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22 Abstract. Cationic aluminium species are toxic to terrestrial and aquatic life. Despite decades of acid
23 emission reductions, accumulating evidence shows that freshwater acidification recovery is delayed in
24 locations such as Nova Scotia, Canada. Further, spatial and temporal patterns of labile cationic forms
25  of aluminium (Al;) remain poorly understood. Here we increase our understanding of Al; spatial and
26  temporal patterns by measuring Al; concentrations in ten streams in acid-sensitive areas of Nova

27  Scotia over a four-year time period. We observe widespread and frequent occurrences of Al;

28  concentrations that exceed toxic thresholds (>15 ug L™). Al; patterns appear to be driven by known
29 Al drivers - pH, dissolved organic carbon, dissolved aluminium, and calcium - but the dominant

30 driver and temporal patterns vary by catchment. Our results demonstrate that elevated Al; remains a
31 threat to aquatic ecosystems. For example, our observed Ali concentrations are potentially harmful to
32 the biologically, economically, and culturally significant Atlantic salmon (Salmo salar).

33

34 1 Introduction

35 Freshwater acidification caused elevated concentrations of cationic aluminium (Al;) at the end
36  of the last century that led to increased freshwater and marine mortality and, ultimately, the extirpation
37  of native Atlantic salmon (Salmo salar) populations in many rivers (Rosseland et al., 1990), for example
38 in Scandinavia (Henriksen et al., 1984, Hesthagen and Hansen, 1991), the eastern USA (Monette and
39  McCormick, 2008, Parrish et al., 1998), and Nova Scotia, Canada (Watt, 1987). Following reductions
40  in anthropogenic sulfur emissions in North America and Europe since the 1990s, many rivers showed

41  steady improvements in annual average stream chemistry (Evans et al., 2001, Monteith et al., 2014,
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Skjelkvale et al., 2005, Stoddard et al., 1999, Warby et al., 2005), including reduced concentrations of
Al; in the USA (Baldigo and Lawrence, 2000, Buchanan et al., 2017, Burns et al., 2006) and Europe
(Benes et al., 2017, Davies et al., 2005, Monteith et al., 2014). However, recent evidence highlights
delayed recovery from acidification in some areas (Houle et al., 2006, Warby et al., 2009, Watmough
et al., 2016), including SWNS (Clair et al., 2011), raising concerns about elevated Al; concentrations.

Aluminium (Al) toxicity can be caused by both precipitated and dissolved forms in
circumneutral waters (Gensemer et al., 2018); however, the cationic species of Al, such as Al**,
AI(OH),'*, and AI(OH)?* are considered to be the most labile and toxic to salmonids as they bind to the
negatively charged fish gills causing morbidity and mortality through suffocation (Exley et al., 1991),
reducing nutrient intake at gill sites, and altering blood plasma levels (Nilsen et al., 2010). Further, the
effects of sub-lethal exposure to freshwater Al elicits osmoregulatory impairment (Monette and
McCormick, 2008, Regish et al., 2018) which reduces survival in the hypertonic marine environment
(McCormick et al., 2009, Staurnes et al., 1996). Elevated concentrations of Al; are also toxic to other
freshwater and terrestrial organisms (Boudot et al., 1994, Wauer and Teien, 2010), such as frogs and
aquatic birds (Lacoul et al., 2011).

Al speciation varies with pH (Helliweli et al., 1983, Lydersen, 1990), where positive Al species
dominate over neutral and negative species below pH 6.3 at 2 °C and below pH 5.7 at 25 °C (Lydersen,
1990), with the most toxic Al species, AI(OH).™* (Helliweli et al., 1983) dominating Al speciation
between pH 5.0-6.0 at 25 °C, and 5.5-6.5 at 2 °C (Lydersen, 1990). Thus, the toxicity of Al increases
with increased pH up to the formation of gibbsite (Schofield and Trojnar, 1980). Additionally, colder
waters will have a higher proportion of toxic species at higher pH values than warmer waters (Driscoll
and Schecher, 1990). The bioavailability of Al is reduced by the presence of calcium (Ca) (Brown,

1983), which can occupy the negatively charged gill sites, and dissolved organic carbon (DOC), which



https://doi.org/10.5194/hess-2019-438 Hydrology and
Preprint. Discussion started: 28 October 2019 Earth System
(© Author(s) 2019. CC BY 4.0 License. Sciences

Discussions
By

65  occludes Al; through the formation of organo-Al complexes (Alo) that are nontoxic to fish (Erlandsson
66 etal, 2010).

67 Despite being the most common metal on Earth’s crust, Al is usually immobilized in clays or
68  hydroxide minerals in soils. Rates of Al release into soil water from soil minerals increase with three
69  drivers: 1) low soil pH, 2) low soil base saturation, and 3) high soil DOC concentrations. Lowered pH
70 increases Al solubility and observations confirm that Ali concentrations are negatively correlated with
71 pH (Campbell et al., 1992, Kopacek et al., 2006). Low levels of base saturation can cause charge
72 imbalances resulting in the release of Al into soil waters from clay particles, and later into drainage
73 waters (Fernandez et al., 2003) and chronic acidification thus shifts available exchangeable cations in
74 the soil from Ca and magnesium (Mg) towards Al (Schlesinger and Bernhardt, 2013, Walker et al.,
75 1990). Higher concentrations of DOC in soil water increase the release of Al through two mechanisms:
76 1) as an organic acid, DOC decreases soil pH, thus increasing Al release (Lawrence et al., 2013), and
77 2) by forming organic complexes with Al; it maintains a negative Al concentration gradient from the
78  cation exchange sites to the soil water, increasing rates of Al release (Edzwald and Van Benschoten,
79 1990, Jansen et al., 2003). Field studies confirm Al concentrations to be positively correlated with DOC
80  (Campbell et al., 1992, Kopacek et al., 2006) although at higher concentrations of DOC, Al may be
81  organic-complexed and less toxic to aquatic organisms (Witters et al., 1990).

