

1 Ionic aluminium concentrations exceed thresholds for

2 aquatic health in Nova Scotian rivers

3

4 Shannon Sterling¹, Sarah MacLeod², Lobke Rotteveel¹, Kristin Hart¹, Thomas A. Clair¹,

5 Edmund A. Halfyard³

6

⁷ ¹ Sterling Hydrology Research Group, Department of Earth Sciences, Dalhousie University,

8 Halifax, Nova Scotia, Canada

9 ² Coastal Action, Lunenburg, Nova Scotia, Canada

³Nova Scotia Salmon Association, Chester, Nova Scotia, Canada

11

12 *Correspondence to:* Shannon Sterling (shannon.sterling@dal.ca)

13

14

15

16

17

18

19

20

21

22 **Abstract.** Cationic aluminium species are toxic to terrestrial and aquatic life. Despite decades of acid
23 emission reductions, accumulating evidence shows that freshwater acidification recovery is delayed in
24 locations such as Nova Scotia, Canada. Further, spatial and temporal patterns of labile cationic forms
25 of aluminium (Al_i) remain poorly understood. Here we increase our understanding of Al_i spatial and
26 temporal patterns by measuring Al_i concentrations in ten streams in acid-sensitive areas of Nova
27 Scotia over a four-year time period. We observe widespread and frequent occurrences of Al_i
28 concentrations that exceed toxic thresholds ($>15 \mu\text{g L}^{-1}$). Al_i patterns appear to be driven by known
29 Al_i drivers - pH, dissolved organic carbon, dissolved aluminium, and calcium - but the dominant
30 driver and temporal patterns vary by catchment. Our results demonstrate that elevated Al_i remains a
31 threat to aquatic ecosystems. For example, our observed Al_i concentrations are potentially harmful to
32 the biologically, economically, and culturally significant Atlantic salmon (*Salmo salar*).

33

34 1 Introduction

35 Freshwater acidification caused elevated concentrations of cationic aluminium (Al_i) at the end
36 of the last century that led to increased freshwater and marine mortality and, ultimately, the extirpation
37 of native Atlantic salmon (*Salmo salar*) populations in many rivers (Rosseland et al., 1990), for example
38 in Scandinavia (Henriksen et al., 1984, Hesthagen and Hansen, 1991), the eastern USA (Monette and
39 McCormick, 2008, Parrish et al., 1998), and Nova Scotia, Canada (Watt, 1987). Following reductions
40 in anthropogenic sulfur emissions in North America and Europe since the 1990s, many rivers showed
41 steady improvements in annual average stream chemistry (Evans et al., 2001, Monteith et al., 2014,

42 Skjelkvåle et al., 2005, Stoddard et al., 1999, Warby et al., 2005), including reduced concentrations of
43 Al_i in the USA (Baldigo and Lawrence, 2000, Buchanan et al., 2017, Burns et al., 2006) and Europe
44 (Beneš et al., 2017, Davies et al., 2005, Monteith et al., 2014). However, recent evidence highlights
45 delayed recovery from acidification in some areas (Houle et al., 2006, Warby et al., 2009, Watmough
46 et al., 2016), including SWNS (Clair et al., 2011), raising concerns about elevated Al_i concentrations.

47 Aluminium (Al) toxicity can be caused by both precipitated and dissolved forms in
48 circumneutral waters (Gensemer et al., 2018); however, the cationic species of Al, such as Al³⁺,
49 Al(OH)₂¹⁺, and Al(OH)²⁺ are considered to be the most labile and toxic to salmonids as they bind to the
50 negatively charged fish gills causing morbidity and mortality through suffocation (Exley et al., 1991),
51 reducing nutrient intake at gill sites, and altering blood plasma levels (Nilsen et al., 2010). Further, the
52 effects of sub-lethal exposure to freshwater Al elicits osmoregulatory impairment (Monette and
53 McCormick, 2008, Regish et al., 2018) which reduces survival in the hypertonic marine environment
54 (McCormick et al., 2009, Staurnes et al., 1996). Elevated concentrations of Al_i are also toxic to other
55 freshwater and terrestrial organisms (Boudot et al., 1994, Wauer and Teien, 2010), such as frogs and
56 aquatic birds (Lacoul et al., 2011).

57 Al speciation varies with pH (Helliweli et al., 1983, Lydersen, 1990), where positive Al species
58 dominate over neutral and negative species below pH 6.3 at 2 °C and below pH 5.7 at 25 °C (Lydersen,
59 1990), with the most toxic Al species, Al(OH)₂¹⁺ (Helliweli et al., 1983) dominating Al speciation
60 between pH 5.0–6.0 at 25 °C, and 5.5–6.5 at 2 °C (Lydersen, 1990). Thus, the toxicity of Al increases
61 with increased pH up to the formation of gibbsite (Schofield and Trojnar, 1980). Additionally, colder
62 waters will have a higher proportion of toxic species at higher pH values than warmer waters (Driscoll
63 and Schecher, 1990). The bioavailability of Al is reduced by the presence of calcium (Ca) (Brown,
64 1983), which can occupy the negatively charged gill sites, and dissolved organic carbon (DOC), which

65 occludes Al_i through the formation of organo-Al complexes (Al_o) that are nontoxic to fish (Erlandsson
66 et al., 2010).

67 Despite being the most common metal on Earth's crust, Al is usually immobilized in clays or
68 hydroxide minerals in soils. Rates of Al release into soil water from soil minerals increase with three
69 drivers: 1) low soil pH, 2) low soil base saturation, and 3) high soil DOC concentrations. Lowered pH
70 increases Al solubility and observations confirm that Al_i concentrations are negatively correlated with
71 pH (Campbell et al., 1992, Kopáček et al., 2006). Low levels of base saturation can cause charge
72 imbalances resulting in the release of Al into soil waters from clay particles, and later into drainage
73 waters (Fernandez et al., 2003) and chronic acidification thus shifts available exchangeable cations in
74 the soil from Ca and magnesium (Mg) towards Al (Schlesinger and Bernhardt, 2013, Walker et al.,
75 1990). Higher concentrations of DOC in soil water increase the release of Al through two mechanisms:
76 1) as an organic acid, DOC decreases soil pH, thus increasing Al release (Lawrence et al., 2013), and
77 2) by forming organic complexes with Al_i it maintains a negative Al concentration gradient from the
78 cation exchange sites to the soil water, increasing rates of Al release (Edzwald and Van Benschoten,
79 1990, Jansen et al., 2003). Field studies confirm Al concentrations to be positively correlated with DOC
80 (Campbell et al., 1992, Kopáček et al., 2006) although at higher concentrations of DOC, Al may be
81 organic-complexed and less toxic to aquatic organisms (Witters et al., 1990).

82 Once mobilized in soil waters, export of Al_i to drainage waters requires anions to maintain
83 charge balance. Storm events have been shown to increase Al_i export due to added anions (e.g., Cl⁻,
84 SO₄²⁻, F⁻), and from the movement of flow paths to shallower soil horizons where more Al may be
85 available for transport. For example, from 1983 to 1984, Al concentrations for the River Severn in
86 Wales increased ten-fold during the stormflow peak compared to the baseflow (Neal et al., 1986).

87 However, the association of increased Al_i concentrations with storm flow is not consistent in the
88 literature (DeWalle et al., 1995, McKnight and Bencala, 1988).

89 Annual patterns of Al_i typically show a peak, but the timing of the peak varies. In some areas,
90 Al_i concentrations peak in the spring and winter, correlated with flow peaks, such as in Quebec
91 (Campbell et al., 1992), Russia (Rodushkin et al., 1995), and along the Czech-German border (Kopacek
92 et al., 2000, Kopáček et al., 2006). In other areas, Al concentrations were found to be higher in the
93 summer such as in Virginia, USA (Cozzarelli et al., 1987). If the timing of peak Al_i concentrations
94 coincides with sensitive stages of aquatic organisms, the potential for large biological impacts is high.

95 Our understanding of spatial and temporal trends of Al_i is limited by the relative paucity of
96 samples: Al_i is not measured as part of standard analyses. Our understanding is also limited by the
97 difficulty in comparing the wide variety of methods for estimating Al_i; different definitions, often
98 operational, of toxic Al include inorganic Al, inorganic monomeric Al, labile Al, Al³⁺, and cationic Al
99 (Table A1). Definitions for both inorganic monomeric Al and cationic Al include all positively charged
100 species of Al.

101 Acid sensitive areas of NS, here abbreviated as NS_A (see Clair et al., 2007), with once-famous
102 wild Atlantic salmon populations, were heavily impacted by acid deposition at the end of the last
103 century, which originated from coal burning in central Canada and Northeastern USA (Hindar, 2001,
104 Summers and Whelpdale, 1976). NS_A catchments are particularly sensitive to acid deposition due to
105 base cation-poor and slowly weathering bedrock that generates thin soils with low acid neutralizing
106 capacity (ANC), extensive wetlands, and episodic sea salt inputs (Clair et al., 2011, Freedman and Clair,
107 1987, Watt et al., 2000, Whitfield et al., 2006). A 2006 fall survey found that Al_i concentrations in NS
108 exceeded the 15 µg L⁻¹ toxic threshold suggested by the European Inland Fisheries Advisory Council
109 (EIFAC) for aquatic health in seven of 42 rivers surveyed (Dennis and Clair, 2012). However, apart

110 from this study, little is known about the regional extent and patterns of Al_i. Here, we aim to increase
111 our understanding of current Al_i spatial and temporal patterns in relation to toxic thresholds, and to
112 identify potential drivers by conducting a four-year survey of Al_i concentrations in ten streams across
113 acid-sensitive areas of NS, Canada.

114 2 Materials and methods

115 2.1 Study area

116 We surveyed Al_i concentrations at ten study catchments in NS_A, ranging from headwater to
117 higher-order systems: Mersey River (MR), Moose Pit Brook (MPB), Pine Marten Brook (PMB), Maria
118 Brook (MB), Brandon Lake Brook (BLB), above the West River lime doser (ALD), Upper Killag River
119 (UKR), Little River (LR), Keef Brook (KB), and Colwell Creek (CC) (Table 1, Fig. 1 and 2). Our study
120 catchments are predominantly forested, draining slow-weathering, base-cation poor bedrock, producing
121 soils with low ANC (Langan and Wilson, 1992, Tipping, 1989). The catchments also have relatively
122 high DOC concentrations (Ginn et al., 2007) associated with the abundant wetlands in the region (Clair
123 et al., 2008, Gorham et al., 1986, Kerekes et al., 1986).

124 2.2 Data collection and analysis

125 We measured Al_i concentrations at three of the ten catchments from April 2015 to September
126 2017 (MR, MPB, PMB), on a weekly to monthly frequency during the snow free season (approximately
127 April to November, Table A2). In 2016-2018, seven sites were added and sampled every two weeks to
128 monthly during the snow-free season.

129 Al_i sampling events comprise grab samples for lab analysis and in situ measurements of pH and
130 water temperature (T_w). We calculate Al_i as the difference between dissolved Al (Al_d) and Al_o following
131 Dennis and Clair (2012) and Poléo (1995) (Eq. 1), separating the species in the field to reduce errors
132 caused by changes in temperature and pH in transport from field to lab.

133
$$Al_i = Al_d - Al_o \quad (1)$$

134 Al_d is measured as the Al concentration of a filtered sample and Al_o is measured as the eluate
135 from passing filtered water through a 3 cm negatively charged cation exchange column (Bond Elut Jr.
136 Strong Cation Exchange Column). Samples were passed through the cation exchange column at a rate
137 of approximately 30 to 60 drops per minute. From this method, Al_o is operationally defined as the non-
138 labile, organically-complexed metals and colloids, and Al_i is defined as the positive ionic species of Al
139 (e.g., Al^{3+} , $Al(OH)^{2+}$, and $Al(OH)_2^{+}$).

140 Stream chemistry samples (50 ml) were collected using sterilized polyethylene syringes into
141 sterilized polyethylene bottles. Samples for sulfate (SO_4^{2-}) analysis were not filtered. Trace metal
142 samples were filtered (0.45 μm) and preserved with nitric acid (HNO_3). Samples for DOC analysis were
143 filtered (0.45 μm) and transported in amber glass bottles containing sulfuric acid preservative (H_2SO_4)
144 to prevent denaturation. All samples were cooled to 7 °C during transport to the laboratories. Samples
145 were delivered to the laboratories within 48 hours of collection, where they were further cooled to \leq
146 4°C prior to analysis (Appendix D).

147 We examined correlations between Al_i and water chemistry parameters: Al_d , Ca, DOC, pH,
148 SO_4^{2-} , T_w , fluoride (F), nitrate (NO_3^-), and runoff (where data are available). Correlations were analysed
149 within and across sites. For the purposes of this study, we use the toxic threshold of Al at 15 $\mu g L^{-1}$, as
150 the majority of our pH observations were greater than or equal to 5.0 (Table A2, Appendix D3).

151 3 Results and discussion

152 3.1 Patterns of Al_i

153 Al_i concentrations exceed toxic levels (15 $\mu\text{g L}^{-1}$) at all sites during the study period (Table A2).
154 Sites in the eastern part of the study area have the highest proportion of samples exceeding threshold
155 levels, including one site with 100% of samples in exceedance (Fig. 1). Mean Al_i concentrations across
156 all sites range from 13–60 $\mu\text{g L}^{-1}$ (Table 1), with the highest mean concentrations also occurring in the
157 eastern part of the study area (Fig. 2). Al_i concentrations exceed 100 $\mu\text{g L}^{-1}$ (approximately seven times
158 the threshold) at three sites (Table A2). In the sites with the longest and most frequent data collection
159 (MR and MPB), Al_i concentrations exceed the toxic threshold in consecutive samples for months at a
160 time, particularly in the late summer (Fig. B1). Our Al_i concentrations are consistent with the 6.9–230
161 $\mu\text{g L}^{-1}$ range of Al_i concentrations measured across NS by Dennis and Clair (2012) and are higher than
162 concentrations measured in Norway from 1987–2010 (5–30 $\mu\text{g L}^{-1}$) (Hesthagen et al., 2016).

163 The percent of Al not complexed by DOC (% Al_i/Al_d) ranges from a minimum of 0.6% to a
164 maximum of 50%, with a median value of 10.7%, across all sites. These findings are similar to those
165 found NS by Dennis and Clair (2012) of the proportion of Al_i in total aluminum (Al_t) (min. = 4%, max.
166 = 70.1%, med. = 12.4%), and less than those found by Lacroix (1989) (over 90 % Al_o/Al_d). T_w and pH
167 have a significant positive correlation with Al_i/Al_d (Table A3), consistent with an earlier observation
168 that Al toxicity increases with pH (Schofield and Trojnar, 1980). However, even when the percentage
169 of Al_i/Al_d is low, Al_i concentrations remain well above thresholds for toxicity (Fig. B4–B13). Previous
170 studies show Al_i/Al_d is low during baseflow (Bailey et al., 1995, Murdoch and Stoddard, 1992,
171 Schofield et al., 1985), similar to our findings (Figs. B4–B13); more consistent year-round sampling is
172 needed to obtain a better picture of seasonal patterns in Al speciation in NS_A.

173 3.2 Potential Al_i drivers

174 Al_d is significantly ($\alpha = 0.05$) and positively correlated with Al_i in seven of the ten study sites
175 (ALD, KB, LR, MB, MPB, MR, PMB) (Fig. 3, Table A4), despite the high concentrations of DOC. Al_i
176 is also significantly and positively correlated with DOC in four sites (ALD, KB, MPB, MR) (Fig. 3,
177 Table A4), consistent with other studies (Campbell et al., 1992, Kopáček et al., 2006). The positive
178 correlation between DOC and Al_i concentrations may suggest that the ability of DOC to mobilize Al_d
179 in soils is stronger than its ability to occlude Al_i in streamwaters.

180 Ca is significantly and positively correlated with Al_i at two sites (MPB, MR) (Fig. 3, Table A4).
181 The positive relationship between Ca and Al_i is the opposite of expectations. We hypothesize that this
182 is due to the two study sites having very low Ca concentrations (mean concentrations below 1 mg L⁻¹),
183 below which soil water Ca concentrations are too low to retard Al release. T_w is also significantly
184 positively correlated with Al_i at two sites (MR, MPB) (Fig. 3, Table A4), likely reflective of the
185 temperature-related drivers of Al concentration and speciation. Runoff is significantly and negatively
186 correlated with Al_i at one site MPB (Fig. 3, Table A4). Runoff data are available for only two of the
187 study sites (MR, MPB) and so more runoff data are needed to improve our understanding of the relation
188 between runoff and Al_i in NS_A.

189 We did not observe the negative association between pH and Al_i observed in previous studies
190 (Campbell et al., 1992, Kopáček et al., 2006). pH is negatively correlated with Al_i in four out of ten
191 sites, but none of these relationships are statistically significant (Fig. 3, Table A4). We did observe a
192 statistically significant positive relationship between pH and Al_i/Al_d; thus it seems that pH may play a
193 more important role in determining the proportion of different Al species rather than the absolute value
194 of Al_i present in streamwaters.

195 F⁻ has also been found to be a complexing agent that affects the speciation of Al at low pH levels
196 and relatively high concentrations of F⁻ (>1 mg L⁻¹) (Berger et al., 2015). The concentrations of F⁻ at
197 the study sites are mostly below this threshold (mean across all sites = 0.045 mg L⁻¹); however, there is
198 still a significant positive effect of F⁻ on Al_i concentrations across at two sites (KB, MPB) (Fig. 3, Table
199 A4). NO₃⁻ and SO₄²⁻ are also potential complexing ligands of Al; however, we did not observe any
200 correlation between Al_i and either of these parameters, except for a significant negative correlation
201 between SO₄²⁻ and Al_i at MB.

202 The highest concentrations of Al_i observed (> 100 ug L⁻¹) often occurred in early summer (late
203 June or early July in 2016-2018) when Al_d, Ca, and DOC concentrations had not yet reached their
204 annual peak (Table A2). The spring/summer extreme events occurred among the first exceptionally
205 warm days (> 21 °C) of the year, in dry conditions, and when the proportion of Al_o/Al_d was low
206 (lowering to approximately 60-70% from higher levels of around 80-90%) (Figs. B4-B13). pH was not
207 abnormally low during these events (ranging from 4.8 to 6.13), Ca concentrations were low (less than
208 or equal to 800 µg L⁻¹) and DOC concentrations ranged from 15–21 mg L⁻¹. The observed peak in Al_i
209 concentrations during times of lower discharge contrasts with studies that found higher Al_i
210 concentrations during higher flow (Campbell et al., 1992, Kopacek et al., 2000, Neal et al., 1986,
211 Rodushkin et al., 1995). Further research is required to test hypotheses on why high Al_i coincides with
212 high DOC and low flow periods.

213 **3.3 Possible seasonal groupings of Al_i in NS_A**

214 In the two sites with the most samples, MPB and MR, groupings of data are visible that are
215 temporally contiguous, potentially indicating seasonally-dependent Al_i behavior (Fig. 4). This is
216 supported by stronger linear correlations (r^2) among variables when grouped by “season” (Table 2); for

217 example, for the correlation between pH and Al_i at MR, r^2 improves from 0.02 for year-round data (Fig.
218 B17) to up to 0.78 in season 1 (Fig. 4). The transition dates between the seasons are similar for the two
219 catchments, but not the same (Table A2), and vary by year. Here we propose initial characterization of
220 the potential “seasons”; more research is needed to test these hypotheses on seasonal divisions and their
221 drivers using larger datasets and Generalized Linear Mixed Model analysis to test for statistical
222 significance among the potential seasonal groupings.

