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Abstract. Floods continue to devastate societies and their economies. Resilient societies commonly incorporate flood forecast-

ing into their strategy to mitigate the impact of floods. Hydrological models which simulate the rainfall-runoff process are at the

core of flood forecasts. To date operational flood forecasting models use areal rainfall estimates that are based on geographical

features. This paper introduces a new methodology to optimally blend the weighting of gauges for the purpose of obtaining5

superior flood forecasts. For a selection of 7 Australian catchments this methodology was able to yield improvements of 15.3%

and 7.1% in optimization and evaluation periods respectively. Catchments with a low gauge density, or an overwhelming ma-

jority of gauges with a low proportion of observations available, are not well suited to this new methodology. Models which

close the water balance and demonstrate internal model dynamics that are consistent with a conceptual understanding of the

rainfall-runoff process yielded consistent improvement in streamflow simulation skill.10

1 Introduction

Rainfall-runoff models form the basis of hydrolgical simulations for a wide range of applictions, extending from forecasting

floods through to water resources assessments and the design of water management structures. Hydrological models generate

streamflow simulations from forcing data including rainfall. The quality of any hydrological simulation is dependent on the

availability of high quality estimates of areal rainfall for model calibration and simulation.15

For rainfall-runoff models the concept of garbage in, garbage out is inescapable. An improper treatment of forcing data leads

to a cascade of errors which renders all other modeling techniques ineffective (Kuczera et al., 2010). Rainfall is the primary

forcing for flood forecasting models and can be derived from in-situ gauges, satellite and ground mounted RADARs, and re-

analysis products. The quality of observations, their quality control (QC), and the methods to aggregate rainfall observations

all play a key role in the effective identification of hydrological model parameters (Te Linde et al., 2008) and the assimilation20

(Vanden-Eijnden et al., 2013) of observed states and outputs. Due to relative accuracy, precision, and the near immediate

availability of QC’d observations, methods that utilize gauge data to derive areal rainfall incident upon a catchment are essential

for operational flood forecasts (Li et al., 2016) and consequently the focus of this study.

The quality of gauge based areal rainfall estimates hinges upon systematic errors, QC of observations, the design of rain

gauge networks, and methodologies to interpolate areal rainfall from the gauge network. In a review of WMO gauge inter-25
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comparison studies, Sevruk et al. (2009) stressed the need to correct for systematic error sources such as wind, evaporation, and

shielding. Rodda and Dixon (2012) highlight that systematic errors from wind contribute most significantly towards rainfall

undercatch while Pollock et al. (2018) demonstrated that a conventional cylinder shaped rain gauge mounted at 0.5 m can

underestimate rainfall measured at the ground by a pit gauge by more than 23% on average. QC of gauged data sets is often

performed via comparison with re-analysis (Robertson et al., 2015) or RADAR based products (Qi et al., 2016). Rain gauge30

networks are used at different temporal and spatial scales for meteorological, climatological, and hydrological purposes. Few

rain gauge networks are designed to optimize the ability of hydrologic models to simulate streamflow and flood events (Chacon-

Hurtado et al., 2017). Dong et al. (2005) demonstrated that local climatic and geographic conditions play a role in the ability

of each gauge to improve hydrologic simulation and that some gauges hinder the successful simulation of streamflow. For their

study catchment Xu et al. (2013) found that hydrological simulation skill improved significantly until a gauge density of 0.435

gauges per km2 was reached and that simulation skill degraded for rain gauge densities less than 1.4 gauges per km2. This

would either indicate that systematic errors have not been sufficiently QC’d or that the methodology to interpolate areal rainfall

from the gauge network does not adequately weight important gauges. Therefore this study focuses on determining a superior

interpolation method that adequately weights the important rainfall gauges.