82 Once mobilized in soil waters, export of Ali to drainage waters requires anions to maintain
83  charge balance. Storm events have been shown to increase Ali export due to added anions (e.g., Cl,
84  S04%, F), and from the movement of flow paths to shallower soil horizons where more Al may be
85  available for transport. For example, from 1983 to 1984, Al concentrations for the River Severn in

86  Wales increased ten-fold during the stormflow peak compared to the baseflow (Neal et al., 1986).
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However, the association of increased Al; concentrations with storm flow is not consistent in the
literature (DeWalle et al., 1995, McKnight and Bencala, 1988).

Annual patterns of Al; typically show a peak, but the timing of the peak varies. In some areas,
Al;i concentrations peak in the spring and winter, correlated with flow peaks, such as in Quebec
(Campbell et al., 1992), Russia (Rodushkin et al., 1995), and along the Czech-German border (Kopacek
et al., 2000, Kopacek et al., 2006). In other areas, Al concentrations were found to be higher in the
summer such as in Virginia, USA (Cozzarelli et al., 1987). If the timing of peak Al; concentrations
coincides with sensitive stages of aquatic organisms, the potential for large biological impacts is high.

Our understanding of spatial and temporal trends of Al; is limited by the relative paucity of
samples: Al; is not measured as part of standard analyses. Our understanding is also limited by the
difficulty in comparing the wide variety of methods for estimating Al;; different definitions, often
operational, of toxic Al include inorganic Al, inorganic monomeric Al, labile Al, AI®*, and cationic Al
(Table Al). Definitions for both inorganic monomeric Al and cationic Al include all positively charged
species of Al.

Acid sensitive areas of NS, here abbreviated as NSa (see Clair et al., 2007), with once-famous
wild Atlantic salmon populations, were heavily impacted by acid deposition at the end of the last
century, which originated from coal burning in central Canada and Northeastern USA (Hindar, 2001,
Summers and Whelpdale, 1976). NSa catchments are particularly sensitive to acid deposition due to
base cation-poor and slowly weathering bedrock that generates thin soils with low acid neutralizing
capacity (ANC), extensive wetlands, and episodic sea salt inputs (Clair et al., 2011, Freedman and Clair,
1987, Watt et al., 2000, Whitfield et al., 2006). A 2006 fall survey found that Ali concentrations in NS
exceeded the 15 pg L™ toxic threshold suggested by the European Inland Fisheries Advisory Council

(EIFAC) for aquatic health in seven of 42 rivers surveyed (Dennis and Clair, 2012). However, apart
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110  from this study, little is known about the regional extent and patterns of Ali. Here, we aim to increase
111 our understanding of current Al; spatial and temporal patterns in relation to toxic thresholds, and to
112 identify potential drivers by conducting a four-year survey of Al; concentrations in ten streams across

113  acid-sensitive areas of NS, Canada.

114 2 Materials and methods

115 2.1 Study area

116 We surveyed Al; concentrations at ten study catchments in NSa, ranging from headwater to
117  higher-order systems: Mersey River (MR), Moose Pit Brook (MPB), Pine Marten Brook (PMB), Maria
118  Brook (MB), Brandon Lake Brook (BLB), above the West River lime doser (ALD), Upper Killag River
119  (UKR), Little River (LR), Keef Brook (KB), and Colwell Creek (CC) (Table 1, Fig. 1 and 2). Our study
120  catchments are predominantly forested, draining slow-weathering, base-cation poor bedrock, producing
121 soils with low ANC (Langan and Wilson, 1992, Tipping, 1989). The catchments also have relatively
122 high DOC concentrations (Ginn et al., 2007) associated with the abundant wetlands in the region (Clair

123 etal., 2008, Gorham et al., 1986, Kerekes et al., 1986).

124 2.2 Data collection and analysis

125 We measured Al; concentrations at three of the ten catchments from April 2015 to September
126 2017 (MR, MPB, PMB), on a weekly to monthly frequency during the snow free season (approximately
127  April to November, Table A2). In 2016-2018, seven sites were added and sampled every two weeks to

128  monthly during the snow-free season.
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129 Al; sampling events comprise grab samples for lab analysis and in situ measurements of pH and
130  water temperature (Tw). We calculate Al; as the difference between dissolved Al (Alg) and Al, following
131  Dennis and Clair (2012) and Poléo (1995) (Eq. 1), separating the species in the field to reduce errors
132 caused by changes in temperature and pH in transport from field to lab.