223 Season 1 (approximately April/May) is coincident with snow-melt runoff and is characterized
224 by relatively low concentrations of Al_i (2-46 $\mu g L^{-1}$), low pH (4.5-5.3), and lower concentrations of
225 most constituents, including DOC, and cold temperatures (4 °C). During this season, Al_i is strongly
226 coupled with pH, DOC, Al_d and Ca in MR, but less so in MPB. A possible explanation is that season 1
227 is dominated by snowmelt hydrology in which cation exchange between soil and discharge occurs less
228 efficiently, which has been attributed to ice and frozen soil potentially limiting water contact time with
229 soil (Christophersen et al., 1990). The onset of season 2 (approximately late June) is characterized by
230 increasing Al_i concentrations, temperature, and DOC. Al_i and pH values are higher in this season and
231 Al_i becomes strongly negatively correlated with pH as pH increases to the lower threshold for gibbsite.
232 In MR in season 2 Al_i has a strong positive relationship with DOC. The highest observed Al_i
233 concentrations of the year occur in season 2 (Fig. 4). Al_i relations are weak in MR in season 3
234 (approximately September through March), likely due to the lower frequency of measurements during
235 the winter. Season 3 in MR has the highest concentrations of dissolved constituents (Al_d , Ca, and DOC),
236 whereas in MPB only Ca has the highest concentrations.

237 **3.4 Ecological implications**

238 While the summer peak in Al_i that we observed in NS_A does not coincide with the smoltification
239 period, when salmon transition from parr to smolt and are highly sensitive to Al exposure (Kroglund et
240 al., 2007, Monette and McCormick, 2008, Nilsen et al., 2013), continued exposure throughout the year
241 may still negatively affect salmon populations, as accumulation of Al_i on gills reduces salmon marine
242 and freshwater survival (Kroglund et al., 2007). Further, Al_i concentrations as low as 20 ug L^{-1} may
243 impair marine survival without reducing freshwater survival (Kroglund and Staurnes, 1999, Staurnes
244 et al., 1996), contributing to the observation that marine threats are driving population declines of
245 Atlantic Salmon (e.g. Gibson et al., 2011). In addition, as the higher Al_i concentrations appear to be
246 driven – at least in part – by lower flow in the summer months, increases in the length and severity of
247 droughts and heat-waves due to climate change may further increase Al_i concentrations and exacerbate
248 Al_i effects on aquatic life. Increases in Al have already been observed across areas previously affected
249 by freshwater acidification (Sterling et al., in prep.).

250 For example, because many peak Al_i concentrations occur on the first exceptionally warm day
251 in late spring, the peaks may be exacerbated with springtime warming associated with climate change.
252 As warm days begin to occur earlier in the season, there may be increasing chance of the peak Al_i
253 concentrations overlapping with smoltification season and emergence of salmon fry; both considered
254 the most vulnerable life stages of Atlantic salmon (e.g., Farmer, 2000), although the phenology of the
255 smolt run is expected to similarly advance earlier in the year.

256 4 Conclusions

257 Our study reveals that widespread and persistent toxic concentrations of Al_i in NS_A freshwaters
258 pose a risk to aquatic, and potentially terrestrial, life. Previously, high DOC concentrations were
259 presumed to protect aquatic life against Al_i; our study shows that this presumption does not hold.

260 Our results suggest that the recent 88 to 99% population decline of the Southern Uplands
261 Atlantic salmon population in NS_A (Gibson et al., 2011) may be partially attributable to Al_i, in contrast
262 to earlier studies which downplayed the role of Al_i in Atlantic salmon mortality (Bowlby et al., 2013,
263 Lacroix and Townsend, 1987). These high Al_i concentrations in NS_A highlight the need to increase our
264 understanding of the influence of Al_i on both terrestrial and aquatic ecosystems, and its implications for
265 biodiversity.

266 The catchments with the highest Al_i levels had particularly low Ca levels, raising concerns as
267 Ca is protective against Al_i toxicity, and highlighting coincident threats of Ca depletion and elevated
268 Al. Recent work has identified globally widespread low levels and declines in Ca (Weyhenmeyer et al.,
269 2019), raising the question of what other regions may also have Al_i levels exceeding toxic thresholds.

270 The serious potential consequences Al_i highlight the importance for actions to further reduce
271 acid emissions and deposition, as critical loads are still exceeded across the province (Keys, 2015), and
272 to adapt forest management practices to avoid base cation removal and depletion. Addition of base
273 cations through liming and enhanced weathering of soils and freshwaters may accelerate recovery from
274 acidification.

275

276 Data availability

277 Readers can access our data from HydroShare supported by CUASHI, a FAIR-aligned data
278 repository (<https://www.re3data.org/>).

279 Author contribution

280 SS conceived the idea and led the writing of the MS. SM led the field data collection. SM and
281 TAC designed the protocol for Al_i sampling, assisted with data analysis and helped with the writing.
282 LR performed spatial and statistical analysis, produced figures, and assisted with sample collection
283 and draft writing. KH assisted with data analysis, figure production and editing and contributed to the
284 draft. TAC provided information on analytical and field sampling methods, and selection of sampling
285 sites. EAH contributed field samples, assisted with data analysis and contributions to the manuscript.

286 Competing interests

287 The authors declare that they have no conflict of interest.

288 Acknowledgements

289 The Atlantic Salmon Conservation Foundation, Atlantic Canada Opportunities Agency, the
290 Nova Scotia Salmon Association, and Fisheries and Oceans Canada provided financial support for the
291 field data collection and the laboratory analyses. Marley Geddes, Siobhan Takla, Franz Heubach,
292 Lorena Heubach, Emily Bibeau and Ryan Currie provided field assistance.

293

294 References

295 Bailey, S. W., Driscoll, C. T. and Hornbeck, J. W.: Acid-base chemistry and aluminum
296 transport in an acidic watershed and pond in New Hampshire, *Biogeochemistry*, 28, 69-91, 1995.

297 Baldigo, B. P. and Lawrence, G. B.: Composition of fish communities in relation to stream
298 acidification and habitat in the Neversink River, New York, *Trans. Am. Fish. Soc.*, 129, 60-76, 2000.

299 Beneš, F., Horecký, J., Senoo, T., Kamasová, L., Lamačová, A., Tátosová, J., Hardekopf, D.
300 W. and Stuchlík, E.: Evidence for responses in water chemistry and macroinvertebrates in a strongly
301 acidified mountain stream, *Biologia*, 72, 1049-1058, 2017.

302 Berger, T., Mathurin, F. A., Gustafsson, J. P., Peltola, P. and Åström, M. E.: The impact of
303 fluoride on Al abundance and speciation in boreal streams, *Chem. Geol.*, 409, 118-124, 2015.

304 Boudot, J. P., Becquer, T., Merlet, D. and Rouiller, J.: Aluminium toxicity in declining
305 forests: a general overview with a seasonal assessment in a silver fir forest in the Vosges mountains
306 (France), in: *Annales des sciences forestières*, 1994.

307 Bowlby, H. D., Horsman, T., Mitchell, S. C. and Gibson, A.: Recovery potential assessment
308 for southern upland atlantic salmon: habitat requirements and availability, threats to populations, and
309 feasibility of habitat restoration, DFO Canadian Science Advisory Secretariat, 2013.

310 Brown, D.: Effect of calcium and aluminum concentrations on the survival of brown trout
311 (*Salmo trutta*) at low pH, *Bull. Environ. Contam. Toxicol.*, 30, 582-587, 1983.

312 Buchanan, C., Smith, Z. and Nagel, A.: Long-Term Water Quality Trends in USEPA Region 3
313 (Mid-Atlantic), 2017.

314 Burns, D. A., McHale, M. R., Driscoll, C. T. and Roy, K. M.: Response of surface water
315 chemistry to reduced levels of acid precipitation: comparison of trends in two regions of New York,
316 USA, *Hydrological Processes: An International Journal*, 20, 1611-1627, 2006.

317 Campbell, P. G., Hansen, H. J., Dubreuil, B. and Nelson, W. O.: Geochemistry of Quebec
318 north shore salmon rivers during snowmelt: organic acid pulse and aluminum mobilization, *Can. J.*
319 *Fish. Aquat. Sci.*, 49, 1938-1952, 1992.

320 Christophersen, N., Vogt, R. D., Neal, C., Anderson, H. A., Ferrier, R. C., Miller, J. D. and
321 Seip, H. M.: Controlling mechanisms for stream water chemistry at the Pristine Ingabekken Site in
322 mid-Norway: Some implications for acidification models, *Water Resour. Res.*, 26, 59-67, 1990.

323 Clair, T. A., Dennis, I. F., Vet, R. and Laudon, H.: Long-term trends in catchment organic
324 carbon and nitrogen exports from three acidified catchments in Nova Scotia, Canada,
325 *Biogeochemistry*, 87, 83-97, 2008.

326 Clair, T. A., Dennis, I. F., Scruton, D. A. and Gilliss, M.: Freshwater acidification research in
327 Atlantic Canada: a review of results and predictions for the future, *Env. Rev.*, 15, 153-167, 2007.

328 Clair, T. A., Dennis, I. F. and Vet, R.: Water chemistry and dissolved organic carbon trends in
329 lakes from Canada's Atlantic Provinces: no recovery from acidification measured after 25 years of
330 lake monitoring, *Can. J. Fish. Aquat. Sci.*, 68, 663-674, 2011.

331 Cozzarelli, I. M., Herman, J. S. and Parnell Jr, R. A.: The mobilization of aluminum in a
332 natural soil system: effects of hydrologic pathways, *Water Resour. Res.*, 23, 859-874, 1987.

333 Davies, J., Jenkins, A., Monteith, D. T., Evans, C. D. and Cooper, D. M.: Trends in surface
334 water chemistry of acidified UK freshwaters, 1988–2002, *Environmental Pollution*, 137, 27-39, 2005.

335 Dennis, I. F. and Clair, T. A.: The distribution of dissolved aluminum in Atlantic salmon
336 (*Salmo salar*) rivers of Atlantic Canada and its potential effect on aquatic populations, *Can. J. Fish.*
337 *Aquat. Sci.*, 69, 1174-1183, 2012.

338 DeWalle, D. R., Swistock, B. R. and Sharpe, W. E.: Episodic flow–duration analysis: a
339 method of assessing toxic exposure of brook trout (*Salvelinus fontinalis*) to episodic increases in
340 aluminum, *Can. J. Fish. Aquat. Sci.*, 52, 816-827, 1995.

341 Driscoll, C. T. and Schecher, W. D.: The chemistry of aluminum in the environment, *Environ.*
342 *Geochem. Health*, 12, 28-49, 1990.

343 Edzwald, J. K. and Van Benschoten, J. E.: Aluminum coagulation of natural organic matter,
344 in: *Chemical water and wastewater treatment*, Springer, 341-359, 1990.

345 Erlandsson, M., Cory, N., Köhler, S. and Bishop, K.: Direct and indirect effects of increasing
346 dissolved organic carbon levels on pH in lakes recovering from acidification, *Journal of Geophysical*
347 *Research: Biogeosciences*, 115, 2010.

348 Evans, C. D., Cullen, J. M., Alewell, C., Kopácek, J., Marchetto, A., Moldan, F., Prechtel, A.,
349 Rogora, M., Veselý, J. and Wright, R.: Recovery from acidification in European surface waters,
350 Hydrology and Earth System Sciences Discussions, 5, 283-298, 2001.

351 Evans, C. D. and Monteith, D. T.: Chemical trends at lakes and streams in the UK Acid
352 Waters Monitoring Network, 1988-2000: Evidence for recent recovery at a national scale, Hydrology
353 and Earth System Sciences Discussions, 5, 351-366, 2001.

354 Exley, C., Chappell, J. S. and Birchall, J. D.: A mechanism for acute aluminium toxicity in
355 fish, J. Theor. Biol., 151, 417-428, 1991.

356 Farmer, G. J.: Effects of low environmental pH on Atlantic salmon (*Salmo salar* L.) in Nova
357 Scotia, Department of Fisheries and Oceans Canada, 2000.

358 Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S. and Cosby, B. J.: Experimental
359 acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine, Soil Sci. Soc.
360 Am. J., 67, 1909-1919, 2003.

361 Freedman, B. and Clair, T. A.: Ion mass balances and seasonal fluxes from four acidic
362 brownwater streams in Nova Scotia, Can. J. Fish. Aquat. Sci., 44, 538-548, 1987.

363 Gensemer, R. W., Gondek, J. C., Rodriguez, P. H., Arbildua, J. J., Stubblefield, W. A.,
364 Cardwell, A. S., Santore, R. C., Ryan, A. C., Adams, W. J. and Nordheim, E.: Evaluating the effects
365 of pH, hardness, and dissolved organic carbon on the toxicity of aluminum to freshwater aquatic
366 organisms under circumneutral conditions, Environmental toxicology and chemistry, 37, 49-60, 2018.

367 Gibson, A. J. F., Bowlby, H. D., Hardie, D. C. and O'Reilly, P. T.: Populations on the brink:
368 low abundance of Southern Upland Atlantic salmon in Nova Scotia, Canada, *N. Am. J. Fish. Manage.*, 31, 733-741, 2011.

370 Ginn, B. K., Cumming, B. F. and Smol, J. P.: Assessing pH changes since pre-industrial times
371 in 51 low-alkalinity lakes in Nova Scotia, Canada, *Can. J. Fish. Aquat. Sci.*, 64, 1043-1054, 2007.

372 Gorham, E., Underwood, J. K., Martini, F. B. and Ogden III, J. G.: Natural and anthropogenic
373 causes of lake acidification in Nova Scotia, *Nature*, 324, 451, 1986.

374 Helliwell, S., Batley, G. E., Florence, T. M. and Lumsden, B. C.: Speciation and toxicity of
375 aluminium in a model fresh water, *Environ. Technolol.*, 4, 141-144, 1983.

376 Henriksen, A., Skogheim, O. K. and Rosseland, B. O.: Episodic changes in pH and
377 aluminium-speciation kill fish in a Norwegian salmon river, *Vatten*, 40, 255-260, 1984.

378 Hesthagen, T. and Hansen, L. P.: Estimates of the annual loss of Atlantic salmon, *Salmo salar*
379 L., in Norway due to acidification, *Aquacult. Res.*, 22, 85-92, 1991.

380 Hesthagen, T., Fiske, P. and Saksgård, R.: Recovery of young brown trout (*Salmo trutta*) in
381 acidified streams: What are the critical values for acid-neutralizing capacity?, *Atmos. Environ.*, 146,
382 236-244, 2016.

383 Hindar, A.: Recommended liming strategies for salmon rivers in Nova Scotia, Canada, *NIVA*,
384 2001.

385 Houle, D., Ouimet, R., Couture, S. and Gagnon, C.: Base cation reservoirs in soil control the
386 buffering capacity of lakes in forested catchments, *Can. J. Fish. Aquat. Sci.*, 63, 471-474, 2006.

387 Howells, G., Dalziel, T., Reader, J. P. and Solbe, J. F.: EIFAC water quality criteria for
388 European freshwater fish: report on aluminium, *Chem. Ecol.*, 4, 117-173, 1990.

389 Jansen, B., Nierop, K. G. and Verstraten, J. M.: Mobility of Fe (II), Fe (III) and Al in acidic
390 forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon
391 ratios, *Geoderma*, 113, 323-340, 2003.

392 Josephson, D. C., Robinson, J. M., Chiotti, J., Jirka, K. J. and Kraft, C. E.: Chemical and
393 biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA,
394 *Environ. Monit. Assess.*, 186, 4391-4409, 2014.

395 Kerekes, J., Beauchamp, S., Tordon, R., Tremblay, C. and Pollock, T.: Organic versus
396 anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia, *Water Air
397 Soil Pollut.*, 31, 165-1793, 1986.

398 Keys, K.: Acid Deposition and Base Cation Depletion in Northeastern Forest Soils:
399 a Review with Focus on Nova Scotia Conditions thesis, Dalhousie University, 2015.

400 Kopacek, J., Hejzlar, J. and Porcal, P.: Seasonal patterns in chemistry of tributaries to plesne
401 and certovo lakes in the 1998 hydrological year, *Silva Gabreta*, 4, 105-116, 2000.

402 Kopáček, J., Turek, J., Hejzlar, J., Kaňa, J. and Porcal, P.: Element fluxes in watershed-lake
403 ecosystems recovering from acidification: Čertovo Lake, the Bohemian Forest, 2001–2005, *Biologia*,
404 61, S41-S426, 2006.

405 Krám, P., Hruška, J., Driscoll, C. T., Johnson, C. E. and Oulehle, F.: Long-term changes in
406 aluminum fractions of drainage waters in two forest catchments with contrasting lithology, *J. Inorg.*
407 *Biochem.*, 103, 1465-1472, 2009.

408 Kristensen, T., Åtland, Å, Rosten, T., Urke, H. A. and Rosseland, B. O.: Important influent-
409 water quality parameters at freshwater production sites in two salmon producing countries, *Aquacult.*
410 *Eng.*, 41, 53-59, 2009.

411 Kroglund, F., Finstad, B., Stefansson, S. O., Nilsen, T. O., Kristensen, T., Rosseland, B. O.,
412 Teien, H. C. and Salbu, B.: Exposure to moderate acid water and aluminum reduces Atlantic salmon
413 post-smolt survival, *Aquaculture*, 273, 360-373, 2007.

414 Kroglund, F., Rosseland, B. O., Teien, H., Salbu, B., Kristensen, T. and Finstad, B.: Water
415 quality limits for Atlantic salmon (*Salmo salar* L.) exposed to short term reductions in pH and
416 increased aluminum simulating episodes, *Hydrology and Earth System Sciences Discussions*, 4,
417 3317-3355, 2007.

418 Kroglund, F. and Staurnes, M.: Water quality requirements of smolting Atlantic salmon
419 (*Salmo salar*) in limed acid rivers, *Can. J. Fish. Aquat. Sci.*, 56, 2078-2086, 1999.

420 Lacoul, P., Freedman, B. and Clair, T.: Effects of acidification on aquatic biota in Atlantic
421 Canada, *Env. Rev.*, 19, 429-460, 2011.

422 Lacroix, G. L.: Ecological and physiological responses of Atlantic salmon in acidic organic
423 rivers of Nova Scotia, Canada, *Water Air Soil Pollut.*, 46, 375-386, 1989.

424 Lacroix, G. L. and Townsend, D. R.: Responses of juvenile Atlantic salmon (*Salmo salar*) to
425 episodic increases in acidity of Nova Scotia rivers, *Can. J. Fish. Aquat. Sci.*, 44, 1475-1484, 1987.

426 Langan, S. J. and Wilson, M. J.: Predicting the regional occurrence of acid surface waters in
427 Scotland using an approach based on geology, soils and land use, *Journal of hydrology*, 138, 515-528,
428 1992.