There are a variety of interpolation methods used to obtain an areal rainfall estimate from a gauged network ranging from40

simple methods such as the Theissen’s polygons and inverse distance weighting, to more complex methods such as kriging. Ly

et al. (2013) found no optimal spatial interpolation method for operational hydrology, and that interpolation performance often

depended on the density of the gauge network, the spatial and temporal resolution of the data, and parameters such as those

used by the semi-variogram in kriging. Mair and Fares (2011); Chen et al. (2017), and Liu et al. (2018) compared interpolation

methods based on their ability to simulate streamflow, with each study using a different hydrological model and catchment.45

In respective order they found that ordinary kriging (OK), principal component regression with residual correction (PCRR)

and inverse distance weighting (IDW) interpolation of gauged rainfall data yielded superior streamflow simulations. However,

none of the studies included all three methodologies. It is hypothesized that the best performing interpolation methods are not

optimized for hydrological simulations and that their success iss likely to be greatly influenced by the choice of hydrological

model, chosen catchment, and simulation metric.50

The search for an optimal interpolation of rainfall gauges for hydrological simulation is essentially an inverse modeling

question that asks, how do hydrologists extract optimal rainfall forcings from streamflow simulations? Methods to extract

optimal rainfall from streamflow range from those that do not need rainfall forcing such as a cascading linear inversion of

runoff (Hino, 1986) to those that require rainfall forcing such as linear inversion (Kirchner, 2009), optimization of storm

multipliers (Kavetski et al., 2006; Vrugt et al., 2008), reduction of forcing data (Wright et al., 2017), and the inclusion of55

ancillary data (Wright et al., 2018). The nature of these studies imply that rainfall obtained from interpolation methods is not

true rainfall. However, no example is found in the literature which presents a methodology to optimally interpolate rainfall

gauge data for hydrological simulations and provide insights derived therein. To develop an algorithm for the optimization of

gauge weights (OGW) that allows the estimation of rainfall which optimizes hydrological simulation skill it is necessary to

include additional degrees of freedom in the parameter optimization process. Many hydrological purists are strong advocates of60

2

https://doi.org/10.5194/hess-2019-450
Preprint. Discussion started: 5 September 2019
c© Author(s) 2019. CC BY 4.0 License.



Occam’s Razor and are, rightfully so, concerned that adding hydrological parameters will result in over-fitting of hydrological

models. Keeping this in mind the value of additional parameters should be determined through the ability of those parameters

to provide improved solutions for hydrological simulations in either a evaluation or forecast period.

Consequently, this paper contributes to the hydrological sciences by developing a novel OGW method which is used in

the estimation of areal rainfall for hydrological simulations and providing insights on the potential influences that catchment65

characteristics and the choice of hydrological model pose for areal rainfall estimates based on gauge interpolation.

2 Data set

This study uses seven Australian catchments that are susceptible to flooding, and have different rainfall gauge densities, cli-

matology, area, response times, flow characteristics, and seasonality of rainfall. Monthly PET data from the Australian Water

Availability Project (AWAP) (Raupach et al., 2009, 2012) were used and disaggregated at a uniform hourly rate for each month.70

This disaggregation strategy is appropriate because streamflow simulations are relatively insensitive to the temporal resolution

of PET (Samain and Pauwels, 2013). Both hourly rainfall and streamflow data (Bureau of Meteorology, 2019b) were obtained

from the Bureau of Meteorology (BoM) with the catchments being delineated using the Australian geofabric data set (Bureau

of Meteorology, 2019a). All rainfall gauges within 10 km of the catchment boundary were considered. A summary of the

catchment properties is given in Table 1, whilst an indication of the available observations for each rain gauge in each catch-75

ment is given in Figure 1. Ephemeral streams were defined as those having zero flows in > 4% of their records (Bennett et al.,

2016), and Köppen Gieger climate classifications were taken from Peel et al. (2007). Brief summaries of each catchments main

characteristics are as follows:

– Hurdle Creek at Bobinawarrah has a small catchment that drains to an ephemeral tributary stream of the frequently

flooded Ovens River in north-eastern Victoria. It has a temperate climate and a near uniform seasonal rainfall distribution.80

– Onkaparinga River upstream of Hahndoorf dissipator lies near the head of the flood prone Onkaparinga River catchment.

The ephemeral stream is located within a temperate climate in south-eastern South Australia (SA) and has winter rains

with drier summers.

– South Esk River at Llewellyn is part of a river system with a long history of flooding. The intermittent stream is located

in north-eastern Tasmania and belongs to a temperate climate that has a near uniform seasonal rainfall distribution.85

– Clarence River at Paddys Flat is an intermittent stream at the headwaters of a flashy catchment that observed its worst

flood in January of 2013. The catchment lies in the eastern part of New South Wales (NSW) just south of the Queensland

border in a temperate climate that has winter rains and drier summers.

