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Abstract. Spatial downscaling of rainfall fields is a challenging mathematical problem for which many different types of

methods have been proposed. One popular solution consists in redistributing rainfall amounts over smaller and smaller scales

by means of a discrete multiplicative random cascade (DMRC). This works well for slowly varying, homogeneous rainfall

fields but often fails in the presence of intermittency (i.e., large amounts of zero rainfall values). The most common workaround

in this case is to use two separate cascade models, one for the occurrence and another for the intensity. In this paper, a new5

and simpler approach based on the notion of equal-volume areas (EVAs) is proposed. Unlike classical cascades where rainfall

amounts are redistributed over grid cells of equal size, the EVA cascade splits grid cells into areas of different sizes, each of

them containing exactly half of the original amount of water. The relative areas of the sub-grid cells are determined by drawing

random values from a logit-normal cascade generator model with scale and intensity dependent standard deviation. The process

ends when the amount of water in each sub-grid cell is smaller than a fixed bucket capacity, at which point the output of the10

cascade can be re-sampled over a regular Cartesian mesh. The present paper describes the implementation of the EVA cascade

model and gives some first results for 100 selected events in the Netherlands. Performance is assessed by comparing the outputs

of the EVA model to bilinear interpolation and to a classical DMRC model based on fixed grid cell sizes. Results show that

on average, the EVA cascade outperforms the classical method, producing fields with more realistic distributions, small-scale

extremes and spatial structures. Improvements are mostly credited to the higher robustness of the EVA model to the presence15

of intermittency and to the lower variance of its generator. However, both approaches have their advantages and weaknesses.

For example, while the classical cascade tends to overestimate small-scale variability and extremes, the EVA model tends

to produce fields that are slightly too smooth and blocky compared with the observations. The complementary nature of the

two approaches and the fact that they produce errors of opposite signs opens up new possibilities for quality control and bias

corrections of downscaled fields.20

1 Introduction

Stochastic rainfall downscaling algorithms are statistical methods designed to enhance the resolution of coarse-scale rainfall

observations for use in hydrological modeling, weather prediction or flood risk analyses. Their simplicity and low computa-

tional cost mean that large ensembles of possible realizations for a single input field can be generated. This leads to a better

representation of measurement errors and model uncertainties compared to physical downscaling as well as a more realistic25
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representation of small-scale variability. However, the statistical nature of the approach means that one needs to find a good

balance between model complexity and performance (e.g., the realism of the distributions and spatial patterns that can be

reproduced).

Popular statistical downscaling methods for global and regional climate models include various forms of transfer functions

and quantile matching (Li et al., 2010; Teutschbein and Seibert, 2012; Langousis et al., 2016), machine learning (Jha et al.,5

2015; He et al., 2016) and a multitude of hybrid physical-statistical and autoregressive models (e.g., Lisniak et al., 2013;

Bechler et al., 2015; Xu et al., 2015). Another important family revolves around the notion of self-similarity, generalized scale-

invariance and multiplicative random cascades (e.g., Lovejoy and Mandelbrot, 1985; Schertzer and Lovejoy, 1987; Gupta

and Waymire, 1993; Menabde et al., 1997; Schertzer and Lovejoy, 2011). The main appeal of these techniques is that they

require a very small number of model parameters, many of which can be inferred directly from the coarse-scale data. Also, the10

framework itself is very flexible, applying to all kinds of rainfall inputs from time series to spatial and space-time fields (e.g.,

Deidda, 2000; Menabde and Sivapalan, 2000; Kang and Ramirez, 2010; Raut et al., 2018).

One long-standing and still unresolved issue of random multiplicative cascade models applied to rainfall concerns the ques-

tion of how to properly deal with zero-rainfall values. Zeros are fundamentally incompatible with the notion of self-similarity

and multiplicative random cascades (Gupta and Waymire, 1993). They must be artificially introduced into the cascade, for15

example by setting a hard threshold on the minimum detectable intensity (e.g., Pathirana et al., 2003) or by modifying the cas-

cade model in such a way that grid cells below a given intensity only have a finite, predetermined probability to survive at each

cascade level (Gires et al., 2013). Another workaround consists in applying two separate cascade models for the occurrence

and intensity (e.g., Over and Gupta, 1996; Olsson, 1998; Paulson and Baxter, 2007; Schmitt, 2014; Lombardo et al., 2017).

However, this requires many additional model parameters to be estimated from the data, which can be challenging numerically20

and increases the risks of overfitting. Regardless of how they are handled, zero rainfall values are likely to negatively impact

the scaling properties of rainfall, making it difficult to retrieve reliable model parameters in the first place (Kedem and Chiu,

1987; Schmitt et al., 1998; Veneziano et al., 2006; de Montera et al., 2009; Gires et al., 2012; Veneziano and Lepore, 2012;

Mascaro et al., 2013).

Given the numerous challenges mentioned above, there is a strong incentive to design new simple multiplicative cascade25

models capable of handling rainfall fields with high levels of intermittency. Particular attention is given to parsimonious models

with maximum 3 parameters whose values can be inferred directly from the coarse-scale data. One promising avenue explored

in this paper revolves around the notion of “equal-volume areas” (EVAs), a natural extension of the inter-amount times concept

introduced in the context of time series analysis by Schleiss and Smith (2016). The theoretical foundation for this work is

motivated by recent studies by Schleiss (2017) and ten Veldhuis and Schleiss (2017) who showed that intermittent rainfall and30

flow time series scale better when sampled adaptively rather than with a fixed frequency. The hope is that by switching to an

adaptive sampling strategy, the mathematical challenges associated to the presence of zero rainfall values can be alleviated,

thus leading to more robust cascades and more realistic rainfall fields after downscaling. The present study describes the im-

plementation of this idea to the case of 2D rainfall fields and discusses its advantages and limitations with respect to traditional

random cascades based on intensity.35
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The rest of this paper is structured as follows: Section 2 introduces the new EVA model, including the splitting rule, cascade

generator and parameter estimation. In Section 3, the potential of the new cascade is demonstrated by applying it to radar

rainfall snapshots collected over the Netherlands. First, the parameterization problem is discussed. Then, the performance is

evaluated by means of controlled simulation experiments during which 100 high-resolution rainfall fields are aggregated to

coarser scales and subsequently downscaled back to their original resolution. Results are compared to two alternative down-5

scaling techniques (i.e., bilinear interpolation with local intensity rescaling and a classical random cascade based on intensity).

The advantages and limitations of the model as well as possible extensions are discussed in Section 5 and the conclusions are

given in Section 6.

2 Methods

2.1 A brief introduction to discrete multiplicative random cascades10

Discrete multiplicative random cascades (DMRC) are statistical downscaling techniques designed to enhance the resolution of

a coarse-scale rainfall field to a desired fine-scale target resolution. For spatial cascades, this is done by successively splitting

the dimensions of coarse-scale grid cells by 2 (or 4 depending on the type of cascade) according to a predefined branching

rule. For example, one large 16×16 grid cell might be divided into 2 sub-grid cells of size 8×16 km2 at the first level of the

cascade which in turn, will be divided into 4 grid cells of size 8×8 km2 at the next level. The splitting process is repeated15

iteratively until the desired target resolution lx× ly is reached. During a split, each of the generated sub-grid cells receives

a random fraction of the total rainfall amount in the parent grid. Redistribution takes place according to some multiplicative

weights W1 ≥ 0 and W2 ≥ 0 drawn from a probability distribution Γ called the cascade generator. In micro-canonical models,

the sum of the weights associated to each split is forced to 1, thus ensuring that the total rainfall amount in each grid cell is

preserved. By contrast, in canonical cascades, only the average rainfall intensity over a large number of grid cells needs to be20

preserved. This has some advantages in terms of modeling but generally results in lower performance than micro-canonical

cascades (e.g., Hingray and Ben Haha, 2005). For the sake of completeness, it should also be mentioned that other types of

cascades have been proposed to downscale rainfall, such as those based on continuous in scale multifractal cascades (Lovejoy

and Schertzer, 2010a, b). However, these are outside the scope of this paper which focuses on discrete micro-canonical random

cascades.25

As pointed out by Rupp et al. (2009), differences in performance between cascade models primarily relate to what proba-

bility distribution is chosen for Γ and how rainfall amounts are re-assigned to sub-grid cells during the splits. In the simplest

possible setup, the probability distribution of the generator remains the same across the entire cascade. However, rainfall fields

downscaled with such an approach often exhibit unrealistically high small-scale variability and extremes. Consequently, many

authors recommend to use cascade generators whose distribution depends on the spatial/temporal dimensions of the grid cells30

that are being split or on the average rainfall intensity within them (Rupp et al., 2009; Licznar et al., 2011). In this paper, this

is achieved by conditioning the variance of the generator on the spatial scale and the rainfall intensity.
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2.2 Description of the EVA cascade model

