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Supplementary material

1 Supplementary figures and tables

Supplementary material is provided below to support interpretation of the manuscript.
For details how to set up and run the model, please see the model code and brief user manual at https://github.com/
lukeecomod/spathy_vl1.

The figures and tables are referred as Fig. or Table Sx in the main paper
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Figure 1. Location of the eddy-covariance sites (Table 1) and the 21 headwater catchments (Table S1) used in this study.
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Figure 2. Parameter ranking based on mean of absolute values (u,) of the distribution of elementary effects for evapotranspiration (ET),
transpiration (77.), evaporation from canopy interception (£), and ground evaporation (Ey). The higher the p, the more influential the

parameter is. Error bars are 95% confidence intervals based on re-sampling (N=1000).



Table 1. Soil types and their hydraulic properties used in the simulations. The 6, is porosity, 6. and 6., volumetric water contents at field
capacity and wilting point, K s, saturated hydraulic conductivity and S parameter describing power-law decay of hydraulic conductivity

with decreasing saturation ratio.

93 efc ewp
Type Ko -1 -
yp m-®)  mfm=®)  (mm-?) tms™hH ()
Coarse textured 0.41 0.21 0.10 1.0x 107* 3.1
Medium textured 0.43 0.33 0.13 1.0x 1075 4.7
Fine textured 0.50 0.34 0.25 1.0x 1076 79
Peat 0.90 0.41 0.11 5.0x 107° 6.0

Coarse textured includes sand, sandy till and gravelly till soils. Medium textured cover soil types from
fine finesand and silty tills to finesandy till. Fine textured represents clays and silt. Hydrological

properties correspond to sand, and silty loam and clay in Bittelli et al. (2015), respectively.
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2 Aerodynamic and surface conductances

The attenuation of mean wind speed U within the canopy is assumed exponential
U(z) = U(he) eap® /M=), (1)

where « (-) is attenuation coefficient, h. (m) canopy height and z height above the ground. Neglecting effects of diabatic
stability, the wind speed at canopy top U (h.) can be estimated from wind speed U, at reference height z,, (typically 2 or 10
m) using logarithmic wind profile yielding

n[(zm — d)/zom)

Uhe) =Up, , 2
(he) = Un (e =) zom] @
where d ~ 0.66 h,. is displacement height and z,,,, ~ 0.123h, the roughness height for momentum.
The resistance for turbulent transport in the canopy air space r, (Magnani et al., 1998)
1
Tq = 20, n[(zm — d)/zom]In[(2m — d) /2o, 3)

where k, ~ 0.41 is the von Karman constant and z,,, ~ 0.1 z,,, the roughness height for water vapor.
Representation for canopy-level quasi-laminar boundary-layer resistance 7, assuming uniform leaf-area distribution and

exponential wind profile within canopy, has been derived by Choudhury and Monteith (1988)

" T TAL 6\/ [1—exp=0-5a]’ @

where w is characteristic leaf width (here 0.01 m) and proportionality coefficient 3 ~ 285 s m~! (Campbell and Norman,

1998). The canopy aerodynamic conductance is computed assuming 7, and 7,, act on series

1
Gpe=——. 5
’ Tq+7Tp ©®)
The surface conductance for sublimation of intercepted snow, GG;,follows Essery et al. (2003) and Best et al. (2011)
3C.D,, ShW  C.ShW
2p;12 7.68 '

G;= (6)

where Sh = 1.79 43U is the Sherwood number, p; density of ice, D,, molecular diffusivity of water vapor in the air, and 7
the characteristic radius of snow grains (500 pm). The exposure coefficient C,

W —0.4
Co =y (Wm) )

depends on amount of intercepted snow water W relative to the maximum storage and k; = 0.01 from Pomeroy et al. (1998).

The forest floor / peatland surface resistance is computed as

Ta,f =

kv21Ug In(29/%0s) In(24/Z0s0), ®

where Uy is the wind speed at height z, above ground (from eq. 1), and z,s and z,,, surface roughness heights for momentum

and water vapor, respectively. Finally, the forest floor conductance G,y = 1/rq ¢.
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3 Deriving parameter ranges for eq. 4: test against a common gas-exchange model

In the main paper, eq. 4 provides approach to estimate the canopy conductance GG, based on well-established stomatal conduc-
tance model, simplified canopy radiation transfer scheme and stand LAI. The stomatal model used is based on Medlyn et al.
(2012), who showed that leaf-scale stomatal conductance (g5, mol m-2 s-1) is related to leaf net photosynthetic rate (A, pmol

m~2s7 1) as

A
gszgo+1.6(1+j%>c, )

where C, is the atmospheric CO2 mixing ratio (ppm), D (kPa) is vapor pressure deficit, ¢, residual (or cuticular) conductance

and g1 a species-specific parameter that depends on plant water use strategy. Noting that g, < ¢gs (Medlyn et al., 2012) and
representing photosynthetic light response by saturating hyperbola (Saugier and Katerji, 1991), eq. (9) can be approximated as

gs =16 <1 + 9L Cair (10)

VD

where A4, (4 mol m~2 s™1) is the light-saturated photosynthesis rate, b (W m~?2) the half-saturation value of photosyntheti-

Amam PAR
Co PAR+D

cally active radiation (PAR), and molar density of air Cy;,- (mol m~3) converts units of g, to m s~!. The eq. 10 suggests that
gs in a reference conditions (fixed D and C'O,) is constrained by plant water use and photosynthetic traits. There are readily
measurable by leaf gas-exchange techniques, and widely available in literature and in plant trait databases such as TRY (Kattge
etal., 2011).