– Tully River at Euramo is a perennial stream that has been consistently subject to moderate floods over the last two

decades. It lies within a tropical monsoon climate in far north Queensland that has the bulk of its rainfall over summer.90
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– Condamine River at Warwick is an ephemeral stream that contributes to the slow moving Condamine River. The Con-

damine River has seen some of the countries worst flooding, having had 3 majors floods in the last decade alone. The

catchment lies north of the New South Wales (NSW) in the eastern part of Queensland in a temperate climate that has

winter rains and drier summers.

– Isaac River at Yatton is an ephemeral stream that lies within a hot semi-arid climate in north Queenslad that is subject to95

large summer rainfall events. The Isaac River is a tributary of the Mackenzie and Fitzroy Rivers and consequently plays

a vital role in flood warning. The catchment of Yatton has been subject to 3 major floods in the last decade.

3 Methods

In this study, the effects of two different methods of estimating areal rainfall on streamflow simulation performance are com-

pared using three different hydrological models. Here the methods of estimating areal rainfall are introduced, followed by a100

description of the hydrological modelling approach and techniques for evaluating streamflow simulation performance.

3.1 Areal rainfall estimation

In essence the estimation of areal rainfall ri, at time step i, from rainfall gauges involves adequately estimating the weighting

of gauges and is determined by

ri =
n∑

j=1

(ri,j.×wi,j), (1)105

where ri,j and wi,j are the rainfall volume and gauge weighting for each timestep i and gauge j respectively. The.× oeprator

indicates element by element multiplication. For each timestep where a gauge has on observation, the gauge weights wi,j are

automatically scaled to unity by

wi,j = fi,j.×wj./(fi,j×wj), (2)

where wj is the gauge weight for each location and fi,j is the binary filter array which describes if a gauge has an observation110

at each time step.

3.1.1 Inverse distance weighting

In contrast to the OGW method, both gauge weights and areal rainfall estimation are calculated prior to the estimation of model

parameters. Gauge weights were calculated by

wj = 1/dj
r, (3)115

where dj is the distance from gauge j to the catchment centroid and r is a power parameter taken to be 2 for this study.
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3.1.2 Optimization of gauge weights

Methods such as IDW do not consider the hydrological model performance in estimating areal rainfall. To consider the effects

of areal rainfall estimation on streamflow simulations an approach to optimize gauge weights as a part of the hydrological

model calibration process is introduced. To allow for the identification of optimal gauge weights via a parameter estimation120

algorithm, maximum and minimum parameter bounds need to be identified. During the optimization process, if weighting for

a gauge were able to become zero then data for that gauge is effectively discarded. If this were able to occur it is possible

that the chosen likelihood function becomes maximized by discarding multiple gauges and assigning an unrealistic weight to

one gauge. In this situation the hydrological model parameters could be over-fitted. Over-fitting is defined to occur when the

addition of parameters leads to improved performance in the optimization periods and decreased performance in the evaluation125

periods. To avoid this gauge weights, wmin
j , were assigned a minimum un-scaled value of one. It is then logical that gauges

which have observations available for a larger proportion of time to potentially have larger gauge weightings. To ensure that

the gauges with less observations contribute less to areal rainfall estimates, this maximum un-scaled gauge weighting reduced

according to an appropriate negative exponential. The maximum allowable un-scaled gauge weightings wmax
j that could be

explored were calculated as130

wmax
j = max(1.01,(n− 1)× 0.55/0.45× (1− 2.03× e−4.74×pj)), (4)

where n is the total number of gauges used and pj is the proportion of observations available for gauge j. Equation 4 can

be modified to allow different parameter spaces be searched for each gauge, that has a higher or lower proportion of rainfall

observations. Lastly, wmax
j were restricted to values that ensured a maximum scaled weighting of 0.55 if that gauge had all

observations available.135

3.2 Hydrological models

The hydrological models used in this study were chosen based on their proven performance, different routing schemes, and

complexity. Both the modèle de Génie Rural à 4 paramètres Horaire (GR4H) and Hydroliska Byråns Vattenbalansavdelning

(HBV) model use unit hydrograph (UH) routing whilst the Probability Distributed Model (PDM) uses a dynamic storage based

routing approach. Both HBV and PDM close the water balance whilst GR4H does not (Perrin et al., 2003).140

