
1 The response of linear reservoirs to periodic forcing

The derivations in 1.1-1.3 and the resulting equations are not novel. We think, however,
that presenting them altogether might be a useful overview for the interested reader. General
overviews on linear systems theory are given for example by Dooge (1973) for hydrology or by
Smith (2007) for signal processing. The response of linear reservoirs to periodic forcing was for
example described by Eriksson (1971) or Peters et al. (2003).

1.1 Single linear reservoir

The outflow Q from a linear reservoir is described by Equation (S.1):

Q = S

τ
(S.1)

Conservation of mass requires that the rate of change of storage S equals the inflow Qin minus
the outflow Q from the reservoir:

dS

dt
= Qin −Q (S.2)

For simplicity, we consider a simple sinusoidal input signal with unit amplitude, with a phase
of zero (i.e. aligned with the cycle of interest) and with zero mean. We also replace the period
T by the angular frequency ω = 2π

T
.

Qin(t) = sin(ωt) (S.3)

Combining Equations (S.1), (S.2), and (S.3) yields:

dQ

dt
+ Q

τ
= sin(ωt)

τ
(S.4)

which is a first-order ordinary differential equation (ODE) that can be solved with the help of
an integrating factor exp (t/τ) and by using the product rule:

exp
(
t

τ

)(
dQ

dt
+ Q

τ

)
= exp

(
t

τ

) sin(ωt)
τ

(S.5)

d
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)
Q
)

= exp
(
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τ

) sin(ωt)
τ

(S.6)[
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)
Q
]t

0
= 1
τ

∫ t

0
exp

(
t

τ

)
sin(ωt)dt (S.7)

exp
(
t

τ

)
Q(t)−Q(0) = 1

τ

∫ t

0
exp

(
t

τ

)
sin(ωt)dt (S.8)

Since we are interested in the steady-state periodic response of our system, we set Q(0) = 0.
We can solve the integral on the right hand side using an integration rule (see e.g. Spiegel,
1968):

exp
(
t

τ

)
Q(t) = 1

τ

exp
(
t
τ

)
√

( 1
τ
)2 + ω2

sin
ωt+ arccos

1
τ

1√
( 1
τ
)2 + ω2

 (S.9)
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Q(t) = 1√
1 + (ωτ)2

sin
ωt+ arccos

 1√
1 + (ωτ)2

 (S.10)

If we rewrite A = 1√
1+(ωτ)2

(Equation (9) in the corresponding manuscript) and φ = arccos(A)
(Equation (10) in the corresponding manuscript), we obtain:

Q(t) = A sin(ωt+ φ) (S.11)

Since the system is linear, other inflow amplitudes can be accounted for by scaling (multipli-
cation) and non-zero offsets by addition. We could also superimpose other inputs of different
periods. Note that we can obtain the same result using the transfer function approach in linear
systems theory, as for example described in Dooge (1973) or Smith (2007).

1.2 Linear reservoirs in series

Linear reservoirs in series can be conceptualised as follows. The outflow from the first reservoir
is the inflow to the second reservoir, the outflow from the second reservoir is the inflow to the
third reservoir, and so forth. Let’s denote the outflow from the first reservoir by Q1:

Q1(t) = A1 sin(ωt+ φ1) (S.12)

If we use Equation (S.12) as inflow to the second reservoir (which is also the total outflow), we
obtain:

dQ2

dt
+ Q2

τ2
= A1 sin(ωt+ φ1)

τ2
(S.13)

This can be solved in a similar fashion as before (Equation (S.4)) and we get:

Q2(t) = A1A2 sin(ωt+ φ1 + φ2) (S.14)

If we continue to do this for n reservoirs, we get:

Qn(t) = A1A2 . . . An sin(ωt+ φ1 + φ2 + . . .+ φn) (S.15)

Qn(t) =
n∏
i=1

Ai sin
(
ωt+

n∑
i=1

φi

)
(S.16)

The total amplitude ratio is thus obtained by multiplication of all individual amplitude ratios
and the total phase shift by addition of all individual phase shifts. If all the reservoirs have the
same time constant (τ1 = τ2 = · · · = τn), we obtain the so called Nash cascade (Nash, 1957).