Let R1, . . . ,RN (in mmh−1) denote a coarse scale rainfall intensity field over a regular Cartesian mesh composed of individual

grid cells of size Lxi
×Lyi

(in km2), where Lxi
and Lyi

(in km) denote the horizontal and vertical dimensions respectively

and N is the total number of grid cells in the field. Let Ai = Lxi
·Lyi

denote the areas (in km2) of the individual grid cells.

The relation between intensity Ri (in mmh−1), area Ai (in km2), volume Vi (in millions of liters) and temporal aggregation5

time scale ∆t (in hours) is given by:

Ri =
Vi

Ai ·∆t
(1)

In a classical cascade model, grid cells of area Ai are divided in two sub-grid cells of equal areas A(i,1) =A(i,2) = Ai

2 .

The rainfall volumes V(i,1) and V(i,2) of the sub-grid cells are determined by multiplying Vi by random weights W1 ≥ 0 and

W2 = 1−W1 drawn from the cascade generator model Γ:10

Classicalcascade :

 Ai

Vi

→

 A(i,1) = Ai

2

V(i,1) =W1 ·Vi

 ;

 A(i,2) = Ai

2

V(i,2) =W2 ·Vi

 (2)

The random quantities in this case are the rainfall volumes Vi (or equivalently the rainfall intensities) at each level and

the area of the grid cells plays the role of the scale λ. This is the most natural choice for downscaling applications and will

be referred to as the classical approach in this paper. The main drawback of the classical approach is that the conditional

probability distribution function of Vi given Ai > 0 has a mixed distribution with atom at zero:15

P[Vi = 0 | Ai > 0]> 0 (3)

where P denotes the probability. Moreover, the probability that Vi equals zero knowing Ai > 0 increases as the area tends to

zero. To reproduce such behavior, the classical cascade generator model Γ must include a mechanism through which (some)

of the weights can be set to zero during the splitting process (usually at the expense of additional model parameters). This is

far from trivial as one needs to make sure that the cascade does not remove all rainy areas during the downscaling and does not20

introduce zeros immediately next to grid cells with very high rainfall intensities (Olsson, 1998).

The main contribution of this paper is to show that many of the issues associated with zero rainfall values can be avoided by

adopting a slightly different representation of rainfall based on the notion of equal-volume areas. In the EVA framework, the

scale λ is given by the total rainfall volume Vi =Ai ·Ri ·∆t > 0 contained in a grid cell and the random quantities that are

being downscaled are the areas Ai needed to accumulate fixed volumes of water. At each split, the total volume of water Vi in25

a grid cell is divided by two and equally redistributed over two sub-grid cells of different areas. The areas A(i,1) and A(i,2) of

the two sub-grid cells are determined by drawing random weights W1 and W2 = 1−W1 from a cascade generator ΓEVA with

predetermined probability distribution. A small diagram illustrating this process is provided in Figure 1.

EVAcascade :

 Ai

Vi

→

 A(i,1) =W1 ·Ai

V(i,1) = Vi

2

 ;

 A(i,2) =W2 ·Ai

V(i,2) = Vi

2

 (4)
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Note that by convention, splits always occur perpendicular to the longest grid cell dimension, that is, splitting horizontally

if Lx ≤ Ly and vertically otherwise. Splitting is applied iteratively, until the total rainfall volume in a grid cell is lower than

a fixed bucket capacity εV > 0 which denotes the smallest rainfall volume that can be detected at the target resolution. The

latter can be prescribed by end-user requirements or imposed to match known instrumental limitations such as the capacity

of a tipping bucket rain gauge or the sensitivity of a weather radar. The smaller the bucket capacity, the larger the number of5

cascade levels and sub-grid cells. Note that the rule above does not apply to grid cells for which Vi = 0, as the latter do not

contain any water and do not need to be split. These grid cells are kept “as is” until the end of the cascade. The main advantage

of the EVA approach over the classical cascade is that the areas needed to accumulate a positive rainfall volume Vi > 0 can

never be zero:

P[Ai = 0 | Vi > 0] = 0 (5)10

Finally, note that by construction, the EVA cascade described above implements an adaptive spatial sampling of the coarse-

scale rainfall field, very similar to that of a quadtree (Shankar and Hutchinson, 1990). The cascade decomposes a regular

two-dimensional rainfall field into grid cells of variable sizes, with fewer and larger grid cells in areas of low rainfall intensity

and more numerous and smaller grid cells in areas of large rainfall intensities. The redistribution rule ensures each of the

generated sub-grid cells contains a strictly positive rainfall amount, no matter its size or at which level of the cascade it was15

produced. Zeros are not coded explicitly into the field, making it unnecessary to model their distribution and structure. The

downside of the approach is that the output of the cascade consists of grid cells of variables sizes. From a practical point of

view, it may therefore be necessary to re-sample the output of the EVA cascade onto a regular Cartesian mesh with fixed spatial

resolution, at which point the zero rainfall values will become apparent. This process, also known as “regridding”, is commonly

encountered in geophysical image mapping and various computationally efficient solutions have been proposed for it. Here,20

we consider the simple case of regridding an irregular rectilinear grid to a regular Cartesian mesh composed of square pixels

of size lx× ly centered around (xi,yi). The total rainfall amount V (xi,yi) in a target pixel centered around (xi,yi) is given by

the sum of all rainfall amounts in the irregular source field times the ratio of overlapping areas with the target pixel:

V (xi,yi) =

m∑
j=1

λijVi (6)

where 0≤ λij ≤ 1 denotes the fractional area-overlap of the target grid cell i with the source cell j and m ∈ N is the total25

number of grid cells generated by the cascade. Fractional overlaps for rectangular grid cells are easy to calculate, making this

step very efficient. In the end, all re-sampled rainfall amounts V (xi,yi) below the minimum detectable threshold εV > 0 are

set to zero, similarly to how they would appear in real measurements. Note that this threshold is not imposed on the cascade

output itself (which does not contain any zeros) but only on the re-sampled quantities. Because of this, the frequency of zero

rainfall values and their location in the domain will depend on the spatial scale at which the field is displayed. The latter can be30

changed at any time depending on user requirements without having to run another random cascade. In fact, an irregular grid

combined with a final re-sampling step for visualization constitutes a very natural way of modeling a scale-dependent process

like rainfall.
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2.3 Splitting Rule

The way grid cells are split at each level plays a crucial role in determining the spatial structure of the downscaled field.

