values. Models whose prediction falling
within the error bounds for all observations are considered behavioural. The original GLUE LoA, which was formulated as a
rejectionist framework in testing environmental models as hypothesis, is too stringent to be used for calibration purpose
especially in continuous rainfall-runoff modelling. In the past, different approaches have been made to minimize the
rejection of useful models when using GLUE LoA. These approaches include relaxing the limits (e.g. Blazkova and Beven,
2009; Liu et al., 2009), using different model realizations for different periods of a hydrological year (e.g., Choi and Beven,
2007) and using a time relaxed approach with the degree of relaxation constrained by an additional efficiency criterion
(Teweldebrhan et al., 2018). The time relaxed GLUE LoA approach (hereafter referred as GLUE pLoA) was based on the
empirical relationship between model efficiency and uncertainty in response to the percentage of model predictions that fall
within the observation error bounds (pLoA). In a case study involving this approach and an operational hydrological model,
the ensemble of model realizations with only 30-40 % of their predictions in a hydrologic year falling within the observation
error bounds were able to predict streamflow during the evaluation period with an acceptable degree of accuracy for the
intended use based on the commonly used efficiency criteria.

Monte Carlo (MC) simulation is commonly employed to quantify the uncertainty propagated from model parameters to
predictions in model calibration and uncertainty analysis frameworks including the GLUE methodology. MC simulation
involves the sampling of very large parameter sets from their respective parameter dimension. This is especially true when
the parameter distribution is not known a priori and hence a uniform distribution is assumed. Although, the MC simulation is
a widely accepted stochastic modelling techniques, it suffers from heavy computational burden (Yu et al., 2015). The
computational time and resources required by the MC simulation could be prohibitively expensive in the case of
computationally intensive models such as those with a distributed setup (e.g. Shrestha et al., 2014). In the past, different
approaches have been introduced to minimize the computational burden by reducing the number of model realizations in MC
simulation. These include the use of more efficient parameter sampling techniques such as the Latin hypercube sampling (e.g.
McKay et al., 1979; Iman and Conover, 1980) and adaptive Markov chain MC sampling (e.g. Blasone et al., 2008; Vrugt et
al., 2009) as well as through use of emulators (e.g. Wang et al., 2015). An emulator or surrogate model is a computationally
efficient model that is calibrated over a small dataset obtained by the simulation of a computationally demanding model and
used in its place during computationally expensive tasks (Pianosi et al., 2016).

In hydrology, surrogate modelling has been mainly used in optimization and sensitivity analysis frameworks (Oakley and
O'Hagan, 2004; Emmerich et al., 2006; Razavi et al., 2012). This approach involves a limited number of model realizations
to build a surrogate model using the parameter sets and model outputs as covariates and independent variable, respectively.
Statistical (e.g. Jones, 2001; Hussain et al., 2002; Regis and Shoemaker, 2004), Gaussian processes (Kennedy and O'Hagan,
2001; Yang et al., 2018) and machine learning models (MLMs) (e.g. Yu et al., 2015) have been used as surrogate models to
emulate MC simulations. A machine learning model estimates the dependency between the inputs and outputs of a system

from the available data (Mitchell, 1977).
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In this study three MLMs, i.e. random forest (RF), K-nearest neighbours (KNN), and artificial neural network (NNET)
are built using limited number of model parameter sets and response surfaces to emulate the MC simulation through
coupling with the limits of acceptability approach. In hydrology, machine learning approaches have been increasingly used
in different areas of application following the improvement in computation power. MLMs have been used in direct
prediction of different water quantity variables such as streamflow (Solomatine and Shrestha, 2009; Modaresi et al., 2018;
Senent-Aparicio et al., 2018), evapotranspiration (Torres et al., 2011) and snow water equivalent (Marofi et al.,2011;
Buckingham et al., 2015; Bair et al., 2017). Similarly MLMs have been used to predict water quality related variables such
as nitrate concentration (Ransom et al., 2017) and sediment transport (Bhattacharya et al., 2017). MLMs have also been used
to forecast the residuals of a conceptual rainfall-runoff model (Abebe and Prince, 2003) and as emulator for conducting
parameter uncertainty analysis of a conceptual hydrological model in order to overcome the high computational cost of the
MC simulation (Shrestha et al., 2009). The main goal of this study is to emulate the time consuming MC simulation for
parameter identification through coupling of the machine learning models with the time relaxed limits of acceptability
approach. The first objective is to assess the possibility of using pLoA as a likelihood measure for identification of
behavioural models using the coupled MLMs and the limits of acceptability approach, instead of the previously used
residual-based likelihood measures. The second objective is to compare the relative performances of RF and KNN as
emulators of the MC simulation in relation to the standard machine learning based emulator, i.e. NNET. As of our best
knowledge, RF and KNN have not been used before as emulators of the MC simulation in parameter identification for
hydrological models. The third objective is to compare the performance of the MLMs trained using pLoA against those
trained using the absolute bias based criterion (Score) as target variables in conducting sensitivity analysis in order to assess
the relative influence of the model parameters on the simulation result.

This paper is structured as follows: Section 2 presents a brief introduction to parameter identification using the time
relaxed GLUE LoA approach as well as the MLMs used in this study. This section will also present the procedure followed
in coupling the MLMs with the time relaxed GLUE LoA to emulate the MC simulation. Section 3 introduces the
hydrological model and the study area used in the case study. Section 4 presents the validation results of the ML models
through comparison of the predicted response surfaces against those directly generated from the MC simulation as well as
comparison of the simulated streamflow from behavioural models identified using the coupled MLMs and the time relaxed
GLUE LoA against the observed values. Implications of the results in relation to the dataset and models used in this study as

well as relevant previous studies are discussed in Section 5 and conclusions are drawn in section 6.

2 Methodology

Coupling of the MLMs with the GLUE pLoA was realized in two main phases. In the first phase, the response surfaces were
generated using limited number of MC simulations with subsequent evaluation of each realization using pLoA and Score as
likelihood measures. The MLMs were then built using the parameter sets and the response surfaces. In the second phase, the
developed MLMs were applied to predict the response surfaces for new parameter sets and the GLUE pLoA was used to
identify the behavioural parameter sets based on the predicted response surfaces. The R software and its package for
classification and regression training (CARET) were used for building and application of the MLMs as well as for

conducting further analyses.
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2.1 Parameter identification using the time-relaxed limits of acceptability approach

The GLUE methodology (Beven and Binley, 1992) accepts the condition in which different behavioural model realizations
give comparable model results, i.e. equifinality, as a working paradigm for parameter identification of hydrological models
(Choi and Beven, 2007). The first step followed in implementing this methodology was identification of the uncertain model
parameters and setting the range of their respective dimensions. The next step was to randomly sample the parameter sets
from the prior distribution. Since the parameter distribution was not known a priori, a uniform MC sampling was employed.
The hydrological model was run using the sampled parameter sets and the streamflow predictions of all model realizations
were retrieved for further analysis.