133 Al = Aly — Al ()
134 Alg is measured as the Al concentration of a filtered sample and Alo is measured as the eluate
135  from passing filtered water through a 3 cm negatively charged cation exchange column (Bond Elut Jr.
136  Strong Cation Exchange Column). Samples were passed through the cation exchange column at a rate
137  of approximately 30 to 60 drops per minute. From this method, Al is operationally defined as the non-
138 labile, organically-complexed metals and colloids, and Al is defined as the positive ionic species of Al
139  (e.g., AP, AI(OH)?*, and Al(OH).").

140 Stream chemistry samples (50 ml) were collected using sterilized polyethylene syringes into
141  sterilized polyethylene bottles. Samples for sulfate (SO4%) analysis were not filtered. Trace metal
142 samples were filtered (0.45 um) and preserved with nitric acid (HNOz). Samples for DOC analysis were
143  filtered (0.45 pm) and transported in amber glass bottles containing sulfuric acid preservative (H2SO4)
144 to prevent denaturation. All samples were cooled to 7 °C during transport to the laboratories. Samples
145  were delivered to the laboratories within 48 hours of collection, where they were further cooled to <
146  4°C prior to analysis (Appendix D).

147 We examined correlations between Al; and water chemistry parameters: Alg, Ca, DOC, pH,
148  SO4%, Tw, fluoride (F), nitrate (NO3), and runoff (where data are available). Correlations were analysed
149  within and across sites. For the purposes of this study, we use the toxic threshold of Aliat15 ug L, as

150 the majority of our pH observations were greater than or equal to 5.0 (Table A2, Appendix D3).
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151 3 Results and discussion

152 3.1 Patterns of Al;

153 Al; concentrations exceed toxic levels (15 ug L) at all sites during the study period (Table A2).
154  Sites in the eastern part of the study area have the highest proportion of samples exceeding threshold
155  levels, including one site with 100% of samples in exceedance (Fig. 1). Mean Al; concentrations across
156  all sites range from 13-60 ug L (Table 1), with the highest mean concentrations also occurring in the
157  eastern part of the study area (Fig. 2). Ali concentrations exceed 100 ug L™ (approximately seven times
158 the threshold) at three sites (Table A2). In the sites with the longest and most frequent data collection
159 (MR and MPB), Al; concentrations exceed the toxic threshold in consecutive samples for months at a
160  time, particularly in the late summer (Fig. B1). Our Al; concentrations are consistent with the 6.9-230
161  ug L* range of Al; concentrations measured across NS by Dennis and Clair (2012) and are higher than
162  concentrations measured in Norway from 1987-2010 (5-30 ug L) (Hesthagen et al., 2016).

163 The percent of Al not complexed by DOC (% Ali/Alg) ranges from a minimum of 0.6% to a
164  maximum of 50%, with a median value of 10.7%, across all sites. These findings are similar to those
165  found NS by Dennis and Clair (2012) of the proportion of Al; in total aluminum (Al (min. = 4%, max.
166  =70.1%, med. = 12.4%), and less than those found by Lacroix (1989) (over 90 % Alo/Alg). Twand pH
167  have a significant positive correlation with Ali/Alq (Table A3), consistent with an earlier observation
168  that Al toxicity increases with pH (Schofield and Trojnar, 1980). However, even when the percentage
169  of Ali/Alq is low, Ali concentrations remain well above thresholds for toxicity (Fig. B4-B13). Previous
170  studies show Ali/Alq is low during baseflow (Bailey et al., 1995, Murdoch and Stoddard, 1992,
171 Schofield et al., 1985), similar to our findings (Figs. B4-B13); more consistent year-round sampling is

172 needed to obtain a better picture of seasonal patterns in Al speciation in NSa.
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173 3.2 Potential Al; drivers

174 Alg is significantly (a = 0.05) and positively correlated with Al;in seven of the ten study sites
175 (ALD, KB, LR, MB, MPB, MR, PMB) (Fig. 3, Table A4), despite the high concentrations of DOC. Al
176 s also significantly and positively correlated with DOC in four sites (ALD, KB, MPB, MR) (Fig. 3,
177  Table A4), consistent with other studies (Campbell et al., 1992, Kopacek et al., 2006). The positive
178  correlation between DOC and Al; concentrations may suggest that the ability of DOC to mobilize Alg
179  insoils is stronger than its ability to occlude Al; in streamwaters.

180 Ca is significantly and positively correlated with Al; at two sites (MPB, MR) (Fig. 3, Table A4).
181  The positive relationship between Ca and Al; is the opposite of expectations. We hypothesize that this
182 s due to the two study sites having very low Ca concentrations (mean concentrations below 1 mg L),
183  below which soil water Ca concentrations are too low to retard Al release. Tw is also significantly
184  positively correlated with Al; at two sites (MR, MPB) (Fig. 3, Table A4), likely reflective of the
185  temperature-related drivers of Al concentration and speciation. Runoff is significantly and negatively
186  correlated with Al; at one site MPB (Fig. 3, Table A4). Runoff data are available for only two of the
187  study sites (MR, MPB) and so more runoff data are needed to improve our understanding of the relation
188  between runoff and Al; in NSa.