Independently of the used cascade generator, for any weight 0<W < 1, there are only two possibilities to split a grid cell. In

the case of vertical splits, the left sub-grid cell can be assigned the area W ·Ai (corresponding to an intensity of
Ri

2W ·Ai
) or,

conversely, the complementary value (1−W ) ·Ai. The splitting rule is a set of instructions for determining which side gets5

assigned the lowest area or, equivalently, the highest rainfall intensity. To preserve the overall spatial structure and coherency

of the rainfall field during downscaling, knowledge about the rainfall intensity in surrounding grid cells is required. This is

achieved by performing inverse distance interpolation of the coarse-scale rainfall intensity field on the left/right (for horizontal

splits) or top/bottom (for vertical splits) sides of each grid cell. At each split, the side with the highest interpolated rainfall

value gets assigned the largest intensity (i.e., the smallest area). An example of this principle is shown in Figure 2 for a single10

grid cell (in bold at the center of the figure) with area A surrounded by 7 grid cells with different areas and intensities. Note

that the splitting rule as defined above only takes into account the rainfall values in surrounding grid cells without influencing

the cascade weights themselves. Its only purpose is to ensure that, as we go through the cascade, water gets redistributed in

a way that is spatially coherent with respect to the coarse-scale observations and all previously generated grid cells during

the cascade. This is particularly important in the first stages of the cascade, when rainfall amounts can get redistributed very15

unevenly. The choice of the interpolation scheme is not critical as long as it provides a relatively smooth estimate of the rainfall

distribution over the domain. In this study, inverse-distance weighting was used. To limit the computational time associated

with interpolation, only the 100 nearest surrounding grid cells were used. Note that since the spatial distribution of the rainfall

intensity over the domain changes after each split, the interpolated values need to be updated regularly to take into account the

newly generated fine-scale rainfall patterns. Without this update, downscaled fields would rapidly lose their spatial coherency.20

In theory, the interpolated rainfall values should be re-calculated after each split. This is especially important at the beginning of

the cascade when grid cells are still large. To save time at later stages, it is also acceptable in practice to update the interpolated

values only once in a while, for example after a fixed number of splits or at the end of each new cascade level. Results show

that this strategy can save precious time when the number of sub-grid cells becomes large while only marginally affecting the

small-scale structure of the downscaled fields.25

2.4 The cascade generator

The probability distribution of the cascade generator is a crucial component of any discrete multiplicative random cascade

(Over and Gupta, 1994; Ossiander and Waymire, 2000). Without any explicit physical law governing the redistribution of

precipitation over scales, choosing an appropriate generator model can be a rather subjective task. Consequently, a wide range

of possible distributions have been proposed so far, from uniform (Olsson, 1998) to log-normal (Over and Gupta, 1996; Xu30

et al., 2015), beta (Ahrens, 2003; Molnar and Burlando, 2005; Paulson and Baxter, 2007) and log-Levy (Gupta and Waymire,

1990; Menabde and Sivapalan, 2000; Pathirana et al., 2003; Schertzer and Lovejoy, 2011). Beyond the ability of the generator

to reproduce observed scale-invariance in data, other important factors to consider are simplicity and ease of interpretation.
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One distribution that satisfies all these criteria and will be used in this study is the logit-normal distribution:

ln

(
W

1−W

)
∼N(µ,σ2) (7)

where µ ∈ R and σ ≥ 0 represent the mean and standard deviation of an underlying Gaussian random variable. Further sim-

plifications can be made by assuming that the cascade weights are symmetrically distributed around 0.5, which forces µ to be

zero.5

The logit-normal generator model is not necessarily optimal for all types of events and all spatial/temporal scales. But it is

a fair enough approximation of empirical cascade weights to be useful in practice. Moreover, the distribution is continuous,

supported over the open unit interval (0,1) and easy to simulate through its analytical link with the Gaussian distribution. The

most important advantage of all, however, lies in the ease of interpretation of the parameter σ, which measures the spread of

the underlying Gaussian and therefore directly relates to the sub-grid variability (i.e., the intermittency) of the rainfall process10

within a given grid cell. Figure 3 illustrates this point by showing the density function of a logit-normal cascade generator

W with µ= 0 for 4 different values of σ. It can be seen that for small values of σ, the distribution tends to a delta function

centered around 0.5. This corresponds to a case with low spatial variability and results in grid cells splitting up very evenly.

On the other hand, as σ→∞, the density of W progressively moves away from 0.5, tending to 0 almost everywhere except

for two small symmetric intervals near 0 and 1 (without ever reaching these limits). This corresponds to high spatial variability15

and high intermittency and means that grid cells split up very unevenly during the cascade.

Since µ= 0 is fixed, the only parameter needed to define the full distribution of the cascade generator is σ. Previous research

on discrete multiplicative random cascades has shown that the empirical distribution ofW usually depends both on the intensity

and spatial scale (e.g., Over and Gupta, 1994; Olsson, 1998; Marani, 2005; Rupp et al., 2009; De Luca, 2014). The analyses

conducted within this study confirm these previous findings, showing that within the EVA framework, on average, the spread20

of the cascade weights increases with area A and decreases with intensity R= V
A·∆t . Based on these empirical observations, a

simple power-law model for expressing the standard deviation σ of the cascade generator W is proposed:

σ(A,R) = a ·R−b ·Ac (8)

where A (in km2) denotes the area of the grid cell to be split, R (in mmh−1) is the intensity (for a given area A and temporal

resolution ∆t) and a > 0, b > 0, 0< c < b are three model coefficients.25

2.5 Convergence

Because the amount of water is halved at each split of the cascade, according to Equation (8), the fate of individual grid cells

in the EVA cascade will be determined by how quickly their area decreases with respect to their intensity. In fact, if we impose

b > c and let the cascade run for a long enough time, only two possible outcomes can result: either σ→ 0 or σ→∞.

In the first case (σ→ 0), grid cells of areaAi are split in two almost equal areasA(i,1) ≈A(i,2) ≈ Ai

2 . The cascade generator30

for the two sub-grid cells after the split will therefore have standard deviation:

σ(A(i,1),R(i,1)) = σ(A(i,2),R(i,2)) = 2−c ·σ(Ai,Ri)< σ(Ai,Ri) (9)
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Therefore, grid cells at subsequent cascade levels will tend to split more and more evenly, eventually converging to a fixed

rainfall intensity. In the second case (i.e., σ→∞), grid cells split up very unevenly. Without loss of generality, we can assume

that the first sub-grid cell in this case will have area A(i,1) ≈Ai while the second will have area A(i,2) ≈ 0. The standard

deviation of the cascade generator for the first sub-grid cell is then given by:

σ(A(i,1),R(i,1))≈ σ(Ai,
Ri

2
) = 2b ·σ(Ai,Ri)> σ(Ai,Ri) (10)5

while the standard deviation of the second sub-grid cell will be σ(A(i,2),R(i,2))≈ 0. At the next cascade level, the first sub-grid

cell will therefore split up very unevenly while the second sub-grid cell will have a higher intensity and split up rather evenly

(similar to the first case where σ→ 0). The final result of this process is a bounded cascade in which some grid cells have

areas converging to a fixed value (or equivalently, intensity converging to zero) while all other grid cells have rainfall rates

converging to a strictly positive value. Figure 4 illustrates this process, showing how the area of some small grid cells gets10

“stuck” during the cascade while all the others end up splitting more and more evenly. However, note that since the weights are

drawn at random, the process only convergences in a probabilistic sense, that is, on average, over a large number of cascade

levels and splits. The condition b > c in Equation (8) is used to ensure convergence by preventing any uncontrolled increases

in rainfall intensities from one level to another of the cascade. Indeed, the generator is built in such a way that whenever the

intensity in a grid cell increases, the standard deviation of the generator decreases. This forces subsequent splits to be more15

even and reduces the probability of seeing any further increases in intensity at the next levels. This also means that the largest

changes in rainfall intensities tend to occur at the earlier stages of the cascade, when the variance of the generator is still large.

The magnitude of the random fluctuations then progressively decreases (at a rate that depends on the values of a, b and c), and

intensities quickly converge to a fixed value. This can be seen as a strength, as it means that the cascade is very stable and can

be stopped after a small number of iterations (i.e., as soon as the output has stabilized). However, it can also be a disadvantage,20

as fast convergence means that the EVA cascade is more likely to underestimate small-scale variability (especially for large

downscaling ratios).