The GLUE limits of acceptability approach (GLUE LoA) (Beven, 2006) was used to characterize behavioural and non-
behavioural simulations. This approach relies on an assessment of uncertainty in the observational data and involves setting
an observation error bounds (limits) with due consideration to the observation and other sources of uncertainties such as
from the input data. Since no streamflow uncertainty data were available in the study site, mean observational uncertainty of
25% was assumed and the streamflow limits were defined using this value. In this study, the time relaxed variant of the
GLUE LoA (GLUE pLoA) was employed to characterize behavioural models. In GLUE pLoA, the requirement in the
original formulation for the model realizations to satisfy the limits in 100% of the observations is relaxed; with the degree of
relaxation constrained as a function of an acceptable modelling uncertainty expressed by the containing ratio index (CR). In
previous studies involving the GLUE methodology, this index has been used as estimate of the prediction uncertainty (e.g.
Xiong et al., 2009) and it is expressed as the number of observations falling within their respective prediction bounds to the
total number of observation (Eq. 1). When using the GLUE methodology, the observations are not expected to lie within the
prediction bands at a percentage that equals the given certainty level. However, the modeller can adopt the certainty level
specified for producing the prediction limits as a kind of standard for assessing the efficiency of the prediction limits in

enveloping the observations (Beven, 2006).

_ Z?=1 I(Qobs,i)

n

CR (1)

1, Liim,i < Qobs,i < Uiim,i
0, Otherwise

with, 1(Qops;) = {

where Q,ps,; represents observed streamflow at the the i™ time step, and Lyim ; and Uy, ; Tespectively denote the lower and
upper prediction bounds.
The percentage of observations where model predictions fall within the limits, i.e. pLoA is estimated using Equation 2.
ln=1 S(Qsim,i) "
n

pLoA = 100 ()

1; Le,i < Qsim,i < Ue,i
0, Otherwise

with, S(Qsim:) = {

where Qg;m,; represents simulated streamflow corresponding to the i™ observation, and L, ; and U, ; are the lower and upper

observation error bounds, respectively.
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The procedure followed in GLUE pLoA for relaxing the original formulation is detailed in Teweldebrhan et al. (2018). For

completeness, we include a summary of the steps herein:

Step 1: define an acceptable modelling uncertainty (CR) at a chosen certainty level (e.g. 5-95 %) based on previous
experience or literature values. In this study the CR value obtained for the calibration period using the residual-based
GLUE methodology was adopted as an acceptable CR value.

Step 2: relax the acceptable percentage of observations where model predictions fall within the limits. This is done by
gradually lowering the requirement for bracketing the observations in 100% of the time steps up to the acceptable pLOA.

Step 3: test whether each model realization prediction falls within the limits at least for the specified percentage of the total
observations. If model realizations that satisfy the relaxed acceptability criteria are found, proceed to step 4, otherwise
lower the threshold pLOA further and repeat this step.

Step 4: calculate the new CR and check if it is close to the predefined acceptable CR value. If the calculated CR is less than
the predefined CR, repeat steps 2 to 4. Whereas, if the two CR values are close (e.g. within 5%) then accept all model
realizations that satisfy this pLOA as behavioral and store their indices for use in further analysis.

The identified behavioural model realizations were used to predict streamflow weighted by their respective Score values.
When calculating Score, the prediction error, i.e. the deviation between the observed and simulated streamflow (Q) values
was first converted into a normalized criterion. This was accomplished using a triangular membership function with its
support representing the uncertainty in streamflow observations and the pointed core representing a perfect match between
the observed and predicted values (Fig. 1). In this figure and the accompanying equations, p,(e) denotes the membership
grade of each prediction error (e) corresponding to the observed streamflow value i; m is the point in the support with
perfect match between the observed and predicted streamflow values. The variables L, and U, respectively refer to the lower
and upper error bounds of the streamflow observations. The total Score (S;) of each model realization, j, was calculated as
the membership grade of the prediction error, summed over all observations (Eq. 3) and the normalized weight in relation to

the other model realizations (w;) was calculated using Eq. 4.

1.0
0,e<L,
° e—L
3905— — % l,<e<m
= m_Le
IJQ(e)= U, —
e—,m<e<Ue
U,—m
_ 0,e=U,
0.0 L, e m e U,

Prediction error

Figure 1. A triangular membership function for converting the streamflow prediction error into a normalized criterion.

5 = Z Ho(e) (3)
i=1

W= s *)
D=1k

where the notations n and N respectively refer to the number of streamflow observations and behavioural models .
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2.2 Machine learning modelling

Three non-linear and non-parametric machine learning methods, i.e. RF, KNN, and NNET from the CARET package of R
(Kuhn, 2008) were considered to emulate the MC simulation. In all methods, relevant parameters were optimized and the
root mean squared error (RMSE) metric was used to identify the optimal model. This section briefly summarizes these

machine learning methods and the reader is referred to the above reference for detailed description of these algorithms.

2.2.1 Random forest

Random forest (RF) is a version of the Bagged (bootstrap-aggregated) trees algorithm (Breiman, 2001). As such, it is an
ensemble method whereby a large number of individual trees are grown from random subsets of predictors, providing a
weighted ensemble of trees (Bair et al. 2017). Bagging was reported to be a successful approach for combining unstable
learners (e.g. Li et al., 2011). Since RF combines bagging with a randomization of the predictor variables used at each node,
it yields an ensemble of low correlation trees (Li et al., 2011, Appelhans et al., 2015). The free parameter in this method, i.e.
the number of randomly selected predictors at each node, was determined through optimization. RF is also less sensitive to

non-important variables, since it implicitly performs variable selection (Okun and Priisalu, 2007).

2.2.2 K-nearest neighbors

K-nearest neighbors (KNN) approach uses the K-closest samples from the training dataset to predict a new sample. The
value of K, i.e. the number of closest samples used in the final model was optimized. KNN is a nonparametric method where
the information extracted from the observed datasets is used to predict the variable of interest without defining a
predetermined parametric relationship between the predictors and predicted variables (Modaresi et al., 2018). KNN is also a
non-linear method whose prediction solely depends on the distance of the predictor variables to the closest training dataset
known to the model (Appelhans et al., 2015). In this study, the Euclidean distance was used as a similarity measure for

computing the distance between the new and training datasets.