189 We did not observe the negative association between pH and Ali observed in previous studies
190  (Campbell et al., 1992, Kopacek et al., 2006). pH is negatively correlated with Al; in four out of ten
191  sites, but none of these relationships are statistically significant (Fig. 3, Table A4). We did observe a
192  statistically significant positive relationship between pH and Ali/Alg; thus it seems that pH may play a
193  more important role in determining the proportion of different Al species rather than the absolute value

194  of Al; present in streamwaters.
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195 F has also been found to be a complexing agent that affects the speciation of Al at low pH levels
196  and relatively high concentrations of F- (>1 mg L) (Berger et al., 2015). The concentrations of F at
197  the study sites are mostly below this threshold (mean across all sites = 0.045 mg L™); however, there is
198 still asignificant positive effect of F- on Al concentrations across at two sites (KB, MPB) (Fig. 3, Table
199  A4). NOs and SO4> are also potential complexing ligands of Al; however, we did not observe any
200  correlation between Al; and either of these parameters, except for a significant negative correlation
201  between SO4* and Al; at MB.

202 The highest concentrations of Al; observed (> 100 ug L) often occurred in early summer (late
203 June or early July in 2016-2018) when Alg, Ca, and DOC concentrations had not yet reached their
204  annual peak (Table A2). The spring/summer extreme events occurred among the first exceptionally
205 warm days (> 21 °C) of the year, in dry conditions, and when the proportion of Alo/Alg was low
206  (lowering to approximately 60-70% from higher levels of around 80-90%) (Figs. B4-B13). pH was not
207  abnormally low during these events (ranging from 4.8 to 6.13), Ca concentrations were low (less than
208  or equal to 800 pg L) and DOC concentrations ranged from 15-21 mg L™X. The observed peak in Al
209  concentrations during times of lower discharge contrasts with studies that found higher Al;
210  concentrations during higher flow (Campbell et al., 1992, Kopacek et al., 2000, Neal et al., 1986,
211  Rodushkin et al., 1995). Further research is required to test hypotheses on why high Al; coincides with

212  high DOC and low flow periods.

213 3.3 Possible seasonal groupings of Al in NSa

214 In the two sites with the most samples, MPB and MR, groupings of data are visible that are
215  temporally contiguous, potentially indicating seasonally-dependent Ali behavior (Fig. 4). This is

216  supported by stronger linear correlations (r?) among variables when grouped by “season” (Table 2); for

10
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217  example, for the correlation between pH and Al; at MR, r? improves from 0.02 for year-round data (Fig.
218 B17)toupto 0.78 in season 1 (Fig. 4). The transition dates between the seasons are similar for the two
219  catchments, but not the same (Table A2), and vary by year. Here we propose initial characterization of
220 the potential “seasons”; more research is needed to test these hypotheses on seasonal divisions and their
221  drivers using larger datasets and Generalized Linear Mixed Model analysis to test for statistical
222  significance among the potential seasonal groupings.

223 Season 1 (approximately April/May) is coincident with snow-melt runoff and is characterized
224 Dby relatively low concentrations of Ali (2-46 ug L), low pH (4.5-5.3), and lower concentrations of
225  most constituents, including DOC, and cold temperatures (4 °C). During this season, Al; is strongly
226  coupled with pH, DOC, Alg and Ca in MR, but less so in MPB. A possible explanation is that season 1
227  is dominated by snowmelt hydrology in which cation exchange between soil and discharge occurs less
228  efficiently, which has been attributed to ice and frozen soil potentially limiting water contact time with
229  soil (Christophersen et al., 1990). The onset of season 2 (approximately late June) is characterized by
230 increasing Al; concentrations, temperature, and DOC. Ali and pH values are higher in this season and
231 Al becomes strongly negatively correlated with pH as pH increases to the lower threshold for gibbsite.
232 In MR in season 2 Al; has a strong positive relationship with DOC. The highest observed Al;
233  concentrations of the year occur in season 2 (Fig. 4). Al; relations are weak in MR in season 3
234  (approximately September through March), likely due to the lower frequency of measurements during
235  the winter. Season 3 in MR has the highest concentrations of dissolved constituents (Alq, Ca, and DOC),

236  whereas in MPB only Ca has the highest concentrations.

11



https://doi.org/10.5194/hess-2019-438 Hydrology and
Preprint. Discussion started: 28 October 2019 Earth System
(© Author(s) 2019. CC BY 4.0 License. Sciences

Discussions
By

237 3.4 Ecological implications

238 While the summer peak in Al; that we observed in NSa does not coincide with the smoltification
239  period, when salmon transition from parr to smolt and are highly sensitive to Al exposure (Kroglund et
240  al., 2007, Monette and McCormick, 2008, Nilsen et al., 2013), continued exposure throughout the year
241  may still negatively affect salmon populations, as accumulation of Al; on gills reduces salmon marine
242 and freshwater survival (Kroglund et al., 2007). Further, Ali concentrations as low as 20 ug L may
243  impair marine survival without reducing freshwater survival (Kroglund and Staurnes, 1999, Staurnes
244 et al.,, 1996), contributing to the observation that marine threats are driving population declines of
245  Atlantic Salmon (e.g. Gibson et al., 2011). In addition, as the higher Al; concentrations appear to be
246  driven — at least in part — by lower flow in the summer months, increases in the length and severity of
247  droughts and heat-waves due to climate change may further increase Ali concentrations and exacerbate
248  Al; effects on aquatic life. Increases in Al have already been observed across areas previously affected
249 by freshwater acidification (Sterling et al., in prep.).

