1	Ionic aluminium concentrations exceed thresholds for
2	aquatic health in Nova Scotian rivers, even during
3	conditions of high dissolved organic carbon and low flow
4	
5	Shannon <u>M.</u> Sterling ¹ , Sarah MacLeod ² , Lobke Rotteveel ¹ , Kristin Hart ¹ , Thomas A. Clair ¹ ,
6	Edmund A. Halfyard ³ , <u>Nicole L. O'Brien⁴</u>
7	
8	¹ Sterling Hydrology Research Group, Department of Earth and Environmental Sciences, Dalhousie Formatted: Indent: Left: 0 cm, Hanging: 0.25 cm
9	University, Halifax, Nova Scotia, Canada
10	² Coastal Action, Lunenburg, Nova Scotia, Canada
11	³ Nova Scotia Salmon Association, Chester, Nova Scotia, Canada
12	⁴ Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia,
13	Canada
14	
15	Correspondence to: Shannon Sterling (shannon.sterling@dal.ca)

19	
20	
21	
22	
23	
24	
25	Abstract. Cationic aluminium species are toxic Acid deposition released large amounts of aluminum
26	into streams and lakes during the last century in Northern Europe and Eastern North America. Elevated
27	aluminum concentrations caused major environmental concern due to its toxicity to terrestrial and
28	aquatic life. Despite decades of organisms, and led to the extirpation of wild Atlantic salmon
29	populations. Air pollution reduction legislation that began in the 1990s in North America and Europe
30	successfully reduced acid emission reductions deposition, and the aluminum problem was widely
31	considered solved. However, accumulating evidence shows that freshwater indicates that freshwaters
32	still show delays in recovery from acidification recovery is delayed in locations such as Nova Scotia,
33	Canada. Further, with poorly understood implications for aluminum concentrations. Here, we
34	investigate spatial and temporal patterns of labile cationic forms of aluminium (Al _i) remain poorly
35	understood. Here we increase our understanding of Al; spatial and temporal patterns by measuring Al;
36	eoncentrations from 2015-2018 in ten streams in acid-sensitive areas of catchments in Nova Scotia-over
37	a four-year time period., Canada - one of the regions hardest hit by acid deposition, yet where
38	aluminum was not considered a problem due to high concentrations of dissolved organic carbon (DOC)
	2

Formatted: Justified

39	making aluminum less labile to aquatic life. We observe find widespread and frequent occurrences of
40	Al _i concentrations that exceed toxic thresholds $(>15 \ \mu g \ L^4)$.in all sampled rivers despite high DOC
41	concentrations. Generalized linear mixed model results reveal that DOC, instead of being inversely
42	related to Ali, is the strongest predictor (positive) of Ali concentrations, suggesting that the recruitment
43	properties of DOC in soils outweigh its protective properties in streams. Lastly, we find that, contrary
44	to the common conceptualization that high Ali patterns appear to be driven by known Al. drivers - pH
45	dissolved organic carbon, dissolved aluminium, and calcium - but the dominant driver and temporal
46	patterns vary by catchment.levels are associated with storm flow, high Ali concentrations are found
47	during base flow. Our results demonstrate that elevated Ali remainsconcentrations in Nova Scotia pose
48	a threat to aquatic ecosystems. For example, our observed Al-concentrations are potentially harmful
49	toorganisms, such as the biologically, economically, and culturally significant Atlantic salmon (Salmo
50	salar).

52 1 Introduction

53	Freshwater acidification caused elevated concentrations of cationic aluminium (Al _i) at the end
54	of the last century that led to increased freshwater and marine mortality and, ultimately, Increased rates
55	of acid deposition, predominantly deriving from upwind fossil fuel burning, resulted in the acidification
56	of soils, rivers, and lakes during the last century (e.g., Kerekes et al., 1986), depleting base cations and
57	increasing toxic aluminum concentrations in soils and drainage waters. Increased aluminum
58	concentrations caused the extirpation of native Atlantic salmon (Salmo salar) populations in many
59	rivers (Rosseland et al., 1990), for example in Scandinavia (Henriksen et al., 1984, Hesthagen and