For sensitivity analysis (Sect. 2.5), we determined plausible parameter ranges (Table 3) using literature, shoot gas-exchange
measurements at FIHy and predictions of common leaf photosynthesis model (Farquhar et al., 1980b) model coupled with eq.
9. For Scots pine, g; was shown to vary between 1.9 and 2.3 for different shoots measured at FIHy (Launiainen et al., 2015),
while g; was 3.5 - 4.0 for deciduous Aspen and Birch leaves at the same site (unpublished data). These fall well within the
values from global synthesis, giving mean g; 2.35 for evergreen gymnosperm and 4.67 for deciduous angiosperm tree species
(boreal biome mean g; 2.2) (Lin et al., 2015). The A4, and b can be derived from shoot gas-exchange measurements, or as
here by using common leaf gas-exchange model (Farquhar et al., 1980b) with parameter values characteristic for boreal plants.
Fig. 3 hows photosynthetic light response curves for combinations of parameter values (at reference temperature 25 °C'):
maximum carboxylation velocity Vi pqq,25 40 - 70 zmol m~2 s~!; maximum electron transport rate Jy,q0 = 1.9 X Vg and
dark respiration rate rq = 0.02 X V4. For the specific version of Farquhar -model used, and its other ’generic’ parameters
see Launiainen et al. (2015).

The plausible values for A,,,, and b can be now approximated by fitting empirical light response A4z Qp/(@p+b) to leaf
gas-exchagne model predictions. Further, as V.4, and A, are strongly related to leaf N (Kattge et al., 2009), using site
fertility class as a proxy for A4, could later provide a way to infuse site type effect into spatial predictions of transpiration.

The upscaling from g5 to G by the proposed scheme (eq. 4 in the main paper), and the leaf gas-exchange model predictions

are compared in 4. The G in x-axis corresponds to case V4 = 55 pmol m2s'andg; =2.5in Fig. 3 and is computed



as follows: First, a canopy with LAI = 4.0 m?m~? is divided into 100 layers and absorbed @,, (per unit leaf area) at each layer
computed assuming attenuation of ), exponential with attenuation coefficient k, = 0.6 (T and D taken constant with height).
Then, g, for each layer is computed by the leaf gas-exchange model using local @, and integrated with respect to LAI to yield
G... The parameters for eq.4 are inferred from the leaf-scale light-response (Fig. 3) as A4, = 11.6 umol m~2 and b = 60
Wm~2. The forcing data (Q),,, D and CO2) were taken from 1/2 h average values in July-August 2005 at FIHy site. The results
show reasonably good correspondence at the sub-daily timescale. The applicability of eq. 4 at daily timescale is then indirectly

explored in the main manuscript by comparison against daily dry-canopy ET measurements from ten boreal FluxNet sites.
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Figure 3. Photosynthetic light response and stomatal conductance predicted by a common leaf gas-exchange model for different parameter

combinations. The legend gives values of Vemaz and g1 for each curve. See text for details.
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Figure 4. Canopy conductance G predicted by a leaf gas-exchange model combined with exponential attenuation of radiation (x-axis) and
by the proposed simplification (eq. 4 in the main manuscript, y-axis). The canopy LAI = 4.0 m®*m~? and the parameters of gas-exchange
model correspond to case Vemaz = 55 pmol m~2 s™* and g; = 2.5 in Fig. 3, while those in eq. 4 uses Aq. and b inferred by fitting the

light response Armaz @p/(Qp + b) to that particular case in Fig. 3. The points show 1/2 h predictions and the red line is linear-least squares

regression.
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4 Snow model

Snowpack at the forest floor is described through snow water equivalent (SWE), which consists on solid (SWE;) and liquid

phases (SWE;) (mm). Their respective mass balances are computed as

ASWE;

A =T U)+F - M

ASWE;

g = (=) (T +U) = F+ M, (11a)

where f is temperature-dependent fraction of precipitation falling as snow, T and U, throughfall and snow unloading rates,

respectively. The snowmelt M and liquid water re-freezing F' (mm d~1) are estimated based on degree-day approach

M =min(SWE;,K,, T,), T, <0.0°C

F=min(SWE;,K;1T,), T, >0.0°C, (12a)
where K,,, (mm d~! °C~1) is melting coefficient and freezing coefficient K  ~0.3mm d=! °C~! is assumed independent
of stand characteristics. The snowpack can retain only a certain fraction of liquid water, and thus SWE; is constrained to

<rSWE;, where r ~ 0.05. The excess liquid water from the snowpack is routed to soil sub-model (Bucker) as potential

infiltration I ,,. In snowfree conditions I, = T’.

10
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