2.2.3 Artificial neural network

An artificial neural network (NNET) constitutes an interconnected and weighted network of several simple processing units
called neurons that are analogous to the biological neurons of the human brain (Hsieh, 1993; Tabari et al., 2010). The
neurons provide the link between the predictors and the predicted variable and in the case of supervised learning the weights
of the neurons, i.e. the unidirectional connection strengths, are iteratively adjusted to minimize the error (Sajikumar and
Thandavesware, 1999; Bair et al. 2018). NNET has the capability to detect and learn complex and nonlinear relationships
between variables (Yu et al., 2015).

A multilayer perceptron is the most common type of neural network used in supervised learning (Zhao et al., 2005;
Marofi et al., 2011) and it consists of an input layer in which input data are fed, one or more hidden layers of neurons in
which data are processed, and an output layer that produces output data for the given input (e.g. Senent-Aparicio et al., 2018).
In this study one middle layer was considered, with the number of neurons in the input and output layers being equal to the
number of predictors and predicted variable, respectively. The two free parameters of NNET, i.e. the number of neurons in
the middle layer and the value of weight decay were optimized. Based on a preliminary assessment on performances of

models with a linear and sigmoid activation function, a linear activation function was used in the final model.
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2.3 Coupling of the machine learning emulators with the limits of acceptability approach

The procedure followed to build and apply the MLMs as emulators of the MC simulation is similar to the approach used in
previous studies (e.g. Yu et al., 2015) with the exception of the parameter identification part. While the previous studies were
conducted based on the residual-based GLUE, here we use the time relaxed GLUE LoA approach with two likelihood
measures. The coupling procedure involved sampling of 5000 random samples from the dimensions of the uncertain model
parameters. The hydrological model was run using these parameter sets with subsequent retrieval of the simulated
streamflow values. Each model realization was evaluated both in terms of its capability to generate simulated streamflow
close to the observed values (Score) and its persistency in producing acceptable simulated values that fall within the
observation error bounds (pLoA). Six MLMs (for the combinations of the two likelihoods, i.e. Score and pLoA and for the
three ML methods, i.e. RF, KNN, and NNET) were trained and tested using the randomly selected parameter sets and their
corresponding likelihood values directly estimated from the MC simulation. Sample sizes of 80% (S1) and 20% (S2) of the
5000 samples were respectively used for training and testing the MLMs (Table 1).

Table 1. Parameter samples used in building and application of the MLM-based emulators.

Sample Size Description

S1 4000 used for training the MLMs

S2 1000 used for testing the MLMs

S3 95000  used to predict the response surface
S4 - identified behavioural samples

The trained MLMs were applied to emulate the MC simulation through prediction of the likelihood measures
corresponding to a much bigger size of randomly generated parameter sets, i.e. 95000 (S3). For further validation of the
MLMs, an MC simulation was also run using the hydrological model and the S3 parameter sets with subsequent retrieval of
the simulated streamflow and estimation of the two likelihood measures through comparison of the simulated against
observed streamflow values. Performance of the surrogate models to emulate the MC simulation was evaluated through
comparison of their likelihood prediction against those estimated from the MC simulation. The identification of behavioural
parameter sets (S4) from the S3 samples was realized using the time relaxed GLUE LoA approach based on the MLM
predicted pLoA values of the samples. The score-weighted streamflow predictions of these behavioural models were
calculated at different quantile values. Performance of the three MLMs as emulators of the MC simulation was further
assessed through cross-validation of the streamflow predictions of behavioural models identified using each MLM coupled
with GLUE pLoA (MLM-GLUE pLoA) against observed values in the remaining years other than the one used for building
the MLM-GLUE pLoA.

The procedure followed in building and evaluation of MLM-GLUE pLoA can be divided into two main phases as
outlined below and depicted as schematic overview in Fig. 2:

(a) MLM training and testing
i.  Randomly sample 5000 parameter sets from their respective parameter dimensions.
ii.  Run the hydrological model using the sampled parameter sets and store the simulated streamflow corresponding to
each parameter set.
iii.  Calculate the performance of each model realization in terms of the percentage of time steps it is able to reproduce the
observed streamflow within the observation error bounds, i.e. pLoA, and the total normalized absolute bias of the

predicted streamflow (Score). A streamflow observation error bound of 25% was assumed in this study.



Use 80% of the parameter sets, i.e. S1, of the samples generated at step i as covariates; and the performance of each
parameter set (pLoA) calculated at the previous step as target variable to train the MLMs i.e. RF, KNN, and NNET
(MLMs_pLoA). Similarly, train the three MLMs using same parameter sets (S1) as covariates but with Score as a
target variable (MLMs_score).

Test the trained MLMs pLoA using the remaining 20% of the parameter sets generated at step i, i.e. S2, and the
corresponding target variable (pLoA) from step iii. Similarly, test the trained MLMs_score using the same samples

(S2) but with Score as a target variable.

(b) Response surface estimation and behavioural model identification

1.
10 ii.

iil.

iv.

15

Repeat the step i in MLM training and testing (a) but with a much bigger sample size of 95000 (S3)

Predict pLoA and Score using MLMs_pLoA and MLMs_score, respectively and S3 as covariate.

Identify behavioural samples (S4) from S3 using the time relaxed limits of acceptability approach (Section 2.1) based
on the pLoA predicted by the MLM.

Estimate weighted median streamflow prediction of the behavioral models. The Score predicted by the MLMs_score

was first normalized using Eq. 4 and then used to weigh the relative contribution of each model realization.
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Figure 2. Schematic overview of the MLM training and testing as well as response surface prediction using the MLMs and

the identification of behavioural models using the coupled MLM and GLUE pLoA.
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2.4 Model performance measures

The performances of the generated ML models, i.e. RF, KNN, and NNET in terms of their capability to reproduce the
response surfaces were evaluated using the following three standard statistical criteria, i.e. root mean square error (RMSE),

coefficient of determination (R?) and the mean absolute bias (MAB).

1 N 2 5
RMSE = | Z (Lmii — L) (5)
i=1

RZ _ [Zlivzl(l‘mc,i - ch)(l‘ml,i - Zml )]2
Iiv=1(me,i - ch)z -Z?’=1(Lml,i - Zml)2 (6)

1 N
MAB = — Z Linti = Lime.
N i=1| ml,i mc,i | (7)

where Ly, ; and L, ; respectively denote the likelihood values (pLoA or Score) predicted using a given MLM and estimated
using the MC simulation for the i model realization. L,,; and L,,, are the average MLM predicted and MC estimated
likelihood values, respectively. N is the total number of model realizations.