	60	Hansen, 1991), the eastern USA (Monette and McCormick, 2008, Parrish et al., 1998), and Nova Scotia,
	61	Canada (Watt, 1987). FollowingThe acidification problem was widely considered solved following
	62	reductions in anthropogenic sulfur emissions in North America and Europe since the 1990s, many.
	63	Many rivers showed steady improvements in annual average stream chemistry (Evans et al., 2001,
ļ	64	Monteith et al., 2014, Skjelkvåle et al., 2005, Stoddard et al., 1999, Warby et al., 2005), including
	65	reduced concentrations of Alaluminum (Al) in the USA (Baldigo and Lawrence, 2000, Buchanan et
I	66	al., 2017, Burns et al., 2006) and Europe (Beneš et al., 2017, Davies et al., 2005, Monteith et al., 2014).
	67	However, recent evidence highlights delayed recovery from acidification in some areasother regions
	68	(Houle et al., 2006, Warby et al., 2009, Watmough et al., 2016), including SWNSNova Scotia (Clair et
	69	al., 2011), raising eoneernsquestions about the possibility of elevated Alaluminum concentrations in
	70	freshwaters.
	71	Aluminium (Al) toxicity in freshwaters can be caused by both precipitated exist as inorganic

72 monomers, inorganic polymers, amorphous and dissolved microcrystalline inorganic forms in-, and as 73 fast reactive or unreactive organic forms (Chew et al., 1988, Driscoll et al., 1980, LaZerte, 1984). While 74 a variety of Al species in circumneutral waters are toxic to fish (Gensemer and Playle, 1999), including 75 precipitated forms (Gensemer et al., 2018); however,), the cationic species of Al; (Ali), such as Al³⁺, 76 Al(OH)2¹⁺, and Al(OH)²⁺ are considered to be the most labile and toxic to salmonids as they. Al species 77 bind to the negatively charged fish gills causing morbidity and mortality through suffocation (Exley et 78 al., 1991), reducing nutrient intake at gill sites, and altering blood plasma levels (Nilsen et al., 2010). 79 Further, the The effects of sub-lethal exposure to freshwater Al elicits osmoregulatory impairment 80 (Monette and McCormick, 2008, Regish et al., 2018) which reduces survival in the hypertonic marine 81 environment (McCormick et al., 2009, Staurnes et al., 1996). -Elevated concentrations of Ali are also

toxic to other freshwater and terrestrial organisms (Boudot et al., 1994, Wauer and Teien, 2010), such
as frogs and aquatic birds (Lacoul et al., 2011).

84 Al speciation varies with pH (Helliweli et al., 1983, Lydersen, 1990), where positive Al species 85 dominate over neutral and negative species below pH 6.3 at 2 °C and below pH 5.7 at 25 °C (Lydersen, 1990), with the most toxic Al species, Al(OH)2⁺¹ (Helliweli et al., 1983) dominating Al speciation 86 87 between pH 5.0-6.0 at 25 °C, and 5.5-6.5 at 2 °C (Lydersen, 1990). Thus, the toxicity of Al increases with increased pH up to the formation of approximately 6.0 at 25 °C, or 6.5 at 5 °C, when aqueous 88 89 aluminum precipitates, forming gibbsite (Lydersen, 1990, Schofield and Trojnar, 1980). Additionally, 90 where colder waters will have a higher proportion of toxic species at higher pH values than warmer 91 waters (Driscoll and Schecher, 1990).

The bioavailability of Al is reduced by the presence of calcium (Ca) (Brown, 1983), which can occupy the negatively charged gill sites, and dissolved organic carbon (DOC), which occludes Al₄ through) also reduces bioavailability of aluminum via the formation of organo-Al complexes (Al₀) that are nontoxic to fish (Erlandsson et al., 2010, Neville, 1985). High levels of DOC in rivers have been believed to be sufficient to protect fish gills from adverse Al effects (Lacroix and Kan, 1986, Vogt and Muniz, 1997, Witters et al., 1990).

Despite being the most common metal on Earth's crust, Al is usually immobilized in clays or hydroxide minerals in soils. Rates of Al release into soil water from soil minerals increase with three drivers: 1) low soil pH, 2) low soil base saturation, and 3) high soil DOC concentrations. Lowered pH increases Al-solubility and observations confirm that of secondary minerals containing Al; Ali concentrations arein streamwater are generally negatively correlated with pH (Campbell et al., 1992, Kopáček et al., 2006, Seip et al., 1989). Low levels of base saturation can cause charge imbalances resulting in the release of Al into soil waters from clay particles, and later into drainage waters