429 Lawrence, G.B., Dukett, J.E., Houck, N., Snyder, P. and Capone, C.: Increases in dissolved
430 organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification,
431 Environmental science and technology, 47, 7095-7100, 2013.

432 Lydersen, E.: The solubility and hydrolysis of aqueous aluminium hydroxides in dilute fresh
433 waters at different temperatures, *Hydrology Research*, 21, 195-204, 1990.

434 McCormick, S. D., Lerner, D. T., Monette, M. Y., Nieves-Puigdoller, K., Kelly, J. T. and
435 Björnsson, B. T.: Taking it with you when you go: how perturbations to the freshwater environment,
436 including temperature, dams, and contaminants, affect marine survival of salmon, in: *American*
437 *Fisheries Society Symposium*, 2009.

438 McKnight, D. and Bencala, K. E.: Diel variations in iron chemistry in an acidic stream in the
439 Colorado Rocky Mountains, USA, *Arct. Alp. Res.*, 20, 492-500, 1988.

440 Monette, M. Y. and McCormick, S. D.: Impacts of short-term acid and aluminum exposure on
441 Atlantic salmon (*Salmo salar*) physiology: a direct comparison of parr and smolts, *Aquatic
442 Toxicology*, 86, 216-226, 2008.

443 Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L. and Malcolm, I. A.: Trends in
444 the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008, *Ecol. Ind.*, 37, 287-303,
445 2014.

446 Murdoch, P. S. and Stoddard, J. L.: The role of nitrate in the acidification of streams in the
447 Catskill Mountains of New York, *Water Resour. Res.*, 28, 2707-2720, 1992.

448 Neal, C., Smith, C. J., Walls, J. and Dunn, C. S.: Major, minor and trace element mobility in
449 the acidic upland forested catchment of the upper River Severn, Mid Wales, *Journal of the Geological
450 Society*, 143, 635-648, 1986.

451 Nilsen, T. O., Ebbesson, L. O., Handeland, S. O., Kroglund, F., Finstad, B., Angotzi, A. R.
452 and Stefansson, S. O.: Atlantic salmon (*Salmo salar* L.) smolts require more than two weeks to
453 recover from acidic water and aluminium exposure, *Aquatic toxicology*, 142, 33-44, 2013.

454 Nilsen, T. O., Ebbesson, L. O., Kverneland, O. G., Kroglund, F., Finstad, B. and Stefansson,
455 S. O.: Effects of acidic water and aluminum exposure on gill Na⁺, K⁺-ATPase α -subunit isoforms,
456 enzyme activity, physiology and return rates in Atlantic salmon (*Salmo salar* L.), *Aquatic Toxicology*,
457 97, 250-259, 2010.

458 Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. and Reeves, G. H.: Why
459 aren't there more Atlantic salmon (*Salmo salar*)?, *Can. J. Fish. Aquat. Sci.*, 55, 281-287, 1998.

460 Poléo, A. B.: Aluminium polymerization—a mechanism of acute toxicity of aqueous
461 aluminium to fish, *Aquatic toxicology*, 31, 347-356, 1995.

462 Regish, A. M., Kelly, J. T., O'Dea, M. F. and McCormick, S. D.: Sensitivity of Na /K -
463 ATPase isoforms to acid and aluminum explains differential effects on Atlantic salmon
464 osmoregulation in fresh water and seawater, *Can. J. Fish. Aquat. Sci.*, 75, 1319-1328, 2018.

465 Rodushkin, I., Moiseenko, T. and Kudravsjeva, L.: Aluminium in the surface waters of the
466 Kola Peninsula, Russia, *Sci. Total Environ.*, 163, 55-59, 1995.

467 Rosseland, B. O., Eldhuset, T. D. and Staurnes, M.: Environmental effects of aluminium,
468 *Environ. Geochem. Health*, 12, 17-27, 1990.

469 Schlesinger, W. H. and Bernhardt, E. S.: *Biogeochemistry: an analysis of global change*,
470 Academic press, 2013.

471 Schofield, C. L., Galloway, J. N. and Hendry, G. R.: Surface water chemistry in the ILWAS
472 basins, *Water Air Soil Pollut.*, 26, 403-423, 1985.

473 Schofield, C. L. and Trojnar, J. R.: Aluminum toxicity to brook trout (*Salvelinusfontinalis*) in
474 acidified waters, in: *Polluted rain*, Springer, 341-366, 1980.

475 Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J.,
476 Mannio, J., Monteith, D. T., Mosello, R. and Rogora, M.: Regional scale evidence for improvements
477 in surface water chemistry 1990–2001, *Environmental Pollution*, 137, 165-176, 2005.

478 Staurnes, M., Hansen, L. P., Fugelli, K. and Haraldstad, Ø: Short-term exposure to acid water
479 impairs osmoregulation, seawater tolerance, and subsequent marine survival of smolts of Altantic
480 salmon (*Salmo salar*), *Can. J. Fish. Aquat. Sci.*, 53, 1695-1704, 1996.

481 Sterling, S., Rotteveel, L., Hart, K., Macleod, S., Björnerås, C., Heubach, F., Clair, T.,
482 Howden, N., Bailey, S., Burns, D., Creed, I., de Wit, H., Driscoll, C., Evans, C., Fernandez, I., Green,
483 W., Kortelainen, P., Kritzberg, E., Laudon, H., Lawrence, G., Lehtoranta, J., Malcolm, I., Monteith,
484 D., Oulehle, F., Norton, S., Pembrook, H., Räike, A., Riise, G., Rusak, J., Webster, K. and
485 Weyhenmeyer, G.: Increasing aluminium in lakes and rivers, In prep.

486 Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T.,
487 Forsius, M., Johannessen, M., Kahl, J. S. and Kellogg, J. H.: Regional trends in aquatic recovery from
488 acidification in North America and Europe, *Nature*, 401, 575, 1999.

489 Strock, K. E., Nelson, S. J., Kahl, J. S., Saros, J. E. and McDowell, W. H.: Decadal trends
490 reveal recent acceleration in the rate of recovery from acidification in the northeastern US, *Environ.*
491 *Sci. Technol.*, 48, 4681-4689, 2014.

492 Summers, P. W. and Whelpdale, D. M.: Acid precipitation in Canada, *Water Air Soil Pollut.*,
493 6, 447-455, 1976.

494 Tipping, E.: Acid-sensitive waters of the English Lake District: a steady-state model of
495 streamwater chemistry in the upper Duddon catchment, *Environmental Pollution*, 60, 181-208, 1989.

496 US EPA: Method 6020A (SW-846): Inductively coupled plasma-mass spectrometry, 1998.

497 US EPA.: "Method 200.8: Determination of Trace Elements in Waters and Wastes by
498 Inductively Coupled Plasma-Mass Spectrometry," Revision 5.4, 1994.

499 Walker, W. J., Cronan, C. S. and Bloom, P. R.: Aluminum solubility in organic soil horizons
500 from northern and southern forested watersheds, *Soil Sci. Soc. Am. J.*, 54, 369-374, 1990.

501 Wang, D., He, Y., Liang, J., Liu, P. and Zhuang, P.: Distribution and source analysis of
502 aluminum in rivers near Xi'an City, China, *Environ. Monit. Assess.*, 185, 1041-1053, 2013.

503 Warby, R. A., Johnson, C. E. and Driscoll, C. T.: Continuing acidification of organic soils
504 across the northeastern USA: 1984–2001, *Soil Sci. Soc. Am. J.*, 73, 274-284, 2009.

505 Warby, R. A., Johnson, C. E. and Driscoll, C. T.: Chemical recovery of surface waters across
506 the northeastern United States from reduced inputs of acidic deposition: 1984– 2001, *Environ. Sci.*
507 *Technol.*, 39, 6548-6554, 2005.

508 Watmough, S. A., Eimers, C. and Baker, S.: Impediments to recovery from acid deposition,
509 *Atmos. Environ.*, 146, 15-27, 2016.

510 Watt, W. D.: A summary of the impact of acid rain on Atlantic salmon (*Salmo salar*) in
511 Canada, *Water Air Soil Pollut.*, 35, 27-35, 1987.

512 Watt, W. D., Scott, C. D., Zamora, P. J. and White, W. J.: Acid toxicity levels in Nova Scotian
513 rivers have not declined in synchrony with the decline in sulfate levels, *Water Air Soil Pollut.*, 118,
514 203-229, 2000.

515 Wauer, G. and Teien, H.: Risk of acute toxicity for fish during aluminium application to
516 hardwater lakes, *Sci. Total Environ.*, 408, 4020-4025, 2010.

517 Weyhenmeyer G.A., Hartmann J., Hessen D.O., Kopáček J., Hejzlar J., Jacquet S., Hamilton
518 S.K., Verburg P., Leach T.H., Schmid M., Flaim G. Widespread diminishing anthropogenic effects on
519 calcium in freshwaters. *Scientific reports.* 18;9(1), 10450, 2019.

520 Whitfield, C. J., Aherne, J., Watmough, S. A., Dillon, P. J. and Clair, T. A.: Recovery from
521 acidification in Nova Scotia: temporal trends and critical loads for 20 headwater lakes, *Can. J. Fish.*
522 Aquat. Sci., 63, 1504-1514, 2006.

523 Whitfield, C. J., Aherne, J., Dillon, P. J., and Watmough, S. A.: Modelling acidification,
524 recovery and target loads for headwater catchments in Nova Scotia, Canada, *Hydrol. Earth Syst. Sci.*,
525 11, 951–963, doi:10.5194/hess-11-951-2007, 2007.

526

527 Witters, H. E., Van Puymbroeck, S., Vangenechten, J. and Vanderborght, O.: The effect of
528 humic substances on the toxicity of aluminium to adult rainbow trout, *Oncorhynchus mykiss*
529 (Walbaum), *J. Fish Biol.*, 37, 43-53, 1990.

530

531

532

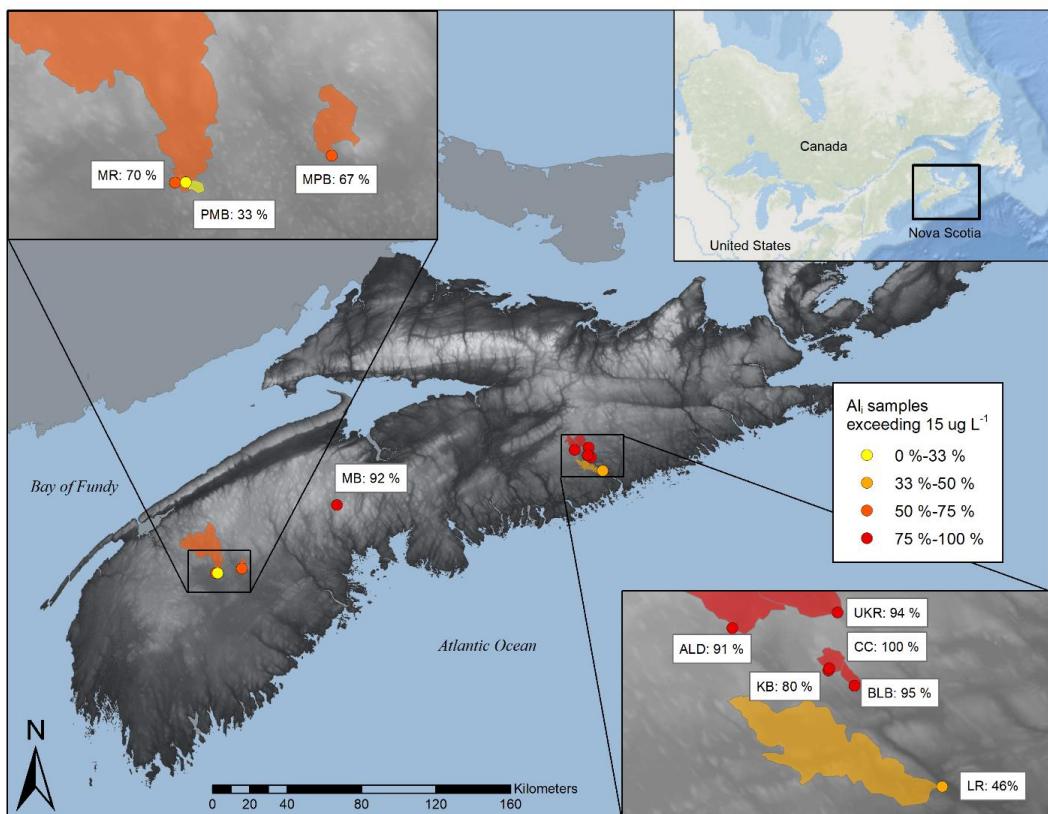
533 **Tables**

534 Table 1 Study site characteristics. "n" refers to the number of sampling events. Number in brackets after the mean concentration is the standard deviation. One

535 Al_i outlier removed for MR (value: $2 \mu\text{g}\cdot\text{L}^{-1}$, date: 30 April 2015). pH is calibrated using the method outlined in Appendix D.4.

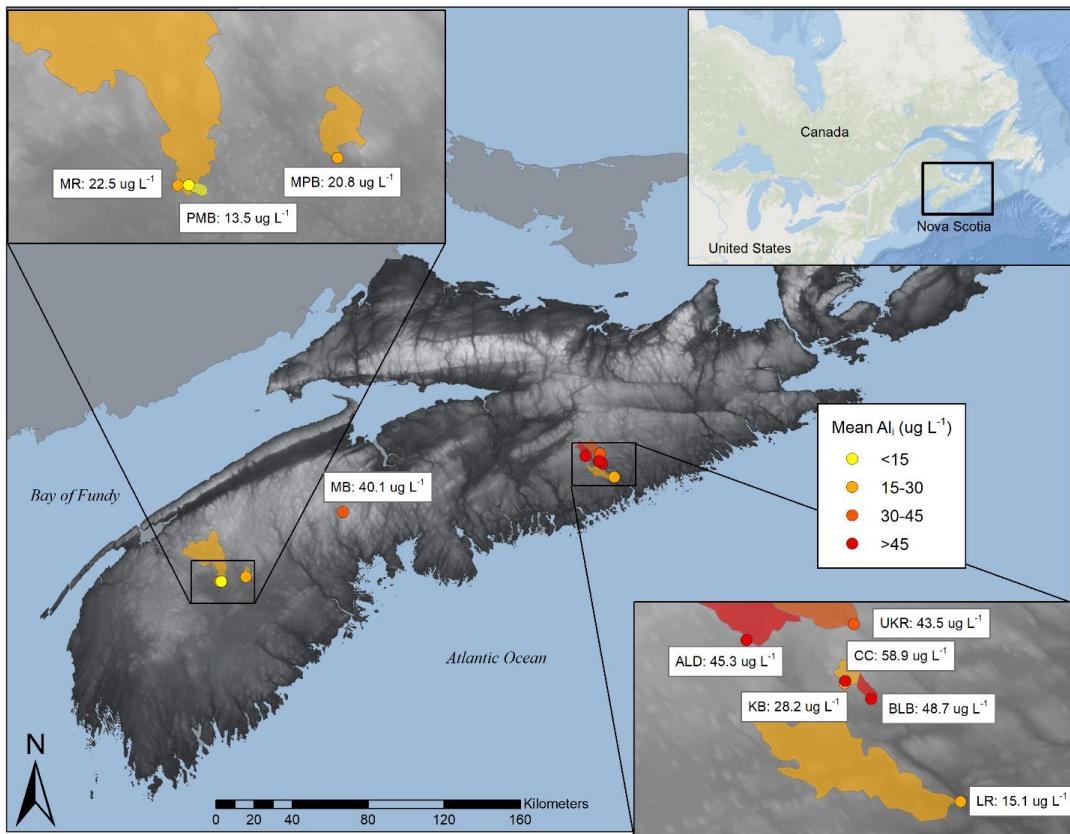
Site	Lat	Long	Area (km ²)	n	Land use	Dominant Bedrock Type	Mean Ali (ug L ⁻¹)	Mean DOC (mg L ⁻¹)	Mean Ald (ug L ⁻¹)	Mean Ca (ug L ⁻¹)	Mean pH
Mersey River (MR)	44.437	-65.223	292.8	47	Natural forest	Granite	22.5 (11.7)	8.6 (2.7)	195 (54.9)	699 (120)	5.1
Moose Pit Brook (MPB)	44.462	-65.048	15.8	39	Natural forest	Granite/slate	20.8 (12.2)	15.8 (6.1)	249 (85.9)	826 (344)	5.0
Pine Marten Brook (PMB)	44.436	-65.209	1.5	15	Natural forest	Slate	13.5 (12.0)	8.6 (3.3)	149 (43.4)	969 (536)	5.1
Maria Brook (MB)	44.779	-64.414	0.2	12	Natural forest	Granite	40.1 (23.2)	9.8 (4.4)	319 (99.2)	1292 (286)	5.1
Brandon Lake Brook (BLB)	45.021	-62.690	1.3	22	Natural forest	Sandstone/slate	48.7 (27.6)	16.0 (8.3)	350 (71.0)	836 (272)	4.9
Upstream of West River Lime Doser (ALD)	45.054	-62.800	32.3	22	Natural forest	Sandstone/slate	45.3 (26.7)	13.8 (3.7)	243 (64.8)	759 (126)	5.2
Upper Killag River (UKR)	45.064	-62.705	36.8	18	Natural forest	Sandstone/slate	43.5 (23.5)	12.8 (3.0)	224 (68.3)	739 (230)	5.3
Little River (LR)	44.952	-62.611	47.1	13	Natural forest	Sandstone/slate	15.1 (11.7)	7.2 (1.9)	109 (46.1)	746 (166)	5.4
Keef Brook (KB)	45.0284	-62.7153	2.3	5	Natural forest	Sandstone/slate	28.2 (11.5)	10.8 (3.6)	281 (80.4)	621 (275)	5.1
Colwell Creek (CC)	45.0279	-62.7127	1.7	8	Natural forest	Sandstone/slate	58.9 (41.7)	23.1 (5.1)	411 (117)	750 (568)	5.0

537 Table 2. Al_i relations with other stream chemistry parameters separated by possible seasons. Dark shading
538 represents $r^2 > 0.6$. Medium shading represents $r^2 0.2-0.6$. Light shading represents $r^2 0.0-0.2$. Green
539 indicates negative relation. Orange indicates positive relation.