The Nash-Sutcliffe efficiency (NSE, Eq. 8) and the NSE with log-transformed data (LnNSE) were used for assessing the
streamflow prediction of behavioral models identified using MLM-GLUE pLoA through comparison against the observed

values.

?: 1(Qsim,i - Qobs,i)2

NSE =1 — —
Z?=1(Qobs,i - Qobs)2 (8)

where Qg;m,; and Q,ps; respectively represent simulated and observed streamflow for the i™ time step and Q) represents

mean value of the observed streamflow series.

3 Case study
3.1 The hydrological model

The Statkraft Hydrological Forecasting Toolbox, Shyft, (https://github.com/statkraft/shyft) is an open-source distributed
hydrological modelling framework developed by Statkraft (2018) with contributions from the University of Oslo and other
institutions (e.g. Nyhus, 2017; Matt et al., 2018). The modelling framework has three main models (method stacks) and in
this study, the PT_GS_K model was used for the parameter identification study using machine learning based emulators of
the MC simulation. PT_GS K is a conceptual hydrological model and in this study eight of its parameters are subjected to
uncertainty analysis. PT_GS K uses the Priestley-Taylor (PT) method (Priestley and Taylor, 1972) for estimating potential
evaporation; a quasi-physical based method for snow melt, sub-grid snow distribution and mass balance calculations (GS
method); and a simple storage-discharge function (Lambert, 1972; Kirchner, 2009) for catchment response calculation (K).
Overall, these three methods constitute the PT_GS K model in Shyft. The framework establishes a sequence of spatially
distributed cells of arbitrary size and shape. As such it can provide lumped (single cell) or discretized (spatially distributed)

calculations, as in this study. The modelling framework (shyft) and the PT_GS K model in particular were described in

9
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previous studies (e.g. Burkhart et al., 2016; Teweldebrhan et al., 2018) and the reader is referred to these materials for further
details on the underlying methods of this model. The following table shows list of the uncertain model parameters and their
parameter range.

Table 2. Range of model parameters used for the PT_GS K model uncertainty analysis

Model Min. Max. Description

Parameter
cl -5.0 1.0  constant in Catchment Response Function, CRF
c2 0.0 1.2 linear coefficient in CRF
c3 -0.15 -0.05 quadratic coefficient in CRF
tx -3.0 2.0 Solid/liquid threshold temperature (°C)
ws 1.0 6.0  wind scale, i.e. slope in turbulent wind function
fa 1.0 15.0 fast albedo decay rate (days)
sa 20.0 40.0  slow albedo decay rate (days)
cv 0.06 0.85  spatial coefficient of variation of snowfall

3.2 Study site and data

The data used for training and validation of the ML emulators was retrieved from the Nea-catchment. This catchment is
located in Ser-Trendelag County, Norway (Fig. 3). Geographical location of the catchment ranges from 11.67390 ° to
12.46273 °E and from 62.77916 ° to 63.20405 ° N. The Nea-catchment covers a total area of 703 km”and it is characterized
by a wide range of physiographic and land cover characteristics. Altitude of the catchment ranges from 1783 masl on the
eastern part around the mountains of Storsylen to 649 masl at its outlet. The dominant land cover types in the catchment are
moors, bogs, and some sparse vegetation, while limited part of the catchment is forest covered (3%). Mean annual
precipitation for the hydrological years 2011-2014 was 1120 mm. The highest and lowest average daily temperature values
for this period were 28 °C and -30 °C, respectively.

PT_GS_K model requires temperature, precipitation, radiation, relative humidity, and wind speed as forcing data. In this
study, daily time series data of these variables were obtained from Statkraft (2018) with the exception of relative humidity.
Daily gridded relative humidity data was retrieved from ERA-interim (Dee et al., 2011). The model also requires the
following physiographic data of each grid cell: average elevation, grid cell total area, and the areal fractions of forest,
reservoir, lake, and glacier. Data for these physiographic variables were retrieved from two sources: the land cover data from
Copernicus land monitoring service (2016) and the 10m digital elevation model (10m DEM) from the Norwegian mapping
authority (2016). Daily observed streamflow measurements that were used both in behavioral model identification and
validation that cover four hydrological years (September 1 to August 31) for the study area were also provided by Statkraft
(2018).

10
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Figure 3. Physiography and location map of the study domain

4 Results
4.1 Evaluation of the MLMs capability in reproducing the response surfaces

Table 3 shows the test and validation results of the MLMs trained to emulate the MC simulation. Two sets of MLM
emulators were trained using the same covariates but different target variables, i.e. pLoA and Score. The pLoA and Score
predicted using the test (S2) and validation (S3) samples were compared against their respective values estimated using the
MC simulation. The evaluation metrics have shown variability both between the three MLMs and the analysis years. For the
test samples and using pLoA as a target variable, while similar results were obtained between RF and NNET, a relatively
lower performance was observed when using KNN. The highest performance of the MLMs was observed in year 2014 with
R? value of 0.91, 0.76 and 0.92 for RF, KNN, and NNET respectively and the lowest performance was observed in year
2013 with R? value of 0.86, 0.7 and 0.85 for RF, KNN, and NNET respectively. When using Score as a target variable and
the test samples, RF, NNET, and KNN have shown a decreasing order of performance based on the three evaluation metrics,
i.e. RMSE, R%, and MAE. The inter-annual comparison of the evaluation metrics shows that the relative performance of the
MLMs using Score as a target variable was consistent throughout the four analysis years. Relative performances similar to
the test samples were obtained for the validation samples both for MLMs pLoA and MLMs_score. When it comes to time
efficiency of the emulators, they commonly take few seconds to predict the response surface for the 95000 samples as

compared to over 24 hours when running the Monte Carlo simulation for a single hydrological year.
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Table 3. Evaluation result of the predicted target variables, i.e. pLoA (in fraction) and Score through comparison against

values estimated using the MC simulation for the test and validation samples.