2.6 Sample estimation of cascade generator model

An important advantage of micro-canonical model is that the distribution of the cascade weights can be studied directly from

the data through the calculation of empirical breakdown coefficients (Cârsteanu and Foufoula-Georgiou, 2016; Licznar et al.,25

2015). The latter are estimated by successively aggregating grid cells in the input field to larger spatial scales and by studying

how the rainfall volumes in aggregated grid cells split up as a function of area and rainfall intensity. For example, an input

field of 1×1 km2 resolution can be aggregated to blocks of size 1×2 km2, 2×1 km2, 2×2 km2, 4×2 km2 etc..., each of which

can be split in two equal sub-areas to analyze the redistribution of rainfall volumes inside them. For the EVA framework, the

procedure is similar except that we are interested in determining the sub-area needed to accumulate half of the rainfall amount30

in the parent grid cell. The main drawback compared with the classical approach is that due to the fixed grid spacing, the

sub-areas can not be determined exactly but must be approximated by linear interpolation, similarly to the procedure described

in Equation (4) of Schleiss (2017). Figure 5 shows an example of this for a single grid cell of size 8×8 for both horizontal and
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vertical splits. For the vertical split, the two sub-grid cells are of size 4.32×8 and 3.68×8. The first dimension (i.e., 4.32) is

obtained by interpolating the rainfall amount contained in the smaller grid cell of size 4×8 (containing slightly less than half

the amount) and the one immediately above of size 5×8 (which contains more than half). The additional interpolation step

means that the empirical breakdown coefficients of small grid cells will be affected by larger sampling uncertainties compared

with large grid cells. In theory, one could calculate the local spatial autocorrelation structure of the rainfall field to estimate the5

uncertainty due to linear interpolation. However, the quantification of this uncertainty and its incorporation into the estimation

process goes beyond the scope of this paper and will be ignored here.

In the classical cascade model, no linear interpolation is needed. However, some of the rainfall volumes in the sub-grid

cells may be zero (i.e., one size receives all the rain). Such splits are fundamentally incompatible with the logit-normal model

prescribed in Equation (7). To avoid numerical issues when evaluating ln(W ), one can set the weights to a small positive10

value close to zero or simply ignore the problematic splits (which is the approach adopted in this paper). Because some splits

are ignored during parameter estimation, the cascade generator model for the classical cascade model and highly intermittent

rainfall fields is likely to be biased.

Once the empirical breakdown coefficients have been determined from the sample, the last step consists in estimating the

three model parameters a, b and c in Equation (8). To do this, the empirical breakdown coefficients are grouped in classes15

according to the total area A and rainfall intensity R of the parent grid cell that generated them. For the area A, the spacing

between classes is imposed by the spatial resolution of the input field. For the intensity, the number of classes that can be

formed depends on how many empirical breakdown coefficients are available at a given spatial scale. In this paper, 30 regularly

spaced intensity classes were used for each value of A. Moreover, each class of (A,R) needed to contain at least 50 empirical

breakdown coefficients in order to estimate the standard deviation σ(A,R) of the underlying logit-normal distribution. In20

the end, once σ(A,R) has been estimated for all values of A and R, the coefficients a, b and c of the power-law model in

Equation (8) were estimated through non-linear least square fitting (implemented in the function nls() in R).

2.7 Benchmarks

While the EVA downscaling technique is the main focus of this paper, two additional spatial downscaling techniques were

considered for comparison purposes. The first is bilinear interpolation, implemented in the function “interp.surface()” of the R25

package “fields” (Douglas Nychka et al., 2017). Bilinear interpolation is a deterministic non-parametric downscaling method.

It makes no assumption about the structure and distribution of the data, making it very robust. However, because it is an

interpolation technique, it tends to generate fields that are too smooth compared with the observations. Note that strictly

speaking, bilinear interpolation is not a disaggregation technique because it does not conserve the total rainfall amount in each

coarse-scale grid cell. However, the interpolated values can always be rescaled such that that the average rainfall intensity over30

the whole domain is preserved, similarly to a canonical cascade. This technicality is not crucial here since bilinear interpolation

is not the main focus of the paper and is only used as a rough baseline against which the added-value of the random cascade

models can be assessed. Also note that other interpolation techniques such as kriging were explored. But the downscaled fields

were still too smooth and no clear improvement in performance was observed compared with bilinear interpolation.
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The second benchmark is a classical micro-canonical discrete multiplicative random cascade based on rainfall intensity as

described in Equation (2). To ensure fair comparisons, the classical cascade model is set up to be a perfect replicate of the new

EVA model. It uses the same logit-generator model, the same splitting rules and the same power law model as in Equation (8),

albeit with different a, b, and c coefficients. Note that the classical cascade is run without performing any separation between

the occurrence and intensity process. Dry and rainy regions are delineated at the end by imposing a fixed threshold on the5

minimum detectable rainfall volume at the target resolution, similarly to what is done in the EVA cascade. This may not be

state-of-the-art but ensures a fair comparisons and makes it easier to outline the strengths and limitations of both approaches.

To assess performance, synthetic experiments on high-resolution radar rainfall fields were performed. During these experi-

ments, 100 different 5-min radar rainfall snapshots from the operational Dutch national C-band radar composite over an area

of 128×128 km2 near Rotterdam were aggregated from their original spatial resolution of 1× 1 km2 to square blocks of size10

2× 2 km2, 4× 4 km2 and 8× 8 km2 (see Figure 6 for events 1-4). Then, the fields were downscaled back to their initial res-

olution of 1×1 km2. For each event, 100 different realizations of the random cascades were generated to get an estimate of

the ensemble spread. The threshold used to distinguish dry from rainy grid cells at the target resolution was set to 0.1 mmh−1

(corresponding to a bucket capacity of εV = 8333 liters for each grid cell of size 1 km×1 km×5 min), to match the minimum

measurable rainfall intensity in the Dutch radar product. Performance is assessed both visually and quantitatively using a set of15

standard statistical metrics (e.g., bias, root-mean square error, quantiles, coefficient of determination and variograms). Among

the 100 radar snapshots used for performance evaluation, the first four were selected for in-depth analyses (see Figure 6 and

Table 1 for more details). Two of them (i.e., events 2 and 4) are characterized by widespread, predominantly stratiform and

homogeneous rain with low rainfall intensities and low spatial variability. The other two are heavy convective storms with high

rainfall intensities, spatial variability and a mixture of both stratiform and convective rainfall.20

3 Results

3.1 Parameterization

In the following, the cascade generator models for the EVA and classical cascade models (for each of the 100 1×1 km2 5-min

radar rainfall snapshots between 2008 and 2018) are derived. The procedure used to estimate the model parameters a, b and c

for each event is described in Section 2.6. For completeness, two different approaches are considered. In the first, the values25

of a, b and c are estimated using the coarse-scale data only, as one would do in practice. In the second, the values of a, b

and c are estimated using the high-resolution data at the target scale of 1×1 km2 (which are unknown in practice). The latter

represent the best possible estimates that we can make of the “true” underlying cascade generator parameters and will be used

as a reference for assessing the bias in coarser resolution estimates. Table 2 shows the obtained parameter estimates for the first

4 events in the database and four different input resolutions of 1×1 km2, 2×2 km2, 4×4 km2 and 8×8 km2. Retrieved model30

parameters are clearly sensitive to the spatial resolution of the input data, exhibiting different types of error patterns and biases

as a function of the selected event and chosen cascade model. Figure 7 gives a more general overview of the problem, showing

the estimated parameter values (denoted by â, b̂ and ĉ) for all 100 fields in the database for two different input resolutions
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of 8×8 km2 and 1×1 km2. The large scatter and low coefficients of determination suggest that it in general, is not possible

to reliably infer the cascade generator parameters directly from coarse scale data (both for the EVA and classical methods).

Specifically, one can see that the a parameter tends to be overestimated while the c parameter tends to be underestimated.

