
The text in bold black font are the reviewers’ comments. 

The text in black font are the authors’ answers to the reviewers’ comments. 

The text in red font are the specific changes made to the final manuscript as a response to the 

reviewers’ comments.  

RC1 

General comments: 

This paper examines eight global hydrologic models (GHMs) across the Amazon basin for several 

basic performance metrics. The model configurations allow for somewhat limited comparisons of 

coarse granularity methodological choices (e.g. routing model, input forcing data) across the 

performance metrics for a subset of the GHMs. The submission is easy to read and logically 

organized with clearly stated objectives. The overall conclusion that the precipitation dataset may 

be the most important for essentially uncalibrated GHMs and that calibration of the routing model 

using daily KGE as the objective function has limited effectiveness, particularly for floods, 

intuitively make sense and agree with the presented results. While not particularly novel, they are 

useful conclusions to reiterate to the GHM model development and user community. 

We thank Dr. Newman for his useful evaluation of the manuscript and suggestions for improvement. 

We will address these in the revised manuscript, as according to our responses to each comment 

below.  

Specific comments:  

1) This paper suffers from the same issues all macroscale intercomparison studies do. In general 

the analysis is somewhat superficial and the conclusions regarding which modeling component is 

best (e.g. routing or hydrologic model) are limited to that very coarse scale. Also, while I do 

appreciate that the authors describe their model selection efforts, it remains that only a subset of 

the model decision matrix is populated in an adhoc manner. This limits comparisons and 

conclusions to specific subsets of models depending on the question asked.  

It may be beneficial for the authors to add some statements describing the limitations of these 

types of studies. For example, question 3.3 examines routing models, but the comparison is for 

one hydrologic model and one precipitation dataset only. The conclusions in this section are 

reasonable for that specific comparison; the results may change given another modeling chain 

upstream of the routing model. When discussing future work/paths forward, it may be helpful to 

talk about increasing the granularity at which modeling decisions are tested and filling out the 

model decision matrix in a more quantitative way so that more generalized conclusions can be 

made. 

Overall, we agree with the limitation of comparing only macroscale features between each GHM 

(e.g. routing model/precipitation forcing) and the suggestion to explicitly highlight some of these 

limitations. As Dr. Newman mentions, we do highlight the reasoning behind the model and 

comparison selections in the manuscript with acknowledgment to alternative methodologies. 

We plan to change the sub-heading for Sect. 3.6 to “Limitations and future work” by discussing the 

limitations of using a macroscale intercomparison approach. We will add to the discussion the 

possibility to expand the study by increasing the granularity at which modelling decisions are tested; 

thereby allowing more generalised conclusions to be made.  



Sect. 3.7 has now been changed to “Limitations and future work” and includes the limitations of 

macroscale intercomparison modelling studies. See P19 L29-32 and P20 L1-8.  

2) There are references relevant to the routing model calibration discussion the authors should 

consider. Their conclusion that performance is improved for metrics more closely related to the 

objective function is correct, however the statements on page 17, lines 13-15, and again on page 

18, lines 4-5 need further elaboration. Gupta et al. (2009) and Mizukami et al. (2019) discuss in 

detail how squared error metrics relate to high flow performance. Mizukami et al. (2019) also 

show how an application specific metric, annual peak flow bias (APFB) can improve model 

performance for that specific metric, but at the expense of decreased performance in related 

metrics. This is directly relevant to the final sentence of the conclusions section, and it would be 

good to note that some application specific metrics could degrade model performance for other 

parts of the hydrograph, so thoughtful consideration to the full use of the modeling system should 

be given when performing parameter optimization. 

We thank Dr. Newman for this very useful suggestion. We agree that the original conclusion would 

benefit from further elaboration and evidence from previous works.  

We will incorporate both the suggested references to support our discussions and conclusions. 

Specifically: 

i) By commenting on the suitability of square error related metrics for model calibration when 

the application requires robust performance for high flows (in Sect. 3.6) 

ii) By providing the example of increased model performance when using application specific 

metrics (i.e. Annual Peak Flow Bias), as in Mizukami et al. (in review) 

iii) By discussing the need to carefully consider the metric used in calibration, with the 

possibility of a loss in skill for other related metrics upon evaluation when using application 

specific metrics (Sect 3.6 and Sect. 4) 

Comments in relation to square error related metrics have been included to P18 L8-14. Comments in 

relation to increased model performance when using application specific metrics have been included 

to P19 L13-18. Comments discussing the potential of a loss of skill have been included on P20 L29-31 

and P21 L1-2. Both of the suggested references have been included.  

RC2 

Overall comment: 

This manuscript assesses the performance of eight different global hydrological models for 75 

gauging stations across the Amazon basin. It assesses the ability of the model to reproduce daily 

and peak river flows and finds interesting regional differences in model performance. It concludes 

that the rainfall product is the dominant control on model performance. Overall, I enjoyed reading 

the paper. It is well-written and logically structured, with excellently formatted plots. While the 

analysis and results (as Reviewer 1 also pointed out) are not ground-breaking, the work represents 

a potentially useful contribution to the application of GHMs and their use for flood risk 

assessment and forecasting. For the results to have wider applicability, I think the authors should 

consider adding some additional analyses to strengthen their conclusions. Many reasons for 

good/bad model performance are postulated in the results section but the analysis isn’t in-depth 

enough to draw strong conclusions (other than rainfall is a dominant control on model 



performance). The wider applicability of the results also needs to be better highlighted in the 

conclusions. 

We thank Dr. Coxon for her useful evaluation of the manuscript and kind comments. The specific 

comments are particularly helpful and will improve the overall quality of the paper. We will address 

these in the revised manuscript, as according to our responses to each comment below.  

Specific comments: 

1) The authors conclude that rainfall is (unsurprisingly) the dominant control on model 

performance. If the choice of precipitation dataset is the most influential on model performance 

then I would have expected a little more analysis on the precipitation datasets themselves. I 

appreciate that more involved analysis looking at the seasonal characteristics of the rainfall 

patterns is probably beyond this paper, however a figure of mean annual rainfall across all the 

catchments for each rainfall product would be useful for the reader to better understand how and 

why model performance may vary between the different models across the Amazon basin. 

We agree with Dr. Coxon that further evaluation of the rainfall products would be beneficial in 

further understanding differences in model performance given the importance of rainfall in the 

ability to accurately represent peak flows.  

We propose to incorporate a Figure showing mean annual rainfall across the basin for each rainfall 

product in Sect. 3.4.  

A Figure showing mean daily rainfall for ERA-Interim, ERA-5 and the ECMWF 20- year reforecasts for 

the validation period (1997-2015) has now been included (Fig. 8). The Figure is referred to in Sect. 

3.4, P15 L22-26, amongst other locations throughout the results and discussions.  

2) P10 L23 “An average of 81% of stations are considered skillful (i.e. > 0) for the KGE metric”. I 

would not consider a KGE score just greater than 0 as ‘skillful’. You should be more specific here 

about what a KGE score greater than zero represents if you are using it as a benchmark to define 

whether a model is skilful or not. Unlike NSE, a KGE score of zero does not represent the mean 

streamflow response. 

We thank Dr. Coxon for this useful comment. We propose to remove such statements from the 

manuscript. A similar study (Thiemig et al., 2018) provides a breakdown of KGE (though for the 

modified version of KGE) results into “good” (KGE > 0.75), “intermediate” (0.75 > KGE > 0.5, “poor” 

(0.5 > KGE > 0) and “very poor (KGE < 0)” categories. We now plan to use these categories as the 

benchmark but generally refer to KGE performance as being better as values approach one.   

Thiemig, V., Bisselink, B., Pappenberger, F., & Thielen, J.: A pan-African medium-range ensemble 

flood forecast system. Hydrol. Earth Syst. Sci, 19, 3365-3385, https://doi.org/10.5194/hess-19-1-

2015, 2015. 

Such statements have now been removed. In Sect. 2.3.2 we have included a breakdown of KGE 

scores into benchmark categories, as in Thiemig et al. (2015). See P10 L6-15.  

3) P10 L27 (and elsewhere). Your ‘average’ station scores could be skewed here by particularly low 

values of KGE – it may be better to report the median station scores here instead. 

https://doi.org/10.5194/hess-19-1-2015
https://doi.org/10.5194/hess-19-1-2015


We again thank Dr. Coxon for raising this relevant point. We will change all reported mean values to 

median values. 

All reported mean scores have now been replaced by median values throughout the manuscript, 

including those in Table 2.  

4) Section 3.1. I liked your analysis of the relationship between model performance and dams and 

Figure 1b. However, as you note, this doesn’t fully explain regional differences in model 

performance. Are there any other catchment characteristics that may also explain good/poor 

model performance? I would calculate and add some additional catchment characteristics such as 

mean rainfall, mean pet, elevation, geology (as you also focus on groundwater parameterisation) 

to Figure 1 to better analyse these regional differences in model performance and strengthen the 

conclusions of the paper. 

As Dr. Coxon mentions, damming in the Amazon is one of many catchment characteristics that could 

influence model performance. We agree that by including additional characteristics such as rainfall 

and geology, stronger conclusions can be drawn on regional model performance. For example, Paiva 

et al. (2013) indicate that poorer model performance in western tributaries could be associated with 

the poor representation of mountainous rainfall when using satellite-based products such as TRMM. 

While in Sect 3.1 we hypothesis that the underestimation of flows in stations located in the south 

eastern Amazon could be due to a poor representation of the South Atlantic Convergence Zone 

(SACZ). By adding rainfall maps to Fig. 1 or elsewhere (e.g. Sect. 3.4) these statements will be 

strengthened.  

de Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M. P., Frappart, F., Calmant, S., & Mendes, 

C. A. B.: Large‐scale hydrologic and hydrodynamic modeling of the Amazon River basin, Water 

Resour. Res., 49, 1226-1243, https://doi.org/10.1002/wrcr.20067,2013, 2013.  

Maps showing the geology and elevation for the Amazon basin have now been included in Fig. 1. 

Reference to these Figures can be found in Sect. 3.1, P12 L30-32 and P13 L1-5. 

5) Section 3.1. In addition to comment 4 – do any of the GHMs include schemes to represent 

dams/reservoirs? Do you see any differences in model performance for models that do include 

these human influences over models that do not? 