250 For example, because many peak Ali concentrations occur on the first exceptionally warm day
251 in late spring, the peaks may be exacerbated with springtime warming associated with climate change.
252  As warm days begin to occur earlier in the season, there may be increasing chance of the peak Al;
253  concentrations overlapping with smoltification season and emergence of salmon fry; both considered
254  the most vulnerable life stages of Atlantic salmon (e.g., Farmer, 2000), although the phenology of the

255  smolt run is expected to similarly advance earlier in the year.

12
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256 4 Conclusions

257 Our study reveals that widespread and persistent toxic concentrations of Al; in NSa freshwaters
258  pose a risk to aquatic, and potentially terrestrial, life. Previously, high DOC concentrations were
259  presumed to protect aquatic life against Al;; our study shows that this presumption does not hold.

260 Our results suggest that the recent 88 to 99% population decline of the Southern Uplands
261  Atlantic salmon population in NSa (Gibson et al., 2011) may be partially attributable to Al;, in contrast
262  to earlier studies which downplayed the role of Al; in Atlantic salmon mortality (Bowlby et al., 2013,
263  Lacroix and Townsend, 1987). These high Al; concentrations in NSa highlight the need to increase our
264  understanding of the influence of Al; on both terrestrial and aquatic ecosystems, and its implications for
265  biodiversity.

266 The catchments with the highest Al; levels had particularly low Ca levels, raising concerns as
267  Ca s protective against Al; toxicity, and highlighting coincident threats of Ca depletion and elevated
268  Al. Recent work has identified globally widespread low levels and declines in Ca (Weyhenmeyer et al.,
269  2019), raising the question of what other regions may also have Al; levels exceeding toxic thresholds.
270 The serious potential consequences Al; highlight the importance for actions to further reduce
271  acid emissions and deposition, as critical loads are still exceeded across the province (Keys, 2015), and
272  to adapt forest management practices to avoid base cation removal and depletion. Addition of base
273  cations through liming and enhanced weathering of soils and freshwaters may accelerate recovery from

274  acidification.

275

13
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276  Data availability

277 Readers can access our data from HydroShare supported by CUASHI, a FAIR-aligned data

278  repository (https://www.re3data.org/).
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537  Table 2. Al; relations with other stream chemistry parameters separated by possible seasons. Dark shading
538 represents r2 > 0.6. Medium shading represents r? 0.2-0.6. Light shading represents r? 0.0-0.2. Green

539 indicates negative relation. Orange indicates positive relation.

540
pH DOC Tw Alg Ca
slope  r? slope r? slope r? slope r? slope r?
Season 1
MR
MPB
Season 2
MR -53.2 0.27
MPB -19.6 0.22
Season 3
MR 4.57 0.046 0.089 0.0014 0.25 0.088 0.021 0.014 0.006 0.0001
MPB
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©]

0 %-33 %
33 %-50 %
50 %-75 %
75 %-100 %

UKR: 94 %
ALD: 91% CC: 100 %
KB:80% BLB: 95 %

544 Figure 1. Study site locations showing proportion of samples when Al; concentrations exceeded the 15 ug

545 L toxic threshold. For additional site details, refer to Table 1.
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546

547  Figure 2. Mean Al; concentrations between spring 2015 to fall 2018.
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549
550  Figure 3. Correlation among water chemistry parameters and Al; concentration, where red polygons and

551 lines indicate a positive correlation with Al;, and blue polygons and lines indicate a negative correlation
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552 with Ali. One Al outlier removed for MR (value: 2 pg L™, date: 30 April 2015). Correlation data are listed

553  in Table A4.

Mersey River

Ali Concentration (ug L'Y)

.:;_3.‘
i

Vioose Pit Brook

51 .
s0 150 50 350 aso S50

pH (unit) DOC (mg LY) Tu (°C) Alg (ug LY

m 1 W 2% 3B 3 o B 10 15 0

Seasonl e Season2 e Season3

Mersey River

200 700 1200 1700 0 2 3 4 5 € ¢ “ w = o e

500
250
400

Ali Concentration (ug L'Y)
Al concentration (ug LY

.

200 e
20 . . S . b i
- e, 100

WVioose Fit Brook

200 700 1200 1700 ax 60 os 1 15 1 0 500 2000 1500 2000

554 Cafug L'Y Ca/Aly Q(m?s?) Ca(ugL?)
555  Figure 4. Scatterplot relationships among water chemistry parameters for seasons 1, 2, and 3 at MR and

556  MPB. R? values are listed in Table A5. One runoff outlier removed for MR (value: 17.294 m3 s, date: 22
557  April 2015). One runoff outlier removed for MPB (value: 34.994 m3 s, date: 22 April 2015).

558
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Table A4 Kendal-tau correlation and significance (o = 0.05) between Al; and other water chemistry parameters for

each study site. One Al; outlier removed for MR calculations (value: 2 pug L%, date: 30 April 2015).