1.3 Linear reservoirs in parallel

Linear reservoirs in parallel are the weighted sum of the outflow from each reservoir. The
resulting flow is hence a sum of sine waves of the same angular frequency, weighted by the
fraction pi going into each reservoir. For two reservoirs we can write:

Q12(t) = Q1(t) +Q2(t) (S.17)
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where Q12 is the combined outflow from the two reservoirs Q1 and Q2. We can use Equation
(S.11) to get the outflow from each of the two reservoirs:

Q12(t) = p1A1 sin(ωt+ φ1) + p2A2 sin(ωt+ φ2) (S.18)

The sum of two sine waves (Equation (S.18)) can be rewritten to obtain only one sine wave:

Q12(t) = p1A1 sin(ωt+ φ1) + p2A2 sin(ωt+ φ2) (S.19)
Q12(t) = A12 sin(ωt+ φ12) (S.20)

where the total amplitude ratio A12 (Equation (14) in the corresponding manuscript) and the
total phase shift φ12 (Equation (15) in the corresponding manuscript) are given by (see e.g.
Smith, 2007):

A12 =
√

[p1A1 cosφ1 + p2A2 cosφ2]2 + [p1A1 sinφ1 + p2A2 sinφ2]2 (S.21)

φ12 = arctan
(
p1A1 sinφ1 + p2A2 sinφ2

p1A1 cosφ1 + p2A2 cosφ2

)
(S.22)

We could do the same for more (n) reservoirs by stepwise adding the resulting sine wave to the
next sine wave (e.g. Q12 +Q3).

1.4 Non-linear reservoirs

Non-linear behaviour is frequently observed why many authors used non-linear reservoirs in-
stead (e.g. Wittenberg, 1999). We therefore investigate how non-linear reservoirs respond to
periodic inputs to see whether non-linear behaviour is invalidating our approach. A non-linear
reservoir can be described by (Kirchner, 2009):

Q = Qref

(
S − S0

m

)n
(S.23)

where Qref is an arbitrary reference discharge, S0 is a reference storage, m is a scaling coefficient
(it has the units of storage), and n is a non-linearity parameter (n = 1 results in the linear
reservoir). For non-linear reservoirs, there are no general analytical solutions available. Non-
linear reservoirs cannot be characterised by an invariant time constant, as their outflow rate
depends on the storage, as it can be seen from Equation (S.23). Hence, we model the response
of a single non-linear reservoir numerically.

The outflow from a non-linear reservoir forced by a sinusoidal input is shown in Figure S.1.
The outflow is still periodic, but the "sine curve" is somewhat squeezed. This results in the
maxima and minima not having the same distance and hence there is no unique phase shift.
For the example shown in Figure S.1, the phase shift between the maxima of Qin and Qout is 68
days, and the phase shift between the minima is 70 days. The difference between the maximum
amplitude and the mean amplitude (0.49 mm) is 0.20 mm, and the difference between the
minimum amplitude and the mean amplitude is 0.18 mm. This asymmetry is partly due to
numerical inaccuracies, however, probably mostly due to the non-linearity of the reservoir.
Because non-linear reservoirs with n > 1 drain more slowly as they empty, their minima are
closer to the mean and the minima have a larger phase shift (and vice versa for n < 1).
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Figure S.1: Numerical approximation of steady-state (sinusoidal) inflow to and outflow from a
non-linear reservoir (Qref = 1 mm, S0 = 0 mm, m = 200 mm, n = 2). The starting time is
chosen arbitrarily.

We can plot amplitude ratios and phase shifts for non-linear reservoirs with different parameter
sets. We therefore do not need to specify a characteristic time constant. This is shown in Figure
S.2. Even though the outflow is not exactly a sine wave, it is possible to define a mean phase
shift and amplitude ratio, and in practice this might be a reasonably good approximation and
hardly distinguishable from an actual sine wave. So, even if the reservoir is non-linear, its steady
state behaviour (or the response to seasonal inputs) might be reasonably well approximated by
a linear reservoir with a time constant that reflects the outflow characteristics at a characteristic
storage level (e.g. mean storage).
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Figure S.2: Amplitude ratio and phase shift for a single non-linear reservoir for varying pa-
rameters sets. The phase shifts of the maxima, the minima, and the mean phase shifts are
indicated by coloured dots. The non-linearity parameter n ranges from 0.5 to 10.
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2 Additional analyses

2.1 Extracting seasonal components from time series

2.1.1 Comparison of fitting methods

We tested two methods to extract seasonal components from time series. The first method is
a multiple linear regression. The second method makes use of the cross-covariance of two time
series, which is described below.