540

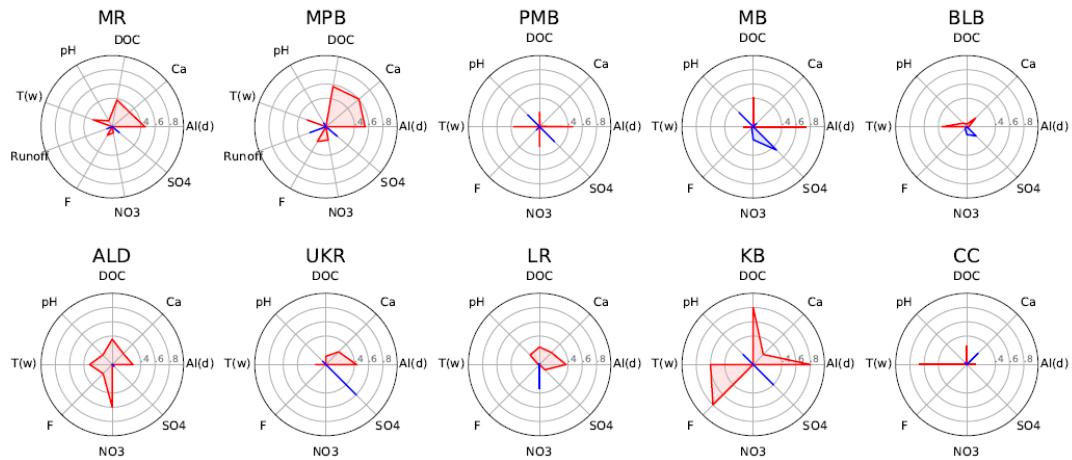
	pH		DOC		Tw		Al_d		Ca	
	slope	r^2	slope	r^2	slope	r^2	slope	r^2	slope	r^2
Season 1										
MR	-7.67	0.78	1.78	0.49	-0.26	0.42	0.084	0.67	0.0329	0.50
MPB	8.44	0.0045	2.62	0.71	2.66	0.72	0.13	0.68	0.053	0.59
Season 2										
MR	-53.2	0.27	7.5	0.51	0.72	0.034	0.23	0.52	0.13	0.37
MPB	-19.6	0.22	1.4	0.43	1.43	0.23	0.1	0.42	0.039	0.42
Season 3										
MR	4.57	0.046	0.089	0.0014	0.25	0.088	0.021	0.014	0.006	0.0001
MPB	-39.6	0.56	1.33	0.73	-2.42	0.44	0.086	0.66	0.018	0.49

541


542 Figures

543

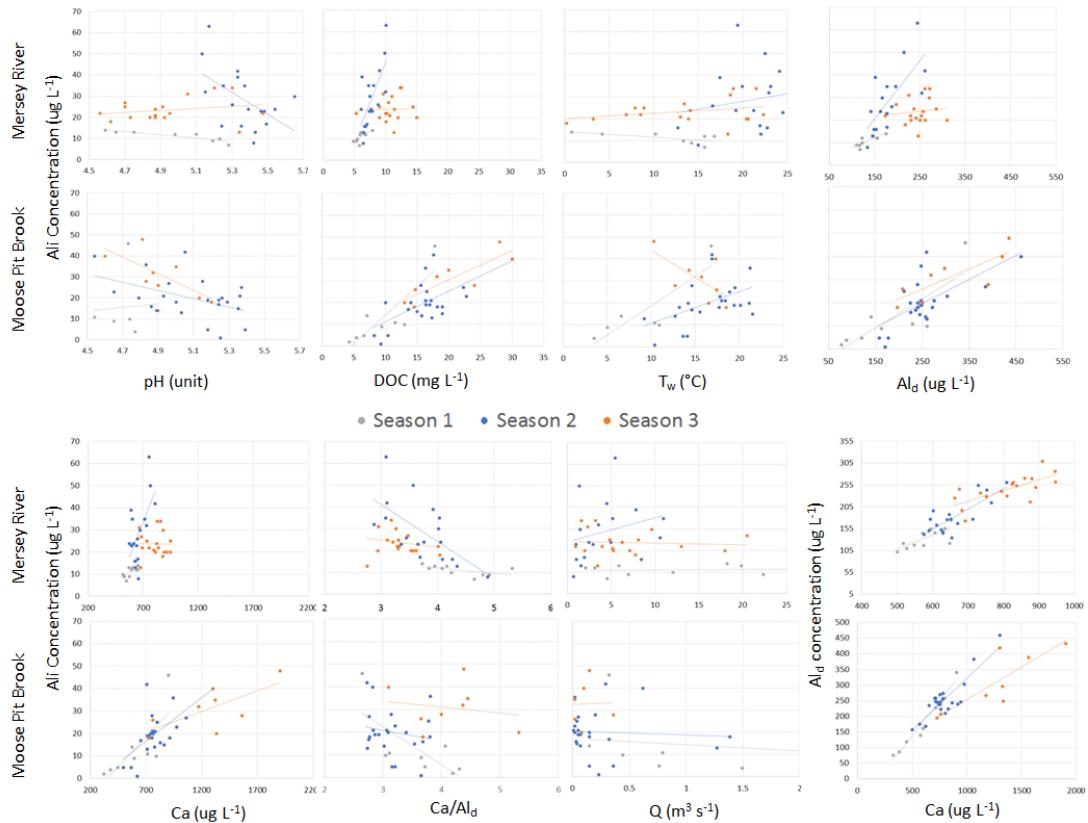
544 Figure 1. Study site locations showing proportion of samples when Al_i concentrations exceeded the $15 \mu\text{g}$


545 L^{-1} toxic threshold. For additional site details, refer to Table 1.

546

547 Figure 2. Mean Al_i concentrations between spring 2015 to fall 2018.

548


549

550 Figure 3. Correlation among water chemistry parameters and Al_i concentration, where red polygons and

551 lines indicate a positive correlation with Al_i , and blue polygons and lines indicate a negative correlation

552 with Al_i . One Al_i outlier removed for MR (value: $2 \mu\text{g L}^{-1}$, date: 30 April 2015). Correlation data are listed
553 in Table A4.

554
555 Figure 4. Scatterplot relationships among water chemistry parameters for seasons 1, 2, and 3 at MR and
556 MPB. R^2 values are listed in Table A5. One runoff outlier removed for MR (value: $17.294 \text{ m}^3 \text{ s}^{-1}$, date: 22
557 April 2015). One runoff outlier removed for MPB (value: $34.994 \text{ m}^3 \text{ s}^{-1}$, date: 22 April 2015).

558

Appendix A. Tables

Table A1 Al_i terminology, speciation methodology, and trends from published studies. Several methods do not measure Al_i in situ, which can cause error due to changes in temperature, DOC and pH, which vary during transit to the lab. Increased pH and increased temperature in lab conditions can cause the underestimation of Al_i. Al_{nl}=non-labile Al, Al_{im}=total monomeric Al, Al_{om}=organic monomeric Al, Al_{tr}=non-labile monomeric Al, Al_{in}=monomeric Al. CEC=Cation Exchange Column, ICP-AES= Inductively Coupled Plasma-Atomic Emission Spectroscopy. AWMN= Acid Waters Monitoring Network.

Al Species	Definition	Analysis Method	Trend	Location	Reference
Al _i	Inorganic Al	Colourimetry (Al _{tr} -Al _{nl})	Decreasing Al _i from 1988-2008	AWMN in UK	Monteith et al. (2014)
Al _{im}	Inorganic monomeric Al	Colourimetry (Al _{im} -Al _{om})	Decreasing Al _i from 2001-2011	New York, USA	Josephson et al. (2014)
Al _i	Ionic Al	CEC (Al _{tr} -Al _o)	Mean NS Al _i =25.3 µg/L Mean NB Al _i =31.0 µg/L	Atlantic Canada	Dennis and Clair (2012)
Al _i	Ionic Al	Colourimetry	Decreasing Al _i in lakes	Norway	Hesthagen et al. (2011)
LA1	Inorganic Al (sum of inorganic and monomeric Al species)	ICP-AES, Flow injection, Pyrocatechol violet, and CEC (Al _{tr} -Al _{nl})	15% of LA1 samples were >10 µg/L	Norway	Kristensen et al. (2009)
Al-1	Labile/cationic/inorganic monomeric Al	Colourimetry (Al _{im} -Al _{nl})	Decreasing Al-1 across the UK	AWMN in UK	Evans & Monteith (2001)
Al _{im}	Labile Al (free and inorganically complexed Al)	Van Benschoten method	Mean Al _{im} of 72 µg/L from 2009-2010	China	Wang et al. (2013)

Al _i	Inorganic monomeric	Colourimetry and CEC (Al _{in} -Al ₀)	Al _i fraction decreased in catchments between 1991 & 2007	Czech Republic	Kram et al. (2009)
Al _i	Inorganic Al	AAS	Decreasing Al _i from 1990-2010	Adirondack Mountains, USA	Strock et al. (2014)

Table A2 Raw sample data. RL: rising limb of hydrograph, FL: falling limb of hydrograph, and BF: base flow. Air temperature (T_a) data were collected from the Krijnkuik 1 weather station (Climate ID: 8202592; 44.24°N, 65.12°E, 1,070 m) for MR, MPB, PMB, and MB, and the Stanfield Airport weather station (Climate ID: 8202251; 44°52'52.000" N, 63°30'31.000" W) for CC, KB, ALD, BLB, UKR, and LR. Missing T_a data were replaced with data from another local meteorological tower located one kilometer to the northwest of the MPB site (44.469549, -65.061295).

Site	Date	Al_i ($\mu\text{g L}^{-1}$)	Al_o/Al_d (%)	Season	Al_d ($\mu\text{g L}^{-1}$)	Ca ($\mu\text{g L}^{-1}$)	DOC (mg L^{-1})	SO_4 ($\mu\text{g L}^{-1}$)	pH (unit)	T_w (°C)	T_a (°C)	Discharge ($\text{m}^3 \text{s}^{-1}$)	Runoff (mm day $^{-1}$)	Hydrograph Stage
ALD	2016-04-29	19	87.7	1	155	591	7	899	4.67	6.8	4			
ALD	2016-05-19	12	94.1		202	800	10.7	1414	5.89					12.0
ALD	2016-06-03	25	90.7	2	268	722	12.5	639	5.02	16.6	13.2			
ALD	2016-06-16	32	88.3	2	274	674	12.9	578	4.99	13.2	13			
ALD	2016-06-28	28	89.4	2	265	720	12.2	959	5.26	22.1	24.2			
ALD	2016-07-15	37	87	2	285	792	15	761	5.11	20.7	19.6			
ALD	2016-08-05	48	79.9		239	700	19.4	1414	5.98					21.2
ALD	2016-09-10	48	78.2		220	1000	14.8	2000	5.03					20.8
ALD	2016-10-02	13	92.3		169	1000	14.4	3000	5.27					11.4
ALD	2016-11-19	44	82		245	900	14.6	1414	5.03					7.6
ALD	2017-04-19	27	81.1	1	143	600	10.4	1209	4.55	7.8	3.2			
ALD	2017-05-14	69	61	2	177	600	12.1	923	4.92	13.4	4			
ALD	2017-05-30	37	85.8	2	261	600	11.8	2536	4.77	14.3	12.2			
ALD	2017-06-22	100	59.8	2	249	700	15.2	1414	5.17	22.8	25			

ALD	2017-07-13	62	80.3	2	315	800	19.3	1414	5.24	20.6	18.5
ALD	2017-08-01	26	89	2	236	800	15.1	1414	4.96	25.6	28.4
ALD	2017-08-23	35	84.4	2	224	700	13.2	1125	5.14	21.8	21
ALD	2017-09-16	77	82.5	2	439	1000	23.5	4.73	20.7	18.7	
ALD	2018-05-10	46	75.7		189	700	8.8	1414	5.64		7.5
ALD	2018-06-07	43	83.8		266	700	16.1	1414	5.13		11.0
ALD	2018-07-05	119	62.5		317	800	13.6	1414	5.61		23.8
ALD	2018-11-23	50	76		208	800	10.1	1414	5.45		-9.1
BLB	2016-04-29	20	89.5	2	190	476	7.2	936	5.03	5.7	4
BLB	2016-06-03	60	82.1	4	336	770	11.9	669	4.78	10.1	13.5
BLB	2016-06-16	33	91.2	4	373	789	13.2	1158	4.77	9.8	13
BLB	2016-06-28	26	93.3	4	388	894	13.6	1251	4.67	13.1	23.9
BLB	2016-07-15	42	90.5	4	443	887	16.7	723	4.77	14.3	18.7
BLB	2016-08-05	6	98.6		429	1000	26.2	1414	5.29		21.2
BLB	2016-09-10	81	77.1		354	900	48.3	1414	4.87		20.8
BLB	2016-10-02	33	90.1		335	1000	18.5	2000	5.1		11.4
BLB	2016-11-19	28	92.6		379	1000	17.2	1414	4.76		7.6
BLB	2017-04-19	41	79.1	4	196	600	9.6	1927		4.2	4
BLB	2017-05-14	46	82.6	4	264	800	12.9	1550		7.7	6
BLB	2017-05-30	36	88.3	4	308	700	11.3	1795		8.4	14.9
BLB	2017-06-22	110	70.1	4	368	800	14.9	1414	4.8	17.3	24.6

BLB	2017-07-13	50	88.3	4	427	900	17.6	1414	4.87	15.8	17
BLB	2017-08-01	37	90.7	4	396	800	17.9	1414	4.7	20.6	29
BLB	2017-08-23	54	85.8	3	381	1000	17.1	1172	4.94	18.3	21
BLB	2017-09-16	34	91.9	4	420	1000	17.3	4.52	16.6	18.9	
BLB	2018-05-10	37	85.5		256	700	8.5	1414	5.16	7.5	
BLB	2018-06-07	86	75		344	800	15.7	1414	5.29	11.0	
BLB	2018-07-05	83	80.3		421	900	13.8	1414	5.42	23.8	
BLB	2018-10-02	104	67.4		319	1600	12.4	1414	5.04	7.7	
BLB	2018-11-23	24	93.5		367	70.7	10.5	1414	4.8	-9.1	
CC	2016-06-03	32	91.9	4	397	501	15.2	385	4.66	11.2	13.5
CC	2016-06-16	46	88.9	4	413	520	17.7	304	4.71	10.4	12.8
CC	2016-06-28	107	78.9	4	507	537	21	401	4.82	14.8	24.2
CC	2016-07-15	53	89.9	4	524	642	26	208	4.6	14.6	18.7
CC	2016-08-05	140	68.6		446	400	29.3	1414	5.73	21.2	
CC	2016-09-10	32	86.9		244	400	22.2	1414	4.72	20.8	
CC	2016-10-02	34	85.5		234	900	28.8	1414	4.95	11.4	
CC	2016-11-19	27	94.9		527	2100	24.9	1414	6.11	7.6	
KB	2016-04-29	14	90.6	2	149	1110	5.7	1061	5.69	8.2	4
KB	2016-06-03	20	92.5	2	267	459	9.9	611	4.89	14.1	13.5
KB	2016-06-16	38	87.7	2	310	515	11.3	852	4.9	12.3	10.8
KB	2016-06-28	28	91.3	2	323	486	11.7	887	5.06	17.8	24.5
KB	2016-07-15	41	88.5	2	356	535	15.6	621	5.03	18.7	18.7

LR	2016-08-05	27	50	54	1100	5.7	1414	6.03	21.2
LR	2016-09-10	3	92.1	38	800	4.4	1414	6.07	20.8
LR	2016-10-02	6	95.2	124	900	10.1	2000	5.76	11.4
LR	2017-04-19	4	96.6	1	116	600	7.1	1416	4.87
LR	2017-05-14	20	84.6	2	130	600	8.1	1213	4.95
LR	2017-05-30	17	89	2	154	600	8.6	1572	5.21
LR	2017-06-22	34	69.9	2	113	700	8.2	1414	5.51
LR	2017-07-13	12	88.7	2	106	600	6.4	1414	5.54
LR	2017-08-01	2	96.9	2	65	600	6.6	1414	5.1
LR	2017-08-23	5	88.4	2	43	600	4.1	1371	5.37
LR	2017-09-16	5	94.9	2	99	700	6.7	1414	5.01
LR	2018-05-10	35	74.1	135	800	6.7	1414	5.54	7.5
LR	2018-06-07	26	84.0	162	900	8.2	1414	5.55	11.0
MB	2016-05-27	30	88.9	2	270	1200	6.8	1278	5.14
MB	2016-06-15	15	94.2	2	260	1590	8.4	1497	5.61
MB	2016-06-27	27	90.5	2	284	1610	7.6	1851	5.28
MB	2016-07-14	40	86.9	2	305	1780	6.4	1747	5.4
MB	2017-04-20	25	89.8	1	246	848	7	1996	4.86
MB	2017-05-13	48	84.1	1	302	977	7.2	1385	4.76
MB	2017-05-29	40	87.9	2	330	1100	9	1977	4.99
MB	2017-06-21	96	81.2	2	510	1480	15.8	551	5.18
MB	2017-07-12	46	87.7	2	375	1320	11.5	28968	5.13
								15.8	25.9

MPB	2017-07-31	43	87.7	2	351	1470	12.1	1629	5.08	15.6	27.4
MPB	2017-08-22	80	85.7	2	560	1500	21	828	4.91	15.5	27.6
MPB	2017-09-17	30	89.3	3	280	1600	11	1258	5.14	14.7	23
MPB	2015-04-22	2	97.1	1	77	323	4.3	1009		7.3	6.41
MPB	2015-04-30	4	95.9	1	88	379	5.4	1272	4.77	3.5	4.5
MPB	2015-05-06	5	95.8	1	120	446	6.6	1304		14	0.76
MPB	2015-05-13	5	96.8	2	158	498	8.2	958	5.18	13.6	7
MPB	2015-05-20	1	99.4	2	170	621	9.3	815	5.25	10.4	12
MPB	2015-05-27	5	97.2	2	177	567	10.4	699	5.39	14.1	21
MPB	2015-06-03	13	95	2	260	710	17.3	639	5.03	9.2	8
MPB	2015-06-10	17	92.8	2	236	651	13.6	443	5.24	14.6	10
MPB	2015-06-17	28	88.3	2	239	751	15.6	560	5.15	14.6	16
MPB	2015-06-24	18	93.4	2	271	751	19	357	5	13.2	18
MPB	2015-07-02	42	83.8	2	259	705	17.6	322	5.05	16.9	20
MPB	2015-07-08	19	92.3	2	247	724	16.4	400	5.24	19.4	23
MPB	2015-07-15	19	92.3	2	248	710	17	464	5.18	20.1	18
MPB	2015-07-22	21	91.5	2	247	756	16.3	552	5.36	18.4	17
MPB	2015-07-29	18	92.5	2	240	912	18.2	1146	5.29	17.7	19
MPB	2015-08-05	15	93.9	2	244	863	19	650	5.35	21.5	19
MPB	2015-08-12	25	88.2	2	211	798	16.5	618	5.37	18.9	21
MPB	2015-08-19	36	85.4	2	247	941	16.3	721	4.83	21.2	24
MPB	2015-08-26	20	91.1	2	224	761	10	607	5.26	21.1	16