105	(Fernandez et al., 2003) and); chronic acidification thus shifts available exchangeable cations in the soil
106	water from Ca and magnesium (Mg) towards Al (Schlesinger and Bernhardt, 2013, Walker et al., 1990).
107	Higher concentrations of DOC in soil water increase the release of Al through two mechanisms: 1) as
108	an organic acid, DOC decreases soil pH, thus increasing Al release (Lawrence et al., 2013), and 2) by
109	forming organic complexes with Al_i it maintains a negative Al concentration gradient from the cation
110	exchange sites to the soil water, increasing rates of Al release (Edzwald and Van Benschoten, 1990,
111	Jansen et al., 2003). Field studies confirm Al concentrations to be positively correlated with DOC
112	(Campbell et al., 1992, Kopáček et al., 2006) although at higher concentrations of DOC, Al may be
113	organic complexed and less toxic to aquatic organisms (Witters et al., 1990).
114	Once mobilized in soil waters, export of Ali to drainage waters requires anions to maintain
115	charge balance. Storm events have been shown to increase Al, export due to added anions (e.g., Cl ⁻ ,
116	SO_4^2 , F ⁻), and from the movement of flow paths to shallower soil horizons where more Al may be
117	available for transport. The general consensus in the literature is that elevated Ali concentrations occur
118	during episodic storm events, due to three possible mechanisms: 1) dilution of base cations during storm
119	events, where flow paths move through shallower, more organic-rich soil layers, 2) added anions in
120	snowmelt or rainfall (e.g., Cl ⁻ , SO ₄ ²⁻ , F ⁻) providing mobile anions that increase Al _i export to streams,
121	and 3) low pH associated with storm events, re-dissolving Al accumulated in the soil (Hooper and
122	Shoemaker, 1985) and/or from the streambed (Norton et al., 1987). For example, from 1983 to 1984,
123	Al concentrations for the River Severn in Wales increased ten-fold during the stormflow peak compared
124	to the baseflow (Neal et al., 1986). However, the association of increased Alt concentrations with storm

flow is not consistent The general consensus in the literature (DeWalle et al., 1995, McKnight and

126 Bencala, 1988).

125

127 Annual patterns of Al₁ typically show a peak, but the timing of the peak varies. In some areas, 128 Al, concentrations peak in theis also that Al; is seasonally elevated during spring snowmelt and autumn 129 rainfall events, and winter, correlated with flow peaksseasonally depressed during summer months due 130 to higher levels of DOC, such as in Quebec (Campbell et al., 1992), Russia (Rodushkin et al., 1995), 131 and along the Czech-German border (Kopacek et al., 2000, Kopáček et al., 2006). In other areas, Al 132 concentrations were found to be higher in Timing of the summer such as in Virginia, USA (Cozzarelli 133 et al., 1987). Ali peaks is important. If the timing of peak Ali concentrations coincides coincide with 134 sensitive vulnerable life stages of Atlantic salmon, such as during the spring when salmon transition 135 from parr to smolt (i.e. smoltification) in preparation for life in the ocean (Kroglund et al., 2007, 136 Monette and McCormick, 2008, Nilsen et al., 2013 aquatic organisms,) or during the emergence of 137 salmon fry from eggs (e.g., Farmer, 2000), then the potential for large biological impacts isfrom 138 elevated Ali is particularly high. 139 Despite much progress in acidification research, the processes affecting Ali dynamics are not 140 well understood (e.g., Mulder et al., 1990). Our understanding of spatial and temporal trends of Al;-Ali

is limited by the relative paucity of samples: Al_i is not measured as part of standard analyses. Our
understanding is also limited by the difficulty in comparing the wide variety of methods for estimating
Al_i; different definitions, often operational, of toxic Al include inorganic Al, inorganic monomeric Al,
labile Al, Al³⁺, and cationic Al (Table A1). Definitions for both inorganic monomeric Al and eationic
Al include all positively charged species of Al.

Acid—sensitive areas of <u>NSNova Scotia, Canada</u>, here abbreviated as NS_A (see Clair et al., 2007), with once-famous wild Atlantic salmon populations, were heavily impacted by <u>neidsulfur</u> deposition at the end of the last century, which originated from coal burning in central Canada and Northeastern USA (Hindar, 2001, Summers and Whelpdale, 1976). NS_A catchments are particularly