Test (pLoA) Validation (pLoA) Test (Score) Validation (Score)
Year Metrics | RF KNN NNET | RF KNN NNET | RF KNN NNET | RF KNN NNET
2011 RMSE | 0.028 0.041 0.027 | 0.028 0.042 0.029 | 4.698 7.058 5.510 | 4710 6.964 5.417
R’ 0.888 0.751 0.884 | 0.884 0.741 0.872 | 0.876 0.721 0.821 | 0.875 0.727  0.827
MAE 0.016 0.027 0.019 | 0.016 0.028 0.019 | 2.604 4.691 3.254 | 2.751 4.632 3.219
2012 RMSE | 0.034 0.048 0.032 | 0.034 0.047 0.031 | 5.656 7.500 6.892 | 6.093 8313 7.564
R’ 0.867 0.734 0.876 | 0.858 0.734 0.880 | 0.856 0.754 0.780 | 0.852 0.725 0.763
MAE 0.020 0.030 0.021 | 0.019 0.030 0.020 | 3.343 4.887 4.133 | 3.453 5206 4.437
2013 RMSE | 0.034 0.049 0.034 | 0.034 0.050 0.034 | 5.001 8.030 6.508 | 5.787 8.670 7.274
R’ 0.862 0.701 0.847 | 0.865 0.699 0.854 | 0.876 0.675 0.786 | 0.862 0.687 0.772
MAE 0.017 0.031 0.021 | 0.017 0.031 0.021 | 2.843 5.196 4.250 | 3.032 5.375 4.531
2014 RMSE | 0.023 0.038 0.022 | 0.024 0.040 0.022 | 4274 7.010 4.354 | 4303 7.027 4.493
R’ 0914 0.764 0919 | 0916 0.764 0.923 | 0.908 0.753 0.900 | 0.908 0.755 0.895
MAE 0.014 0.026 0.015 ] 0.014 0.026 0.015 | 2.569 4.693 2.870 | 2.532 4.663 2.897

4.2 Evaluation of behavioural parameter sets using observed streamflow

The behavioural model realizations identified using the coupled ML emulators and the limits of acceptability approach were
evaluated using observed streamflow values. A cross-validation method was used to assess the performance of the model
parameter sets identified in a given year through comparison of the simulated against observed streamflow values in the
remaining years. The cross-validation result based on the streamflow efficiency measures used in this study, i.e. NSE and
LnNSE as well as the CR are depicted in Table 4. The behavioural model realizations have performed very well both during
the calibration and validation periods. During the calibration period, minimum NSE of 0.81, 0.89, and 0.82 were respectively
obtained for the models identified using RF, KNN, and NNET as emulators. Similarly, the maximum NSE values during this
period were 0.93, 0.94, and 0.95 respectively for RF, KNN, and NNET. The average NSE for these emulators was 0.88, 0.91,
and 0.88, respectively. During the validation period the value of NSE ranged 0.72-0.83, 0.66-0.85 and 0.71-0.83 respectively
for RF, KNN, and NNET. A relatively lower Ln NSE value than NSE was observed in most of the analysis years with the
exception of year 2012, where a relatively higher Ln NSE was obtained than NSE when using RF and NNET during the
calibration period. While a slightly higher average NSE was obtained when using KNN as compared to RF and NNET both
during calibration (0.91) and validation (0.85) periods, a slightly higher average LnNSE was obtained when using NNET
both during calibration (0.85) and validation (0.79) periods.

The measure of streamflow prediction uncertainty used in this study, i.e. CR, for the validation period has shown some
variability based on the MLM used in behavioural model identification. When using RF, the highest and lowest CR values
obtained were 0.65 and 0.89, respectively, with an overall mean value of 0.74. Similarly, minimum, maximum, and mean
CR values respectively of 0.64, 0.80, and 0.71 were obtained when using NNET. The validation period CR values when
using KNN ranged from 0.72 to 0.89 with an average value of 0.79, which is relatively higher as compared to RF and NNET.

The inter-annual comparison between the three MLMs shows that the highest validation period average NSE (0.89) was
obtained under the year 2014 as calibration period and KNN as ML emulator. Similarly, the highest average LnNSE (0.86)
for the validation period was obtained when using models calibrated in year 2014 but NNET as ML emulator. On the other
hand, the lowest average NSE (0.74) for the validation period was obtained when using year 2013 as calibration period and

RF and KNN as ML emulators. This shows that models identified based on KNN were characterized by a relatively higher
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inter-annual variability in their performances (based on NSE) as compared to those identified using RF and NNET. A

relatively higher inter-annual variability in average CR (0.66 to 0.79) for the validation periods was obtained when using RF.

Table 4. Cross-validation of the streamflow predictions of models identified using the coupled ML emulators and MC

simulation.
Emul. Validation year
(MLM) Calib 2011 2012 2013 2014

year NSE LnNSE CR NSE LnNSE CR NSE LnNSE CR NSE LaNSE CR
2011 0.81 0.75 0.76 0.73 0.73 0.87 0.93 090 0.80 0.87 0.70  0.69
RF 2012 0.87 0.80 0.66 0.88 0.91 0.83 0.87 0.84 0.65 0.85 0.68  0.66
2013 0.73 0.68 0.77 0.72 0.55 0.89 0.93 093 083 0.77 0.56  0.71
2014 0.84 0.76  0.69 0.80 0.79 0.78 0.93 0.83 0.70 0.91 0.72  0.66
2011 0.89 0.80 0.80 0.79 0.83 0.86 0.94 0.88 082 090 0.73 0.73
KNN 2012 0.86 0.80 0.72 0.91 090 0.88 0.89 0.79 072 0.88 0.68 0.72
2013 0.80 0.72  0.80 0.66 0.59 0.88 0.94 093 0.86 0.75 0.61 0.75
2014 0.88 079 0.81 0.85 0.85 0.89 0.94 0.82 0.82 0.1 072 0.72
2011 0.88 082 0.68 0.80 0.86 0.80 0.92 0.91 0.76  0.88 0.73 0.66
NNET 2012 0.85 0.83 0.68 0.88 0.92 0.83 0.86 0.87 071 084 0.69 0.64
2013 0.82 0.72 071 0.71 0.63 0.76 0.95 095 0.82 0.78 0.60  0.68
2014 0.87 0.82 0.67 0.74 0.84 0.70 0.90 092 076 0.82 0.72  0.60

Figure 4 and Figure 5 respectively show the hydrographs and scatter plots of simulated against observed streamflow for a
sample calibration period (year 2011) and validation periods (years 2012, 2013, and 2014). The streamflow predictions for
the calibration period have shown good fit with the observed values with most of the predicted values falling close to the 1:1
identity line (dark line). However, some observations tend to be overestimated during the onset of snow melt and
underestimated during early summer flows (Figure 4). Similarly, the small patch of the scatter points between 50 and 75
(m*/s) of the observed values (Figure 5) show underestimation for this streamflow range. This might be attributed to poor
estimation of the model parameters or due to an interaction of the model parameters that had a significant effect on
dominating processes in that flow range. In years 2012 and 2014, the predicted streamflow has shown good fit with the low-
flow observations. A mismatch was observed with the high-flow observations during the same period, where most of the
high-flow observations are underestimated. These years are characterized by having the highest (year 2012) and lowest (year
2014) maximum SWE (data not shown) as compared to the other years and this may partly explain to the observed low
performance during the high-flow condition. The behavioural models identified using the three MLMs yielded very good
streamflow prediction in year 2013. From the trend line fitted to the scatters, it can be noticed that the predictions based on
RF tend to slightly underestimate for high-flow conditions and overestimate for low-flow conditions in years 2012 and 2014
as compared to KNN and NNET. The latter MLMs yielded fitted lines close to each other in both the calibration and
validation periods with the exception of year 2013, where KNN and NNET respectively yielded slightly over- and

underestimated streamflow predictions for the high-flow condition.
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Figure 4. Simulated and observed streamflow values for the calibration period, i.e. year 2011 (a) and validation periods, i.e.