Correlation Significance
Site Variable Unit Slope (p-value)

Ald pg L™ 0.29 0.044
Ca pg L™ 0.22 0.143
DOC mg L™ 0.36 0.013
ALD  pH unit 0.19 0.190
Water Temp. °C 0.32 0.093
F* pg L™ 0.182 0.533
NOs pg L™ 0.600 0.142
Nekt2 pg L™ -0.037 0.876
Ald pg L™ 0.03 0.852
Ca pg L™ 0.17 0.238
DOC mg L™ 0.08 0.575
pH unit 0.07 0.622
BLB  Water Temp. °C 0.35 0.099
F* pg L™ -0.036 0.901
NOs- pg L™ -0.109 0.708

SO4* pg L™
-0.184 0.468
Ald pg L™ 0.11 0.708
Ca pg L™ -0.22 0.451
DOC mg L™ 0.25 0.383
pH unit -0.04 0.901

cc

Water Temp. °C 0.67 0.174

F+ pg L™

NOs- pg L™

Nerty pg L™
Ald pg L 0.800 0.050
Ca pg L™ 0.200 0.624
DOC mg L™ 0.800 0.050
KB pH unit -0.200 0.624
Water Temp. °C 0.600 0.142
F+ pg L™ 0.800 0.050

NO3" pgL™
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SO4* pg L™ -0.400 0.327
Ald pgL™ 0.37 0.047
Ca pg L™ 0.24 0.226
DOC mg L™ 0.25 0.189
pH unit 0.19 0.319
LR
Water Temp. °C 0.02 0.937
F+ pg L™
NO3 pg L™ -0.333 0.348
Nercy pg L™ 0.105 0.801
Ald pg L™ 0.739 0.001
Ca pg L™ -0.062 0.783
DOC mg L™ 0.400 0.073
pH unit -0.279 0.214
MB
Water Temp. °C 0.125 0.580
F+ pg L™ -0.028 0.917
NO3 pgL™ -0.182 0.533
SO4* pg L™ -0.463 0.050
Ald pg L™ 0.550 0.000
Ca pg L™ 0.580 0.000
DOC mg L™’ 0.574 0.000
pH unit -0.169 0.146
MPB  Water Temp. °C 0.280 0.016
Runoff mm day™’ -0.232 0.042
F+ pg L™ 0.239 0.042
NO3 pg L™ 0.190 0.160
SO04* pg L™ -0.206 0.067
Ald pg L™ 0.459 0.000
Ca pg L™ 0.317 0.002
DOC mg L™ 0.382 0.000
pH unit 0.097 0.362
MR Water Temp. °C 0.285 0.007
RunOff mm day™’ -0.108 0.291
F+ pg L™ 0.139 0.188
NO3 pgL™ 0.086 0.450
Nerty pg L™ -0.127 0.215
PMB  Ald pg L™ 0.46 0.019
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Ca pg L™ 0.01 0.960
DOC mg L™’ 0.21 0.295
pH unit -0.23 0.232
Water Temp. °C 0.36 0.065
F+ pg L™ -0.063 0.782
NOs- pg L™ 0.276 0.444
Nercy pg L™ -0.293 0.135
Ald pg L™ 0.34 0.071
Ca pg L™ 0.38 0.053
DOC mg L™’ 0.32 0.086
pH unit 0.35 0.063
UKR

Water Temp. °C 0.14 0.621
F+ pg L™

\[eF} pg L™

SO4* pg L™ -0.600 0.142
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Table A5 R? values for scatterplots of water chemistry relationships shown in Figure 3

Site Season Season Dates Relationship R?

MR S1 April-May Ali-pH 0.78131
MR S2 June-Aug Ali-pH 0.27845
MR S3 Sept-Feb Ali-pH 0.04551
MR S1 April-May Ali-DOC 0.48879
MR S2 June-Aug Ali-DOC 0.51343
MR S3 Sept-Feb Ali-DOC 0.0014
MR S1 April-May Ali-Tw 0.42004
MR S2 June-Aug Ali-Ty 0.03442
MR S3 Sept-Feb Ali-Tyw 0.08795
MR S1 April-May Ali-Alg 0.66782
MR S2 June-Aug Ali-Aly 0.52313
MR S3 Sept-Feb Ali-Aly 0.0141
MR s1 April-May Ali-Ca 0.50399
MR S2 June-Aug Al;i-Ca 0.37339
MR S3 Sept-Feb Ali-Ca 0.00009
MR s1 April-May Ali-Ca/Alg 0.41377
MR S2 June-Aug Ali-Ca/Alg 0.32486
MR S3 Sept-Feb Ali-Ca/Aly 0.0382
MR S1 April-May Ali-Q 0.0374
MR S2 June-Aug Ali-Q 0.0703
MR S3 Sept-Feb Ali-Q 0.0063
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MR s1 April-May Alg-Ca 0.55308
MR S2 June-Aug Alg-Ca 0.63892
MR S3 Sept-Feb Alg-Ca 0.5074
MPB S1 April-June Ali-pH 0.00447
MPB s2 July-Aug Ali-pH 0.21629
MPB s3 Sept-Oct Ali-pH 0.56
MPB S1 April-June Ali-DOC 0.70785
MPB S2 July-Aug Al;-DOC 0.43036
MPB S3 Sept-Oct Ali-DOC 0.72722
MPB S1 April-June Ali-Ty 0.72067
MPB S2 July-Aug Ali-Ty, 0.2356
MPB S3 Sept-Oct Ali-Tyw 0.4353
MPB S1 April-June Al;i-Alg 0.67571
MPB S2 July-Aug Ali-Aly 0.4225
MPB S3 Sept-Oct Ali-Aly 0.65683
MPB S1 April-June Al;i-Ca 0.59175
MPB S2 July-Aug Ali-Ca 0.4214
MPB S3 Sept-Oct Ali-Ca 0.49111
MPB S1 April-June Al;i-Ca/Alg 0.51142
MPB S2 July-Aug Ali-Ca/Alg 0.03067
MPB S3 Sept-Oct Ali-Ca/Alg 0.02961
MPB S1 April-June Ali-Q 0.1734
MPB S2 July-Aug Ali-Q 0.0039
MPB S3 Sept-Oct Ali-Q 0.0004
MPB S1 April-June Alg-Ca 0.96289
MPB S2 July-Aug Alg-Ca 0.7685
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MPB S3 Sept-Oct Alg-Ca 0.72173
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Table A6 Laboratory detection limit comparison.