2.1.2 Linear regression

A basic sine wave is given by:

x(t) = δxx̄ sin(2π t
T
− φx) + x̄ (B.24)

We can rewrite Equation (B.24) as follows:

x(t) = α cos(2π t
T

) + β sin(2π t
T

) + x̄ (B.25)

We can solve for α, β and x̄ in Equation (B.25) by means of multiple linear regression and then
solve for δx and φx via the identities:

δxx̄ =
√
α2 + β2 (B.26)

φx = arctan
(
β

α

)
(B.27)

Note that the atan2(b, a) function is required to obtain an unambiguous phase shift.

2.1.3 Cross-covariance method

The unbiased estimate of the cross-covariance of two sine waves x and y is given by:

γxy(k) = 1
2δxx̄δyȳ cos

(
(φx − φy)− 2π t

T
k
)

(B.28)

where k is the lag between the sine waves, δxx̄ and δyȳ are their amplitudes, and φx and φy
are their phase shifts. If we define x to be the signal of interest (e.g. streamflow) and y to be
a dummy cycle of unit amplitude and zero initial phase shift (δyȳ = 1 and φy = 0), Equation
(B.28) simplifies to:

γxy(k) = 1
2δxx̄ cos

(
φx − 2π t

T
k
)

(B.29)

We can calculate the empirical cross-correlation between the two cycles and fit a sine curve to
it (via nonlinear least squares). The parameters of that sine curve can then be used to find the
parameters of our cycle of interest (δxx̄ and φx) via Equation (B.29).
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The fitting methods (linear regression and cross-covariance method) show an almost perfect
match (Figure S.3), which indicates that the extraction of the seasonal component is not sensi-
tive to the method. While this means that we can reliably extract the sinusoidal component of
the period of interest (1 year), it does not mean that we perfectly extracted the "(annual) sea-
sonal component" of the variable of interest. A sine wave is just a parsimonious approximation
of the seasonal behaviour and the choice of a sine wave to model seasonality is also associated
with uncertainty.
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Figure S.3: Comparison of amplitude ratio (a) and phase shift (b) using the different sine
fitting methods for UK catchments from 1989 to 2009. Note that both axes are limited.

2.1.4 Robustness of seasonal signatures

To check whether the seasonal signatures are robust, we calculate the signatures for two different
time periods: from 1989 to 1999, and from 1999 to 2009.
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Figure S.4: Comparison of amplitude ratio (a) and phase shift (b) using different time periods
for UK catchments. Note that both axes are limited.
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Figure S.4 shows that the amplitude ratio and the phase shift show good agreement for the
different time periods analysed. This means that the period from 1989 to 1999 does not exhibit
a fundamentally different behaviour than the period from 1999 to 2009, i.e. the signatures are
robust. A slight deviation can be expected as the forcing varies from year to year.

2.2 Catchments with precipitation falling as snow

Snow presents a different storage process that is not considered in the current approach. We
therefore remove snowy catchments, defined as catchments with a snow fraction larger than
0.001, from the analysis. Figure S.5 shows the snowy catchments and the corresponding snow
fraction.
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Figure S.5: Amplitude ratio against phase shift for CAMELS catchments. Colour indicates the
fraction of precipitation falling as snow. Note that both axes are limited.

2.3 On the use of potential evapotranspiration as input signal

As mentioned in the corresponding manuscript, we use precipitation P minus potential evap-
otranspiration Ep as a proxy for the input signal to a catchment (the forcing F ). This is
motivated by its simplicity and the assumption that in energy-limited (Ēp/P̄ < 1) catchments
actual evapotranspiration Ea is closely resembling potential evapotranspiration. Considering
the annual water balance, all the catchments in the UK are energy-limited and a large fraction
of catchments in the US are energy-limited. To test the validity of the assumption that Ea = Ep
in a rather straightforward manner, we adjust the seasonal component of Ep to obtain Ea by
means of the Budyko framework (Budyko, 1974). We reduce the peak of the seasonal compo-
nent of Ep so that it equals the mean of Ea, which we estimate using the following equation
(Budyko, 1974):

Ēa

P̄
=

√√√√Ēp

P̄
tanh

(
P̄

Ēp

)(
1− exp

(
−Ēp
P̄

))
(B.30)

We therefore obtain a new sine curve for the seasonal component of Ea, which has a reduced
amplitude (δEaĒa) and a reduced mean (Ēa), but the same phase as the sine curve for the
seasonal component of Ep. This will increase the amplitude ratio and might change the phase
shift whenever Ēa < Ēp.
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Figure S.6: Amplitude ratio against phase shift for (a) UK catchments and (b) CAMELS
catchments using estimated actual evapotranspiration in the forcing (F = P −Ea) and for (c)
UK catchments and (d) CAMELS catchments using potential evapotranspiration in the forcing
(F = P −Ep). Grey solid line indicates a single linear reservoir, grey dashed line indicates the
outer envelope for two reservoirs in parallel. Colours indicate the moisture index. Note that
both axes are limited and the y-axes differ in their range.