years 2012 (b), 2013 (c), and 2014 (d). The behavioural models are identified using the coupled MLMs (RF, KNN, and

NNET) and GLUE pLoA.
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Figure 5. Scatterplots of simulated against observed streamflow values for the calibration period, i.e. year 2011 (a) and

validation periods, i.e. years 2012 (b), 2013 (c), and 2014 (d).
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The statistics summarizing the posterior model parameters identified with the help of the three MLMs (RF, KNN, and
NNET) and those directly identified from the MC simulation (MC) are presented in Figure 6. The result shows that the
minimum values of ¢l and c2 obtained from the three MLMs are similar to the calculated values. Comparable minimum
values between the MLMs were also obtained for most of the other parameters, although with slight deviation from the MC
estimated values for some of the parameters. For the other statistics, discrepancies were observed both within the MLMs and
between the MLMs and MC estimated values. NNET has yielded similar snow coefficient of variation (cv) values as those
estimated from the MC simulation for all quantiles. However, no consistent result was observed for most of the model
parameters. While a certain MLM yields a closer quantile value to the calculated values in one parameter, it gets superseded
by another MLM in other parameters. Varying degree of distribution characteristics was also observed among the model
parameters estimated by a given MLM. For example, c¢3 and ws have respectively shown highest negative and positive
skews of -0.540 and 0.739 as compared to the other parameters when using NNET (result not shown). In the GLUE
methodology, the set of parameters is generally more important than statistical characteristics of the individual parameters
since different combinations of the model parameters may give similar result. For example, similar streamflow prediction
efficiency criteria (NSE, LnNSE, and CR) were obtained during the calibration period of year 2012 when using models
identified with the help of RF and NNET (Table 4).
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Figure 6. Posterior distribution plots of model parameters identified using the coupled MLMs and MC simulation (RF, KNN,
and NNET) as well as those directly identified from the MC simulation (MC)

15



10

15

20

4.3 Variable importance and interaction

Sensitivity analysis is an important technique to assess the robustness of model based results and it is often performed in
tandem with emulation based studies in order to determine which of the input parameters are more important in influencing
the uncertainty in the model output (Ratto et al., 2012). Figure 7 shows the sensitivity of streamflow predictions to the model
parameters based on the in-built variable importance assessment methods of the three MLMs trained to predict pLoA and
Score. The relative measures of importance are scaled to have a maximum value of 100. The RF and KNN MLMs trained to
predict pLoA yielded similar relative importance of the model parameters. The catchment response parameters of the
hydrological model, viz. c1, c2, and c3 have shown higher relative importance as compared to the snow and water balance
parameters. On the other hand, the NNET trained to predict pLoA has yielded higher relative importance for wind scale (ws)
and the rain/snow threshold temperature (tx) as compared to the linear (c2) and quadratic (¢3) coefficients of the catchment
response function. The RF and KNN MLMs trained to predict Score have also shown similar result to their equivalent
MLMs trained to predict pLoA with the exception of a swipe in the order of importance between the two least important
parameters, fa and cv, when using RF. The result from the NNET trained to predict Score was less consistent with the result
obtained from its corresponding MLM trained to predict pLoA. The former result was similar to the one obtained from the
KNN trained to predict Score except that c3 was preceded by cl and ws in the case of NNET. The snow coefficient of
variation (cv) as well as the slow (sa) and fast (fa) albedo decay rates were the least important variables as identified using
the three MLMs when applied to predict pLoA and Score. The relative importance of the model parameters obtained using
the MLMs was generally consistent with the result obtained in previous study focused on parameter uncertainty analysis

using the GLUE methodology (Teweldebrhan et al, 2018).

RF KNN NNET
c2{ N | ws-
c3 N ¢1-
0 0 c1{ll o X
3 S ws| 3 2
3 ® tx-| 3 c3-
(' L [T
fa fa-
CV sa-
sa- sa- CV
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Importance Importance Importance
RF KNN NNET
c2{ | c2-
c3+ c1
o 0 ¢4 o VS
3 3 ws-l 3 €3+
3 o tx] 3 tx-
[T L [T
fa- fa-
CV 1 CV -
sa- sa-
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Importance Importance Importance

Figure 7. Relative importance of the hydrological model parameters based on the three machine learning models, i.e. RF,

KNN, and NNET trained for pLoA (upper row) and Score (lower row)
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Figure 8 presents a sample correlation matrix of the behavioural model parameters identified using the coupled RF as
MLM and the MC simulation. The highest correlation was observed between tx and ws with a Pearson correlation value of
0.57 followed by the correlation between c2 and c¢3 with a Pearson correlation value of 0.24. A correlation value of 0.22 was
also obtained between c1 and ws. The high degree of interaction of ws with tx and c1 reveals that this parameter might have
significant effect on model results in combination with the other parameters, although it appears less important when

considered alone.
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Figure 8. Pearson correlation matrix of the behavioural model parameters identified using the coupled RF and the limits of

acceptability approach.

5 Discussion

The capability of MLMs as emulators of the MC simulation has been demonstrated in this and other similar studies. Machine
learning and other data-driven models have been applied as emulators to substitute complex and computationally intensive
simulation models. These models have been referred in the literature as surrogate models (e.g. Yu et al., 2015) and
metamodels (e.g. El Tabach et al., 2007). Emulators were reported to be particularly useful when a large number of
simulations such as the MC simulation are required to be performed, for example, during optimization (Hembker et al., 2008)
and sensitivity analysis (e.g. Reichert et al., 2011). The results from this study revealed that the MLMs trained with limited
sample size of artificially generated data from the simulation model were computationally efficient and providing reliable
approximation of the underlying hydrological system. Similar advantages of MLM based emulators were also reported in
previous studies (e.g. Kingston et al., 2008; Razavi et al., 2012).

The performance of the coupled MLMs in response to training sample size, however, varies from one MLM to another.