For b, there appears to be no systematic bias. However, the low coefficients of determination of 0.36 and 0.43 suggest that

coarse-scale estimates are affected by considerable sampling uncertainty. Also, the fact that ĉ is often zero when estimated5

from coarse-scale data is a statistical artifact caused by the lack of spatial resolution. It wrongly suggests that the size of a

grid cell has no statistically significant effect on the variance of the generator, which is obviously not true as estimates of c

obtained from the high-resolution 1×1 km2 input data are never zero. The reason for this is the limited range of variation for

A in the coarse-scale input data which makes it impossible to correctly estimate the variance of the generator when A→ 0. By

contrast, the behavior of the generator whenR→ 0 (i.e., the b parameter) is much easier to guess, as both low and large rainfall10

intensities remain possible even at coarser spatial scales. Comparing the root mean square errors for the EVA and classical

cascade models in Figure 7, one can see that parameters estimated via the EVA framework tend to be slightly more robust

to changes in the input resolution. Nevertheless, both methods suffer from estimation biases and neither of them is capable

of perfectly recovering the “true” generator from coarse-scale data, even for relatively modest downscaling ratios (i.e., 64 in

this case). Sampling effects obviously play an important role in this, but also the fact that rainfall fields are not perfectly scale15

invariant. Therefore, the splitting and scaling information retrieved from the coarse scale fields may not reflect what happens

at smaller scales or specific areas in the field, especially if the rainfall is highly heterogeneous and intermittent. The conclusion

is that in applications involving downscaling ratios larger than approximately 64, it is generally not possible to retrieve reliable

cascade generator parameters directly from coarse-scale data. However, good results might still be possible with the help of

climatological generator models or alternatively, by combining multiple successive time steps together to increase sample size20

and obtain less noisy sample estimates of σ(A,R).

Another important observation that can be made concerns the variance of the generator for the EVA and classical models.

Figure 8 shows the standard deviation σ(A,R) of the empirical breakdown coefficients for all 100 radar snapshots as a function

of area A and rainfall intensity R. The left column shows the results for the EVA cascade while the classical model is depicted

on the right. One can see that empirical cascade weights in the EVA model tend to have slightly lower variance compared to the25

classical framework (0.409 versus 0.535), especially for larger values of A. This is the consequence of the way grid cells are

split in the EVA approach, through integration of the rainfall amount rather than splitting grid cells in two equal parts. Figure 9

illustrates this point by showing the empirical breakdown coefficients W1 and W2 for a 16×16 km2 sub-domain belonging to

event 1. Since in this case most of the rainfall is concentrated in the left part of the domain, splitting grid cells vertically results

in a very uneven redistribution of rainfall rates. In the classical cascade, the left part receives 96.3% of the total rainfall volume30

while the right part only receives 3.7% (W1 = 0.963 and W2 = 0.037). The EVA model also produces an uneven split, with

half of the total rainfall amount being assigned to an area 82.2% the size of the parent grid cell to the right of the domain while

the other half is assigned to the remaining 17.8% (W1 = 0.822 and W2 = 0.178). Overall, however, the EVA split is more

balanced. The same conclusion applies to horizontal splits, with the EVA method producing slightly more balanced weights

(55.5%-44.5%) than the classical framework (59.4%-40.6%). Of course, in reality, many more grid cells must be taken into35
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account when calculating the variance of the generator around 0.5. But the key point here is to understand that the generator

of the EVA cascade tends to have lower overall variance, making it easier to estimate from a limited number of sample splits.

Also, the adaptive sampling strategy in the EVA model reduces sensitivity to the input resolution, resulting in a slightly better

power-law fit in Equation (8) (i.e., R2 of 0.66 for EVA versus 0.61 for the classical method). Nevertheless, improvements are

not systematic and differences between the two methods can be rather subtle. For very homogeneous rainfall fields for example,5

both approaches will essentially be identical, and the classical way of splitting might even be better. But for strongly variable

and intermittent fields, the EVA model is likely to provide a significant practical advantage over the classical approach (see

next Section).

3.2 Visual assessment of downscaled fields

Figure 10 shows some examples of downscaled rainfall fields obtained using the EVA and classical cascade models for the 410

first events in the database. In all 4 cases, the downscaling ratio was 64. In other words, the original radar rainfall snapshots

were first aggregated (i.e., block-averaged) to 8×8 km2 before being downscaled back to there original resolution of 1×1 km2.

The cascade generator models needed to run the downscaling schemes were estimated directly from the coarse-scale 8×8 km2

resolution data, as one would do in practice.

Comparing the outputs of the EVA and the classical cascade, one can see that the EVA cascade tends to produce smoother15

fields with lower overall variance and peak intensities. Visually, the fields appear to be in better agreement with the original

radar snapshots, both in terms of distribution and spatial structure (see Section 3.3 for more quantitative comparisons). Visually

speaking, one of the biggest disadvantage of the EVA cascade appears to be the fact that the resulting fields look slightly blocky,

with some of the initial coarse-scale grid cells still visible. The blockiness can be attributed to biased parameter estimates a,

b and c caused by the limited range of spatial scales available for studying the splitting behavior of grid cells. In particular,20

the previous section has shown that the c parameter which controls the splitting of grid cells with respect to area tends to

be underestimated when derived from coarse scale data, causing the cascade to converge too quickly. The classical model

does not appear to produce these blocky patterns. On the contrary, downscaled fields appear to be too variable compared

with the observations. Again, the discrepancies can be attributed to biased cascade generator parameters. But in this case,

the main problem appears to be the strongly overestimated a parameter which controls the overall variability of the splits and25

compensates for the underestimated c parameter. As shown by these 4 examples, none of the downscaled methods appears to be

able to perfectly reproduce the small-scale properties of the underlying rainfall field. However, the fact that one method tends

to underestimate the total variability while the other tends to overestimate it is interesting. It highlights the complementary

nature of the two approaches and perhaps, could be exploited during further post-processing steps and/or quality control steps.

Before moving on to more quantitative assessments, there is another important point that needs to be made here concerning30

the individual performances of the two random cascade models. The problem with Figure 10 is that it only shows the perfor-

mance of the two cascade models for the sub-optimal cascade generators estimated from coarse-scale data. While this might

be representative of the actual performance in real-life conditions, it is not really a fair comparison of the two methods. Indeed,

a large part of the differences between EVA and the classical cascade in Figure 10 can be attributed to the biased cascade gen-
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erator parameters, and not the model itself. Therefore, to compare the two methods on a truly fair basis, one also needs to say

something about the performance under optimal conditions (i.e., unbiased parameter estimates). To do this, additional experi-

ments were performed in which the same 4 rainfall fields were downscaled with the help of the best possible generator model

derived from the 1×1 km2 data (see Figure 11). Comparing Figure 10 to Figure 11, a big improvement in the performance of

the classical cascade model can be observed. This shows that both models are capable, in theory, of producing similarly good5

results. However, since in practice the optimal cascade generator model is likely to be unknown and model parameters must be

estimated from coarse-scale data, the more robust EVA cascade is the preferable method as it is more likely to stay close to the

optimal performance on average.

3.3 Quantitative assessment of downscaled fields

Next, the probability distribution functions of the downscaled rainfall rates generated by the random cascades are assessed.10

Figure 12 shows the quantiles of observed and downscaled rainfall rates for the 4 first events and a downscaling ratio of 64

(8×8 km2 to 1×1 km2, 100 random realizations for each event). Each cascade model is represented by two boxplots: the first

shows the quantiles of rainfall rate obtained when the generator is derived from the coarse-scale data while the second shows

the results for when the generator is derived using the 1×1 km2 data. The second generator is unknown in practice but provides

further insight into the sensitivity of the performance to parameterization issues. It also gives a good idea of the best possible15

achievable performance for each model. To provide further insight into the performance of the cascade models, Figure 12

also shows the quantiles obtained when applying bilinear interpolation, which is well known for producing fields that are too

smooth compared with the observations, strongly underestimating small-scale extremes.