Figure S.6 shows the resulting amplitude ratios and phase shifts for the UK and the US together
with the ones using Ep as input. Energy-limited catchments (high Im), in particular the UK
catchments, show a similar pattern as when using Ep. The amplitude ratios are slightly higher,
i.e. the whole point cloud is slightly shifted to the right. In water-limited catchments in the
US, where the annual water balance already implies that Ea < Ep, the amplitude ratios are
often higher and the phase shifts smaller. Many of the dark red dots that are close to zero in
Figure S.6b now plot much further to the right (Figure S.6d). Some of the large phase shifts
in these arid catchments might still be a consequence of a poorly estimated input signal. The
approach based on the Budyko framework (Equation (B.30)) only reduces the amplitude of the
evapotranspiration component, it does not change the timing of Ea compared to Ep. In reality,
however, it is possible (and likely) that Ea also has a different phase compared to Ep. Especially
in catchments where P and Ep are out of phase, the soil moisture reservoir will fill up during
the wet months (peak rainfall) and dry out during the dry months (peak evapotranspiration).
If Ep � P , the soil will likely dry out before we reach peak Ep, and hence we reach peak Ea
before peak Ep. The difference in the P peak and the Ep peak (e.g. the phase shift we observe
in Figure S.6) would therefore be larger than the difference between the P peak and the Ea peak
(i.e. the actual phase shift caused by the catchment). To overcome that, we would either need
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modelled Ea, e.g. from a (simple) hydrological model, or measured Ea. Modelling Ea comes at
the cost of introducing more modelling steps and therefore more complexity. Measurements of
Ea are typically not available at a daily time scale. We therefore leave this for future work.

2.4 Subset of catchments for modelling exercise

The subset of catchments is chosen as follows. We only use benchmark catchments (Harrigan
et al., 2018) and remove the catchments with a low flow score of 0 and with any missing values
between 1989 and 2009. The remaining set of catchments is manually thinned out to evenly
occupy the signature space shown in Figure 5 in the corresponding manuscript. Figure S.7
shows amplitude ratios, phase shifts, and BFIs of the subset.
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Figure S.7: Amplitude ratio against phase shift for the subset of UK catchments used in the
modelling exercise. Grey solid line indicates a single linear reservoir, grey dashed line indicates
the outer envelope for two reservoirs in parallel. Colours indicate the BFI.

2.5 Robustness of parameter sampling

To test whether the sample size used in the modelling exercise is large enough, we compare
results using different sample sizes. We run the models with 2000, 5000, 10000, and 20000
parameter sets, respectively, all generated using Latin Hypercube sampling. The results from
all 40 catchments (see Figure S.7) are summarised using box plots. We then compare the results
for different hydrological signatures and different sample sizes. To remove "bad" simulations,
we remove parameter sets with a KGE < −0.41 (Knoben et al., 2019). The results are shown
in Figure S.8 for IHACRES, and in Figure S.9 for GR4J.

While small differences are visible, the overall the pattern is stable. Since we are interested
in the general capabilities of models, rather than individual model runs, we are confident that
the parameter space is covered adequately. While sampling more parameter sets is unlikely to
change the results, sampling with a different sampling scheme might influence the shapes of
the resulting probability distributions.
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Figure S.8: Box plots summarising model performances for different parameter sample sizes
for 40 UK catchments for IHACRES. Boxes indicate the median (middle), the 25th (bottom)
and 75th (top) percentiles, respectively. Whiskers show the range of data points not considered
outliers. Outliers are shown in red. Performance metrics used are (a) KGE, (b) BFI, (c) the
amplitude ratio, and (d) the phase shift.
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Figure S.9: Box plots summarising model performances for different parameter sample sizes for
40 UK catchments for GR4J. Boxes indicate the median (middle), the 25th (bottom) and 75th
(top) percentiles, respectively. Whiskers show the range of data points not considered outliers.
Outliers are shown in red. Performance metrics used are (a) KGE, (b) BFI, (c) the amplitude
ratio, and (d) the phase shift.
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