150	sensitive to acid deposition due to base cation-poor and slowly weathering bedrock that generates thin
151	soils with low acid neutralizing capacity (ANC), extensive wetlands, and episodic sea salt inputs (Clair
152	et al., 2011, Freedman and Clair, 1987, Watt et al., 2000, Whitfield et al., 2006). Al was not considered
153	to be a threat to Atlantic salmon in Nova Scotia because of the high natural levels of DOC in NSA rivers
154	following preliminary research by (Lacroix and Townsend, 1997, Lacroix, 1989). A 2006 fall survey,
155	however, (Dennis and Clair, 2012) found that in seven of 42 rivers surveyed Ali concentrations in NS
156	exceeded the 15 µg L ⁻¹ toxic threshold suggested for aquatic health, as determined from an extensive
157	review of toxicological and geochemical literature by the European Inland Fisheries Advisory Council
158	(EIFAC) for aquatic health in seven of 42 rivers surveyed (Dennis and Clair, 2012). However, apart
159	from this study, (Howells et al., 1990). No assessment of Ali has been done in NSA since that time, and
160	little is known about the <u>regional</u> <u>current</u> extent and patterns of Al_{ir} in the region. Here, we aim to
161	increase our understanding of current Alt spatial and temporal patterns in relation to toxic thresholds,
162	and to identify potential drivers by conductingconduct a four-year survey of Ali concentrations in ten
163	streams across acid sensitive areas of NS, Canadain NSA, to test the hypothesis that elevated DOC
164	concentrations are sufficient to protect life from Ali, and to identify the hydrologic conditions associated
165	with elevated Al _i concentrations.
1	

166 2 Materials and methods

167 **2.1 Study area**

We surveyed Al_i concentrations at ten study catchments in NS_A, ranging from headwater to
higher-order systems: Mersey River (MR), Moose Pit Brook (MPB), Pine Marten Brook (PMB), Maria
Brook (MB), Brandon Lake Brook (BLB), above the West River lime doser (ALD), Upper Killag River

171	(UKR), Little River (LR), Keef Brook (KB), and Colwell Creek (CC) (Table 1, Fig. 1-and -2). Our study
172	catchments are predominantly forested, draining with a mix of coniferous and deciduous species, and
173	drain slow-weathering, base-cation poor bedrock, producing soils with low ANC (Langan and Wilson,
174	1992, Tipping, 1989). The catchments also have relatively high DOC concentrations (Ginn et al., 2007)
175	associated with the abundant wetlands in the region (Clair et al., 2008, Gorham et al., 1986, Kerekes et
176	al., 1986).

177 **2.2 Data collection and analysis**

186

We measured Al_i concentrations at three of the ten catchments from April 2015 to September 2017 (MR, MPB, PMB), on a weekly to monthly frequency during the snow—free season (approximately April to November, Table A2). In 2016-2018, seven sites were added and sampled every two weeks to monthly during the snow-free season.

Al_i sampling events comprise grab samples for lab analysis and in situ measurements of pH and
water temperature (T_w). We calculate Al_i as the difference between dissolved Al (Al_d) and Al_o following
Dennis and Clair (2012) and Poléo (1995) (Eq. 1), separating the species in the field to reduce errors
caused by <u>Al species change due to changes in temperature and pH in transport from field to lab.</u>

$$Al_i = Al_d - Al_0 \tag{1}$$

187 Al_d is measured as the Al concentration of a filtered ($45 \mu m$) sample and Al_o is measured as the 188 eluate from passing filtered water through a 3 cm negatively charged cation exchange column (Bond 189 Elut Jr. Strong Cation Exchange Column). Samples were passed through the cation exchange column 190 at a rate of approximately 30 to 60 drops per minute. From this method, Al_o is operationally defined as 191 the non-labile, organically-complexed metals and colloids, and Al_i is defined as the positive ionic 192 species of Al (e.g., Al³⁺, Al(OH)²⁺, and Al(OH)₂⁺).

193 The cation exchange method thus determines concentrations of weak monomeric organic Al 194 complexes (passed through the column), monomeric inorganic Al (retained in the column), and 195 colloidal, polymeric, and strong organic complexes that are measured after acid digestion of the sample 196 (Gensemer and Playle, 1999). An assumption here is that the Al species retained on the exchange 197 column would also be retained on the negatively charged fish gills, and therefore have a potentially 198 toxic effect (see Gensemer and Playle, 1999). The eluate is generally considered to be non-toxic; however, there is some evidence that precipitated polymeric Al and colloidal Al can be toxic to aquatic 199 200 life (Parent and Campbell, 1994; Gensemer and Playle, 1999, Gensemer et al., 2018) although the 201 nuances of this toxicity is unclear. To this end, the calculated Al_i reported in this study represents a 202 minimum concentration. Ultrafiltration (following Simpson et al., 2014) may improve the accuracy of 203 estimations of recently precipitated colloidal Al concentrations.

Stream chemistry samples (50 ml) were collected using sterilized polyethylene syringes into sterilized polyethylene bottles. Samples for sulfate (SO_4^{2-}) analysis were not filtered. Trace metal samples were filtered (0.45 µm) and preserved with nitric acid (HNO₃). Samples for DOC analysis were filtered (0.45 µm) and transported in amber glass bottles containing sulfuric acid preservative (H₂SO₄) to prevent denaturation. All samples were cooled to 7 °C during transport to the laboratories. Samples were delivered to the laboratories within 48 hours of collection, where they were further cooled to \leq 4°C prior to analysis (Appendix D).