3.2.1 GR4H

The GR4H is an hourly application of the modèle de Génie Rural à 4 paramètres Journalier (GR4J) model (Perrin et al., 2003)

which utilizes two state variables, soil water storage and routing water storage. The model is mathematically parsimonious and

consists of 4 parameters which, along with the state variables, describe evapotranspiration, percolation, and both slow and fast

runoff. A potential pitfall of the model is that the catchment exchange term allows for either the import or export of water into145

the model. Thus the water balance is not closed and potential biases in observation data corrected for.
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3.2.2 PDM

The PDM as described by Moore (2007) consists of a set of functions used to describe various hydrological systems. The

model consists of four states, a cascade of two linear stores which are used to describe surface runoff, a linear store used to

describe subsurface flow and a catchment based soil moisture store that is considered to consist of soil moisture stores with150

varying capacities that are able to be represented by a Pareto distribution. The PDM uses 9 model parameters and routing is a

dynamic storage based process.

3.2.3 HBV

Of the many HBV model (Lindström et al., 1997) variants, this paper uses the version developed by Matgen et al. (2006)

and used by Pauwels and De Lannoy (2015). The model consists of three state variables, a soil reservoir, a slow reservoir,155

and a fast reservoir. The 11 parameters, 3 state variables, and subsequent governing equations are used to calculate the actual

evapotranspiration, infiltration, effective rainfall, percolation, and proportion of effective rainfall that enters the fast and slow

reservoirs, outflow from each reservoir, and UH based routing.

3.3 Parameter estimation

The estimation of model and OGW parameters was performed simultaneously using the Differential Evolution Adaptive160

Metropolis algorithm with past state sampling and snooker updating (DREAMZS) of Vrugt (2016). The default settings out-

lined in Vrugt (2016) were used. DREAMZS finds the posterior parameter distribution which maximizes a chosen likelihood

function.

3.3.1 Likelihood function

The optimal weighting of rainfall gauges is specific to the chosen likelihood function and will change if a likelihood function165

which places priority to low flows is chosen instead of a likelihood function that places priority on high flows. The same can

be said if objective functions are maximized instead of likelihood functions. Since this paper is primarily concerned with the

OGW for flood events, a Gaussian likelihood function (Thiemann et al., 2001) is used.

3.4 Evaluation strategy

The evaluation of optimized parameters and gauge weightings was carried out via split sample testing. A warm-up period of170

one year was used. The skill of streamflow simulations were then evaluated for the six year period beginning 1st of January

2008 and ending 31st of December 2013. The optimization and evaluation periods were 5 and 1 years long respectively. The

optimization and evaluation periods were alternated until all 6 years of evaluation data had been used for evaluation. This

resulted in a total of 6 split samples for each catchment.
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Model results are presented and evaluated using the Root Mean Square Error (RMSE) metric. RMSE is given by175

RMSE =

√∑t
i=1(q

s
i − qo

i )2

t
, (5)

for which t represents the length of the optimized simulation period, and qs
i , and qo

i , represent the simulated, and observed

streamflow at time step i respectively. Relative improvements in simulation skill are determined by calculating the ratio of

RMSE between the stated cases.

4 Results and discussion180

The results of the split sample testing are presented as an RMSE average of the samples for each catchment and model for the

optimization and evaluation periods in Tables 2 and 3 respectively. The HBV model consistently yields lower RMSE values for

the optimization period using both the IDW and OGW rainfall products. As expected, the addition of extra parameters for the

optimized rainfall product consistently leads to notable improvements throughout the optimization period. There are however a

few split samples in which the additional parameters used in the OGW methodology led to a marginal increase in RMSE. This185

can happen when the scaling of gauge weightings does not allow the optimization process to attain the same gauge weights as

the IDW method.

Whilst the OGW rainfall estimates generally led to improvements in the evaluation period, there was much less consistency

in performance between models. For IDW rainfall the GR4H model had the lowest RMSE for 5 out of the 7 catchments. The

best simulations were obtained when OGW rainfall was used for 5 out of the 7 catchments. On average the observed relative190

improvements in the evaluation period were −7.9%, 6.2%, and 8.3% for the GR4H, HBV, and PDM models, respectively. If

the best IDW simulation is compared to the best OGW simulation an average improvement of 4.3% was observed.