This is an interesting point. Model runs which incorporate the Lisflood routing model (i.e. those 

similar to the current GloFAS set-up) represent a total of 464 lakes and 667 reservoirs obtained from 

global databases. Very few reservoirs however are represented in the Amazon basin for Lisflood with 

the majority of lakes positioned along the main Amazon River. The locations and importance of 

these to the modelling system has been analysed by Zajac et al. (2017) for the entire globe with the 

effects of reservoirs on extreme high flows deemed substantial and widespread in the global 

domain. All other simulations do not account for dams/reservoirs and thus comparison between 

these runs could strengthen our understanding of why some models perform particularly well or 

poor at the few stations affected.  

We will add information regarding the representation of lakes and reservoirs within Lisflood in Sect. 

2.2.3. In addition, we will investigate the potential benefits or losses in skill by comparing model 

performance at stations located near to any reservoirs between Lisflood and non-Lisflood 

https://doi.org/10.1002/wrcr.20067,2013


simulations. Although the number of stations effected will be limited it could still provide useful 

information.  

Zajac, Z., Revilla-Romero, B., Salamon, P., Burek, P., Hirpa, F. A., & Beck, H.: The impact of lake and 

reservoir parameterization on global streamflow simulation, J. Hydrol., 548, 552-568, 

https://doi.org/10.1016/j.jhydrol.2017.03.022, 2017.  

Details describing the representation of lakes and reservoirs in Lisflood has been included in Sect. 

2.2.3, P8 L23-28. A paragraph has been included in Sect. 3.3, P15 L3-10 discussing the potential 

benefits or losses in skill.  

6) Conclusions L28-29. You state that “The implications of these results suggest that the choice of 

precipitation dataset is the most influential component of the GHM set-up in terms of our ability 

to recreate annual maximum river flows in the Amazon basin”. Can you say anything more about 

what type or spatial resolution of precipitation dataset should be used to better reproduce annual 

maximum flows? This would help to guide future studies on modelling peak flows in the Amazon 

basin. 

We agree that statements regarding the type of spatial resolution required would be beneficial for 

future studies modelling peak flows in the Amazon basin. However, it would be difficult to make 

direct statements (e.g. provide a specific spatial resolution) based on our results alone owing to the 

conclusions being specific to the few directly comparable datasets (i.e. ERA-I Land, ERA-5 and 

ECMWF 20- year reforecasts forced within the calibrated Lisflood model) used. We can, however, as 

mentioned in Sect. 3.4, elude to specific cases which may benefit from using certain datasets. For 

example, those wishing to model peak flows in the Peruvian Amazon may benefit from a dataset 

where the upper atmosphere is resolved at a higher resolution owing to those particular rivers 

originating from mountainous regions where rainfall can often be poorly represented (e.g. Paiva et 

al., 2013). 

We plan to expand on our discussions, particularly in Sect. 3.4, to include further findings from 

studies such as Beck et al. (2017) whereby 22 precipitation products are evaluated across the globe. 

This could help explain further our results and allows us to strengthen our conclusions on why 

particular datasets lead to particularly good or bad performance in certain regions.   

Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I., Weedon, G. P., & Wood, E. F.: 

Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological 

modeling. Hydrol. Earth Syst. Sci, 21, 6201-6217, https://doi.org/10.5194/hess-21-6201-2017, 2017.  

 

Further statements regarding the type or spatial resolution of precipitation dataset has been 

included in Sect. 3.4, P17 L6-10 and in Sect. 4, P20 L18-24.  

https://doi.org/10.1016/j.jhydrol.2017.03.022
https://doi.org/10.5194/hess-21-6201-2017
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Abstract. Extreme flooding impacts millions of people that live within the Amazon floodplain. Global Hydrological Models 

(GHMs) are frequently used to assess and inform the management of flood risk, but knowledge on the skill of available 

models is required to inform their use and development. This paper presents an intercomparison of eight different GHMs 

freely available from collaborators of the Global Flood Partnership (GFP) for simulating floods in the Amazon basin. To 20 

gain insight into the strengths and shortcomings of each model, we assess their ability to reproduce daily and annual peak 

river flows against gauged observations at 75 hydrological stations over a 19-year period (1997-2015). As well as 

highlighting regional variability in the accuracy of simulated streamflow these results indicate that a) the meteorological 

input is the dominant control on the accuracy of both daily and annual maximum river flows, and b) groundwater and routing 

calibration of Lisflood based on daily river flows has no impact on the ability to simulate flood peaks for the chosen river 25 

basin. These findings have important relevance for applications of large-scale hydrological models, including analysis of the 

impact of climate variability, assessment of the influence of long-term changes such as land-use and anthropogenic climate 

change, the assessment of flood likelihood, and for flood forecasting systems.  

 

1 Introduction  30 

Flooding is notably the most common and damaging natural hazard affecting millions of people worldwide every year, 

producing economic losses exceeding billions of dollars (Hirabayashi et al., 2012). Flood risk associated to a particular 

location can be highly variable depending on levels of exposure, resilience and preparedness (Alfieri et al., 2018) in addition 

to the increased uncertainty surrounding trends of hydrological extremes in a warming climate (Arnell and Gosling, 2016). 

mailto:j.towner@pgr.reading.ac.uk
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For the Amazon basin, flood risk is considered to have increased, with a greater frequency of extreme flood events (e.g. in 

2009, 2012 and 2014; Marengo and Espinoza, 20152016) coinciding with a hypothesised intensification of the hydrological 

cycle since the 1980’s (Gloor et al., 2013). Floods in Amazonian communities are known to have large socioeconomic 

consequences impacting eco-systems, health, transport links and are particularly damaging to agricultural and fishery 

practices (Schöngart and Junk 2007; Marengo et al., 2012; Marengo et al., 20142013; Correa et al., 2017). Single flood 5 

events (e.g. 2012 in the Amazonian city of Iquitos, Peru) have impacted the lives of over 73,000 people (IFRC, 2013) with 

average annual damages estimated at 1.4 billion USD over a four-year period (2008-2011) in the Brazilian Rio Branco river 

basin alone (Mundial Grupo Banco, 2014). 

1.1 Global hydrological models and applications  

In its simplest form, a hydrological model can be considered a representation of a real-world hydrological system used to 10 

better understand various water and environmental processes, predict system behaviour and provide consistent impact 

assessment (Devia et al., 2015). They work by simulating the hydrological response to meteorological variations 

incorporating run-off generation and river routing processes (Sutanudjaja et al., 2018). As such, Global Hydrological Models 

(GHMs) have been used in a wide range of applications including short to extended-range flood forecasting (Alfieri et al., 

2013; Emerton et al., 2018), climate assessment (Hattermann et al., 2017), hazard and risk-mapping (Ward et al., 2016), 15 

drought prediction (van Huijevoort et al., 2014) and water resource assessment (e.g. water availability models; Meigh et al., 

1999; Sood & Smakhtin, 2015).  

Depending on the application and the needs of decision makers, different properties of the hydrograph simulated by 

hydrological models are important. For example, an accurate representation of peak river flows and their likelihood is key 

for decision-makers who wish to understand the area at risk of flooding. In contrast, estimates of daily streamflow may be 20 

more beneficial for the assessment of water resources such as irrigation requirements.   

1.2 GHM development  

The availability of GHMs has grown in recent years thanks to increased efforts in addressing water related issues in 

developing countries (De Groeve et al., 2015; Ward et al., 2015; Trigg et al., 2016), the development of flood forecasting 

systems (Aliferi et al., 2013; Werner et al., 2013; Emerton et al., 2018), improvements within precipitation datasets 25 

(Mittermaier et al., 2013; Novak et al., 2014; Forbes et al., 2015), the emergence of new global satellite and remote sensing 

datasets and advancements in numerical modelling techniques (Yamazaki et al., 2014a; Sampson et al., 2015; Andreadis et 

al., 2017; Balsamo et al., 2018). For an overview of available GHMs see Bierkens et al. (2015) who have provided the 

details of 22 large-scale hydrological models with those used for operational flood forecasting being summarised in Emerton 

et al. (2016).30 

https://link.springer.com/article/10.1007/s00704-011-0465-1#CR36
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1.3 Land surface models vs hydrological models 

GHMs have differing spatial and temporal resolutions, parameter estimation approaches, number of parameters, calibration 

methods, input-output variables and overall structurestructures (Sood and Smakhtin, 2015). Their set-ups can generally be 

divided into two categories: Land Surface Models (LSMs) and hydrological models (Gudmundsson et al., 2012). The 

majority of LSMs and hydrological models share the same conceptualisation of the water balance (Haddeland et al., 2011) 5 

but differ in their objective. LSMs evolve from coupled land/atmosphere models with the purpose of solving the surface 

energy balance equations to provide the necessary lower boundary conditions to the atmosphere (Wood et al., 2011). In 

contrast, hydrological models tend to focus less on the partitioning of radiation and more on hydrological resources and 

understanding the lateral movement and transport of water along the land surface.  

In terms of differences in model performance, the Gudmundsson et al. (2012) intercomparison study of six LSMs and five 10 

GHMs (i.e. hydrological models) concluded that the main differences were due to the snow scheme implemented with snow 

water equivalent values and mean runoff fractions lower in LSMs. No significant differences between LSMs and 

hydrological models were found for runoff and evapotranspiration globally but rather the differences between the models 

themselves created large sources of uncertainty, highlighting the importance of analysing a range of different GHMs rather 

than a group consisting of a specific model type. For the purposes of this study, we categorise both LSM and hydrological 15 

models as GHMs. 

1.4 Motivation 

For GHMs to be considered effective, end users need to know their accuracy and reliability (Ward et al., 2015). Thus, the 

evaluation of these models against observed data is an important procedure in efforts to reduce flood risk. Currently, no 

intercomparison analysis of GHMs has been conducted specifically for the Amazon basin with previous studies focusing 20 

solely on the performance of individual models for the Amazon (e.g. Yamazaki et al., 2012; Paiva et al., 2013; Hoch et al., 

2017a; Hoch et al., 2017b) or as part of a global study (e.g. Gudmundsson et al., 2012; Alfieri et al., 2013; Hirpa et al., 

2018)), which lack an in-depth focus on skill within the Amazon basin. 