MPB	2015-09-02	26	87.5	3	208	760	14.7	711	4.9	17.4	21	0.02	0.109	BF
MPB	2015-09-09	18	90.8	3	196	722	14.5	823	5.2	18.5	20	0	0	RL
MPB	2015-09-16	20	92	3	250	1330	13	4375	5.13	16.5	19	0.08	0.437	BF
MPB	2015-09-23	35	88.2	3	297	1320	20	2598	5	14.3	17	0.02	0.109	BF
MPB	2015-09-30	32	88.1	3	268	1170	18.1	1902	4.87	15.7	19	0	0	BF
MPB	2015-10-07	48	88.9	3	434	1900	28	2576	4.81	10.3	13	0.15	0.819	BF
MPB	2015-10-14	28	92.8	3	390	1560	24	1963	4.83	12.7	16	0.36	1.965	RL
MPB	2016-04-28	14	90.1	1	141	573	7.1	800	4.9	6.6	4	0.15	0.819	RL
MPB	2016-05-27	20	91.7	2	240	740	14	489	4.79	14.2	12	0.15	0.819	RL
MPB	2016-06-15	14	94.6	2	257	775	15.7	478	4.89	12.7	14.1	0.07	0.382	FL
MPB	2016-06-27	21	92.4	2	275	778	17.2	587	4.93	18	27	0.01	0.055	FL
MPB	2016-07-14	16	92.9	2	225	828	15	1447	4.86	15.5	20	0.03	0.164	FL
MPB	2017-04-20	9	94.5	1	163	595	9.4	1625	4.65	5	1	0	0	FL
MPB	2017-05-13	11	95.2	1	229	712	11.5	1430	4.54	10.4	17	0.79	4.313	FL
MPB	2017-05-29	10	96.2	1	260	790	13	1567	4.74	10.9	12	0.44	2.402	FL
MPB	2017-06-21	46	86.5	1	341	901	17.8	226	4.73	16.8	24.2	0.32	1.747	FL
MPB	2017-07-12	27	93	2	384	1060	22.3	229	4.96	19.5	25.9	0.05	0.273	FL
MPB	2017-07-31	23	92.4	2	303	972	22.8	724	4.65	17.8	27	0.02	0.109	FL
MPB	2017-08-22	40	91.3	2	460	1300	30	255	4.54	16.9	28.4	0.62	3.385	FL
MPB	2017-09-17	40	90.5	3	420	1300	30	301	4.6	17.3	20.1	0.1	0.546	FL
MR	2015-04-22	12	90.2	1	122	648	5.9	1321	7.3	58.61	1.837	RL		
MR	2015-04-30	2	98	1	102	500	5.6	1189	5	4.2	4.5	33.03	1.454	FL

MR	2015-05-06	9	91.8	1	110	527	4.8	1112	14	22.33	1.269	BF
MR	2015-05-13	10	91.8	1	122	517	5.5	1117	13.3	7	12.05	1.048
MR	2015-05-20	9	92.3	1	117	574	5.3	1101	5.19	14.2	12	6.95
MR	2015-05-27	7	94.1	1	118	548	5.8	1161	5.28	15.7	21	4.53
MR	2015-06-03	16	89.2	2	148	629	6.6	1069	5.35	12.7	8	8.42
MR	2015-06-10	39	74.2	2	151	590	6.2	1220	5.33	17.4	10	7.8
MR	2015-06-17	24	83.1		142	575	6.1	1175	5.39	19.2		4.98
MR	2015-06-24	26	86.2		188	647	8.8	968	5.3	16.6		10.58
MR	2015-07-02	35	82.1	2	196	602	8.1	897	5.25	19.9	20	10.94
MR	2015-07-08	35	80.2	2	177	713	7.3	972	5.37	23.1	23	5.14
MR	2015-07-15	23	87	2	177	593	7.9	959	5.46	24.5	18	2.9
MR	2015-07-22	17	90.4	2	177	652	7	1011	5.49	21.9	17	1.9
MR	2015-07-29	24	85.3	2	163	611	7.7	1146	5.54	21.2	19	2.45
MR	2015-08-05	30	82	2	167	670	7.5	1077	5.65	25.2	19	1.46
MR	2015-08-12	13	91	2	145	629	6.5	1094	5.43	22	21	1.53
MR	2015-08-19	23	86.9	2	176	641	7.4	1097	5.48	25.3	24	0.96
MR	2015-08-26	42	83.9	2	261	808	9	1179	5.33	24.1	16	4.47
MR	2015-09-02	34	87.5	3	271	859	12.3	1168	5.3	21.5	21	1.59
MR	2015-09-09	22	90.4	3	229	751	10.2	776	5.47	22.3	20	0.93
MR	2015-09-16	34	87	3	261	828	12.5	1108	5.2	18.9	19	3.2
MR	2015-09-23	13	94.7	3	246	675	11.3	900	5.34	18.3	17	3.44
MR	2015-09-30	31	86.2	3	225	662	9.6	911	5.05	18.6	19	2.3

MR	2015-10-07	21	91.3	241	794	10.7	989	4.87	13	5.16	0.869
MR	2015-10-14	24	90.7	3	257	824	11.4	1166	4.87	14.1	16
MR	2015-10-21	25	89.5	3	237	735	9	890	4.91	8.9	5
MR	2015-10-28	22	91.3	3	253	837	10	1153	4.95	6.9	3
MR	2015-11-04	25	91.3	3	286	945	14.4	967	4.7	7.9	7
MR	2015-12-02	20	92.4	3	262	946	12	1139	4.73	3.2	6
MR	2016-01-05	30	88.9	3	270	880	11	1245	-	-20	9.62
MR	2016-02-02	18	91.7	3	217	875	10.1	1290	4.62	0.2	-3
MR	2016-02-23	14	92	1	175	651	7.9	1316	4.59	0.8	-6
MR	2016-03-29	13	91.1	1	146	606	6.1	1060	4.65	4.2	2
MR	2016-04-28	13	91	1	145	572	6	937	4.75	10.2	4
MR	2016-05-27	12	92.3	1	156	635	6.8	922	4.98	16.8	12
MR	2016-06-15	12	92.3	1	155	595	6.7	1217	5.1	15.7	14.4
MR	2016-06-27	16	89.5	2	153	624	6.8	1263	5.24	22.7	24
MR	2016-07-14	8	94	2	134	654	6.4	1697	5.42	15	16
MR	2017-04-20	22	87.3	3	173	692	5.3	1625	4.56	8.5	1
MR	2017-05-13	27	86.3	3	197	683	10.5	1437	4.7	13.4	13
MR	2017-05-29	20	91.3	3	230	810	9	1774	4.87	13.9	10.4
MR	2017-06-21	63	74.2	2	244	752	10.1	458	5.17	19.4	20.2
MR	2017-07-12	32	87.4	2	254	729	10	982	5.15	22.9	23.9
MR	2017-07-31	50	76.7	2	215	766	9.88	1116	5.13	22.5	24.9
MR	2017-08-22	20	93.5	3	310	910	15	861	4.92	20.4	25.5

FL	MR	2017-09-17	20	92	3	250	890	15	817	4.84	20.6	17.3	1.98	0.715
PPMB	2015-05-27	2	98.4	2	128	742	7.2	845	5.62	12.6	21			
PPMB	2015-06-03	6	95.7	2	138	586	8.8	1042	5.28	12.2	8			
PPMB	2016-04-28	6	93.6	2	93	675	3.6	1244	5.25	8.2	4			
PPMB	2016-05-27	35	78.1	2	160	900	8	691	4.93	12.7	12			
PPMB	2016-06-15	5	96.7	2	151	1150	8.1	1229	5.14	10.9	14.2			
PPMB	2016-06-27	5	94.3	2	82	1570	5.4	3167	5.35	14	24			
PPMB	2016-07-14	10	89.3	2	96	1770	6.9	5652	5.4	15	12			
PPMB	2017-04-20	4	96.5	1	114	71	5.3	2234	4.78	8.5	2			
PPMB	2017-05-13	11	92.1	1	139	71	6.2	1328	4.69	9.8	16			
PPMB	2017-05-29	10	93.8	2	160	730	7	2405	5.03	13.9	10.8			
PPMB	2017-06-21	32	85.6	2	222	955	11.1	289	4.98	15.5	21.4			
PPMB	2017-07-12	35	80.3	2	178	1580	10.7	1428	5.21	16	24.6			
PPMB	2017-07-31	1	99.3	2	148	1780	13	2746	4.99	13.8	25.6			
PPMB	2017-08-22	20	90.9	3	220	960	13	571	4.85	16.4	26.9			
PPMB	2017-09-17	20	90	3	200	990	15	640	4.7	16	17.8			
UKR	2016-05-19	21	89.7	203	700	10.4	1414.2	5.83	12.0					
UKR	2016-08-05	18	88.5	157	700	15.1	1414.2	5.56	21.2					
UKR	2016-09-10	16	89.9	158	100	12.1	1414.2	5.58	20.8					
UKR	2016-10-02	15	91.8	182	900	13.8	1414.2	5.77	11.4					
UKR	2016-11-19	41	84.4	262	1100	15.1	2000	4.89	7.6					
UKR	2017-04-19	38	72.3	3	137	500	9.5	1292	7.3	3.4				

UKR	2017-05-14	24	87.2	2	187	600	12.6	1049	12.9	6
UKR	2017-05-30	37	83.3	2	221	600	9.8	1115	15.2	12.5
UKR	2017-06-22	66	67.5	2	203	800	12.1	1414	5.22	23.4
UKR	2017-07-13	47	85.4	2	322	800	17.6	1414	5.21	22.3
UKR	2017-08-01	26	89.1	2	239	800	15	1414	5.29	25.6
UKR	2017-08-23	74	65.6	2	215	700	12.8	889	5.31	21.8
UKR	2017-09-16	76	82	2	422	1000	20.6	4.77	20.8	19.2
UKR	2018-05-10	37	78.1		169	600	8.2	1414.2	5.31	7.5
UKR	2018-06-07	59	73.3		221	700	12.9	1414.2	5.34	11.0
UKR	2018-07-05	99	66.3		294	800	12.2	1414.2	5.46	23.8
UKR	2018-10-02	47	77.3		207	1100	10.5	1414.2	5.78	7.7
UKR	2018-11-23	43	81.1		227	800	10.8	1414.2	4.81	-9.1

Table A3 Linear correlation r^2 values and significance ($\alpha = 0.05$) between Al_i/Al_d and other water chemistry parameters across all sites.

Variable	Unit	Correlation with $Al_i/Al_d (R^2)$	Significance (p-value)
Al _d	$\mu\text{g L}^{-1}$	0.007	0.247
Ca	$\mu\text{g L}^{-1}$	0.001	0.676
DOC	mg L^{-1}	0.007	0.247
pH	unit	0.077	0.000
Water Temp.	°C	0.114	0.000
F ⁺	$\mu\text{g L}^{-1}$	0.003	0.537
NO ₃ ⁻	$\mu\text{g L}^{-1}$	0.002	0.624
SO ₄ ²⁻	$\mu\text{g L}^{-1}$	0.000	0.952

Table A4 Kendal-tau correlation and significance ($\alpha = 0.05$) between Al_i and other water chemistry parameters for each study site. One Al_i outlier removed for MR calculations (value: $2 \mu\text{g L}^{-1}$, date: 30 April 2015).

Site	Variable	Unit	Correlation	Significance
			Slope	(p-value)
ALD	Ald	$\mu\text{g L}^{-1}$	0.29	0.044
	Ca	$\mu\text{g L}^{-1}$	0.22	0.143
	DOC	mg L^{-1}	0.36	0.013
	pH	unit	0.19	0.190
	Water Temp.	$^{\circ}\text{C}$	0.32	0.093
	F ⁺	$\mu\text{g L}^{-1}$	0.182	0.533
	NO ₃ ⁻	$\mu\text{g L}^{-1}$	0.600	0.142
BLB	SO ₄ ²⁻	$\mu\text{g L}^{-1}$	-0.037	0.876
	Ald	$\mu\text{g L}^{-1}$	0.03	0.852
	Ca	$\mu\text{g L}^{-1}$	0.17	0.238
	DOC	mg L^{-1}	0.08	0.575
	pH	unit	0.07	0.622
	Water Temp.	$^{\circ}\text{C}$	0.35	0.099
	SO ₄ ²⁻	$\mu\text{g L}^{-1}$	-0.184	0.468
CC	Ald	$\mu\text{g L}^{-1}$	0.11	0.708
	Ca	$\mu\text{g L}^{-1}$	-0.22	0.451
	DOC	mg L^{-1}	0.25	0.383
	pH	unit	-0.04	0.901
	Water Temp.	$^{\circ}\text{C}$	0.67	0.174
	F ⁺	$\mu\text{g L}^{-1}$		
	NO ₃ ⁻	$\mu\text{g L}^{-1}$		
KB	SO ₄ ²⁻	$\mu\text{g L}^{-1}$		
	Ald	$\mu\text{g L}^{-1}$	0.800	0.050
	Ca	$\mu\text{g L}^{-1}$	0.200	0.624
	DOC	mg L^{-1}	0.800	0.050
	pH	unit	-0.200	0.624
	Water Temp.	$^{\circ}\text{C}$	0.600	0.142
	NO ₃ ⁻	$\mu\text{g L}^{-1}$	0.800	0.050

	SO_4^{2-}	$\mu\text{g L}^{-1}$	-0.400	0.327
LR	Ald	$\mu\text{g L}^{-1}$	0.37	0.047
	Ca	$\mu\text{g L}^{-1}$	0.24	0.226
	DOC	mg L^{-1}	0.25	0.189
	pH	unit	0.19	0.319
	Water Temp.	°C	0.02	0.937
	F+	$\mu\text{g L}^{-1}$		
	NO_3^-	$\mu\text{g L}^{-1}$	-0.333	0.348
MB	SO_4^{2-}	$\mu\text{g L}^{-1}$	0.105	0.801
	Ald	$\mu\text{g L}^{-1}$	0.739	0.001
	Ca	$\mu\text{g L}^{-1}$	-0.062	0.783
	DOC	mg L^{-1}	0.400	0.073
	pH	unit	-0.279	0.214
	Water Temp.	°C	0.125	0.580
	F+	$\mu\text{g L}^{-1}$	-0.028	0.917
MPB	NO_3^-	$\mu\text{g L}^{-1}$	-0.182	0.533
	SO_4^{2-}	$\mu\text{g L}^{-1}$	-0.463	0.050
	Ald	$\mu\text{g L}^{-1}$	0.550	0.000
	Ca	$\mu\text{g L}^{-1}$	0.580	0.000
	DOC	mg L^{-1}	0.574	0.000
	pH	unit	-0.169	0.146
	Water Temp.	°C	0.280	0.016
MR	Runoff	mm day^{-1}	-0.232	0.042
	F+	$\mu\text{g L}^{-1}$	0.239	0.042
	NO_3^-	$\mu\text{g L}^{-1}$	0.190	0.160
	SO_4^{2-}	$\mu\text{g L}^{-1}$	-0.206	0.067
	Ald	$\mu\text{g L}^{-1}$	0.459	0.000
	Ca	$\mu\text{g L}^{-1}$	0.317	0.002
	DOC	mg L^{-1}	0.382	0.000
PMB	pH	unit	0.097	0.362
	Water Temp.	°C	0.285	0.007
	RunOff	mm day^{-1}	-0.108	0.291
	F+	$\mu\text{g L}^{-1}$	0.139	0.188
	NO_3^-	$\mu\text{g L}^{-1}$	0.086	0.450
	SO_4^{2-}	$\mu\text{g L}^{-1}$	-0.127	0.215
	Ald	$\mu\text{g L}^{-1}$	0.46	0.019

	Ca	$\mu\text{g L}^{-1}$	0.01	0.960
	DOC	mg L^{-1}	0.21	0.295
	pH	unit	-0.23	0.232
	Water Temp.	$^{\circ}\text{C}$	0.36	0.065
	F+	$\mu\text{g L}^{-1}$	-0.063	0.782
	NO_3^-	$\mu\text{g L}^{-1}$	0.276	0.444
	SO_4^{2-}	$\mu\text{g L}^{-1}$	-0.293	0.135
UKR	Ald	$\mu\text{g L}^{-1}$	0.34	0.071
	Ca	$\mu\text{g L}^{-1}$	0.38	0.053
	DOC	mg L^{-1}	0.32	0.086
	pH	unit	0.35	0.063
	Water Temp.	$^{\circ}\text{C}$	0.14	0.621
	F+	$\mu\text{g L}^{-1}$		
	NO_3^-	$\mu\text{g L}^{-1}$		
	SO_4^{2-}	$\mu\text{g L}^{-1}$	-0.600	0.142

Table A5 R^2 values for scatterplots of water chemistry relationships shown in Figure 3

Site	Season	Season Dates	Relationship	R^2
MR	S1	April-May	Al _i -pH	0.78131
MR	S2	June-Aug	Al _i -pH	0.27845
MR	S3	Sept-Feb	Al _i -pH	0.04551
MR	S1	April-May	Al _i -DOC	0.48879
MR	S2	June-Aug	Al _i -DOC	0.51343
MR	S3	Sept-Feb	Al _i -DOC	0.0014
MR	S1	April-May	Al _i -T _w	0.42004
MR	S2	June-Aug	Al _i -T _w	0.03442
MR	S3	Sept-Feb	Al _i -T _w	0.08795
MR	S1	April-May	Al _i -Al _d	0.66782
MR	S2	June-Aug	Al _i -Al _d	0.52313
MR	S3	Sept-Feb	Al _i -Al _d	0.0141
MR	S1	April-May	Al _i -Ca	0.50399
MR	S2	June-Aug	Al _i -Ca	0.37339
MR	S3	Sept-Feb	Al _i -Ca	0.00009
MR	S1	April-May	Al _i -Ca/Al _d	0.41377
MR	S2	June-Aug	Al _i -Ca/Al _d	0.32486
MR	S3	Sept-Feb	Al _i -Ca/Al _d	0.0382
MR	S1	April-May	Al _i -Q	0.0374
MR	S2	June-Aug	Al _i -Q	0.0703
MR	S3	Sept-Feb	Al _i -Q	0.0063

MR	S1	April-May	Al _d -Ca	0.55308
MR	S2	June-Aug	Al _d -Ca	0.63892
MR	S3	Sept-Feb	Al _d -Ca	0.5074
MPB	S1	April-June	Al _i -pH	0.00447
MPB	S2	July-Aug	Al _i -pH	0.21629
MPB	S3	Sept-Oct	Al _i -pH	0.56
MPB	S1	April-June	Al _i -DOC	0.70785
MPB	S2	July-Aug	Al _i -DOC	0.43036
MPB	S3	Sept-Oct	Al _i -DOC	0.72722
MPB	S1	April-June	Al _i -T _w	0.72067
MPB	S2	July-Aug	Al _i -T _w	0.2356
MPB	S3	Sept-Oct	Al _i -T _w	0.4353
MPB	S1	April-June	Al _i -Al _d	0.67571
MPB	S2	July-Aug	Al _i -Al _d	0.4225
MPB	S3	Sept-Oct	Al _i -Al _d	0.65683
MPB	S1	April-June	Al _i -Ca	0.59175
MPB	S2	July-Aug	Al _i -Ca	0.4214
MPB	S3	Sept-Oct	Al _i -Ca	0.49111
MPB	S1	April-June	Al _i -Ca/Al _d	0.51142
MPB	S2	July-Aug	Al _i -Ca/Al _d	0.03067
MPB	S3	Sept-Oct	Al _i -Ca/Al _d	0.02961
MPB	S1	April-June	Al _i -Q	0.1734
MPB	S2	July-Aug	Al _i -Q	0.0039
MPB	S3	Sept-Oct	Al _i -Q	0.0004
MPB	S1	April-June	Al _d -Ca	0.96289
MPB	S2	July-Aug	Al _d -Ca	0.7685

MPB S3 Sept-Oct Al_d-Ca 0.72173

Table A6 Laboratory detection limit comparison.