For example, RF and KNN did not yield any behavioural model in some of the calibration years when the MLMs are trained
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with only 400 samples, while NNET has yielded behavioural models in all years. Further, the identified behavioural models
using the coupled MLMs with limited sample size had relatively low performance in reproducing the observed streamflow
values. For example, NNET, KNN, and RF have respectively yielded an average NSE value of 0.73, 0.70, and 0.65 during
the calibration period which is generally lower than the respective values when using the training sample size of 4000. A
further assessment of the sample size effect using 2000 training samples have shown only a slight decrease in performance
of the identified behavioural models (i.e. a 1-3% decrease in average NSE) as compared to the ones identified using the 4000
samples. Only slight to no improvement was obtained in most of the evaluation years as a result of using behavioural models
identified from the 4000 MC simulations as compared to the 95000 simulations when assessed using the available evaluation
dataset and the streamflow evaluation metrics used in this study. Like most studies based on the GLUE methodology, the
main focus of this study was, however, to get as much behavioural models as possible so as to encapsulate future uncertain
conditions. The MLMs applied in this study and in other areas of application have both advantages and limitations. MLMs
are able to learn complex nonlinear system from a set of observations and usually yielding a high degree of accuracy as they
are not affected by the level of understanding of the underlying processes in the system (Kingston et al., 2008). Furthermore,
MLMs with the virtue of their generalization capability are relatively quick to run as simulations over an extended period of
time are not required. However, since MLMs do not have any understanding of the modelled physical processes, they
operate as black-box models with an accompanying dilemma on whether they would behave as intended under changing
future conditions (Olden and Jackson, 2002). Generally, MLMs have limited application in conditions that significantly
deviate from historical norms. In this study, adequate size of training samples was used in order to represent different parts
of the parameter dimensions. Furthermore, in many MLMs the notion of degrees of freedom is usually ignored when
computing performance metrics during model training (Kuhn, 2008). Since these metric do not penalize model complexity
(e.g. as in the case of adjusted R?), they tend to favour more complex fits over simpler models. In some MLMs a
regularization approach is employed to adjust the cost function in such a way that the model learns slowly and thereby
minimize overfitting (Nielsen, 2018). In this study, for example, the L2 regularization was used with the NNET model.

In studies involving use of coupled ML and MC simulation, the uncertainty in parameter identification may stem from
various sources. For example, the relative mismatch between the observed and simulated streamflow for the validation
period in years 2012 and 2014 as compared to the good fit in year 2013 (Fig. 5) can be attributed to the differences in
hydrological conditions between the calibration and validation periods. Figure 9 shows the observed streamflow values of
the four hydrological years at different percentiles. As can be noticed from this figure, the observed streamflow values for
the validation period in year 2012 exceed those for the calibration period (Year 2011) at all percentile values. On the other
hand, streamflow recorded in year 2013 have shown closer values to those from year 2011 at most of the percentiles. The
result from this analysis reveals that the identified model parameters yielded lower performance when applied to a
hydrological condition that significantly deviated from the observations used for the identification of these parameters. This
can be due to the prevalence of different dominant processes in different hydrological conditions.

The highest average NSE and LnNSE for the validation periods were obtained when using models identified in year 2012
and year 2014, respectively (Table 4). The Nash-efficiency computed using the row streamflow data (NSE) gives more
emphasis to high-flow than low-flow values, while the one computed using the log-transformed data (LnNSE) gives more
emphasis to low-flow conditions. Thus, the models identified under the predominantly low-flow condition, i.e. year 2014
were good on predicting low-flows while those identified under high-flow condition, i.e. year 2012 were good in the
prediction of high-flows when applied during the validation period. Generally, these phenomena are consistent with concerns

raised in previous studies focused on the challenges of the model development philosophy based on a universal fixed model
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structure that is transposable in both space and time (e.g. Clark et al., 2011; Kavetski and Fenicia, 2011). The results from
this and other similar studies (e.g. Fenicia et al., 2011) suggest the need for additional components to emphasize on dominant

processes, although fixed model structures might be attractive due to their relatively parsimonious structure.
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Figure 9. Comparison of the percentile observed streamflow values for the calibration period (Year 2011) and validation

periods (Year 2012, Year 2013, and Year 2014)

Although KNN was not a favourite emulator in previous hydrological studies, it has yielded a comparable result to the
other MLMs used in this study. For example, the performance of KNN was superior to RF and NNET based on the average
NSE obtained for the calibration period. However, the result from KNN was characterized by higher inter-annual variability
as compared to RF and NNET. Inconsistent relative performances between KNN and NNET were also reported in previous
studies focused on flow forecasting using MLMs. For example, Wu and Chau (2010) obtained a better monthly streamflow
forecast using KNN as compared to NNET, although Mekanik et al. (2013) observed better performance of NNET as
compared to KNN. A similar inconsistent result was also observed in another study focused on monthly streamflow
forecasting with a higher cumulative ranking of NNET as compared to KNN under nonlinear conditions (Modaresi et al.,
2018). However, the later was better in reproducing the observations under linear condition; and they concluded that the
variability in relative performance of the MLMs may be attributed to the differences between study sites, data sets, and
structure of the MLMs as well as whether the relationship between the predictor and predicted variables is linear or nonlinear.
The main challenges with KNN appear when data are sparse, although this problem can be partly overcome by choosing the
number of neighbours adapted to the concentration of the data (Burba et al., 2009).

In this study, different trials were conducted in order to assess effects of the model structure and hyper-parameter values
and thereby to get the optimal MLMs (result not shown). For example, the NNET model with multiple hidden layers resulted
to lower performance than the one with single hidden layer. This result is consistent with the general notion, that for many
applications a single hidden layer is adequate to model any nonlinear continuous function (e.g. Hsieh,2009; Snauffer, et al.,
2018). Similarly, use of a linear activation function has yielded NNET models with better accuracy as compared to the
commonly used sigmoidal function. Efficiency of the emulators also depends on their respective hyper-parameters values.
Figure 10 shows cross-validation and bootstrap analyses results when estimating the optimal hyper-parameter values of the
machine learning models using RMSE for a sample calibration period (year 2011). For NNET (a) two hyper-parameters

were optimized using the training dataset, i.e. the weight decay and number of neurons in the hidden layer (hidden units or
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size). The final values used for this model were a weight decay of 0.001 and hidden units of 10. For KNN (b), the optimal
value of nearest neighbours (k) used for the final model was k=10; and for the RF model (c), the optimal number of
randomly selected predictors when forming each split (mtry) was 7.
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Figure 10. Bootstrap and cross-validation based estimates of hyper-parameter values for the three machine learning models,

i.e. NNET (a), KNN (b), and RF (c) in a sample calibration period (year 2011).