Finally, many of the GHMs (or their components) analysed in this study are used for specific applications. For instance, 

water resources management (PCRaster Global Water Balance; PCR-GLOBWB), flash flood forecasting (Ensemble 25 

Framework for Flash Flood Forecasting; EF5) and extended-range flood forecasting (Global Flood Awareness System; 

GloFAS). Investigating the performance of hydrological simulations therefore can provide valuable information to 

researchers and model developers with which to better understand some of the strengths and weaknesses which exists within 

the model set-ups and help to distinguish how different parts of the hydrological chain can cause particularparticularly 

‘good’ or ‘bad’ model performance; thus, having implications for their different applications.  30 
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1.5 Objectives  

In this study, the main objective is to assess the ability of different GHMs freely available from collaborators within the 

Global Flood Partnership, (GFP)), identifying which approaches are most suitable in different areas of the Amazon basin for 

simulating flood peaks. To pursue this objective, the analysis is designed to answer the following research questions:  

1. How well do GHMs represent the annual hydrological regime in terms of the Kling-Gupta-Efficiency (KGE) and its 5 

individual components? 

2. Which model set-up best represents annual maximum river flows? 

3. Which hydrological routing model allows the best representation of daily and peak river flows? 

4. Which precipitation dataset allows the best representation of daily and peak river flows?  

5. How do results differ when using a LSM as opposed to a hydrological model? 10 

6. By how much does calibration of groundwater and routing model parameters improve performance?  

2 Data and methodology  

The experimental design involves comparing the output of daily and annual maximum discharge estimates produced by 

different GHMs forced using atmospheric reanalysis or satellite precipitation datasets against observations of streamflow. 

The common validation period is 1997-2015 with results also analysed for the shorter period of 2004-2015 to account for the 15 

shorter record length of one simulation.  

2.1 Observations 

Observed daily discharge data is used to evaluate each of the model runs. The network of hydrometric gauges is controlled 

and maintained by the national institutions responsible for hydrological monitoring in countries situated within the Amazon 

basin. These include: Agência Nacional de Águas (Water National Office – ANA, Brazil), Servicio Nacional de 20 

Meteorología e Hidrología (National Meteorology and Hydrology Service – SENAMHI, Peru and Bolivia), Instituto 

Nacional Meteorologia e Hidrologia (Institute to Meteorology and Hydrology, INAMHI, Ecuador) and the Instituto de 

Hidrología, Meteorología y Estudios Ambientales (Institute of Hydrology, Meteorology and Environmental Studies - 

IDEAM, Colombia).  

Daily water level values are collected by the respective institution and are sourced through the ORE-HYBAM observational 25 

service (see http://www.ore-hybam.org/) or directly from the national services. A time series of daily river flow for each 

station is obtained using stage and rating curve measurements which were determined using an acoustic Doppler current 

profiler (ADCP) conducted by the ORE-HYBAM observatory and SENAMHI (Espinoza et al., 2014). In total 75 

hydrological stations throughout the Amazon basin are selected with an average record length of 17 years within the main 

validation period (1997-2015). The locations of stations and their characteristics are displayed in Fig. 1a and Table S1 30 

http://www.ore-hybam.org/
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respectively. Stations selected have a minimum of five consecutive years’ worth of data during the main validation period. 

The threshold was set to five to prevent the elimination of stations in data scarce areas such as Peru, Bolivia and Colombia. 

2.2 Routing models and meteorological datasets 

Eight GHMs composed of different meteorological datasets, hydrological/LSMs and river routing models, are used to each 

simulate river discharge across the Amazon basin. Four meteorological products (ERA-Interim Land re-analysis, ERA-5 re-5 

analysis, ECMWF 20-year control reforecasts (hereafter used as reforecasts) and the real-time TRMM TMPA 3B42 v.7), 

three hydrological/LSM (PCR-GLOBWB, the Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land; H-

TESSEL, EF5) and three river routing models (Catchment‐based Macro‐scale Floodplain model; CaMa-Flood, Lisflood and 

the Coupled Routing and Excess Storage; CREST) are employed. While the focus of this study is on GHMs made available 

by the GFP community, other models are available within the Amazon basin. Some examples include: MGB‐IPH (Paiva et 10 

al., 2013), LPJmL (Lund–Potsdam–Jena managed Land; Bondeau et al., 2007), WaterGAP (water - global analysis and 

prognosis; Döll et al., 2003) and MAC-PDM.09 (the Macro-scale-Probability-Distributed Moisture model.09; Gosling & 

Arnell, 2011).  

As a result of using freely available datasets from collaborators within the GFP, simulations are composed of a combination 

of routing models and meteorological datasets and do not all use the same precipitation input or hydrological set-up. 15 

However, the available combinations allow enough insight into the model components to draw conclusions for the objectives 

stated. For example, to analyse the performance of precipitation inputs, ERA-Interim Land, ERA-5 and the reforecasts are 

forced through the calibrated version of Lisflood, whereby the routing and LSM remain consistent. To evaluate the 

differences between using the Lisflood and CaMa-Flood routing models, two simulations which use ERA-Interim Land 

precipitation and the LSM H-TESSEL are compared. To identify the differences between employing a hydrological (PCR-20 

GLOBWB) or LSM (H-TESSEL), two set-ups which use the ERA-Interim Land precipitation reanalysis and the CaMa-

Flood river routing model are directly compared. Finally, to see how much benefit model calibration within Lisflood 

provides, ERA-Interim Land and ERA-5 are forced through the calibrated and un-calibrated Lisflood model versions. The 

CREST EF5 run is the sole simulation to have a unique hydrological model and meteorological input and although it is more 

challenging to analyse the performance of specific components of the model set-up against other simulations, it was included 25 

in the analysis for completeness.  

An alternative approach would be to implement a full intercomparison experiment and run a new set of simulations which 

included all combinations of precipitation input, GHM and routing scheme. However, this is a very large undertaking and the 

time and computational expense to achieve this is prohibitive. Instead, by using freely available datasets with different 

hydrological set-ups, our method allows a first analysis providing enough evidence of dataset reliability and accuracy in 30 

order to determine the utility of the differing approaches for climate studies and to forecast applications. Moreover, by using 

iterative runs of similar model set-ups (i.e. changing a specific part of the hydrological model chain) it allows us to make 
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conclusive statements regarding the differences in skill. Finally, a short description of each model and atmospheric product 

is outlined below with a summary of each simulation provided in Table 1. 

2.2.1 Precipitation datasets 

ERA-Interim Land is a global reanalysis of land surface parameters produced by the European Centre for Medium-range 

Weather Forecasts (ECMWF) with a T255 spectral resolution (~80 km or ~0.750) (; Balsamo et al., 2015). ERA-Interim 5 

Land was produced using the latest version of the land surface H-TESSEL model using atmospheric forcing from ERA-

Interim (Dee et al., 2011), with precipitation adjustments based on the Global Precipitation Climate Project (GPCP) v2.1. 

Precipitation improvements were achieved by Balsamo et al. (2010) using a scale-selective rescaling procedure in which 

ERA-Interim 3-hourly precipitation were corrected to match the monthly accumulation provided by the GPCP at grid point 

scale (Huffman et al., 2009). All simulations which use ERA-Interim Land are run offline to force the associated rainfall-10 

runoff models (see Table 1). For a detailed description of the ERA-Interim Land and ERA-Interim datasets see Balsamo et 

al. (2015) and Dee et al. (2011) respectively. Dataset available at: <http://apps.ecmwf.int/datasets/data/interim-full-

daily/levtype=sfc/>.  

ERA-5 is the latest reanalysis product of the ECMWF producing consistent estimates of atmospheric, land and ocean 

variables at a horizontal resolution of ~31 km, while the vertical atmosphere is discretised into 137 levels to 0.01 hPa 15 

(ECMWF, 2018). ERA-5 is based on the Integrated Forecasting System (IFS) Cycle 41r2 which was used operationally at 

the ECMWF in 2016. Early analysis has shown that ERA-5 has an improved representation of precipitation (particularly 

over land in the deep tropics), evaporation and soil moisture compared to its predecessor ERA-Interim Land (ECMWF, 

2017). ERA-5 is currently being produced in three “streams” and will eventually cover the period 1950 to near real-time (~3 

days) with completion due in 2019 (Emerton et al., 2018). Dataset available at: 20 

<https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5+data+via+the+ECMWF+Web+API>>.  

ECMWF reforecasts are a collection of historical forecasts from start dates at the same day of the year going back for a 

specific number of years to provide a consistent model climatology from which to compare forecasts (ECMWF, 2016). In 

this study we use the control member of the reforecasts which are created based on a retrospective run of the most recent 

version of the ECMWF’s IFS to provide surface and subsurface runoff as input to the Lisflood routing model at a resolution 25 

of 0.10. The reforecast run is computed using a lighter configuration (11 ensemble members, run twice a week on Mondays 

and Thursdays) to reduce computational time. The purpose of running the ECMWF forecasts through the Lisflood routing 

model is to generate a long term (20-year) dataset which is consistent with operational GloFAS forecasts enabling the 

suitability of the dataset for use in the calibration of the Lisflood model parameters (Hirpa et al., 2018). This data covers the 

period June 1995 to June 2015 and due to frequent model updates of the IFS, is based on multiple model cycles: Cycle 41r1 30 

(July through March) and Cycle 41r2 (March through June). The control reforecasts from Mondays and Thursdays are used 

subsequently to fill the whole weeks by taking the first 3- and 4-day forecast periods respectively throughout the 20 years.  

http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5+data+via+the+ECMWF+Web+API
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TRMM TMPA 3B42 RT v7 is a global merged multi-satellite precipitation product generated at the National Aeronautics 

and Space Administration (NASA). TMPA is computed for two products: a near real-time version (TMPA 3B42RT v7) and 

a post real-time gauged adjusted research version (TMPA 3B42 v7), both of which run at resolution of 3 hourly x 0.250 x 

0.250 (Huffman et al., 2007). The TMPA 3B42 RT gridded dataset used in this study covers the global latitude belt from 600 

N to 600 S. For further information see Huffman et al. (2007). Dataset available at: < https://pmm.nasa.gov/data-5 

access/downloads/trmm>.  