Chemistry Value

Parameter Units HERC Maxxam AGAT

pH pg L1 n/a n/a n/a

DOC mg L! n/a 0.50 n/a

TOC mg L n/a n/a 0.5

S04 pg L 10.00 nfa 2000

Alg pgL nfa 5.00 5

Al pg L1 n/a 5.00 5

Al, pg L1 n/a 5.00 5

Ca pg Lt n/a 100 pg L*? 0.1mgL*

Cay pgLt nfa 100 100
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Appendix B. Figures
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Figure B1 Timeseries of Al; concentration between 22 April 2015 and 23 November 2018.
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Figure B2 Time series of DOC concentration between 22 April 2015 and 23 November 2018
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Figure B5 Time series of percentage Alg comprised of Al, for PMB, compared to absolute value of Al; in ug L.
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Figure B6 Time series of percentage Alq comprised of Al, for MPB, compared to absolute value of Al; in ug L.
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Figure B7 Time series of percentage Alq comprised of Al, for MB, compared to absolute value of Al; in ug L.
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Figure B8 Time series of percentage Alg comprised of Al, for LR, compared to absolute value of Aliinug L.
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Figure B9 Time series of percentage Alg comprised of Al, for UKR, compared to absolute value of Al; in ug L.
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Figure B11 Time series of percentage Alg comprised of Al, for ALD, compared to absolute value of Al; in ug L.

Keef Brook
100

90 \//

80
70
60
50
40
30

20

10

0
Apr 2016 May 2016 Jun 2016

Figure B12 Time series of percentage Alq comprised of Al, for KB, compared to absolute value of Al inug L™
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Figure B14 Least-squares linear regression of Al; versus Alg for each study site. One Al; outlier removed for MR

(value: 2 pg L-1, date: 30 April 2015).
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Figure B18 Least-squares linear regression of Al; versus SO4> for each study site. One Al; outlier removed for MR

(value: 2 pg L-1, date: 30 April 2015).
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Appendix C. Scripts

C.1. Linear regression

"""'|_inear regression calculation script
:author: Lobke Rotteveel

:email: lobke.rotteveel@dal.ca

# Import modules
from scipy import stats
import pandas as pd
import csv

# Import data
df = pd.read_csv('Input.csv')

# Run Mann Kendall test on site-variable groups and create table of results
results =[]
results.append(['site_id", ‘variable', 'tau’, 'pvalue’, 'slope’, 'std error of slope')
grouped = df.groupby('Site")
for name, group in grouped:
chem_groups = [group['Ald'], group['Ca’], group['DOC_TOC'], group['CalibpH1,
group['Tw'], group['RunOff1]

Ali = group['Ali"]
for i in chem_groups:
pair = {'i":i,Ali":Ali}
pair = pd.DataFrame(pair)
pair = pair.dropna()
if not pair.empty:
ken_tau = stats.kendalltau(pair['i'], pair['Ali'])
slope = stats.linregress(pair['i'], pair['Ali'])
result_row = [name, i.name, ken_tau.correlation, ken_tau.pvalue, slope.slope,
slope.stderr]
results.append(result_row)

with open('LinearRegression_Out.csv', 'w') as f:
writer = csv.writer(f)
writer.writerows(results)

C.2. Laboratory comparison
"""'Laboratory result comparison script
:author: Lobke Rotteveel

:email: lobke.rotteveel@dal.ca
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# Import modules
import pandas as pd
import numpy as np
import scipy as sp
from scipy import stats
import warnings

warnings.simplefilter(‘ignore’, np.RankWarning)

# Importing data

df = pd.read_csv('SampDat_Comparelnput_LimSur_171105_LR.csv', "', header=0)
#print (df.head(n=5))

# Run comparisson
with open('SampData_Compare_LimSur.txt', 'w") as f:

x = df filter(regex='B_.*").columns
y = df filter(regex="A_.*").columns

for x_col, y_col in zip(x,y):

Sig = sp.stats.wilcoxon(df[x_col],df[y_col])
fwrite(x: {3, y: {3, sig:{}\n".format(x_col, y_col, Sig))
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Appendix D. Additional methods

D.1 Laboratory analysis methods

Samples were analyzed at Maxxam Analytics Laboratory, Health and Environmental
Research Centre (HERC), and AGAT Laboratories. Samples from MR, MPB, PMB, MB, KB,
and CC were analyzed at Maxxam and HERC labs only. Samples from BLB, ALD, UKR, and
LR were analyzed at all three labs.
D1.1 Maxxam Laboratory