In this study, the concept of equifinality was employed for parameter identification and uncertainty analysis, i.e.
ensemble of behavioural models were identified with subsequent application for streamflow prediction at different quantile
values. In other studies focused on the concept of optimality, machine learning methods were used to directly estimate
prediction uncertainty based on MC based uncertainty or historical model residuals from an optimal model. For example, in
the MLUE method (Shrestha et al., 2009; Shrestha et al., 2014) MLMs were trained using MC-based uncertainty with
subsequent application of the trained MLMs to directly predict model output uncertainty associated with new input datasets.
Similarly, clustering and machine learning techniques were used to estimate the prediction uncertainty associated with a
process model through analysis of its residuals during uncertainty estimation based on local errors and clustering (UNEEC)
(Solomatine and Shrestha, 2009). In further study, the UNEEC approach was extended in a way that it can explicitly take
into account for parametric uncertainty (Pianosi et al., 2010). Similarly, Wani et al. (2017) have effectively applied instance-

based learning using KNN in order to generate error distributions for predictions of an optimal model. Generally, the
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UNEEC and its variants are computationally more efficient than those based on the equifinality concept since in the former
case only a single model run is required during the forecast period. Uncertainty analysis using emulators coupled to the
residual-based GLUE is also expected to entail less computational cost as compared to those coupled with GLUE LoA and
its variants.

In previous emulator based uncertainty analysis studies, the residual-based GLUE methodology was coupled with the
MLMs (e.g. Yu et al., 2015). Here, we used the limits of acceptability concept in order to overcome some of the limitations
associated with the residual-based approach. The original formulation of the GLUE LoA is, however, too strict for use in
identification of behavioural models and it may result to rejection of useful models and thereby making type II error. In order
to minimize such errors, one of the commonly used approaches was to relax the limits (e.g. Blazkova and Beven, 2009).
However, in previous study it was observed that relaxing the limits was not a feasible option in simulations that involve time
series data with dynamic observational error characteristics as in the case of continuous rainfall-runoff modelling. Relaxing
the limits beyond 25% while keeping the threshold pLoA at 100% have yielded to the inclusion of non-behavioural models,
leading to very low performance during the validation period. When it comes to time efficiency of the emulators
Accordingly, in an attempt to balancing between type I and type II errors, the time-relaxed limits of acceptability approach
was introduced (Teweldebrhan et al., 2018). This approach was employed in this study and it relaxes the strict criterion of
the original formulation that demands all model predictions to fall within their respective observation error bounds. When
using this approach, the minimum threshold for the percentage of time steps where model predictions are expected to fall
within the limits is defined as a function of the level of modelling uncertainty.

A combined likelihood measure based on the persistency of model realizations in reproducing the observations within the
observational error bounds (pLoA) and a normalized absolute bias (Score) was used in previous study focused on snow data
assimilation (Teweldebrhan et al., 2019). The Score values were rescaled with due consideration to pLoA, whereby the two
efficiency measures were given equal importance in estimating the final weight of each model. In this study, the acceptable
models were first identified based on pLoA only and the Score was used to weigh the relative importance of the acceptable
models in predicting the quantile streamflow values. Another trial that involved selection of the top 100 best performing
models using a combined likelihood with equal weights given to pLoA and Score yielded relatively low validation result as
compared to using pLoA alone for the identification of behavioural models (result not shown). This can be attributed to the
difference in nature of these likelihood measures. pLoA considers only the percentage of time steps where the model
predictions have fallen within the observation error bounds. This renders pLoA to be less sensitive to the variability in
relative performances of the model between time steps. On the other hand, Score can be highly affected by predictions of
few time steps that are very close or too far from the observed value, albeit within the limits. The predictability of
independent variables varies from one to another. Thus, the application of emulation methods to predict pLoA in this study
provides a further insight on the potential and scope of the standard emulator, i.e. NNET and the additional emulators used in
this study, i.e. RF and KNN to predict response surfaces other than the residual-based likelihood measures that were applied

in previous studies.

6 Conclusions

Three machine learning models (MLMs), i.e. Random forest (RF), K-Nearest Neighbours (KNN), and an Artificial Neural-
Network (NNET) were constructed to emulate the time consuming MC simulation and thereby overcome its computational

burden when identifying behavioural parameter sets for a distributed hydrological model. Two sets of MLMs were trained
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using the randomly generated uncertain model parameter values as covariates, and two efficiency criteria defined within the
realm of the limits of acceptability concept as target variables. One of the efficiency criteria used in this study was a measure
of model persistency in reproducing the observations within the observation error bounds (pLoA), while the other one was
based on a normalized absolute bias (Score). The coupled MLMs and time-relaxed limits of acceptability approach
employed in this study were able to effectively identify behavioural parameter sets for the hydrological model. The MLMs
were able to adequately reproduce the response surfaces for the test and validation samples with an R* value of 0.7 to 0.92
for the test dataset, although the evaluation metrics have shown variability both between the MLMs and the analysis years.
RF and NNET yielded comparable results (especially for pLoA), while KNN has shown relatively lower result. Capability of
the MLMs as emulators of the MC simulation was further evaluated through comparison of streamflow predictions using the
identified behavioural model realizations against the observed streamflow values. The identified behavioural models have
performed very well in reproducing the median streamflow prediction both during the calibration and validation periods with
an average NSE value of 0.89 and 0.83, respectively. The cross-validation result also shows that the high-flow conditions as
measured by average NSE were slightly better estimated both under the calibration and validation periods when KNN was
used as emulator as compared to RF and NNET, while NNET yielded a slightly better prediction under low-flow conditions
(LnNSE). Although the behavioural models identified based on KNN have shown a relatively higher inter-annual variability,
they have yielded comparable performance to RF and NNET in terms of the efficiency measures. Future studies may assess
the possibility of using the three MLMs as ensemble emulators to get an improvement in the identification of behavioural
parameter sets while significantly minimizing the computational burden of the MC simulation.

The sensitivity analysis conducted using the in-built algorithms of the three MLMs have yielded comparable order of
precedence in relative variable importance when trained using pLoA and Score as target variables. The result was generally
consistent with the one obtained from previous study conducted using the residual-based GLUE methodology. The
catchment response parameters of the hydrological model, i.e. cl, c2, and ¢3 have shown higher relative importance as
compared to the snow and water balance parameters. Thus, the efficiency of MLM based emulators in doing sensitivity

analysis for computationally expensive models was also further proven in this study.
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