2.2.2 Hydrological and land surface models 

H-TESSEL provides the land surface component of the ECMWF IFS (van den Hurk et al. 2000; van den Hurk and Viterbo 

2003; Balsamo et al. 2009). H-TESSEL simulates the land surface response to atmospheric conditions estimating water and 

energy fluxes (heat, moisture and momentum) on the land surface (Zsoter et al., in review2019). H-TESSEL is 10 

predominately used within the operational set-up of short to seasonal-range weather forecasts coupled with the atmosphere, 

but it can also be used in an “offline mode” to calculate the land surface response to atmospheric forcing, whereby input data 

(e.g. near surface meteorological conditions) is provided on a 3 hourly timestep (Pappenberger et al., 2012). In this study, H-

TESSEL receives boundary conditions from the atmospheric input provided by either the ERA-5 reanalysis, ERA-Interim 

Land reanalysis or the reforecasts providing total runoff for the CaMa-Flood routing model, and the surface and sub-surface 15 

water fluxes for Lisflood. Runs forced using the ERA-Interim Land reanalysis are run in the offline mode. For a detailed 

description of H-TESSEL see Balsamo et al. (2009). 

PCR-GLOBWB is a global hydrological and water resource model developed at the Department of Physical Geography, 

Utrecht University, Netherlands (Sutanudjaja et al., 2018). For each grid cell and time step, PCR-GLOBWB simulates 

moisture storage in two vertically stacked upper soil layers, as well as the water exchange among the soil, the atmosphere, 20 

and the underlying groundwater reservoir. Besides, water demands for irrigation, livestock, industry, and households can be 

integrated within the model. Run-off is routed along a Local Drainage Direction (LDD) network using the kinematic routing 

wave equation. PCR-GLOBWB was applied at a resolution of 30 arcmin (~ 55km x 55km at the Equator) with 

meteorological forcing provided from the ERA-Interim Land reanalysis dataset between 1997 and 2015. For further 

information on PCR-GLOBWB, see van Beek and Bierkens (2008), van Beek et al. (2011) and Sutanudjaja et al. (2018).  25 

EF5 is an open source software package developed at the University of Oklahoma (OU) that consists of multiple 

hydrological model cores producing outputs of streamflow, water depth and soil moisture (Clark et al., 2016). Since 2016, 

EF5 has been used operationally for local forecasts across the U.S. National Weather Service (NWS) for flash flooding 

purposes (Gourely et al., 2017). EF5 incorporates CREST which is a distributed hydrological model created by OU and 

NASA (Wang et al., 2011). Within CREST, runoff generation, evapotranspiration, infiltration and surface and subsurface 30 

routing are computed at each grid cell within the model domain with surface and subsurface water routed using a kinematic 

wave assumption. Four excess storage reservoirs characterise the vertical profile within a cell representing interception by 

https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
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the vegetation canopy and subsurface water storage in the three soil layers (Meng et al., 2013). In addition, the representation 

of sub-grid cell routing and soil moisture variability is made through the use of two linear reservoirs for overland and 

subsurface runoff individually (Wang et al., 2011). Locations of major streams, flow direction maps and flow accumulation 

are all derived from the HydroSHEDS dataset (Lenhnar et al., 2008). 

In this study, an un-calibrated version of EF5 was run using CREST version 2.0 (Xue et al., 2013; Zhang et al., 2015) for 13 5 

years (2003-2015)), with a one-year spin-up at a spatial resolution of 0.050 x 0.050. Parameters are estimated a priori from 

soil and geomorphological variables with meteorological forcing provided by the TMPA 3B42 RT product for precipitation 

and monthly averaged potential evapotranspiration (PET) from the Food and Agriculture Organisation (FAO). For full 

details on the system set-up see Clark et al. (2016). 

2.2.3 Routing models  10 

Lisflood is a global spatially distributed, grid based hydrological and channel routing model commonly used for the 

simulation of large-scale river basins (van Der Knijff et al., 2010). It is currently used as an operational rainfall-runoff model 

within the European Flood Awareness System (EFAS) for streamflow forecasts over Europe (Smith et al., 2016). Unlike 

EFAS, which uses the full Lisflood set-up, GloFAS and the simulations included in this study use only the routing 

component of the Lisflood set-up with surface and sub-surface input fluxes (e.g. vertical water, water/snow storage) 15 

provided by the H-TESSEL module of the IFS at a resolution of 0.10. Surface runoff is routed through Lisflood using a four-

point implicit finite-difference solution of the kinematic equations. Sub-surface storage and transport is routed to the nearest 

downstream channel pixel within one-time step through two linear reservoirs (Alfieri et al., 2013). The water in each channel 

pixel is finally routed through the river network taken from the HydroSHEDS project (Lenhnar et al., 2008) using the same 

kinematic wave equations as for the overland flow. Subsurface flow from the upper and lower groundwater zones is routed 20 

into the nearest downstream channel as a scaled sum of the total outflow from both the upper and lower groundwater zones. 

Further details of the Lisflood model is described in van der Knijff et al. (2010).  

Lisflood also represents lakes and reservoirs as simulated points on the river network (Zajac et al., 2017). The outflow of 

lakes and reservoirs are based on: (a) upstream inflow, (b) precipitation over the lake or reservoir, (c) evaporation from the 

lake or reservoir, (d) the lakes initial level, (e) lake outlet characteristics and (f) reservoir-specific characteristics. For further 25 

details on the parameterisation of lakes and reservoirs within Lisflood see Appendix A within Zajac et al. (2017). In the 

Amazon, represented lakes are predominately located along the main stem with very few reservoirs throughout the basin. For 

exact lake and reservoir locations within the global Lisflood model see Zajac et al. (2017).  

In this study, two set-ups of Lisflood are used (Lisflood_uc and Lisflood_c). Lisflood_c represents the calibrated set-up of 

the Lisflood routing and groundwater parameters (see Hirpa et al., 2018).), while Lisflood_uc representing the uncalibrated 30 

model run. Parameters were calibrated with the reforecasts initialised with the ERA-Interim land reanalysis from 1995-2015 



   
 

9 
 

as forcing, against observed discharge data at 1278 gauging stations worldwide. All but one station (40, see Fig. 1a & Table 

S1) used in this study were included within the calibration. An evolutionary optimization algorithm was used to perform the 

calibration with the Kling-Gupta Efficiency (KGE) as the objective function. The calibration was carried out for parameters 

controlling the time constants in the upper and lower zones, percolation rate, groundwater loss, channel Manning’s 

coefficient, the lake outflow width, the balance between normal and flood storage of a reservoir and the multiplier used to 5 

adjust the magnitude of the normal outflow from a reservoir. The results were validated by Hirpa et al. (2018) using the 

Kling Gupta Efficiency (KGE; Gupta et al., 2009) over the period 1995-2015. In calibration (validation) KGE skill scores 

were greater than 0.08 compared to the default Lisflood simulation for 67% (60%) of stations globally. For a detailed 

description of the calibration of the Lisflood parameters and the range of values used for each parameter see Hirpa et al. 

(2018).  10 

CaMa-Flood is a global distributed river routing model which is forced by runoff input from a LSM or hydrological model 

to simulate water storage where further hydrological variables (i.e. river flow, water level and inundated area) can be derived 

along a prescribed river network. Horizontal water transport along the river network is calculated using the local inertia 

equations (Yamazaki et al., 2011). The backwater effect (i.e. upstream water levels which affect flow velocity downstream, 

see Meade et al., 1991) is represented by estimating flow velocity based on water slope. (Yamazaki et al., 2011). Moreover, 15 

floodplain inundation is represented within CaMa-Flood as a subgrid scale process by discretising the river basin into unit 

catchments which consist of subgrid river and floodplain topography parameters (Yamazaki et al., 2014b). These parameters 

describe the relationship between the total water storage in each grid point and water stage and are automatically generated 

using the Flexible Location of Waterways (FLOW) method with the generation of the river map created by upscaling the 

HydroSHEDS flow direction map (Lehner et al., 2008). For further information about the CaMa-Flood model see the 20 

aforementioned references. In this study, daily river discharge was obtained using CaMa-Flood version 3.6.1 at a spatial 

resolution of 0.250 (~25km grid size) for both runs. The Manning’s river and floodplain roughness coefficients were set at 

0.03 s m-1/3 and 0.10 s m-1/3 uniformly for both CaMa-Flood simulations.  

2.3 Verification metrics 

2.3.1 Spearman’s ranked correlation  25 

The non-parametric Spearman’s rho is used to measure the strength and direction of the monotonic relationship between the 

ranks of the observed and simulated annual maximum values. The non-parametric Spearman’s rho was preferred to the 

Pearson’s statistic as non-parametric measures are less sensitive to outliers in the data and are widely considered a more 

robust measure of the correlation between observed and predicted values (Legates & McCabe, 1999). Correlation scores for 

rho range from -1 to 1 with 1 being a perfect correlation. We consider scores which have a value of 0.6 or more to be 30 

considered skilful. Similar scores (between 0.5-0.7) are considered to represent a good level of agreement between observed 

and simulated values in similar studies (see Yamazaki et al., 2012; Alfieri et al., 2013).   
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2.3.2 KGE 

The KGE (Gupta et al., 2009) measures the goodness-of-fit between estimates of simulated discharge and gauged 

observations and is a modified version of the dimensionless Nash Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970). The 

metric decomposes the NSE into three independent hydrograph components (linear correlation (r), bias ratio (β) and relative 

variability between the observed and simulated streamflow (α)) by re-weighting the relative importance of each (Revilla-5 

Romero et al., 2015). KGE values range from - ∞ to one with values closer to one indicating better model performance. To 

provide further context to the computed KGE scores, we use the breakdown of KGE values into four benchmark categories 

as according to (Kling, 2012). These are classified as follows: 

• “Good” (KGE ⩾ 0.75) 

• “Intermediate” (0.75 > KGE ⩾ 0.5) 10 

• “Poor” (0.5 > KGE > 0) 

• “Very poor” (KGE ⩽ 0) 

Although originally for the modified version of the KGE, these categories provide an informative benchmark at which to 

evaluate results. A similar study (Thiemig et al., 2013) assessing the performance of satellite-based precipitation products for 

hydrological evaluation also adopted the same approach.   15 

When analysing the results, each component of the KGE is also considered independently enabling model errors to be 

directly related to either the variability (KGE_ α), bias ratio (KGE_ β) or correlation (KGE_r) (; Guse et al., 2017). KGE_α 

values greater than 1 indicates that variability in the simulated time series is higher than that of the observed. Values less 

than 1 show the opposite effect. KGE_ β values greater than 1 indicate a positive bias whereby predictions overestimate 

flows relative to the observed data, while values less than 1 represent an underestimation. 20 

To evaluate the relative improvement of using one model set-up relative to another (e.g. using the calibrated Lisflood routing 

model as opposed to the uncalibrated model version) metrics are calculated as skill scores:  

𝐾𝐺𝐸𝑆𝑆 =  
𝐾𝐺𝐸𝑎− 𝐾𝐺𝐸𝑑𝑒𝑓

1−𝐾𝐺𝐸𝑑𝑒𝑓
               (1) 

Where: KGESS signifies the KGE skill score, KGEa is the KGE score for the improved run or simulation of interest (e.g. 