To uncover the reasons for the apparent mismatch in performance between the optimization and evaluation periods it is

necessary to reflect on the methodology and available data. The two catchments in which the IDW simulations performed

better than the OGW simulations both have deficiencies in data availability. Table 1 and Figure 1 show that the Onkaparinga195

catchment has 21 gauges, only one of which has data available for more than 50% of the time. Since they are more able

to contribute to an increase in simulation skill in the optimization period, gauges with a larger proportion of observations

available in the optimization period are more likely to obtain higher weights. If these gauges have an overall low proportion of

observations available they are more likely to not have observations available in the evaluation period. This is likely to lead to

an increase in simulation skill for the optimization period but not for the evaluation period. This improvement in skill in the200

optimization period and decrease in skill in the evaluation period was observed in the Onkaparinga catchment, a catchment

with the overwhelming majority of gauges having < 50% data availability. Consequently this technique is not recommended

for catchments that have a overwhelming majority of rainfall gauges with poor (< 50%) data availability. Aside from the

Onkaparinga catchment the catchment of Yatton is the only other catchment in which the IDW rainfall simulations perform

better than the OGW simulations in evaluation periods. The Yatton catchment has one gauge per 2806 km2 whereas every other205

catchment has at least one gauge per 200 km2. Zeng et al. (2018) demonstrated that identification of model parameters became
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increasingly difficult as the density of the rain gauge network decreased. This effect is made worse by the OGWs. Consequently,

a poor gauge density does not allow for adequate estimation of hydrological model parameters, gauge weightings, and areal

rainfall. If the results of these two catchments are not considered, comparing the best OGW simulation to the best IDW

simulation leads to improvements of 15.3% and 7.1% in the optimization and evaluation periods, respectively.210

Applying all three models and selecting the best performing model resulted in the OGW leading to considerable improve-

ments. It is however concerning to see that the simulation skill in the evaluation periods consistently decreaseed for the GR4H

model. If some models are not well suited to be used with OGW rainfall estimates then it is imperative to know which elements

of the model structure contribute to this decrease in skill. The average change in rainfall and net forcing, where net forcing are

defined as rainfall minus evapotranspiration, between IDW and OGW simulations, are shown in Figure 2 and Table 4 respec-215

tively. OGW rainfall is larger than IDW rainfall for all hydrological models and catchments, except Yatton. It was also common

for both HBV and PDM to obtain larger OGW rainfall estimates than GR4H. This trend is in stark contrast to the pattern in

the change of net forcing. The mean and standard deviation of the change in net forcing across catchments was significantly

lower for HBV and PDM than it was for GR4H, indicating that the internal dynamics of the HBV and PDM adapt to a change

in rainfall by altering evapotranspiration while GR4H does not.220

4.1 Case Study - Paddys Flat

This case study was designed to develop a deeper understanding of the impact the OGW and subsequent areal rainfall estimates

had on the hydrologic model simulations and internal dynamics. Results and their associated discussion are presented sequen-

tially to describe the impacts on rainfall, model parameters, the water balance, and streamflow. The observed streamflow and

IDW areal rainfall estimate for Paddys Flat can be seen in Figure 3.225

The comparison of the cumulative rainfall volumes obtained for the split sample simulations for each model at Paddys Flat

is shown in Figure 4 demonstrating that the OGW leads to a consistent increase in cumulative rainfall volumes. Each split

sample obtained through model evaluation is represented by a different line. The cumulative rainfall volumes estimated by

GR4H are less than those estimated by HBV and PDM. However, it is necessary to determine if there is a tendency for low or

high magnitude rainfall observations to be estimated differently by the OGW or IDW interpolation methods.230

Plots of the OGW estimation of areal rainfall obtained by each model versus the IDW estimation of areal rainfall in Figure

5 reveal that, when compared to the IDW interpolation method, the OGW methodology did not have a tendency to predict

greater rainfall volumes for small or large magnitude rainfall observations. The larger cumulative rainfall volumes observed

by the OGW method were therefore a result of a slight tendency to estimate greater rainfall volumes for both small and large

magnitude rainfall observations. The impact each gauge has on the estimation of areal rainfall was then explored.235

Hydrological simulation skill based OGWs allows gauges which add value to forecasts to be identified. The gauge weightings

determined by the IDW interpolation method and OGW method for each split sample and model are shown in Figure 6. Each

model selected similar gauges and weightings for the majority of gauges. There was however one or two gauges which only

one model assigned weight to. Therefore the results from the analysis of rainfall estimates obtained through the OGW method

do not indicate that GR4H, HBV, and PDM require model specific rainfall forcings, and nor do they give sufficient reasoning240
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as to why the OGW simulations decrease in simulation skill for GR4H and improve in simulation skill for HBV and PDM.