First, the rainfall rates generated by the classical random cascade model are analyzed. The distributions appear to be in

relatively good agreement with the observations. However, some important discrepancies remain, especially for the very high20

quantiles. Performance is clearly sensitive to parameterization issues, varying a lot depending on the type of event and chosen

generator model. Homogeneous, low intensity events such as event 2 are reproduced rather well. But in events 1 and 4, extremes

are clearly overestimated. In fact, in the majority of the 100 considered events, the classical cascade overestimates rainfall

extremes when the coarse-scale generator is used. However, there are also a few interesting exceptions to this rule. For example,

in event 3, the classical cascade underestimates the 99.9% quantile compared with the observations. The problem with event 325

is that the rainfall field is highly heterogeneous, consisting of multiple convective and stratiform areas of different sizes, shapes

and orientations. Therefore, big local differences in scaling behavior exist within the field, making it hard to derive a meaningful

cascade generator model that applies to the entire domain. This is highlighted by the fact that the coarse-scale generator actually

produces better result than the fine-scale generator, which is highly unusual and points to serious problems during parameter

estimation.30

When looking at the results for the EVA model, there appears to be no obvious, substantial improvement in terms of the

model’s ability to reproduce higher rainfall rates and small-scale extremes. The only clear advantage compared to the classical

approach is that the outcomes of the EVA cascade are more consistent with each other (i.e., they have lower ensemble spread).

However, the downscaled rainfall distributions are clearly too narrow compared with the observations, meaning that the model
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underestimates higher rainfall quantiles and small-scale extremes. Still, the underestimation is much less severe than for bilinear

interpolation. The systematic underestimation of higher rain rates is a problem but can be explained by the fact that the variance

of empirical EVA cascade weights for small values of A tends to be underestimated due to the additional interpolation step

(see Section 2.6 for more details). Figure 13 provides more insight into this by showing the empirical semivariance values

of rainfall intensities for distances of 1 km up to 8 km (i.e., the sub-grid variability generated during the downscaling). It5

confirms that the EVA cascade produces fields that are slightly too smooth while the classical cascade tends to overestimate

small-scale variability. Figure 14 makes a similar comparison in terms of the spatial structures of the rainfall occurrence fields

(0/1 fields). Overall, the EVA model produces small-scale structures that are closer to the observations than the classical

cascade and bilinear interpolation. However, improvements are not systematic, and occasionally, the classical cascade will

be better are reproducing some of the small-scale features. In event 1 for example, the classical cascade appears to be better10

are reproducing the spatial structure of the occurrence field while the EVA cascade produces outputs that are too smooth.

Moreover, the ensemble spread for the EVA model appears to be slightly lower than for the classical cascade on average.

This can be explained by the rapid convergence of the EVA cascade model, as explained in Section 2.5, and means that for

a fixed generator model, the EVA cascade produces rainfall fields with almost identical distributions and spatial structures.

Individual realizations may still look different on a pixel-by-pixel basis, but their average statistical properties (e.g., histograms15

and variograms) will be almost identical. This stability can be an advantage but also means that in order to produce truly

representative ensembles that capture a large enough range of possible scenarios, it is better to run the EVA cascade several

times with slightly perturbed model parameters a, b and c rather than generating a large number of fields with the same

generator.

Figure 15 gives a broader overview of the performance over the 100 selected events for a downscaling ratio of 64 and20

coarse-scale sample generator. It confirms what has been pointed out before, namely that the classical cascade model tends

to overestimate high rainfall rates while the EVA model tends to underestimate them. Nevertheless, the higher coefficient

of determination R2 between observations and downscaled rainfall rates and the better agreement in terms of reproduced

semivariance values show that the new EVA cascade model tends to outperform the classical approach, both in terms of the

reproduced spatial correlation structure but also in terms of its ability to reproduce consistent small-scale extremes. In both25

cases, systematic biases remain which were attributed to difficulties in getting reliable generator estimates from coarse-scale

data. Also, Figure 15c-d shows that performance clearly decreases with intermittency (i.e., the fraction of dry pixels in the

1×1 km2 input data). This can be explained by the fact that the number of samples available for estimating the generator

decreases with the fraction of dry pixels but also because highly intermittent rainfall fields tend to be more heterogeneous,

making them more likely to exhibit deviations from scale-invariance than their homogeneous counterparts. Because it is more30

robust to sampling uncertainty, the EVA model tends to produce more reliable results in those difficult cases characterized by

low sample sizes and high heterogeneity. However, improvements are not systematic and many issues remain. In particular,

more development is needed to overcome the drop in performance at intermittency levels above 60% and as well as to mitigate

the underestimation of small-scale rainfall extremes which is a fundamental requirement in downscaling for hydrological

applications (Molnar and Burlando, 2005).35
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Next, the performance of the cascade models as a function of the downscaling ratio is analyzed. Figure 16 shows the 10%,

25%, 50%, 75% and 90% quantiles of the coefficient of determination R2 between observed and downscaled rainfall rates

for three different downscaling factors (i.e., 4, 16 and 64). Figures 16a-b show the performance for the coarse-scale sample

generator while Figures 16c-d show the best possible performance for the generator derived from 1×1 km2 data (unknown

in practice). The values corresponding to Figures 16a-b are given in Table 3. It shows that in practical applications where5

the generator must be estimated from the coarse-scale data, the EVA model outperforms the classical cascade across all three

downscaling ratios. As expected, differences between the two methods increase as we move towards larger ratios. However, the

EVA model tends to remain much closer to the best theoretical achievable performance than the classical cascade. Again, the

small differences between Figures 16c-d confirm that in theory, both cascade models are capable of achieving a similarly good

performance provided that the optimum generator model can be guessed from the data. Even so, the EVA model still appears to10

have a slight edge over the classical approach, with median R2 values of 0.94, 0.83 and 0.54 against 0.93, 0.81 and 0.52 for the

classical method which makes sense given that even the “best” generator model at 1×1 km2 was inferred from a limited number

of samples and might therefore still be slightly biased. Unfortunately, the relatively small domain size of 128×128 km2 meant

that no reliable estimates of the generator could be obtained for an input resolution of 16×16 km2 or higher. However, this is

an issue related to the choice of the domain size in this study rather than a theoretical limit on the maximum downscaling ratio.15

Additional experiments on larger domains (not shown here) suggest that decent results can still be obtained for downscaling

ratios up to about 256, making the technique applicable to satellite data or global numerical weather models with grid sizes up

to ten kilometers. However, the accuracy of downscaled rainfall fields for scale ratios of 256 or higher is likely to be low given

that it is not always possible to reliably estimate the cascade generator from such coarse scale inputs.

4 Discussion20

While this research mainly focused on the description of the EVA cascade model, the underlying generator and its application

to a few selected case studies, there are numerous complementary research lines that can be pursued. One of them revolves

around possible ways to overcome biases in cascade generator parameters and correct for systematic errors as a function of

the intermittency and downscaling ratio. Diagnostic tools for detecting potentially problematic cases based on plausible ranges

for each parameter need to be developed. Alternatively, one could apply both an EVA and a classical cascade and compare25

the obtained results. If they are wildly inconsistent, the EVA model is likely to be closer to the radar observations. Another

possibility would be to design flexible climatological generator values that can be adjusted depending on rainfall type and

large-scale properties (e.g., intensity, intermittency, range), an approach that may be more flexible while limiting sampling

issues. Preliminary work performed within this study (not shown) suggests that this may be promising for larger downscaling

ratios as cascade parameters often tend to be correlated with each other or to large-scale rainfall properties (Guntner et al.,30

2001; McIntyre et al., 2016). Also, different cascade distribution models could be used with various degrees of interpretation

for the parameters. In this work, the logit-normal model was chosen because it was the easiest and most convenient while
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providing a reasonable fit to empirical cascade weights. However, other more flexible distribution models could be used (e.g.,

the beta distribution).