Lisflood_c) and KGEdef is the KGE score for the ‘default’ or comparative run (e.g. Lisflood_uc). Positive KGEss indicates 25 

improved skill whilst a negative score represents a decrease in skill. For each case, KGE scores are calculated against 

observed river flow data. The correlation skill score is calculated similarly. All metrics are computed in the R environment 

using the ‘verification’ (Gilleland, 2015) and ‘hydroGOF’ (Zambrano-Bigiarini, 2017) R-packages.  
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3 Results and discussion  

To allow for easier interpretation, the results and discussion are separated into six sections which match the research 

questions presented in Sect. 1.5, in addition to an outline of potential future work. Due to similar results between the two 

validation periods (1997-2015 and 2004-2015), only results for 1997-2015 are shown. For 2004-2015 results see Figs. S1 & 

S2. Results and discussions for individual stations are commonly referred to by the station numbers in italics and are 5 

presented in Fig. 1a and Table S1.  

3.1 How well is the annual hydrological regime represented? 

The annual hydrological regime on average is well represented by all models (Fig. 2)), with the rationale for poorer 

performance at specific gauges dependent on each model based on either the temporal correctioncorrelation, bias ratio or 

variability ratio components of the KGE (Figs. 3-5). An average of 8150% of stations are considered skillful (i.e. >note 10 

scores above 0).5 for the KGE metric across all eight simulated runs with a maximum value of 0.92 observed at the Santa 

Rosa gauging site (48, Fig. 1a) for the ERA-5 Lisflood_c simulation (Fig. 2f). The two CaMa-Flood set-ups using the 

hydrological model PCR-GLOBWB and the LSM H-TESSEL show the lowest skill with 4819 and 5218 stations noting 

positive scores greater than 0.5 respectively. On the contrary, best performance is from the calibrated Lisflood set-ups with 

average stationmedian scores across stations of 0.3756, 0.4163 and 0.5364 for runs forced with ERA-Interim Land, ERA-5 15 

and the reforecasts and ERA-5 respectively. Such results are unsurprising given that the KGE was used as the objective 

function in the calibration algorithm of the Lisflood routing model.   

In terms of spatial distribution, poorest performance is consistent for the majority of simulations at the Arapari (55), Boca 

Do Inferno (56) and Base Alalau (61) gauging stations located north of Manaus, at the Fazenda Cajupiranga gauge (64) in 

the northernmost Branco catchment and at the Fontanilhas (35) and Indeco (49) stations in the south-eastern Brazilian 20 

Amazon (Fig. 2). 

 In the south-eastern Amazon, particularly in the Madeira and Tapajos sub-basins, the quantity of existing or under 

construction dams is at its highest (Fig. 1b). Damming of rivers is known to have impacts on different aspects of the flow 

regime with possible alterations in the timing, magnitude and frequency of low and high flows (Magilligan & Nislow, 2005). 

Indeed, the frequency and duration of low and high flow pulses at stations downstream of dams has been shown to be 25 

particularly affected by the construction of cumulative dams (Timpe & Kaplan, 2017). Thus, discrepancies between observed 

modelled and observed data shown in Fig. 2 could be due to alterations to key features of the flow regime.   

Highest scoring stations (KGE score > 0.775) are predominately found in the south-western Brazilian Amazon where the 

network of tributaries remain relatively unaffected by damming. and where slopes are gentle (Figs. 1b, d). However, high 

skill at stations (32, 33 & 43) along the Madeira river for most simulations (Fig. 2) highlight that the impacts of hydroelectric 30 
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dams needs to be considered on an individual basis with two of the largest dams (> 3000 MW) situated along the river (see 

Fig. 1b).  

Figures 3, 4 and 5 show the breakdown of the KGE scores for each hydrological component to evaluate differences in 

performance with respect to the correlation (i.e. timing), flow variability (α) and bias ratio (β). An average of 79% of stations 

note correlation coefficients exceeding 0.6 across all runs with those using the Lisflood routing model performing similarly 5 

in both spatial distribution and magnitude (Fig. 3). In contrast, 51% and 47% of stations achieve values exceeding 0.6 for 

CaMa-Flood H-TESSEL and CaMa-Flood PCR-GLOBWB respectively, with the hydrological model, PCR-GLOBWB 

noting better performance at stations along the main-stem. The increased performance of Lisflood relative to simulations 

incorporating CaMa-Flood are likely due to the increased spatial resolution of the routing component (see Table 1). This is 

supported by results for CREST EF5, with 76% of stations noting values above 0.6 with the and the model occupying a finer 10 

spatial resolution again much higher than that of the CaMa-Flood routing scheme (Fig. 3g).  

The variance of modelled river flow is on average higher than the observed time series in all of the simulations with the 

exception of the ERA-Interim Land PCR-GLOBWB CaMa-Flood simulation. For this run, 85% of stations observe values of 

less than one with stations situated in the Peruvian Amazon (2, 3, 4 and 5) the notable exception (Fig. 4b). In contrast, 79% 

of stations for the CaMa-Flood set-up using the LSM H-TESSEL, note values greater than one (Fig. 4a).  15 

All runs tend to underestimate river flows relative to the observed time series with the majority of stations observing a beta 

value belowof less than one (Fig. 5). Almost half of all stations usingIn the calibrated Lisflood routing modelsimulation 

forced with the reforecasts achieve, almost half of all stations observe scores between 0.9 and 1.1 (i.e. grey circles) with the 

average between stations being exactly one), with a median of 0.99 (Table 2). These results are not replicated in the other 

two calibrated simulationsruns when using either ERA-Interim Land or ERA-5 as the precipitation input (Figs. 5d & 5f) with 20 

a ).  For both of these runs a decrease is found in the number of stations observingachieving scores between 0.9 and 1.1 

relative to the associated uncalibrated Lisflood set-ups (Figs. 5c & 5e). This is also highlighted by a decrease in the median 

scores of the two respected runs (Table 2), meaning that a greater water deficit exists in the calibrated set-ups.  

Stations in the south-eastern Amazon, particularly in the upper reaches of the Teles Pires river (37, 38 & 49), tend to 

underestimate river flow for most simulations (Fig. 5). In this region of the basin precipitation is controlled by frontal 25 

systems in the South Atlantic Convergence Zone (SACZ)), which is prevalent during austral summer (Ronchail et al., 2002; 

Espinoza et al., 2009). In addition, rainfall variability in the Amazon is strongest in the south-east with a distinct dry season 

(Paiva et al., 2012; Espinoza et al., 2009). Further analysis could be useful in evaluating seasonal patterns of model 

performance to establish whether climatological features such as the SACZ are accurately represented within the 

precipitation datasets. Other factors impacting performance in the south east could be associated with the geology and 30 

topography (Figs. 1c, d). Stations in this area of the basin are located within the Brazilian Shields, composed predominately 

of Precambrian rock and are characterised by gentle slopes and low erosion rates (Filizola and Guyot, 2009). Paiva et al. 
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(2012) demonstrated the importance of accurate initial conditions of groundwater state variables in Tapajos and Xingu river 

basins, particularly for low flows. In comparison, the majority of the central parts of the basin are characterised by tertiary 

rocks, flat terrain, large floodplains and high sediment yields. In these regions (e.g. the south-western Brazilian Amazon), 

KGE scores are generally higher (Fig. 2), with surface water variables (e.g. water levels, surface runoff and floodplain 

storage) considered more important in hydrological prediction uncertainties (Paiva et al., 2012).   5 

The KGE allows us to make explicit interpretations into the hydrological performance of each model owing to 

decomposition into correlation, bias and variability terms (Kling et al., 2012). The results indicate that the required 

developments to improve the representation of daily river flows is specific to each individual model and to the area of 

interest. For instance, for the ERA-Interim Land PCR-GLOBWB run, daily correlation scores (Fig. 3b) showed the model 

suffers at reproducing the temporal dynamics of flow (as measured by r) in northern catchments. Calibration of parameters 10 

which control the timing of the flood wave (e.g. river flow velocity) may improve performance. Whereas, model set-ups 

incorporating the uncalibrated Lisflood routing model generally had lower KGE values in the east of the basin corresponding 

to an overestimation of river flow variability (Figs. 2c & 4c, e). For these runs, performance slightly improved upon the 

calibration of the groundwater and routing parameters relating to timing, flow variability and groundwater loss (Figs. 2d & 

4d, f).  15 

3.2 Which model set-up best represents annual maximum river flows? 

Both the calibrated and uncalibrated versions of Lisflood simulations forced with the ERA-5 datasetreanalysis are the best 

performing runs with average correlation coefficientsmedian scores of 0.4853 and 0.54 for boththe uncalibrated and 

calibrated simulations respectively (Fig. 7 & Table 2). However, a large deterioration in skill is evident for all simulations 

for Spearman’s ranked coefficients between observed and predicted annual maximum river flows (Fig. 6) with only 21% of 20 

stations on average observing scores exceeding 0.6 across all simulations. Here, it is important to note that due to the length 

of some station time series the number of overlapping data points can be small and therefore the spatial distribution of model 

performance should be interpreted with caution. To provide a certain level of confidence between results, stations whose 

time series equals or exceeds 15 years are denoted using a circle, whereas those between 10-14 and 5-9 are represented using 

a square and triangle respectively.  25 

Highest scores are generally located towards the eastern side of the basin aroundand along the mouth of themain Amazon 

River, though these where the terrain is predominately flat, and rivers drain extensive floodplains. These are constrained to 

runs using the Lisflood routing model with either ERA-Interim Land or ERA-5 as forcing (FigFigs. 6c-f). Interestingly, the 

calibrated Lisflood set-up forced using the reforecasts does not replicate scoresgood performance in this regionthese regions 

(Fig. 6h)), indicating that the error between simulated and observed peak river flows could be associated with the 30 

precipitation. When observing daily mean precipitation totals over the validation period (1997-2015), the reforecasts observe 

lower precipitation totals over central to northern areas of the basin relative to both of the climate reanalysis datasets (Fig. 8). 
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However, when comparing the results of ERA-Interim Land H-TESSEL CaMa-Flood and the ERA-Interim Land H-

TESSEL Lisflood_uc set-ups, correlations are much lower in the CaMa-Flood simulation, suggesting that both precipitation 

and routing processes are equally important (Figs. 6a & 6c).  