It is therefore likely that some difference in model parameters and subsequent impact on internal model dynamics caused the

increase/decrease in skill.

To demonstrate the change or lack of change in model parameters that were observed for each rainfall estimation method,

an average of the simulated split sample model parameters for the OGW and IDW simulations for Paddys Flat is shown in245

Figure 7. GR4H parameters did not noticeably alter whilst parameters that influence soil moisture content, evapotranspiration,

and percolation change significantly for both HBV and PDM. Parameters influencing fast flow and baseflow change for HBV

and PDM respectively. The change in these specific parameters indicate that internal model dynamics are sensitive to changes

in forcing data for both HBV and PDM but not for GR4H. This presents a basis as to why rainfall minus evapotranspiration

change much less for both HBV and PDM than GR4H.250

The water balance is given as

si =
i∑

m=1

rm− qm− em, (6)

where si and em are the catchment storage, and evapotranspiration at time steps i and m respectively. It should be noted that

for GR4H a catchment exchange process that either abstracts or provides additional water may occur. Figure 8 shows the water

balance for the split sample simulations for the OGW and IDW methods for each model at Paddys Flat. After the warm-up255

period of one year, simulations for both the HBV and PDM models reached a point of equilibrium in which a rise or decline in

si was eventually countered by a subsequent and opposing rise or decline in si. This trend is the cornerstone of a model that is

able to close the water balance. A non-zero positive or negative catchment exchange parameter in GR4H leads to simulations

which do not close the water balance. This is the reason why si gradually increased for GR4H. Referring back to Figure 7 it

can be seen that the catchment exchange parameter was marginally above the mean of the minimum and parameter bounds.260

This mean is zero and explains why there is only a gradual departure from zero.

The IDW storage profiles and the OGW storage profiles obtained using GR4H remained inconsistent with the current con-

ceptual understanding of the rainfall-runoff process. The storage profiles for GR4H have different trajectories for each split

sample which became more dispersed with the inclusion of OGW rainfall estimates. In contrast, both HBV and PDM demon-

strated storage profiles that tend towards an equilibrium. The storage profiles of HBV and PDM for each split sample are more265

similar to each other than when the IDW rainfall estimates were used. Further, the storage profiles obtained using the HBV

and PDM were remarkably similar for all split samples regardless of whether or not the IDW or OGW rainfall estimates were

used. As such both, HBV and PDM demonstrate improved internal model dynamics which are consistent with a conceptual

understanding of the rainfall-runoff process. Lastly, the ability of each model to represent different streamflow events was

analyzed.270

The OGW estimation of areal rainfall enabled both HBV and PDM to simulate internal dynamics with improved consis-

tency. Models that have more consistency in their representation of internal dynamics are better positioned to benefit from the

inclusion of soil moisture data for calibration and/or assimilation purposes. Similar benefits are likely to be observed when
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updating internal states through the assimilation of observed streamflow. The relative impact of the OGW methodology on

streamflow, when compared to the IDW methodology, can be observed in Figure 9. It is clear that for larger magnitude events275

the OGW methodology brought the streamflow simulations closer to observations for the HBV and PDM throughout the eval-

uation period. Conversely, the use of OGW rainfall areal rainfall estimates with GR4H led to marginally improved streamflow

simulations for one event and significantly worse streamflow simulations for another event. This result was observed at all

catchments with sufficient gauge density and proportion of observations available.

5 Conclusions280

This study developed a methodology to optimally weigh rainfall gauges such that improved flood forecasting skill could be

obtained for three different conceptual hydrological models. The OGW methodology developed was tested on seven Aus-

tralian catchments and a comparison of streamflow simulations obtained using the IDW and OGW methods demonstrated an

improvement in streamflow RMSE of 15.3% and 7.1% in the optimization and evaluation periods respectively, for catchments

that have multiple rainfall gauges with observations available > 50% of the time and more than one rainfall gauge every 200285

km2. The methodology did not work equally well for the three hydrological models chosen. Improvements in evaluation peri-

ods were only noticed for the PDM and HBV hydrological models, and not for the GR4H hydrological model. The most likely

explanation for this is the inability of the GR4H model to represent internal dynamics that are consistent with a conceptual un-

derstanding of the rainfall-runoff process. This methodology opens new possibilities for model evaluation, forcing uncertainty

and data assimilation studies in hydrology.290
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Figure 1. Box plots showing the median, 25th and 75th percentile, end points and outliers that describe the proportion of observations

available for gauges within each catchment.