Chemistry		Value		
Parameter	Units	HERC	Maxxam	AGAT
pH	$\mu\text{g L}^{-1}$	n/a	n/a	n/a
DOC	mg L^{-1}	n/a	0.50	n/a
TOC	mg L^{-1}	n/a	n/a	0.5
SO_4	$\mu\text{g L}^{-1}$	10.00	n/a	2000
Al_d	$\mu\text{g L}^{-1}$	n/a	5.00	5
Al_t	$\mu\text{g L}^{-1}$	n/a	5.00	5
Al_o	$\mu\text{g L}^{-1}$	n/a	5.00	5
Ca_t	$\mu\text{g L}^{-1}$	n/a	$100 \mu\text{g L}^{-1}$	0.1 mg L^{-1}
Ca_d	$\mu\text{g L}^{-1}$	n/a	100	100

Appendix B. Figures

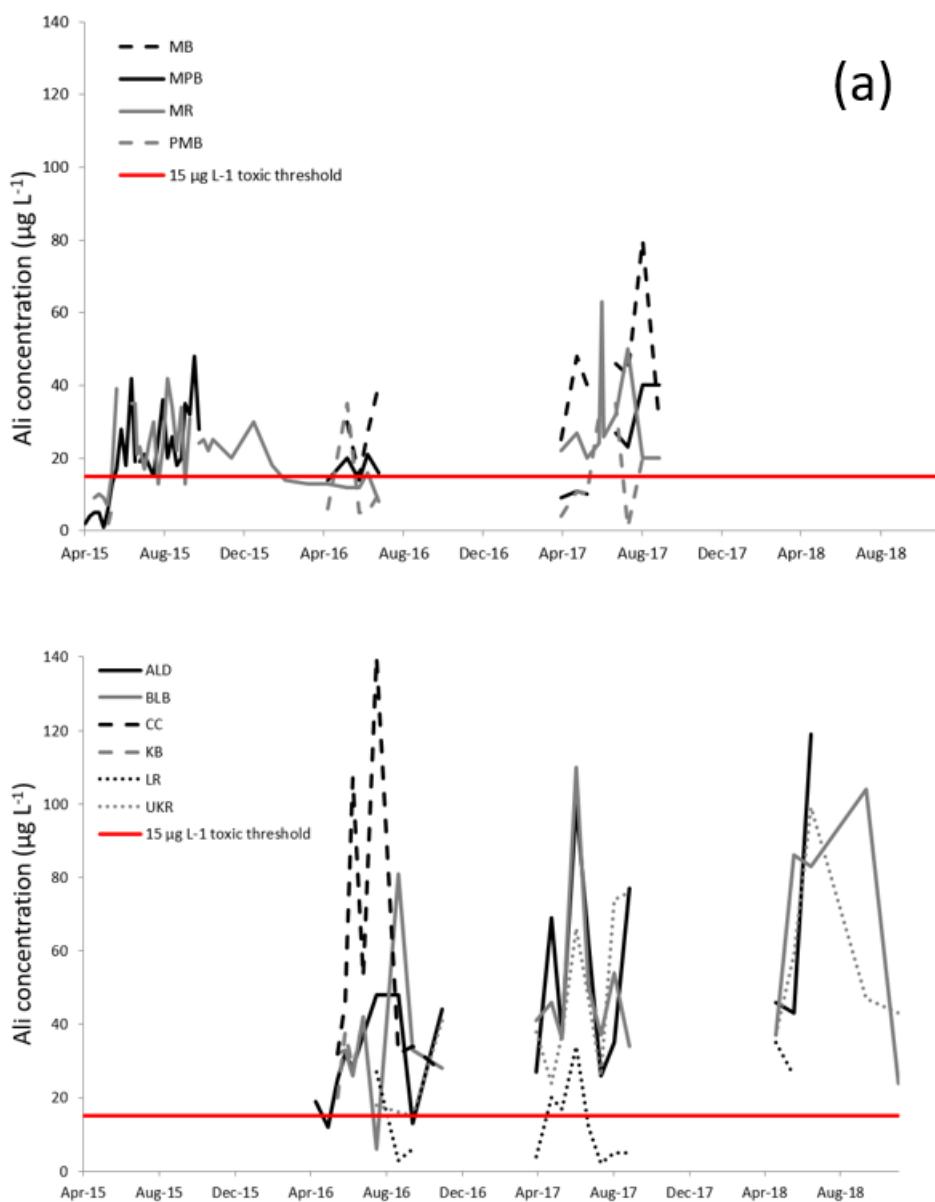


Figure B1 Timeseries of Al_i concentration between 22 April 2015 and 23 November 2018.

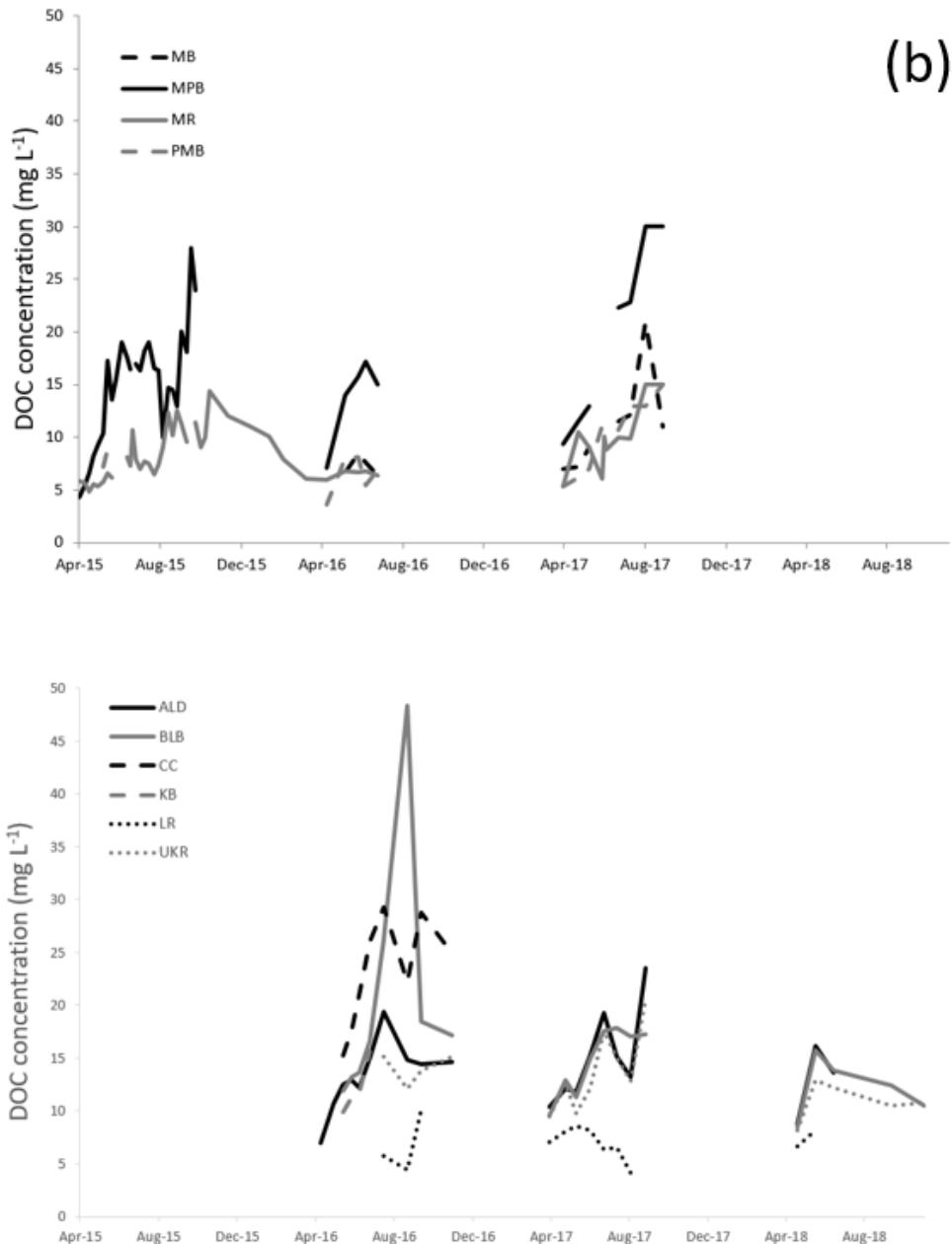


Figure B2 Time series of DOC concentration between 22 April 2015 and 23 November 2018

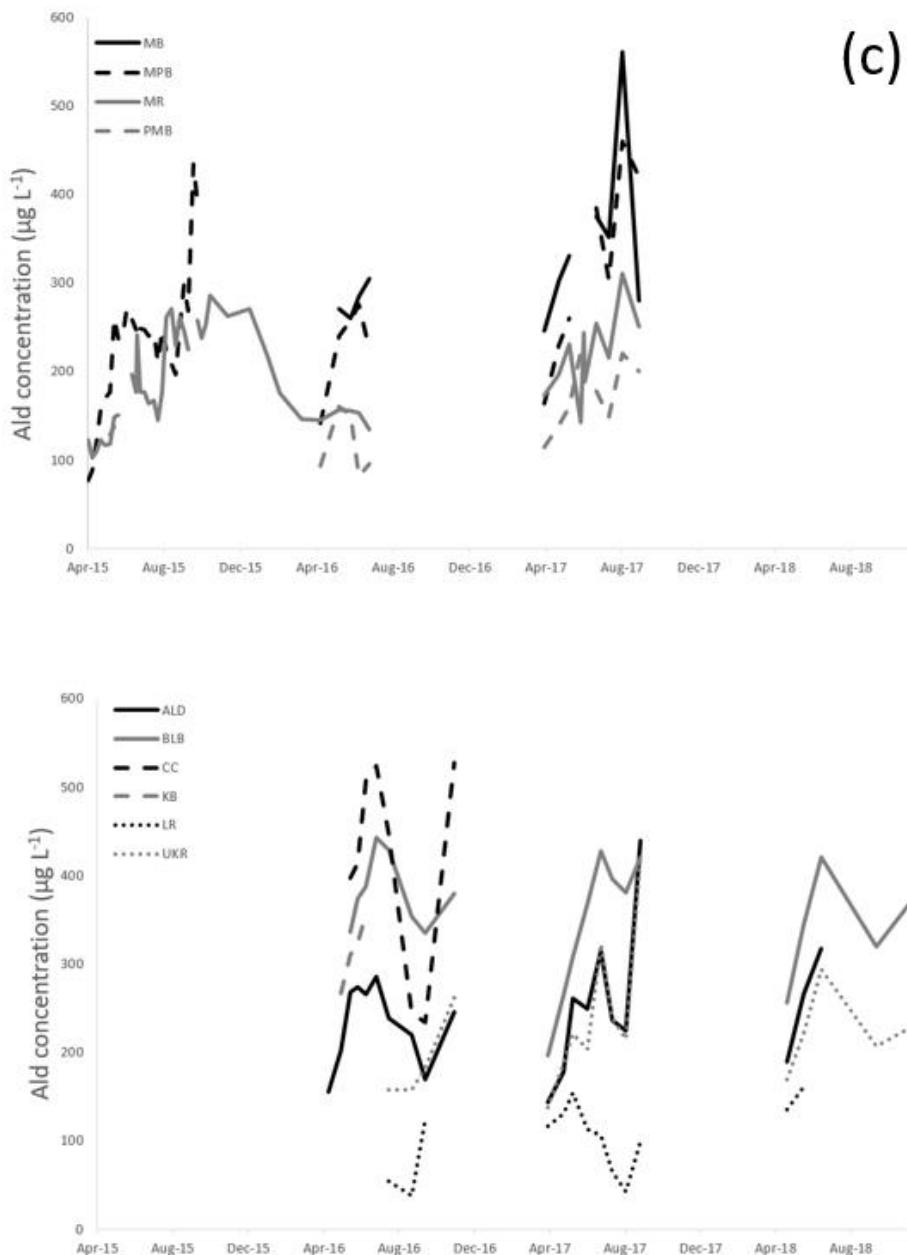


Figure B3 Time series of Al_d concentration between 22 April 2015 and 23 November 2018.

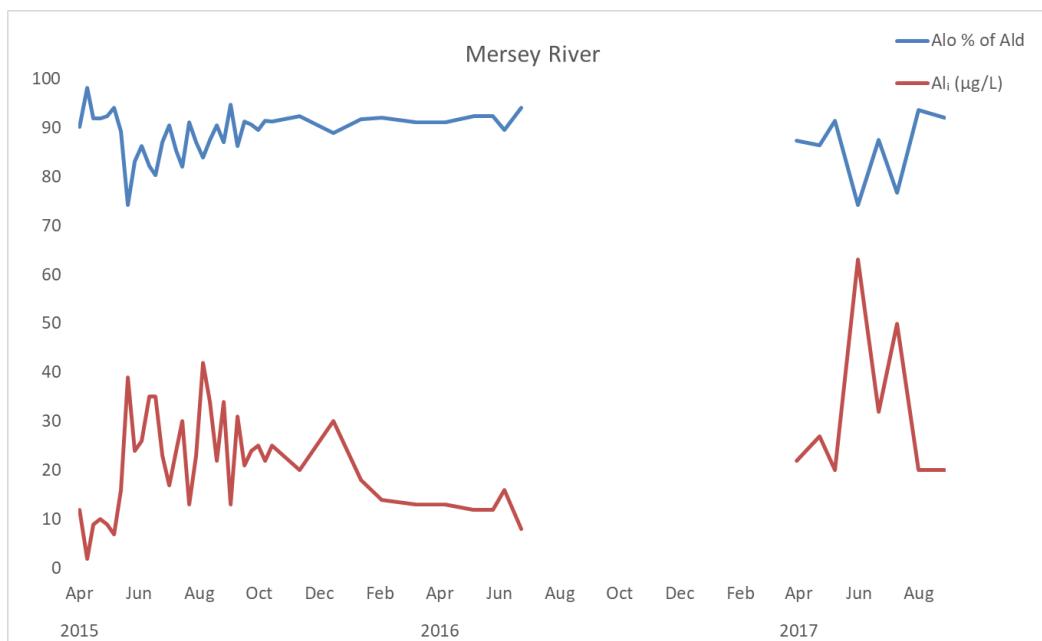


Figure B4 Time series of percentage Al_d comprised of Al_o for MR, compared to absolute value of Al_i in ug L⁻¹.

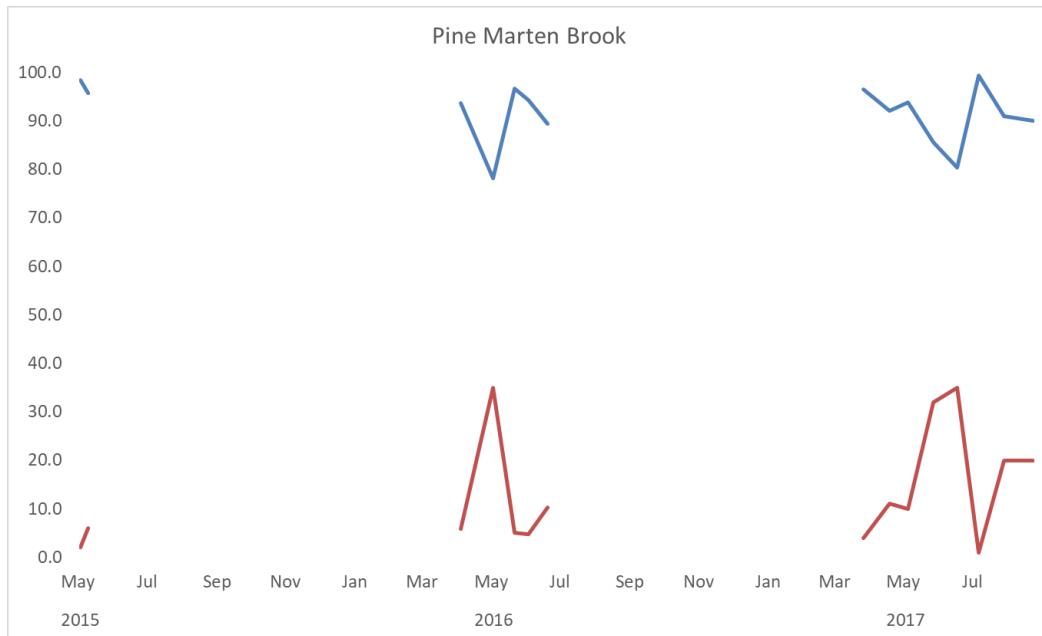


Figure B5 Time series of percentage Al_d comprised of Al_o for PMB, compared to absolute value of Al_i in $\mu g L^{-1}$.

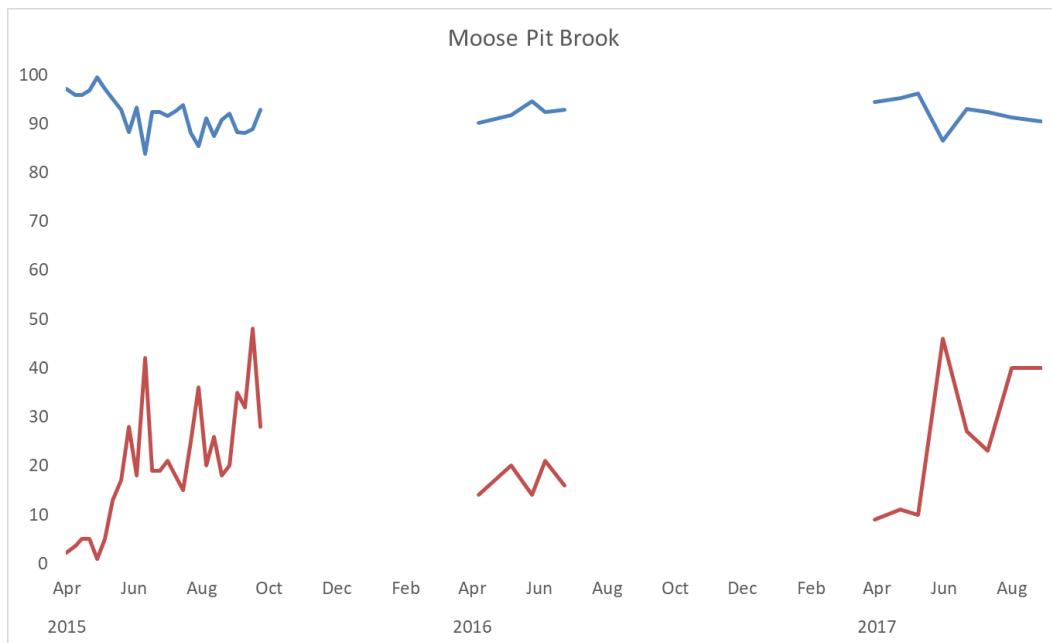


Figure B6 Time series of percentage Al_d comprised of Al_o for MPB, compared to absolute value of Al_i in $\mu g L^{-1}$.