The second point that is worth discussing concerns the complementary nature of the EVA framework compared with the

classical representation in terms of intensity over fixed grid cell sizes. The main advantage of the EVA framework lies in its

adaptive sampling strategy. By flipping the problem around and focusing on the areas for fixed amounts of water rather than5

the opposite, additional insight into spatial variability of rainfall within grid cells can be gained. Most importantly, occurrence

and intensity are not viewed separately anymore but combined together into a single continuous process. All quantities are

strictly positive which reduces model complexity, improves the scaling and lowers sampling uncertainty. If rainfall fields

were perfectly homogeneous and the sensors used to measure them had unlimited precision, the two representations would be

equivalent. However, since rainfall fields can be highly variable in space and time, and measurements are affected by sampling10

uncertainties, one of the two representations is likely to be more appropriate or useful in practice. A better understanding of

these cases and how to choose the best framework depending on sampling resolution, intermittency and measurement accuracy

is key to improving our understanding of the space-time variability of rainfall and its representation in models.

The third issue that needs to be mentioned relates to the assumption that the cascade generator model is stationary and, in

particular, location invariant (i.e., that the same splitting rules apply to all pixels, independently of their location). This may15

not necessarily be valid for highly heterogeneous fields, as highlighted by the poor performance and inconsistent behavior

of the cascade models during event 3. The key point here is that there might be specific areas within a rainfall field where

the scaling properties are different from the rest (e.g., stratiform vs convective areas). Similarly, the scaling properties and

spatial variability within individual rainfall cells might be very different from the average variability observed over a large

collection of rain cells. Also, elements belonging to larger-scale structures might evolve together in a more coherent and20

predictable way than expected based on their size and intensity. One possible solution to overcome this problem would be to

define multiple local generators instead of a single universal one. But this is a very challenging problem that requires more

research, including the ability to automatically detect strong local variations in scaling properties to help pinpoint problematic

regions and come up with a better approach. Also, the use of multiple generators would require additional model parameters,

which is not necessarily desirable and should only be considered when absolutely necessary (e.g., for example to account for25

strong orographic effects). On a more theoretical level, one should also point out that even if the cascade generator is perfectly

stationary, the final disaggregated fields (or time series) obtained after applying the cascade are likely to be non-stationary with

location and time-dependent autocorrelation structures (Lombardo et al., 2012).

The fourth point of discussion concerns possible extensions of the EVA model. Similarly to classical multiplicative random

cascades, the EVA cascade can be applied to downscale time series, spatial and space-time data. For time series, the equivalent30

formalism is given by the notion of “equal-volume times”, also known as inter-amount times (Schleiss and Smith, 2016;

Schleiss, 2017). Future work will therefore be directed at exploiting the superior scaling properties of inter-amount times

to downscale time series of intermittent rainfall as well as combining IATs with EVAs to design more general downscaling

schemes for space-time data. Another interesting and possible extension concerns the possibility to include spatial anisotropy

into the downscaling process. One way to do this is by using two different generator models, one for vertical and another for35
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horizontal splits. For example, an additional model parameter characterizing the ratio between the standard deviation of the

generator for H and V split could be introduced. More generally, one could also define a full set of different model parameters

(aH ,bH ,cH ) and (aV ,bV ,cV ) for each type of split. Grid cells could also be rotated and realigned along the principal direction

of variability, allowing for splits along other spatial directions than H and V. This could help in case of highly elongated rainfall

cells.5

One last point that is worth mentioning concerns the computational complexity of the EVA model. One crucial difference

between the EVA and the classical cascade is that the classical cascade stops as soon as the target resolution has been reached.

The EVA cascade on the other hand tends to run over more levels, producing many grid cells that are smaller than the target

resolution. The total number of cascade levels and grid cells depends on 1) the initial rainfall volumes contained in the coarse

scale grid cells and 2) the bucket capacity prescribed by the user. This means that for large rainfall fields (e.g., several hundreds10

of km) with high rainfall intensities, the number of generated grid cells can be in the order of several millions. As a result,

both runtime and memory usage will be larger than for a classical cascade. However, there are various ways to limit the

computational burden. The easiest is to stop splitting grid cells once they are about 3-4 times smaller than the target resolution

regardless of how much water they contain. Similarly, grid cells that are entirely contained within a target resolution pixel do

not need to be split up further (regardless of their size and amount), as these additional splits would not be visible after the15

re-sampling anyway. Similarly, there is no need to split up grid cells once they have converged to a fixed rainfall intensity, i.e.,

when σ(A,R)≈ 0, as this would only result in a higher number of sub-grid cells with identical intensities and would not add

any new information. The obvious downside to these numerical tricks is a loss in flexibility, as users need to decide on a fixed

target resolution before running the cascade.

5 Conclusions20

A new multiplicative random cascade for downscaling intermittent rainfall fields based on the concept of equal-volume areas

(EVA) has been proposed. Downscaling experiments on 100 high-resolution radar rainfall snapshots in the Netherlands have

shown that on average, the EVA cascade outperforms its competitors, both in terms of the reproduced rainfall distributions

and spatial structures. Improvements are mainly attributed to the adaptive sampling strategy in the EVA formalism which

avoids zero rainfall values and leads to more accurate and robust model estimates in the presence of intermittency. The new25

proposed logit-normal cascade generator model with scale and intensity-dependent variance ensures that every grid cell in

the EVA cascade eventually converges to a fixed intensity or a fixed area, putting the new model in the category of bounded

microcanonical cascades. Despite the encouraging results, improvements are not systematic and many challenges remain. The

most important is that the EVA cascade tends to underestimate small-scale extremes, producing fields that are slightly too

smooth and blocky compared with the observations. This is attributed to biased model parameters and more generally, to the30

difficulty of retrieving the true cascade generator from coarse-scale data. The fact that cascade weights in the EVA framework

must be estimated using linear interpolation is also a clear weakness, causing σ(A,R) to be underestimated when A→ 0

(i.e., small grid cells tend to split too evenly). On the other hand, one also needs to be aware of the fact that the classical
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cascade model based on fixed grid cells suffers from the opposite problem, strongly overestimating the small-scale variability

and magnitude of rainfall extremes. The complementary nature of the two approaches and the fact that they tend to produce

opposite errors opens new possibilities for quality control and bias corrections of downscaled fields.

Apart from introducing a new model, the present study also clearly highlighted the outstanding challenges associated with

downscaling intermittent rainfall fields. The most important issue concerns the estimation of cascade generator models from5

coarse-scale data. Sensitivity analyses performed within the framework of this study clearly showed that two of the cascade

model parameters (i.e., a and c) tend to be biased when estimated from coarse-scale data. However, the EVA model seems to

be more robust to these sampling issues. This is the single most important advantage of the EVA model compared with the

classical approach and also the main factor responsible for the higher performance. However, it is also worth mentioning that

in principle, good performance remains possible for both cascades models for downscaling ratios up to 128-256, provided that10

the optimal cascade generator can be guessed from the data. While interesting from a theoretical point of view, this last result

may be of limited usefulness in practice as the optimal generator is likely to be unknown. Also, for large domains of several

hundreds of kilometers and highly heterogeneous fields, it might not always be possible to adequately describe the complex

redistribution of water across scales using a single location-invariant cascade generator. Event 3 is a good example of such a

case, with both cascade models struggling to reproduce realistic small-scale patterns. Obviously, one can always improve the15

performance by introducing more model parameters or tuning them to individual cases. Similarly, one could easily increase the

performance of the classical cascade by performing a separation between dry and wet components before disaggregation. There

is little doubt that such a state-of-the-art model with 6-7 parameters would outperform the simple EVA cascade proposed in

this paper. At the same time, such comparisons are not really fair and helpful at this stage, as optimization was not the primary

objective of this paper and the EVA model should not be seen as a competitor designed to replace traditional cascades but rather20

as a new complementary tool for modelers to deal with intermittency and get new insight into the complex spatio-temporal

organization of rainfall across scales.
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Figure 1. Schematic of the branching rules for the classical and equal-volume area (EVA) random cascades. The area is denoted by A and

the rainfall volume by V . The random weights are W1,W2, . . . ,W6.