Table 1. Catchment area, number of rainfall gauges, and the % of time that no gauge has an observation for each of the study catchments.

Catchment Number of gauges % of time no gauge works Catchment area km2

Hurdle Creek 12 15.2 156

Onkaparinga 21 22.5 208

South Esk 13 17.5 2289

Paddys Flat 27 2.7 3112

Tully 7 4.1 1390

Warwick 21 5.3 1379

Yatton 7 3.6 19639
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Figure 2. The average change in estimated areal rainfall for the simulation period between the OGW and IDW areal rainfall estimation

methods.

Table 2. Average RMSE [mm] for simulated streamflow in the optimization periods for each catchment using IDW and OGW rainfall. Values

in bold indicate the lowest obtained RMSE.

GR4H HBV PDM

Catchment IDW Opt IDW Opt IDW Opt

Hurdle Creek 0.033 0.031 0.032 0.028 0.033 0.028

Onkaparinga 0.040 0.039 0.037 0.037 0.039 0.039

South Esk 0.037 0.033 0.035 0.032 0.043 0.039

Paddys Flat 0.068 0.053 0.061 0.048 0.084 0.069

Tully 0.175 0.177 0.165 0.151 0.170 0.157

Warwick 0.032 0.023 0.032 0.023 0.047 0.038

Yatton 0.062 0.056 0.053 0.048 0.061 0.057
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Figure 3. Observed streamflow and IDW areal rainfall estimates for Paddys Flat.

Figure 4. Cumulative areal rainfall estimates obtained for each OGW simulation when compared to the cumulative IDW rainfall areal rainfall

estimate. 1-1 reference lines are shown in black. Each colour represents a different split sample.
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Figure 5. A 1-1 comparison of the average OGW areal rainfall estimates with the IDW areal rainfall estimates for each model.

Figure 6. A comparison of the IDW gauge weights, as indicated by a ×, with OGW gauge weights for each split sample simulation. A +

indicates a potential outlier.
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Figure 7. Relative average optimized parameters for each rainfall-runoff model using OGW and IDW rainfall estimates. Values of 0 and 1

indicate the lower and upper bounds for each parameter respectively.

Table 3. Average RMSE [mm] for simulated streamflow in evaluation periods for each catchment using IDW and OGW rainfall. Values in

bold indicate the lowest obtained RMSE.

GR4H HBV PDM

Catchment IDW Opt IDW Opt IDW Opt

Hurdle Creek 0.033 0.033 0.041 0.036 0.037 0.029

Onkaparinga 0.035 0.036 0.038 0.039 0.038 0.039

South Esk 0.037 0.037 0.044 0.043 0.053 0.044

Paddys Flat 0.083 0.103 0.082 0.077 0.093 0.080

Tully 0.176 0.184 0.161 0.151 0.167 0.156

Warwick 0.035 0.038 0.042 0.031 0.050 0.041

Yatton 0.068 0.075 0.069 0.072 0.068 0.078
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Figure 8. A representation of each models ability to resolve storage for each split sample and areal rainfall estimation method respectively.

Each time series starts at the end of the warmup period and is adjusted to have the same storage as other samples from the model and rainfall

estimation method pair. Each colour represents a different split sample.

Figure 9. A comparison of the streamflow simulations for the evaluation periods for each model and areal rainfall estimation method. 1-1

reference lines are shown in black.
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Table 4. Average mm change in rainfall minus evapotranspiration between the IDW and OGW rainfall simulations. A positive change

indicates that net model forcings were higher for the OGW simulations. StDev represents the standard deviation.

GR4H HBV PDM

Hurdle Creek 319.846 160.691 138.951

Onkaparinga 37.993 3.988 44.639

South Esk 383.170 -40.262 107.997

Paddys Flat -91.241 24.374 -232.839

Tully 5524.877 1412.470 1324.449

Warwick 65.607 18.264 97.857

Yatton 808.369 -80.898 157.520

Mean 1006.946 214.090 234.082

StDev 1864.838 494.132 461.700
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