The protocol at Maxxam Laboratory in Bedford, NS, adheres to methods approved by the
United States Environmental Protection Agency (US EPA) for identifying trace elements in
water (US EPA, 1994) and analyzing samples using Inductively Coupled Plasma-Mass
Spectrometry (ICP-MS) (US EPA, 1998). Cations and anions were analyzed using ICP-MS,
while a Continuous Flow Analyzer was used to measure DOC. pH was measured using a
standard hydrogen electrode and reference electrode.
D1.2 HERC Laboratory

S04 samples were analyzed at HERC Laboratory in Halifax, NS, due to lower detection
limits at the Maxxam laboratory. Once delivered to the laboratory, samples were filtered using a
0.45 pum glass fiber filter and analyzed using an lon-Chromatography System (ICS) 5000 Dionex
detector.
D1.3 AGAT Laboratory

Samples collected in the West River, Sheet Harbour area (UKR, ALD, LR, BLB, KB,

CC) were analyzed at the AGAT laboratory in Dartmouth, NS. This laboratory holds the

37
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9001:2015 and 17025:2005 International Organization for Standardization accreditations. Cation
samples were analyzed using ICP-MS, laboratory pH was measured using a standard hydrogen
electrode and reference electrode, and SO4> and anions were measured using ICS. Samples
analyzed at AGAT were analyzed for total organic carbon (TOC) as opposed to DOC and were
analyzed using Infrared Combustion (IR Combustion).

D.2 Data quality assurance and control

Blanks were used to assess contamination during the Al, extraction procedure. Blanks
were collected on 10% of samples, taken on arbitrary sampling events. Triple deionized water
was collected before passing through filter and column (“Blank Before”), and after (“Blank
After”). The triple-deionized water had traces of chemicals below the laboratory detection limits,
providing ‘“Not Detectable” results for the Blank Before sample. If chemicals were detected in
the Blank After sample, this would have indicated leaching of chemicals from the column.

Duplicates were collected and analyzed for 10% of the samples; on arbitrarily selected
sampling events, Al, and Alfittered OF Alunfiltered, Were analyzed twice, independently, by Maxxam
laboratory. All laboratories also conducted additional duplicate, blank, reference material, and
matrix spike testing, in addition to instrument calibration in adherence to industry standards for
quality control and assurance.

To verify that sample analysis results from the Maxxam/HERC laboratory combination
were comparable to AGAT, three sets of duplicate samples were collected for ALD, BLB, UKR,
and LR (19 April 2017, 14 May 2017, and 30 May 2017) and analyzed by both laboratories.
Laboratory results were compared using Wilcoxon Rank Sum statistical test in Python 3.6.5
using the SciPy Stats module (version 0.19) (Appendix C.2). Results indicated a significant

difference in pH values between laboratories (T = 1, p = 0.04), therefore, statistical analysis on
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pH data was conducted on the calibrated YSI Pro Plus sonde field data. Alo, Alfittered, and
Alunfitrered results were found to be comparable between laboratories (T = 8.5, p = 0.674; T = 5.0,
p =0.249; and T = 8.0, p = 0.600, respectively). After adjusting for detection limits (Table A6),
Ca results were also found to be comparable between laboratories (T = 4.0, p = 0.173). However,
due to the large difference in SO4> detection limits between HERC and AGAT (10 ug L™ and 2
mg L, respectively), results for SO42 are not comparable between laboratories. Lastly, organic
carbon analyzed at Maxxam was analyzed for DOC, while AGAT analyzed for TOC, therefore
these results cannot be compared. For dates where duplicate data is present, AGAT data was
used to maintain data source consistency, apart from SO4% data, for which HERC data was used
due to superior detection limits. Analysis for BLB and ALD transitioned from Maxxam to
AGAT 19 April 2017 and consequently DOC is approximated as TOC for these two sites after
this date.

The YSI Pro Plus sonde was calibrated within 36 hours of in-stream data collection.
D.3 Toxic thresholds of Al

Identified toxic thresholds of Al; for Salmo salar vary in the literature. Based on
toxicological and geochemical studies on Al and Salmo salar, the EIFAC suggested an Al; toxic
threshold of 15 ug L™ for Atlantic salmon in freshwaters for pH between 5.0 and 6.0, and 30 ug
L in pH <5 (Howells et al., 1990). The lower threshold at higher pH is to account for the
increased fraction in the AI(OH)2" species. At pH > 6, the toxic effects of Al; to Salmo salar are
considered negligible, and toxic effects are dominated by other dissolved and precipitated forms
(Gensemer et al., 2018), due to the decreased solubility of Al at pH > 6 (Dennis and Clair 2012).

However, in colder rivers, the pH-toxicity threshold may be higher, closer to pH 6.5 (Lydersen,
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1990). For the purposes of this study, we use the toxic threshold of Aliat 15 ug L™, as the
majority of our pH observations were greater than or equal to 5.0 (Table A2).
D.4 Calibration of pH measurements

In situ pH measurements were taken using a YSI Pro Plus sonde and confirmed with a
YSI Ecosense pH Pen. It was found that measurements taken with the YSI Pro Plus sonde
deviated from the YSI Ecosense Pen, which is known to measure pH accurately (0.47 + 0.44 pH
units below in-stream pH as measured by YSI Ecosense Pen). Therefore, a calibration curve was
created based on simultaneous side-by-side measurements of both instruments (n = 69 pairs) and
the in situ pH data were adjusted accordingly (Eg. 1).

YSI Ecosense Pen pH = 0.595(Pro Plus pH) + 2.3868 1)
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