Low agreement between peaks is consistent in the south-east and north-west of the basin across all simulations (Fig. 6). In 

the south-east, a lack of skill could again be associated with the abundance of hydroelectric dams in the region or through the 5 

poor representation of the SACZ rainfall regime. Evaluating the ability to represent the timing and magnitude of the annual 

flood wave has important implications for models predicting flood hazard and for practices providing early warning 

information. These results identify that while the representation of daily river flows improves upon model calibration of the 

Lisflood routing model (Sect. 3.1), the influence of routing calibration for simulating flood peaks has no impact.  

3.3 What is the best performing hydrological routing model? 10 

We assessed the performance of the CaMa-Flood and Lisflood_uc routing models by comparing the two runs which are 

forced using the ERA-Interim Land reanalysis dataset. On average the uncalibrated Lisflood run outperforms CaMa-Flood 

for all metrics analysed with the exception of the bias ratio component of the KGE (Table 2).(Fig. 7 & Table 2). Results 

from the EF5 CREST model are also discussed but are not directly comparable due to differing meteorological inputs.  

Scores fromThe median score of the correlation component of the KGE are(i.e. Pearson’s correlation coefficient) is found to 15 

increase on average by 0.1819 when using the un-calibrated Lisflood model relative to CaMa-Flood with 28 more stations 

achieving a correlation score of 0.6 or higher (Figs. 3a & c). This number increases when considering correlation scores 

greater than 0.8 with 38 and seven stations reaching this value for Lisflood and CaMa-Flood respectively. The most notable 

increase in skill is found in Peru along the Marañón and Napo rivers (2 & 5)), which note an increase of 0.85 and 0.71 

respectively when using the Lisflood model. In comparison, the EF5 CREST simulation fits between the CaMa-Flood and 20 

Lisflood runs with an averagea median daily correlation score of 0.65 while71 and notes 12 stations achievewhich have 

scores greater than 0.8 (Fig. 3g).   

For the overall KGE metric, 6924% and 3% of stations have positive values exceeding 0.5 and 0.75 for CaMa-Flood and 

24% are found to exceed 0.5.. These figures rise to 83% and 52% and 11% respectively in the uncalibrated Lisflood run. 

Large differences are particularly notable at stations situated in the upper reaches of the Solimões River (2-6) and within a 25 

cluster of stations situated towards the Colombian Amazon in the north-west (Fig. 2c). Results from the EF5 CREST model 

again fit between CaMa-Flood and Lisflood with 77% and 40% of stations exceeding zero and 0.5 respectively and a median 

score close to that of Lisflood (Fig. 7c). Larger differences are identified for peak flow correlations with only three stations 

(27, 17 and 22) achieving scores exceeding 0.6 for the CaMa-Flood simulation compared to 22 using the uncalibrated 

Lisflood routing scheme (Figs. 6a & 6c). In comparison, the CREST EF5 simulation has 11 stations exceeding this threshold 30 



   
 

15 
 

with no distinguishable pattern (Fig. 6g). For this run, the time series of modelled data is shorter (2004-2015) and so peak 

flow correlations should be interpreted with caution.  

Stations located in and around the main Amazon River observe better performance for representing flood peaks in the 

Lisflood simulation (Fig. 6c), aligning with the locations of lakes included within the Lisflood set-up (see Zajac et al., 2017). 

This level of skill was not replicated in the CaMa-Flood simulation where the representation of lakes is not included (Fig. 5 

6a), suggesting the potential importance of lake parameterisation for accurate peak flow estimations. However, Zajac et al. 

(2017) demonstrated that although the inclusion of lakes in Lisflood was found to generally improve the representation of 

extreme discharge for the five and twenty year return periods on the global domain, the change in skill upon the inclusion of 

lakes and reservoirs in the Amazon was minimal for several metrics. Very few reservoirs are included within Lisflood in the 

Amazon and therefore the estimated effects on simulated streamflow is restricted.   10 

Zhao et al. (2017) concluded the importance in the choice of different river routing schemeschemes for simulating peak 

discharge across the globe while. While Hoch et al. (2017b) comparison of two routing models found results to differ despite 

having identical boundary conditions. It is therefore of interest to evaluate not only the entire GHM set-up but also to assess 

the suitability of each model component of the hydrological chain in order to determine which routing model is most suitable 

for certain applications within the Amazon basin. Differences in skill for the KGE results is likely associated to the 15 

correlation (i.e. timing) with a similar mean and median for the variability and bias ratio (Table 2 and Fig. 7). This suggests 

that adjustments ofResults suggests that adjustments of certain parameters such as the Manning’s channel coefficient could 

potentially improve the performance of the CaMa-Flood model, with the default coefficient higher in the uncalibrated 

Lisflood set-up (0.10 as opposed to 0.03; see Hirpa et al., 2018 for all default parameter values).   

3.4 What is the best performing precipitation dataset? 20 

Three precipitation products (ERA-Interim Land, ERA-5 and the reforecasts) are used to force the calibrated Lisflood 

routing model with the most recent ERA-5 reanalysis product the best performing dataset. Figure 8 displays the mean daily 

precipitation for each dataset over the main validation period (1997-2015). Main differences can be seen in the far west of 

the basin towards the Andes mountains, where precipitation is higher in ERA-5 compared to ERA-Interim Land and in the 

north-west where average daily precipitation totals are smaller in the reforecasts. On the other hand, values in the south-25 

eastern corner of the basin are very similar between the three datasets. When comparing observed and simulated annual peak 

flows, median correlation scores improve by an average of 0.1112 and 0.1522 when using ERA-5 compared to using ERA-

Interim Land and the reforecasts respectively (Table 2). 28 stations reach the 0.6 threshold comparedrelative to 22 and nine 

stations for ERA-Interim Land and the reforecasts respectively with the range of coefficients smaller for ERA-5 (Fig. 7a). 

Figures 8e9e and 8f9f highlight the relative gain or loss in skill when using ERA-5 compared to ERA-Interim Land. Greatest 30 

improvements for each metric are observed within the upstream reaches of the Solimões River, particularly for stations 
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located within the Peruvian Amazon (2, 4 & 5). In the main western headwater to the Solimões River (the Marañón river) at 

the San Regis gauging site (2) and at Tamshiyacu (4) near to the city of Iquitos, the annual maximum correlation skill scores 

are 0.51 and 0.59 respectively. These results highlight that poor performance found in upstream reaches of the Solimões 

River (Fig. 6c & 6d) is likely due to the representation of rainfall rather than routing performance.  

In the other main tributary to the Solimões River, the Ucayali river, simulated annual peak flows show little agreement with 5 

observed data with a decrease in skill identified when using ERA-5 as opposed to ERA-Interim Land (Fig. 8e9e). Despite the 

lack of agreement between observed and modelled data in the Ucayali river, the higher correlation scores identified 

downstream at Tamshiyacu suggests that better representation of high-water periods at the start of the Solimões River is 

likely modulated by the larger Marañón river. Therefore, ourthe ability to represent flood hazard in communities near to the 

city of Iquitos is more dependent on how well we can predict river flow in the Marañón river.  10 

All three runs perform well for the KGE metric with little difference in results spatially. (Figs. 2d, f, h). The reforecast 

runsimulation used within the Lisflood calibration is found to be slightly superior with 9175% of stations achieving scores 

above zero which exceed 0.5 relative to 88% with71% and 59% for ERA-5 and ERA-Interim Land and ERA-5. Differences 

between ERA-Interim Land and ERA-5 become more evident when observing scores exceeding higher thresholds with nine 

more stations scoring above 0.5 for ERA-5.respectively. Increased skill in the Peruvian Amazon is again the most 15 

noteworthy (Fig. 8f9f) with KGE skill scores of 0.67 for the Requena (3) (Ucayali river) and San Regis (2) (Marañón river) 

stations and 0.71 for Tamshiyacu (4) (Solimões River) when using ERA-5 relative to ERA-Interim Land. This increase in 

KGE skill can be attributed to an improvement in the variability and bias ratios found between the simulated and observed 

time series. Daily correlation scores for the three stations (2, 3 & 4) are near identical with the variance and bias ratios 

underestimated for ERA-Interim Land, while being much closer to the observed data for ERA-5 (Figs. 4d, f & 5d, f).  20 

The Tamshiyacu gauging station (4) is used to measure flood hazard in the city of Iquitos at the start of the Solimões River 

(Espinoza et al., 2013) and is therefore of particular interest. At this important location, scatterplots of observed against 

simulated river discharge (Fig. 910) show that the negative bias observed when using ERA-Interim Land reanalysis is 

corrected when using ERA-5, with the magnitude of the 90th percentile of river flows almost identical to that of the observed 

dataset. Improvement is likely associated with the increased resolution of the ERA-5 reanalysis., which observes higher daily 25 

mean precipitation totals in regions towards the Andes in the far north west of the basin (Fig. 8b). Waters found at 

Tamshiyacu are of Andean origin meaning that the representation of rainfall in the Andes Mountains is fundamental to 

accurately predicting streamflow. ERA-5 runs at a horizontal resolution of ~3231 km and includes an additional 73 vertical 

levels to 0.01 hPa compared to ERA-Interim Land, meaning the representation of the troposphere is enhanced. (ECMWF, 

2017).   30 

The success of GHMs in producing adequate estimates of river flow is underpinned by uncertainties within the 

meteorological input (Butts et al., 2004; Beven, 2012; Sood & Smakhtin, 2015). These results have particular importance for 
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flood forecasting applications and research concerning extreme floods with the higher resolution ERA-5 dataset providing 

closer agreement between observed and simulated annual maximum river flows, particularly for the Peruvian Amazon. With 

the time series of observed data often beginning in the 1980’s in the Amazon, ERA-5 could provide a useful tool for 

analysing historical flows and establishing links to climate variability. Upon completion, ERA-5 will date back to 1950 

(Zsoter et al., in review2019) meaning locations in which model skill is considered high could benefit from up to 30 years’ 5 

worth of additional data for use in climate studies; thus, allowing for more robust analysis. In future work, it could be of 

interest to compare the performance of ERA-5 against a wider range of precipitation data sets, such as the Multi-Source 

Weighted-Ensemble Precipitation (MSWEP) product that carefully integrates gauge, satellite and reanalysis based estimates. 