22



Figure 2. Illustration of the splitting rule for a single grid cell (in bold at the center of the figure) with area A surrounded by 7 grid cells with

different areas and intensities. Grid cells are always split perpendicularly to their longest dimension (i.e., vertically in this case). The inverse-

distance interpolated rainfall rates R̂IDW on the left and right sides of the grid cell (or equivalently, on the top and bottom for horizontal

splits) are used to determine which side gets the highest rainfall intensity during the split (i.e., the left side in this case). The weights W1 and

W2 = 1−W1 are drawn at random from a fixed distribution model.
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Figure 3. Theoretical distribution of the logit-normal cascade weightsW in Equation (7) for µ= 0 and different values of standard deviation

σ.
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Figure 4. Example of a EVA cascade for a 8×8 km2 input field of size 128×128 km2. In this example, the cascade was stopped after a fixed

number of levels equal to 6. The output was then resampled over a regular 1×1 km2 Cartesian grid. All rainfall rates below 0.1 mmh−1 (after

resampling) are assumed to be undetectable and are therefore displayed in white. Note how some grid cells converge to a fixed area during

the cascade while others converge to a fixed intensity.
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Figure 5. Empirical breakdown coefficients for a 4×4 grid cell within the EVA framework (both for vertical and horizontal splits). The

empirical weights W1 and W2 that split the rainfall volume in half are determined by linearly interpolation.
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Figure 6. Original 1×1 km2 and upscaled (4×4 km2 and 8×8 km2) 5-min radar rainfall snapshots for events 1 to 4.
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Figure 7. Estimated coarse-scale generator parameters a, b and c for an input resolution of 8×8 km2 versus the fine-scale parameter values

derived using the 1×1 km2 data for the 100 selected events.
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Figure 8. Standard deviation of empirical breakdown coefficients for the 100 radar snapshots in the database as a function of the rainfall

intensity R and area A of grid cells.
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Figure 9. Example of empirical breakdown coefficients W1 and W2 for a 16×16 km2 grid cell in event 1 (convective). The splits corre-

sponding to the EVA model are shown on the left. The ones for the classical model are shown on the right.
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Figure 10. Downscaled rainfall fields for events 1-4 and a downscaling factor of 64 (i.e., input resolution of 8×8 km2 and target resolution

of 1×1 km2). The left column shows the original radar rainfall snapshots at 1×1 km2. The middle and right columns show the outputs of the

EVA and classical cascade models for the (biased) coarse-scale sample generator. Only the first of 100 different random realizations for each

field and cascade model is shown.
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Figure 11. Downscaled rainfall fields for events 1-4 and a downscaling ratio of 64 (i.e., input resolution of 8×8 km2 and target resolution of

1×1 km2). Similar format to Figure 10 except that the generator model was derived from the 1×1 km2 data.
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Figure 12. Observed versus downscaled rainfall rates for the first 4 events in the database and a downscaling ratio of 64 (i.e., input resolution

of 8×8 km2 and target resolution of 1×1 km2). The boxplots denote the 1%, 25%, 50%, 75% and 99% quantiles of rainfall rates (given

occurrence). The crosses represent the 99.9% quantiles among 100 different random realizations. The labels 8×8 km and 1×1 km denote

the resolution of the input data used to estimate the sample cascade generator.
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Figure 13. Sample variograms of rainfall intensity (given occurrence) for events 1-4 and spatial displacements up to 8 km. The downscaling

factor is 64 (i.e., input resolution of 8×8 km2 and target resolution of 1×1 km2). For each cascade model, 100 different realizations were

generated. The generator model was estimated from the coarse-scale data at 8×8 km2 resolution.
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Figure 14. Sample variograms of rainfall occurrence for events 1-4 and spatial displacements up to 8 km. The downscaling factor is 64 (i.e.,

input resolution of 8×8 km2 and target resolution of 1×1 km2). For each cascade model, 100 different realizations were generated. The

generator model was estimated from the coarse-scale data at 8×8 km2 resolution.
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Figure 15. Overall performance of the random cascade models for 100 high-resolution radar rainfall fields, coarse-scale sample generator

estimate and downscaling factor of 64 (i.e., input resolution of 8×8 km2 and target resolution of 1×1 km2). (a)-(b) show the predicted versus

observed 99.9% quantile of rainfall intensity, (c)-(d) the coefficient of determination R2 between downscaled and observed rainfall rates as a

function of intermittency (i.e., the fraction of zero rainfall values in the domain) and (e)-(f) show the predicted versus observed semivariance

values for a 1 km spatial displacement. The EVA cascade is shown on the left and the classical cascade on the right.
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Figure 16. 10%, 25%, 50%, 75% and 90% quantiles of the coefficient of determination R2 between observed and downscaled rainfall fields

for the 100 selected rain events. The values corresponding to the coarse-scale generator are given in Table 3.
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Table 1. Summary statistics for the 4 example events: time, proportion of zero rainfall values p0, average rainfall intensity R̄+ (given

occurrence), maximum rainfall intensity Rmax, variance σ2
R+ of rainfall intensity (given occurrence) and spatial decorrelation range of the

rainfall intensity field (given occurrence).

Event Time p0 [%] R̄+ [mmh−1] Rmax [mmh−1] σ2 [mm2h−2] Range [km]

1 2009-05-26 02:50 21.7 5.37 97.2 65.2 23.4

2 2015-11-09 16:55 18.0 0.77 3.7 0.35 73.3

3 2009-11-23 17:05 22.7 4.51 89.2 30.3 26.3

4 2009-12-08 02:40 32.1 0.65 4.1 0.24 33.8
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Table 2. Model parameter estimates a, b and c for the first 4 events for input resolutions of 1×1 km2, 2×2 km2, 4×4 km2 and 8×8 km2

1×1 km2 2×2 km2 4×4 km2 8×8 km2

a b c a b c a b c a b c

event 1, EVA 0.17 0.02 0.23 0.22 0.09 0.21 0.37 0.22 0.12 0.19 0.00 0.17

event 1, classical 0.19 0.01 0.26 0.21 0.05 0.26 0.59 0.11 0.08 0.64 0.00 0.05

event 2, EVA 0.07 0.31 0.27 0.08 0.39 0.22 0.07 0.44 0.24 0.06 0.53 0.24

event 2, classical 0.08 0.36 0.27 0.09 0.44 0.22 0.08 0.49 0.24 0.10 0.61 0.20

event 3, EVA 0.40 0.43 0.16 0.58 0.48 0.08 0.66 0.40 0.04 0.49 0.34 0.08

event 3, classical 0.59 0.56 0.16 0.86 0.52 0.06 1.17 0.46 0.00 1.16 0.40 0.00

event 4, EVA 0.10 0.44 0.24 0.15 0.42 0.16 0.21 0.44 0.08 0.20 0.46 0.09

event 4, classical 0.10 0.50 0.26 0.16 0.46 0.17 0.31 0.49 0.05 0.44 0.52 0.00
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Table 3. 10%, 25%, 50%, 75% and 90% quantiles of the coefficient of determination R2 between observed and downscaled rain rates for the

EVA and classical method and three different downscaling factors (coarse-scale sample generator only).

2×2 km2 4×4 km2 8×8 km2

EVA Classical EVA Classical EVA Classical

10% 0.86 0.76 0.58 0.09 0.27 0.00

25% 0.90 0.86 0.67 0.44 0.41 0.00

50% 0.94 0.92 0.79 0.70 0.58 0.31

75% 0.95 0.95 0.85 0.80 0.68 0.53

90% 0.97 0.96 0.89 0.86 0.75 0.69
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