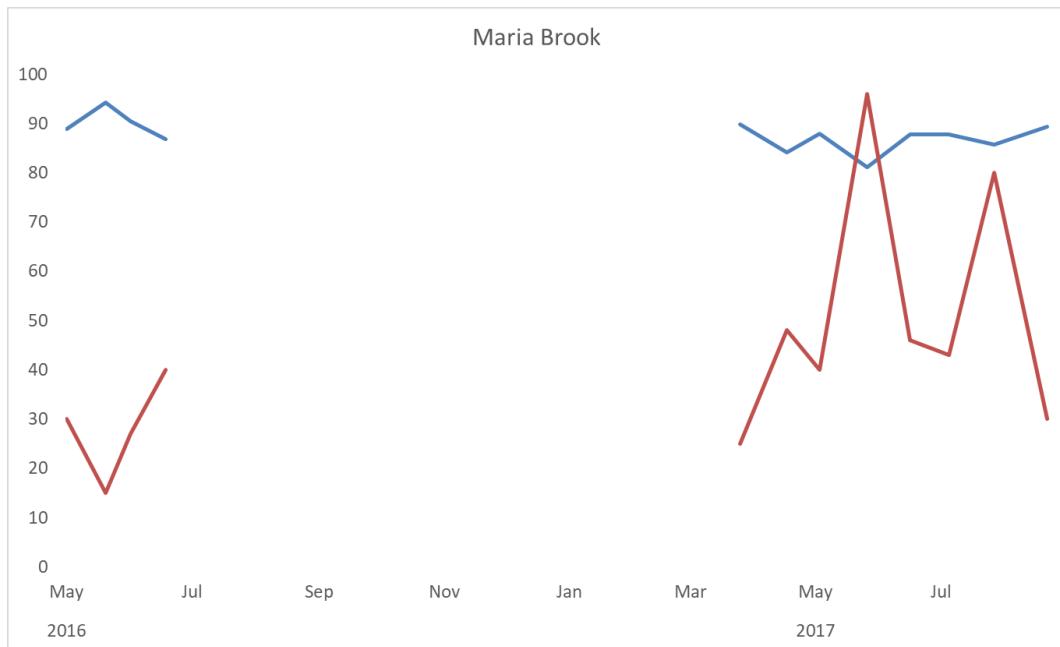


Figure B7 Time series of percentage Al_d comprised of Al_o for MB, compared to absolute value of Al_i in ug L^{-1} .

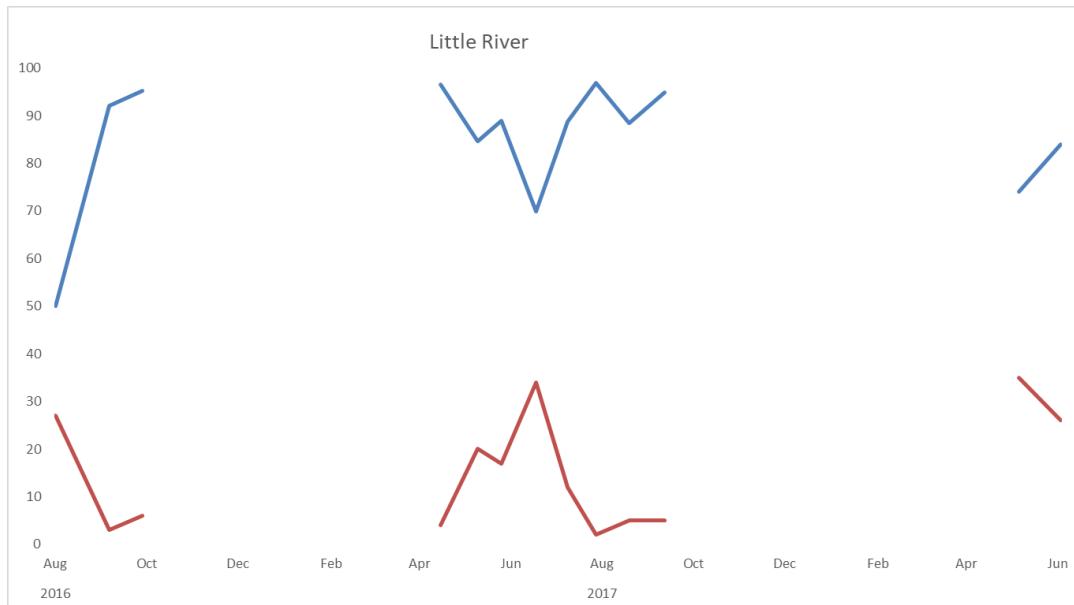


Figure B8 Time series of percentage Al_d comprised of Al_o for LR, compared to absolute value of Al_i in $\mu g L^{-1}$.

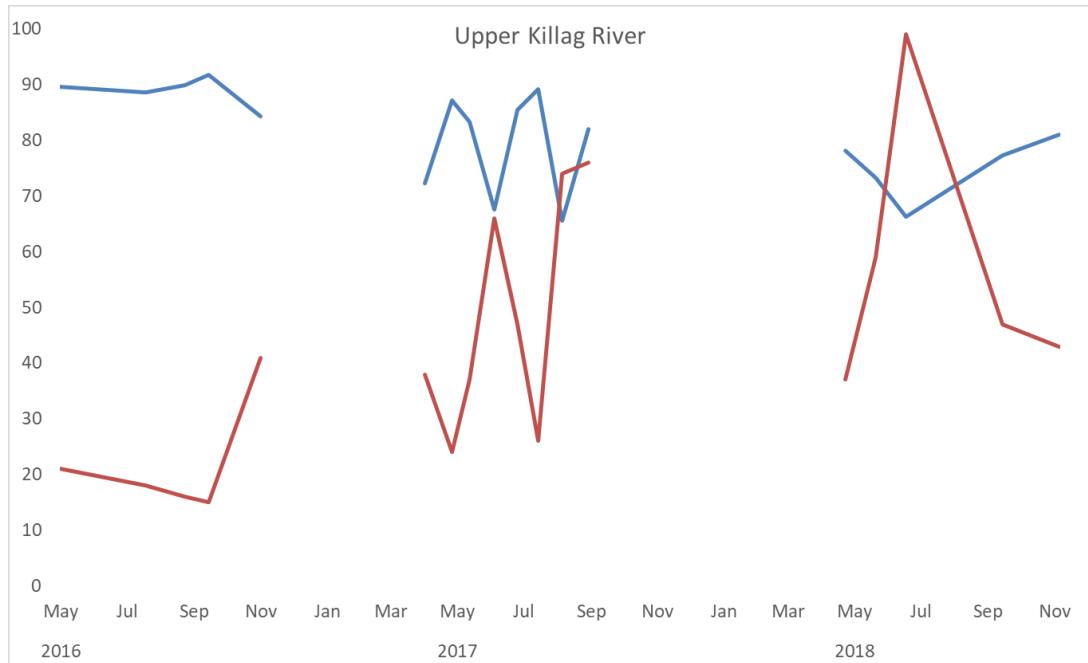


Figure B9 Time series of percentage Al_d comprised of Al_o for UKR, compared to absolute value of Al_i in $\mu g L^{-1}$.

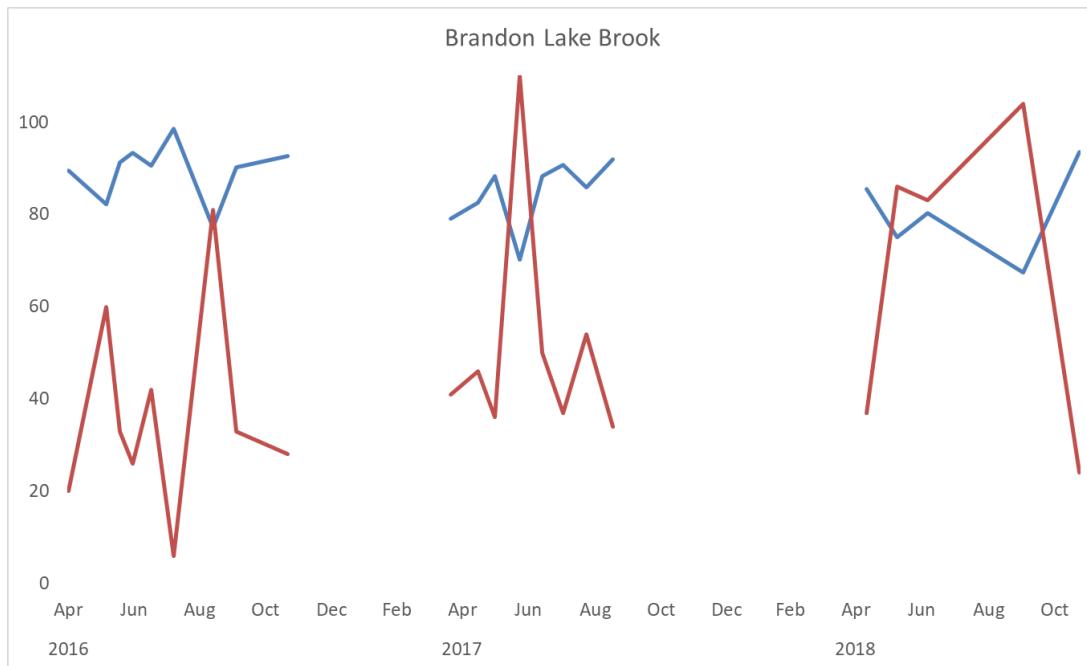


Figure B10 Time series of percentage Al_d comprised of Al_o for BLB, compared to absolute value of Al_i in ug L^{-1} .

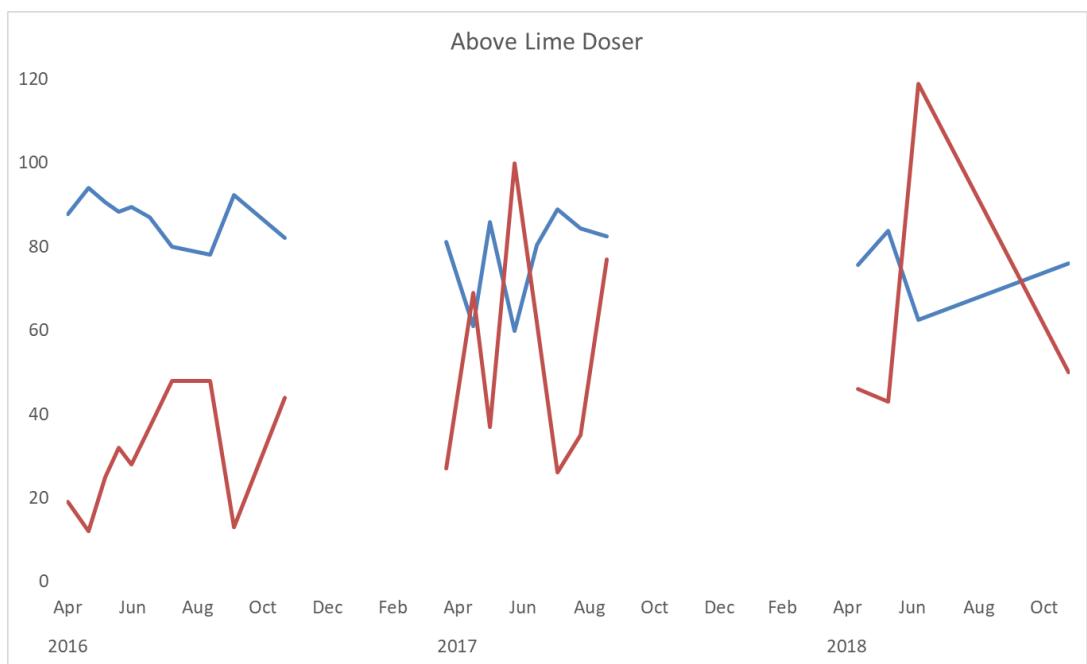


Figure B11 Time series of percentage Al_d comprised of Al_o for ALD, compared to absolute value of Al_i in $\mu g L^{-1}$.

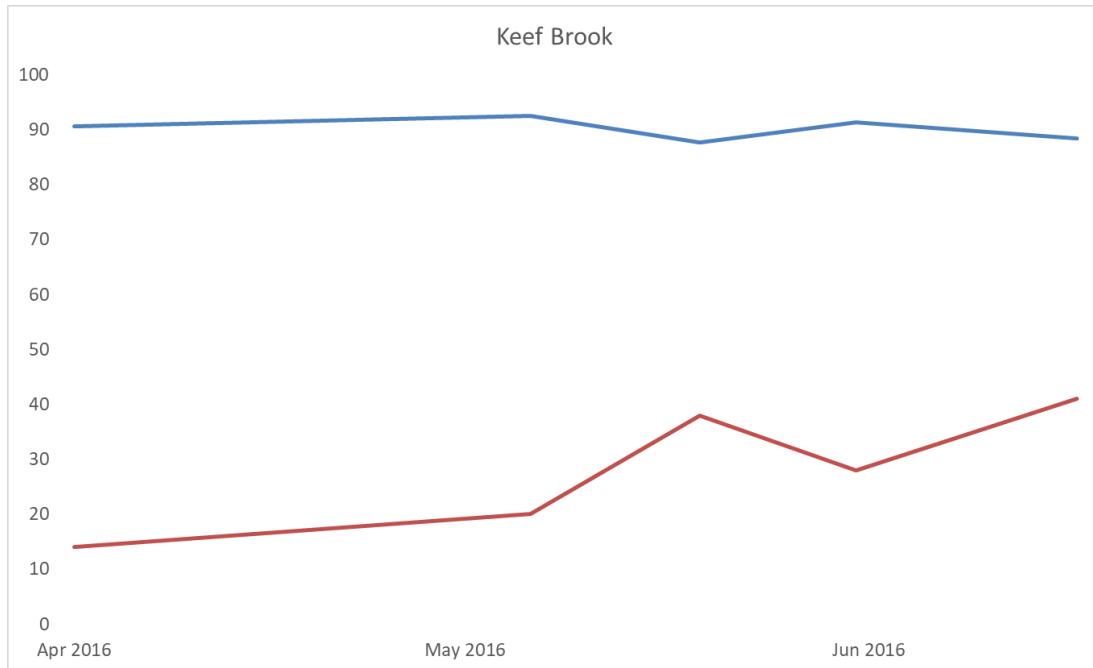


Figure B12 Time series of percentage Al_d comprised of Al_o for KB, compared to absolute value of Al_i in $\mu g L^{-1}$.

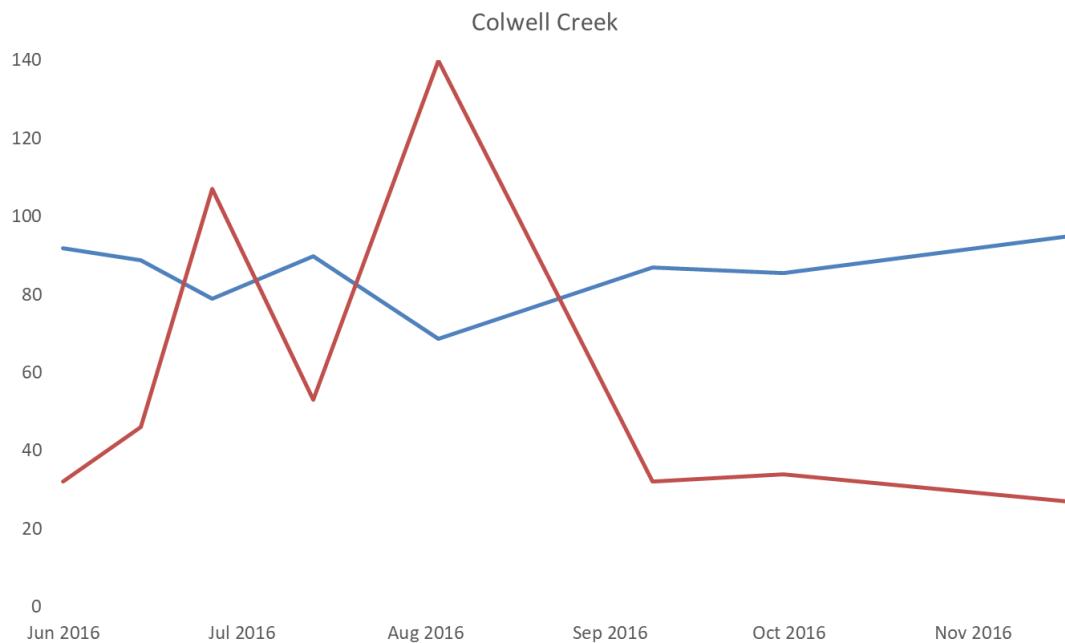


Figure B13 Time series of percentage Al_d comprised of Al_o for CC, compared to absolute value of Al_i in $\mu g \cdot L^{-1}$

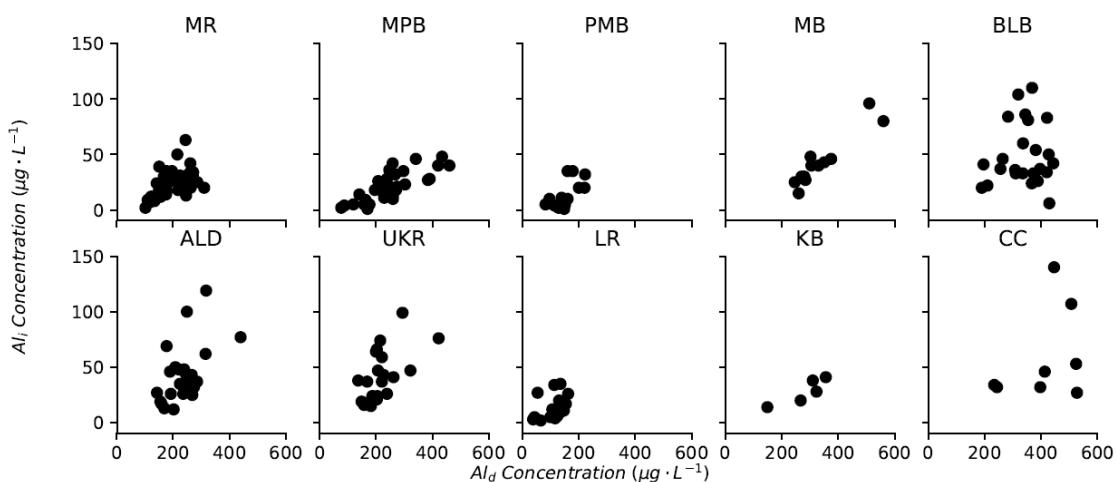


Figure B14 Least-squares linear regression of Al_i versus Al_d for each study site. One Al_i outlier removed for MR
 (value: 2 $\mu g \cdot L^{-1}$, date: 30 April 2015).

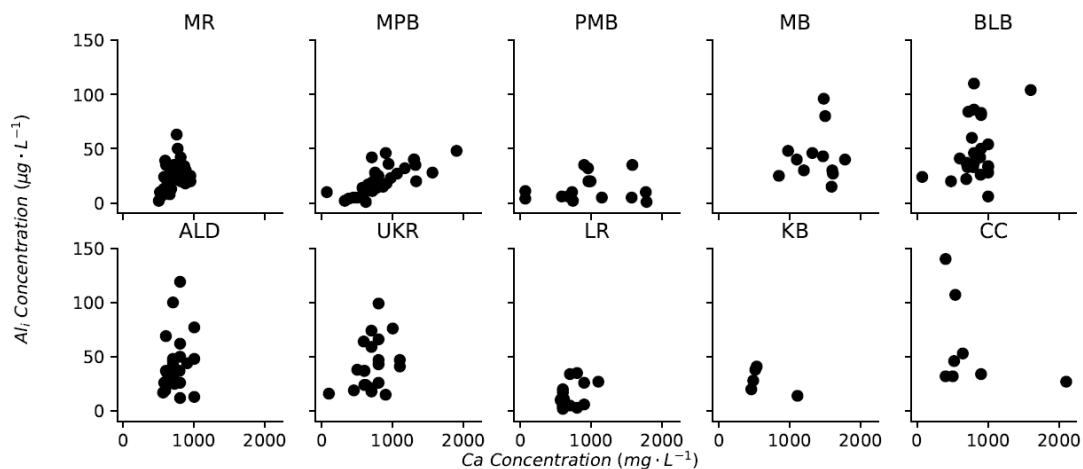


Figure B15 Least-squares linear regression of Al_i versus Ca for each study site. One Al_i outlier removed for MR

(value: 2 $\mu\text{g L}^{-1}$, date: 30 April 2015). One Ca outlier for KB removed (value: 1110 $\mu\text{g L}^{-1}$, date: 29 April 2016).