Beck et al. (2017) evaluation of 22 precipitation datasets previously demonstrated the advantages of using merged products 

for hydrological modelling purposes.  10 

3.5 How do results differ between using a LSM and a hydrological model?  

The LSM, H-TESSEL and the hydrological model, PCR-GLOBWB wereare directly compared whereby the precipitation 

forcing (ERA-Interim Land) and river routing scheme (CaMa-Flood) wereare consistent. Overall, it appears that the choice 

between using a LSM or a hydrological model in the Amazon basin is dependent not only on the specific region of interest 

but also on the application and needs of the user. Previous studies (Zhang et al., 2016; Beck et al., 2017) have found that 15 

LSM models, on average, perform better in rainfall dominant regions, whereas hydrological models tend to achieve better 

results in snow dominated regions owing to the use of complex energy balance equations introducing additional 

uncertainties. For the Amazon basin, the average Spearman’s rank correlation coefficients between simulated and observed 

peak river flow is slightly higher for the LSMare closely matched with scoresa median of 0.2524 and 0.1923 for H-TESSEL 

and PCR-GLOBWB respectively (Table 2). However, the number of stations with Spearman’s maximum correlation scores 20 

exceeding 0.6 is slightly higher in PCR-GLOBWB at nineseven compared to just three with H-TESSEL (Figs 6a & 6b).  

To illustrate the gain or loss in skill when using the LSM relative to PCR-GLOBWB the Spearman’s annual maximum 

correlation and KGE skill scores were calculated for each station (Figs. 8g & 8h9g & 9h). Overall, 68% of stations show 

improved skill for peak river flow correlations when using the LSM model, though the average gain in skill is minimal 

(meanmedian correlation skill score = 0.0306). This percentage drops to 37% and 22% for improvements in skill which 25 

exceedexceeds 0.1 and 0.2 respectively (Fig. 8g9g). On the contrary, over half of stations see improvements for the KGE 

skill score for the hydrological model, PCR-GLOBWB and 23% of stations observe KGE skill score increases exceeding 

0.25 (Fig. 8h9h).  

A large loss in performance for the KGE can be seen when using H-TESSEL at stations in the Peruvian Amazon at the 

confluence point to the Solimões River with PCR-GLOBWB CaMa-Flood noting similar scores to the calibrated version of 30 

the Lisflood routing model at the San Regis (2) and Tamshiyacu (4) gauging sites (Fig. 8h9h). These stations have KGE skill 

scores of -4.02 and -1.11 respectively. Model performance in this region can largely be attributed to the failure of the H-
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TESSEL CaMa-Flood run to accurately represent the variance of flow and the temporal correlation component of the KGE 

with the variability of modelled flow far higher than in the observed data (Fig. 4a). Northern regions in the Branco basin and 

stations situated towards the Colombian Amazon show the opposite effect with higher KGE coefficients found for the H-

TESSEL CaMa-Flood run, (Fig. 2a), indicating that model suitability is regionally specific.  

3.6 By how much does the calibration of groundwater and routing parameters improve performance? 5 

Calibration of hydrological models is known to be a useful tool in providing more accurate estimates of river flow (Beck et 

al., 2017). However, due to a lack of data and the computational expense required in the calibration of GHMs, many remain 

uncalibrated (Bierkens, 2015; Sood & Smakhtin, 2015). Both Gupta et al. (2009) and Mizukami et al. (2019) demonstrate 

that square error type metrics are unsuitable for model calibration when the model in question requires robust performance 

for high river flows. Improvement of flow variability estimates was documented in both studies when switching the 10 

calibration metric from the NSE to the KGE for both a simple rainfall-runoff model (similar to the HBV model; Bergström, 

1995) and for two more complex hydrological models (VIC and mHM), suggesting similar results are likely to be achieved 

for other hydrological models. To investigate the potential benefits of routing model calibration, whereby the KGE was used 

as the objective function, the time series of river discharge for the calibrated Lisflood runs forced using the ERA-Interim 

Land and ERA-5 reanalysis datasets were compared against the associated default set-ups without routing calibration.  15 

Overall, hydrological performance, on average, improves upon model parameter calibration with computedpositive KGE 

skill scores for both (i.e. an increase in skill) at 61% (59%) of gauging stations for simulations forced with ERA-Interim 

Land and (ERA-5 increasing on average by 0.13 and 0.14 respectively.) (Figs. 9c & 9d). The influence of calibration is 

found to be similar between precipitation datasetsstronger for the simulation forced with ERA-5, with the number of stations 

considered skillful for the achieving “intermediate” KGE upon calibrationscores (i.e. 0.75 > KGE ⩾ 0.5) totalling 6653 20 

compared to 43 for both the ERA-Interim Land and ERA-5 simulations, an increase of twonine and four12 stations 

respectivelyrelative to the associated uncalibrated runs. When observing the spatial distribution of relative improvements, an 

east/west divide can be seen (Figs. 8c & 8d9c & 9d). Generally, decreases in skill are concentrated to stations in the western 

side of the basin, whereas stations located to the east display improved hydrological representation. 

Three stations (2, 3 & 4) in the Peruvian Amazon show increased KGE skill scores when using the calibrated ERA-5 run 25 

relative to the similar uncalibrated set-up (Fig. 8d9d). Conversely, a loss in skill is observed at each station for the calibrated 

run forced using ERA-Interim Land (Fig. 8c9c). These results are likely associated to a larger negative runoff bias within the 

ERA-Interim Land Lisflood_uc run relative to the ERA-5 Lisflood_uc simulation (Figs. 5c and 5e) for the three stations. 

This is supported by Hirpa et al. (2018)), who concluded that stations which have a negative streamflow bias in the default 

run (i.e. Lisflood_uc) also have a negative KGE skill score in the calibrated simulation owing to the challenge of correcting 30 

for a water deficit within the routing component. Thus, for GHMs which tend to underestimate runoff, adjustments of 

parameters within the LSM or hydrological model (e.g. those responsible for the portioning of precipitation into runoff) or 
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through bias correction measures within the precipitation dataset, may be advantageous in efforts to accurately represent 

floods.  

No significant differences between calibrated and uncalibrated Lisflood annual maximum correlation scores are identified 

between simulated and observed peaks (Fig. 77a & Table 2). In total, the number of stations exceeding the 0.6 threshold for 

peak flow correlations remains the same for runs involving ERA-5 and decreases by one for ERA-Interim Land, meaning 5 

that the routing model calibration has very little impact on ourin the ability to capture annual peaks, with the precipitation 

dataset used to force the LSM more influential. This suggests that calibrated parameters controlling flow timing (e.g. 

Manning’s channel coefficient) are not as important for simulating the magnitude of higher flows in the Amazon basin and 

that bias correction of the precipitation or calibration of parameters associated with runoff and evapotranspiration might be 

more useful. As previously highlighted by Hirpa et al. (2018)), the inclusion of an objective function that is explicitly based 10 

on flood peaks could improve the ability of Lisflood to simulate floods. This is supported by previous studies (Greuell et al., 

2015; Beck et al., 2017; Mizukami et al., 2019) which have also identified that improved performance in calibrated models is 

predominately specific to metrics which are incorporated into the objective function used within the calibration. For instance, 

in Mizukami et al. (2019) they find that when using an application specific metric (Annual Peak Flow Bias; APFB) for the 

calibration of two hydrological models, it produced the best peak flow annual estimates compared to using the NSE, KGE 15 

and its components. However, despite this improvement, flood magnitudes were still underestimated for all metrics used in 

calibration and the use of the APFB as the calibration metric resulted in poorer performance across the individual KGE 

components upon evaluation.  

3.7 Aspects forLimitations and future work  

While estimating the magnitude of peak river flowflows is fundamental, more evaluation is required in assessing the ability 20 

to represent the timing of flood peaks. Flood Modelled flood peaks canhave been known to occur too early in large 

Amazonian rivers (Alfieri et al., 2013; Hoch et al., 2017b), but) with accurate flow timing is of particularsignificant 

importance toin the Amazon basin with. For example, the time displacement between peak flows in coinciding tributaries are 

known to play a major factorrole in the dampening of the Amazon flood wave (Tomasella et al., 2010) and in the 

synchronisation of flood peaks, commonly associated with exceptional flood events throughout the Amazon basin (e.g. 25 

Marengo et al., 2012; Espinoza et al., 2013; Ovando et al., 2016). Additional evaluation using metrics which focus 

specifically on the timing aspect, such as the delay index (Paiva et al., 2013), would enable a more complete assessment of 

the hydrological modelling regime.  

A limitation of this type of study is due to the intercomparison being restricted to the macroscale (i.e. only a subset of 

potential modelling configurations are considered). In future work it would be useful to increase the granularity of the 30 

modelling decision matrix to allow conclusions to be more generalised across the modelling community. For instance, when 

comparing the performance of the Lisflood and CaMa-Flood routing models, the results are specific to the simulations forced 
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using the ERA-Interim Land reanalysis dataset. Although useful in providing a general indication of routing performance for 

each model when using a climate reanalysis dataset, the conclusions are specific to that particular comparison with differing 

results possible when using another precipitation input. Future work could investigate one of the research questions stated in 

the objectives (Sect 1.5) at a finer resolution. For example, comparing the Lisflood and CaMa-Flood routing models by 

evaluating several runs which use a greater variety of precipitation products (e.g. MSWEP, CHIRP V2.0, ERA-5, TRMM 5 

v.7 amongst others) to force each model. Such analysis would allow more general conclusions and recommendations to be 

made to the modelling community who are interested in those particular routing schemes. A similar approach could be 

adopted for the assessment of other components of the hydrological modelling chain.  

4 Conclusions   

In this paper, eight different GHMs were employed in an intercomparison analysis using two verification metrics to assess 10 

model performance against gauged river discharge observations. The motivation for this work stemmed from the need to 

evaluate the ability of GHMs to reproduce historical floods in the Amazon basin for use in climate analysis and to identify 

the strengths and weaknesses which exist along the hydrological modelling chain in order to provide insight to model 

developers. The implications of these results suggest that the choice of precipitation dataset is the most influential 

component of the GHM set-up in terms of our ability to recreate annual maximum river flows in the Amazon basin. This is 15 

evident with average station correlations between observed and simulated annual maximum river flows increasing when 

using the new ERA-5 reanalysis dataset with significant improvements in locations of the Peruvian Amazon. , with 

significant improvements in locations of the Peruvian Amazon. In this region, waters are sourced from Andean origins where 

rainfall can often be poorly represented due to topographically complex terrains (Paiva et al., 2013). Thus, those wishing to 

simulate higher flows in the upper reaches of the Amazon may benefit from choosing a precipitation dataset which has a 20 

high spatial resolution, whereby the upper atmosphere is discretised at finer scales. Although, an exact recommended spatial 

resolution cannot be provided based on the results of this study alone, previous works (e.g. Beck et al., 2017) support the 

need for a comparatively high-resolution data set in addition to other advantageous factors such as a long temporal record 

and the inclusion of daily gauge corrections.  

Although parameter calibration of the Lisflood routing model improved the representation of the whole hydrological regime 25 

across the basin, the agreement between observed and simulated peak discharge values saw no change upon the calibration. 

This indicates that the benefit of calibration is confined to the objective function used, in this case the KGE, and highlights 

that further model calibration should be undertaken using an objective function that fits the purpose of the application (e.g. 

RMSE of flood peaks or APFB for flood forecasting systems).) could be worth considering. It is important to reiterate 

however, that thoughtful consideration is required if choosing application specific metrics, with the potential to degrade 30 

performance in other aspects of the hydrological regime (e.g. bias and flow variability ratios) a concern (Mizukami et al., 
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2019). The relative importance of good performance in the specific target metric compared to better performance for a range 

of metrics should be assessed on a model by model and circumstantial basis, taking into account the needs of potential users.  
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Figure 1: (a) Locations of the 75 hydrological gauges and the river network of the Amazon basin. Numbers represent stations 

which are referred to throughout the main text in italics. For station information see Table S1. (b) Locations of existing and under-

construction dams as of 2017 (see Latrubesse et al., 2017). (c) Geological map of the Amazon (Schenk et al., 1999). (d) Elevation 

map of the basin from the digital elevation model (DEM) GTOPO30, at a horizontal resolution of approximately 1 km (USGS, 

1996).  5 
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Table 1: Characteristics of the eight GHMs used to produce estimates of daily river discharge.  5 

Model Run Meteorological 
forcing1 

GHM2 GHM 
Spatial  

Resolution 

Routing 
Model3 

Routing 
Spatial 

Resolution 

Temporal 
Resolution 

Start End Calibration Authors 

ERA-I Land H-

TESSEL 

Lisflood_uc 

ERA-I Land H-TESSEL ~0.750 

(~80 km) 

Lisflood 0.100 (~10 

km) 

Daily 01 Jan 

1997 

31 Dec 

2015 

None Balsamo et al. (2015)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

ERA-I Land H-

TESSEL 

Lisflood_c  

ERA-I Land H-TESSEL ~0.750 

(~80 km) 

Lisflood 0.100 (~10 

km) 

Daily 01 Jan 

1997 

31 Dec 

2015 

See Hirpa et 

al. (2018) 

Balsamo et al. (2015)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

 

ERA-5 H-TESSEL 

Lisflood_uc  

ERA-5 H-TESSEL ~0.280 (~31 

km) 

Lisflood 0.100 (~10 

km) 

Daily 01 Jan 

1997 

31 Dec 

2015 

None See ECMWF (2018)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

 

ERA-5 Lisflood 

H-TESSEL_c 

 

ERA-5 H-TESSEL ~0.280 (~31 

km) 

Lisflood 0.100 (~10 

km) 

Daily 01 Jan 

1997 

31 Dec 

2015 

See Hirpa et 

al. (2018) 

See ECMWF (2018)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

 
Reforecasts H-

TESSEL 

Lisflood_c 

 

ECMWF 20-year 

control 

Reforecasts 

H-TESSEL ~0.280 (~31 

km) 

Lisflood 0.100 (~10 

km) 

Daily 01 Jan 

1997 

31 Dec 

2015 

See Hirpa et 

al. (2018) 

See ECMWF (2017)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

ERA-I Land H-

TESSEL CaMa-

Flood  

ERA-I Land H-TESSEL ~0.750 (~80 

km) 

CaMa-Flood 0.250 (~25 

km) 

Daily 01 Jan 

1997 

31 Dec 

2015 

None Balsamo et al. (2015)1 

Balsamo et al. (2009)2 

Yamazaki et al. (2011)3 

 

ERA-I Land PCR-

GLOBWB CaMa-

Flood  

ERA-I Land PCR-

GLOBWB 

~0.500 (~50 

km) 

CaMa-Flood 0.250 (~25 

km) 

Daily 01 Jan 

1997 

31 Dec 

2015 

None Balsamo et al. (2015)1 

Sutanudjaja et al. (2018)2 

Yamazaki et al. (2011)3 

TRMM 

CRESTEF5 

TMPA 3B42 v7. 

Real-time 

EF5/CREST ~0.250 (~25 

km) 

EF5/CREST 0.050 (~5 

km) 

Daily 01 Jan 

2003 

31 Dec 

2015 

None Huffman et al. (2007)1 

Wang et al. (2011)2 

Clark et al. (2016)3 
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Figure 2: Full KGE scores at 75 hydrological gauging stations for all simulations for. For the period 1997-2015 and 2004-2015 for 

CREST EF5 (g). Values greater than zero0.75 are considered skilfulto indicate good performance (i.e. dark blue circles). To allow 

for easier model comparisons, plots are arranged by the different precipitation datasets (rows) and routing models (columns) with 

the exception of EF5 (g). For example, the final column consists of model runs using the calibrated Lisflood routing model.  5 
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Figure 3: Correlation component of the KGE (Pearson’s) at 75 hydrological gauging stations for all simulations for. For the period 

1997-2015 and 2004-2015 for CREST EF5 (g). Values greater than 0.6 are considered skilful (i.e. blue circles).   
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Figure 4: Alpha (i.e. variability ratio) component of the KGE at 75 hydrological gauging stations for all simulations for. For the 

period 1997-2015 and 2004-2015 for CREST EF5 (g). Blue circles indicate that the variability in the simulated time series is higher 

than that of the observed, while red circles show the opposite effect. Values closer to one indicate better model performance (i.e. 

grey circles). 5 
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Figure 5: Beta (i.e. bias ratio) component of the KGE at 75 hydrological gauging stations for all simulations for. For the period 

1997-2015 and 2004 -2015 for CREST EF5 (g). Blue circles indicate that the bias in the simulated time series is higher than that of 

the observed, while red circles show the opposite effect. Values closer to one indicate better model performance (i.e. grey circles). 
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Figure 6: Spearman’s ranked correlation coefficients for observed against simulated annual maximum discharge at 75 

hydrological gauging stations for all simulations for. For the period 1997-2015 and 2004-2015 for CREST EF5 (g). Values 

exceeding 0.6 are considered skilful (i.e. blue shapes). Number of overlapping years of data between observations and simulations 

are denoted by different shapes (e.g.. A triangle represents 5-9 years, a square 10-14 years and a circle for 15-19 years of 5 

overlapping data)..  
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Figure 7: Boxplots showing the distribution of scores for the (a) Spearman correlation coefficient (annual maximum), (b) KGE, (c) 

KGE Pearson’s rho, (d) KGE beta and (e) KGE alpha, for all simulations. 
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Table 2:  MeanMedian scores for the 75 hydrological gauging stations for all metrics.  

Model Runs Spearman Annual 

Max Correlations 

KGE r 

(Pearson’s) 

Beta Alpha 

ERA-Interim Land H-TESSEL 

CaMa-Flood 

0.2524  0.0330  0.5761 0.9892  1.5333  

ERA-Interim Land PCR-

GLOBWB CaMa-Flood 

0.1923  0.1018  0.5359  1.120.98 0.7464  

ERA-Interim Land H-TESSEL 

Lisflood_uc 

0.3740  0.2351  0.7580  1.040.99  1.5125  

ERA-Interim Land H-TESSEL 

Lisflood_c 

0.3742  0.3756  0.7580  0.9286  1.3115  

ERA-5 H-TESSEL Lisflood_uc 0.4853  0.2763  0.7985  1.090.97  1.4726 

ERA-5 H-TESSEL Lisflood_c 0.4854 0.4164  0.8086 0.9787  1.2806  

TRMM CREST EF5 0.2124  0.1646  0.6571  0.7880  1.3208  

Reforecasts H-TESSEL 

Lisflood_c 

0.3332  0.5363 0.7683 1.000.96  1.1006  

MeanMedian across models 0.3435 0.2650 0.7078  0.9991  1.2811  
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Figure 8: Mean daily precipitation throughout the Amazon basin, for (a) ERA-Interim Land, (b) ERA-5 and (c) the ECMWF 20-

year reforecasts. For the period 1997-2015.  
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Figure 8Figure 9: Relative improvement in skill at each gauging station for Spearman annual maximum correlations and KGE 

values (i.e. skill scores). (a-d) show relative gain or loss in skill when using the newly calibrated Lisflood run (Lisflood_c) relative 

to the uncalibrated model run (Lisflood_uc)), using precipitation forcing from both the ERA-Interim Land and ERA-5 reanalysis 

products.. (e-f) showshows the relative gain or loss in skill when using ERA-5 as opposed to ERA-Interim Land. (g-h) showshows 5 
the relative gain or loss in skill when using the LSM H-TESSEL rather thancompared to the hydrological model PCR-GLOBWB. 

All scores are calculated using the skill scores in Eq. (1). Red indicatescircles indicate a decrease in skill, whereas blue 

representscircles represent an increase. 
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Figure 910: Scatterplots of observed against simulated river flow at the Tamshiyacu gauging site, Peru (4). For (a) ERA-Interim 

Land, (b) ERA-5 and (c) the ECMWF 20-year reforecasts forced through the calibrated Lisflood routing model. Dashed black 

lines indicate the observed and simulated 90th percentile of river flow. For the period 1997-2015.   
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