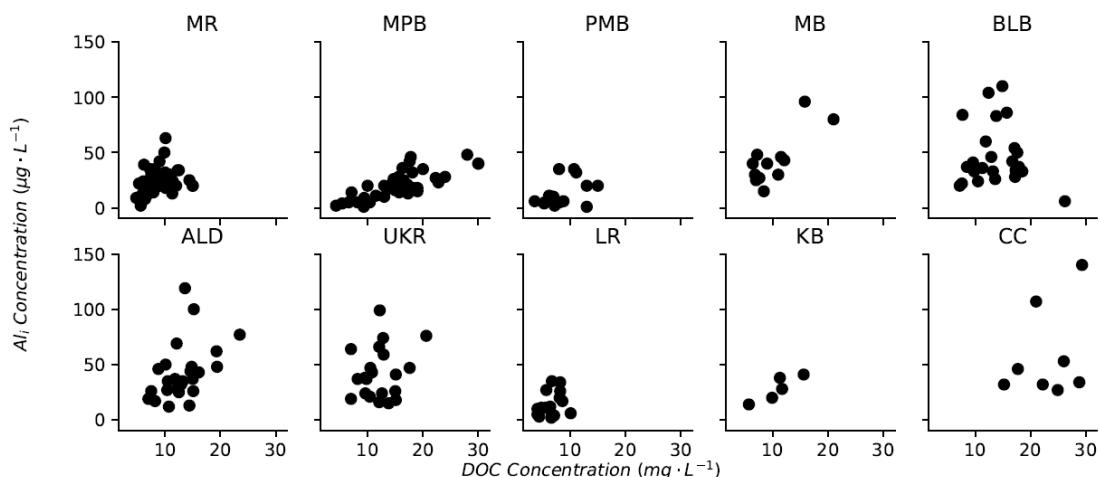


Figure B16 Least-squares linear regression of Al_i versus DOC for each study site. One Al_i outlier removed for MR

(value: 2 $\mu\text{g L}^{-1}$, date: 30 April 2015).

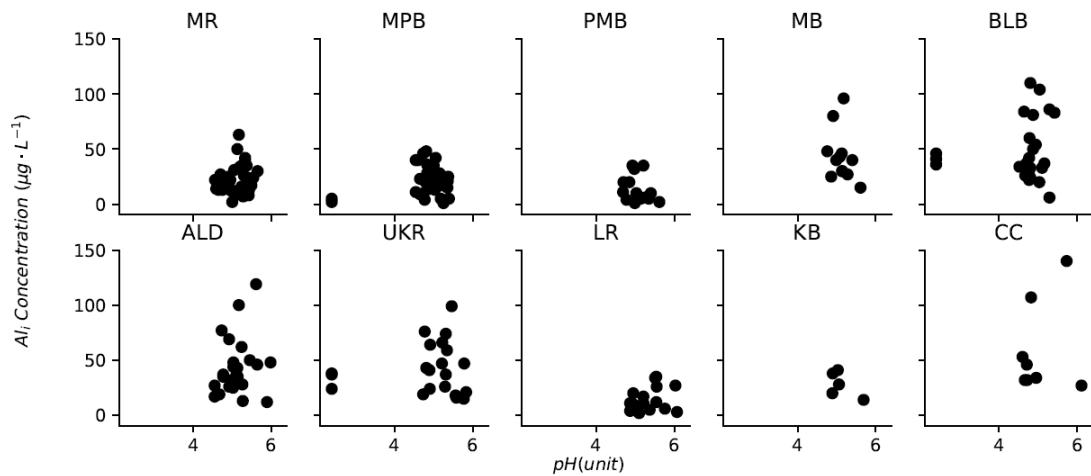


Figure B17 Least-squares linear regression of Al_i versus pH for each study site. One Al_i outlier removed for MR (value: 2 $\mu\text{g L}^{-1}$, date: 30 April 2015).

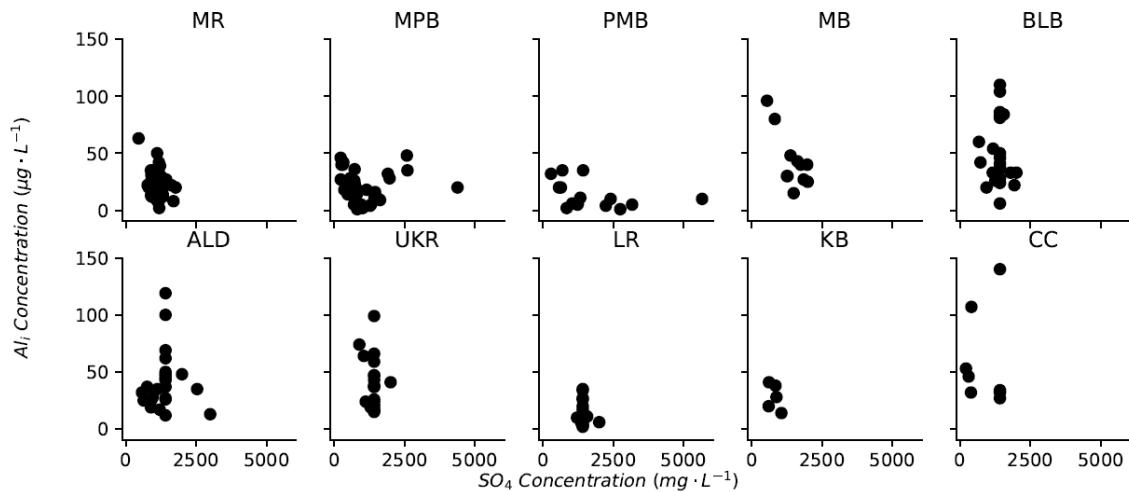


Figure B18 Least-squares linear regression of Al_i versus SO_4^{2-} for each study site. One Al_i outlier removed for MR (value: 2 $\mu\text{g L}^{-1}$, date: 30 April 2015).

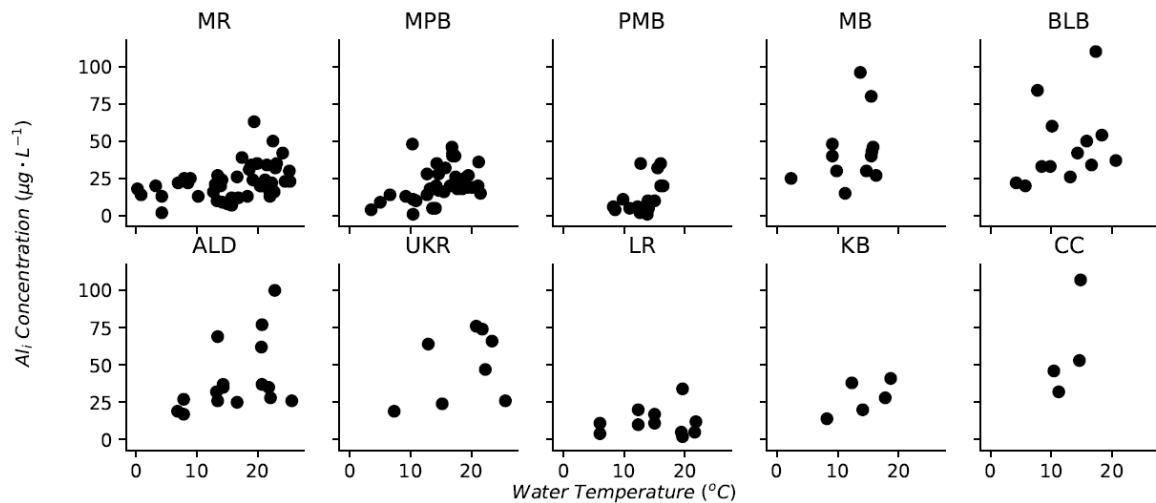


Figure B19 Least-squares linear regression of Al_i versus T_w for each study site. One Al_i outlier removed for MR (value: 2 $\mu\text{g L}^{-1}$, date: 30 April 2015).

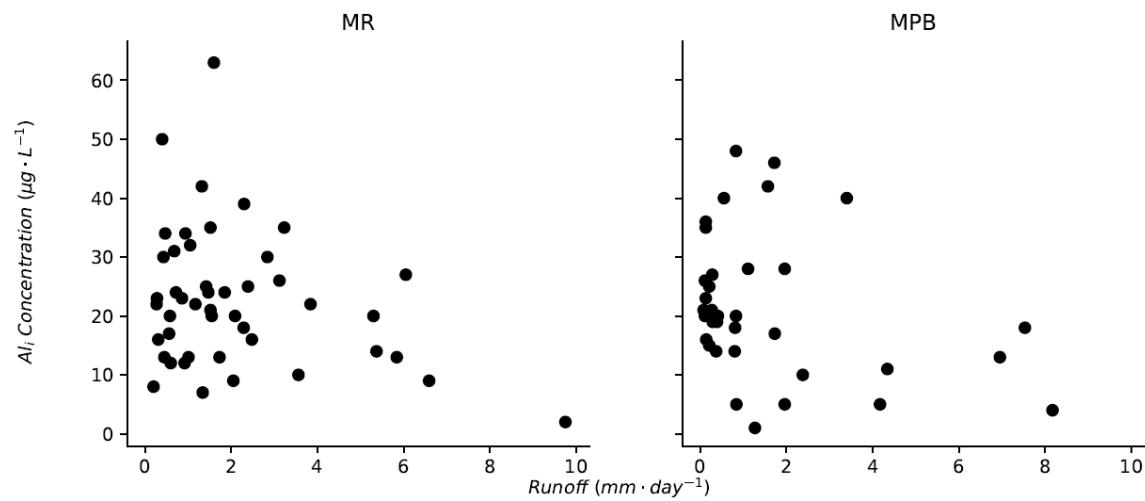


Figure B20 Least-squares linear regression of Al_i versus runoff for each study site. One Al_i outlier removed for MR (value: 2 $\mu\text{g L}^{-1}$, date: 30 April 2015). One runoff outlier for MR removed (value: 17.294 mm day^{-1} , date: 22 April 2015), and one runoff outlier for MPB removed (value: 34.994 mm day^{-1} , date: 22 April 2015).

Appendix C. Scripts

C.1. Linear regression

```
"""Linear regression calculation script
:author: Lobke Rotteveel
:email: lobke.rotteveel@dal.ca
"""

# Import modules
from scipy import stats
import pandas as pd
import csv

# Import data
df = pd.read_csv('Input.csv')

# Run Mann Kendall test on site-variable groups and create table of results
results = []
results.append(['site_id', 'variable', 'tau', 'pvalue', 'slope', 'std error of slope'])
grouped = df.groupby('Site')
for name, group in grouped:
    chem_groups = [group['Ald'], group['Ca'], group['DOC_TOC'], group['CalibpH'],
    group['Tw'], group['RunOff']]

    Ali = group['Ali']
    for i in chem_groups:
        pair = {'i':i,'Ali':Ali}
        pair = pd.DataFrame(pair)
        pair = pair.dropna()
        if not pair.empty:
            ken_tau = stats.kendalltau(pair['i'], pair['Ali'])
            slope = stats.linregress(pair['i'], pair['Ali'])
            result_row = [name, i.name, ken_tau.correlation, ken_tau.pvalue, slope.slope,
            slope.stderr]
            results.append(result_row)

with open('LinearRegression_Out.csv', 'w') as f:
    writer = csv.writer(f)
    writer.writerows(results)
```

C.2. Laboratory comparison

```
"""Laboratory result comparison script
:author: Lobke Rotteveel
:email: lobke.rotteveel@dal.ca
```

```
# Import modules
import pandas as pd
import numpy as np
import scipy as sp
from scipy import stats
import warnings

warnings.simplefilter('ignore', np.RankWarning)

# Importing data
df = pd.read_csv('SampDat_CompareInput_LimSur_171105_LR.csv', ',', header=0)
#print (df.head(n=5))

# Run comparissson
with open('SampData_Compare_LimSur.txt', 'w') as f:

    x = df.filter(regex='B_.*').columns
    y = df.filter(regex='A_.*').columns

    for x_col, y_col in zip(x,y):
        Sig = sp.stats.wilcoxon(df[x_col],df[y_col])
        f.write('x: {}, y: {}, sig:{}\n'.format(x_col, y_col, Sig))
```


Appendix D. Additional methods

D.1 Laboratory analysis methods

Samples were analyzed at Maxxam Analytics Laboratory, Health and Environmental Research Centre (HERC), and AGAT Laboratories. Samples from MR, MPB, PMB, MB, KB, and CC were analyzed at Maxxam and HERC labs only. Samples from BLB, ALD, UKR, and LR were analyzed at all three labs.

D1.1 Maxxam Laboratory

The protocol at Maxxam Laboratory in Bedford, NS, adheres to methods approved by the United States Environmental Protection Agency (US EPA) for identifying trace elements in water (US EPA, 1994) and analyzing samples using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) (US EPA, 1998). Cations and anions were analyzed using ICP-MS, while a Continuous Flow Analyzer was used to measure DOC. pH was measured using a standard hydrogen electrode and reference electrode.

D1.2 HERC Laboratory

SO_4^{2-} samples were analyzed at HERC Laboratory in Halifax, NS, due to lower detection limits at the Maxxam laboratory. Once delivered to the laboratory, samples were filtered using a 0.45 μm glass fiber filter and analyzed using an Ion-Chromatography System (ICS) 5000 Dionex detector.

D1.3 AGAT Laboratory

Samples collected in the West River, Sheet Harbour area (UKR, ALD, LR, BLB, KB, CC) were analyzed at the AGAT laboratory in Dartmouth, NS. This laboratory holds the

9001:2015 and 17025:2005 International Organization for Standardization accreditations. Cation samples were analyzed using ICP-MS, laboratory pH was measured using a standard hydrogen electrode and reference electrode, and SO_4^{2-} and anions were measured using ICS. Samples analyzed at AGAT were analyzed for total organic carbon (TOC) as opposed to DOC and were analyzed using Infrared Combustion (IR Combustion).

D.2 Data quality assurance and control

Blanks were used to assess contamination during the Al_o extraction procedure. Blanks were collected on 10% of samples, taken on arbitrary sampling events. Triple deionized water was collected before passing through filter and column (“Blank Before”), and after (“Blank After”). The triple-deionized water had traces of chemicals below the laboratory detection limits, providing “Not Detectable” results for the Blank Before sample. If chemicals were detected in the Blank After sample, this would have indicated leaching of chemicals from the column.

Duplicates were collected and analyzed for 10% of the samples; on arbitrarily selected sampling events, Al_o and $\text{Al}_{\text{filtered}}$ or $\text{Al}_{\text{unfiltered}}$, were analyzed twice, independently, by Maxxam laboratory. All laboratories also conducted additional duplicate, blank, reference material, and matrix spike testing, in addition to instrument calibration in adherence to industry standards for quality control and assurance.

To verify that sample analysis results from the Maxxam/HERC laboratory combination were comparable to AGAT, three sets of duplicate samples were collected for ALD, BLB, UKR, and LR (19 April 2017, 14 May 2017, and 30 May 2017) and analyzed by both laboratories. Laboratory results were compared using Wilcoxon Rank Sum statistical test in Python 3.6.5 using the SciPy Stats module (version 0.19) (Appendix C.2). Results indicated a significant difference in pH values between laboratories ($T = 1$, $p = 0.04$), therefore, statistical analysis on

pH data was conducted on the calibrated YSI Pro Plus sonde field data. Al_o , $\text{Al}_{\text{filtered}}$, and $\text{Al}_{\text{unfiltered}}$ results were found to be comparable between laboratories ($T = 8.5$, $p = 0.674$; $T = 5.0$, $p = 0.249$; and $T = 8.0$, $p = 0.600$, respectively). After adjusting for detection limits (Table A6), Ca results were also found to be comparable between laboratories ($T = 4.0$, $p = 0.173$). However, due to the large difference in SO_4^{2-} detection limits between HERC and AGAT ($10 \mu\text{g L}^{-1}$ and 2 mg L^{-1} , respectively), results for SO_4^{2-} are not comparable between laboratories. Lastly, organic carbon analyzed at Maxxam was analyzed for DOC, while AGAT analyzed for TOC, therefore these results cannot be compared. For dates where duplicate data is present, AGAT data was used to maintain data source consistency, apart from SO_4^{2-} data, for which HERC data was used due to superior detection limits. Analysis for BLB and ALD transitioned from Maxxam to AGAT 19 April 2017 and consequently DOC is approximated as TOC for these two sites after this date.

The YSI Pro Plus sonde was calibrated within 36 hours of in-stream data collection.

D.3 Toxic thresholds of Al_i

Identified toxic thresholds of Al_i for *Salmo salar* vary in the literature. Based on toxicological and geochemical studies on Al and *Salmo salar*, the EIFAC suggested an Al_i toxic threshold of $15 \mu\text{g L}^{-1}$ for Atlantic salmon in freshwaters for pH between 5.0 and 6.0, and $30 \mu\text{g L}^{-1}$ in pH < 5 (Howells et al., 1990). The lower threshold at higher pH is to account for the increased fraction in the $\text{Al}(\text{OH})_2^+$ species. At pH > 6 , the toxic effects of Al_i to *Salmo salar* are considered negligible, and toxic effects are dominated by other dissolved and precipitated forms (Gensemer et al., 2018), due to the decreased solubility of Al at pH > 6 (Dennis and Clair 2012). However, in colder rivers, the pH-toxicity threshold may be higher, closer to pH 6.5 (Lydersen,

1990). For the purposes of this study, we use the toxic threshold of Al_i at 15 $\mu\text{g L}^{-1}$, as the majority of our pH observations were greater than or equal to 5.0 (Table A2).

D.4 Calibration of pH measurements

In situ pH measurements were taken using a YSI Pro Plus sonde and confirmed with a YSI Ecosense pH Pen. It was found that measurements taken with the YSI Pro Plus sonde deviated from the YSI Ecosense Pen, which is known to measure pH accurately (0.47 ± 0.44 pH units below in-stream pH as measured by YSI Ecosense Pen). Therefore, a calibration curve was created based on simultaneous side-by-side measurements of both instruments ($n = 69$ pairs) and the in situ pH data were adjusted accordingly (Eq. 1).

$$YSI\ Ecosense\ Pen\ pH = 0.595(Pro\ Plus\ pH) + 2.3868 \quad (1)$$