211 We examined correlations between Al_i and water chemistry parameters: Al_d, Ca, DOC, pH, 212 SO_4^{2-} , T_w, fluoride (F⁻), nitrate (NO₃⁻), and runoff (where data <u>arewere</u> available). Correlations were 213 analysed within and across sites. For the purposes of this study, we use the toxic threshold of Al_i at 15 214 ug L⁻¹, as the majority of our pH observations were greater than or equal to 5.0 (Table A2, Appendix 215 D3).

216	We developed a Generalized Linear Mixed Model (GLMM) to identify the main drivers of Ali
217	concentration at the study sites. We tested Al_d , DOC, Ca, $SO_4^{2^2}$, F ⁻ , NO_3^{-} , season, and T_w as potential
218	drivers. The GLMM analysis was implemented with R version 3.6.2. (R Core Team, 2019) using the
219	Ime4 package (Bates et al., 2015). Due to the nonnormality of the Al; concentration data, the glmer()
220	function was employed for model fitting which uses the method of maximum likelihood for parameters
221	estimation through Laplace approximation (Raudenbush et al., 2000). The study sites in the analysis
222	were included as the random effect with fixed effects provided in Table A3; Ald was not included in
223	the GLMM as it results in an over fit model (singularity). The Wald t Test Statistic and the Akaike
224	Information Criterion (AIC) were used as measures of goodness-of-fit (Akaike, 1974; Bolker et al.,
225	2019). Numerous iterations of fixed effects and interactions were considered in the GLMM
226	development (Table A3). Multiple fixed effects were initially considered; however, several of the
227	effects were not significant, although the overall model fit provides a low AIC. GLMMs were applied
228	to assess season drivers of Ali concentrations; however, due to the limited amount of seasonal data
229	collected, an analysis of both the site and seasonal random effects could not be carried out due to model
230	singularities.

231 3 Results and discussion

232 3.1 Patterns of Al_i

233	Al_i concentrations exceed toxic levels (15 ug L ⁻¹) at all sites during the study period (Table A2).
234	Sites in the eastern part of the study area have the highest proportion of samples exceeding threshold
235	levels, including one site with 100% of samples in exceedance (Fig. 1).) despite relatively high DOC
236	concentrations (mean values ranging from 7.2 to 23.1 mg L ⁻¹ among the catchments, Table 1). Mean
I	11

237	Al_i concentrations across all sites range from 13–60 ug L ⁻¹ (Table 1), with the highest mean
238	concentrations also occurring in the eastern part of the study area (Fig. 21a), where one site had 100%
239	$\underline{of \ samples \ in \ exceedance \ (Fig. 1b)}$. Al _i concentrations exceed 100 ug L ⁻¹ (approximately seven times
240	the threshold) at three sites (Table A2). In the sites with the longest and most frequent data collection
241	(MR and MPB), Ak-concentrations exceed the toxic threshold in consecutive samples for months at a
242	time, particularly in the late summer (Fig. B1). Our Ali concentrations are consistent with the 6.9–230
243	ug L ⁻¹ range of Al _i concentrations measured across $\underline{NS}_{\underline{NS}_A}$ by Dennis and Clair (2012) and are higher
244	than concentrations measured in Norway from 1987–2010 (5–30 ug L ⁻¹) (Hesthagen et al., 2016).

245 The percent of Al not complexed by DOC (% Ali/Ald) ranges from a minimum of 0.6% to a 246 maximum of 50%, with a median value of 10.7%, across all sites. These findings are similar to those 247 found in NS_A by Dennis and Clair (2012) of the proportion of Al_i in total aluminum (Al_t) (min. = 4%, 248 max. = 70.1%, med. = 12.4%), and less than those found by Lacroix (1989) (over 90 % Al₀/Al_d). These 249 speciation results are also quite similar to other diverse environments such as those for acid sulfate soil 250 environments in Australia (Simpson et al., 2014). However, even when the percentage of Ali/Ald is low, 251 Ali concentrations remain well above thresholds for toxicity (Fig. B2-B11). Similarly to our findings, 252 previous studies show Ali/Ald is low during baseflow (Bailey et al., 1995, Murdoch and Stoddard, 1992, 253 Schofield et al., 1985), (Figs. B2-B11). 254 The highest concentrations of Al_i (> 100 ug L⁻¹) occurred in early summer (late June or early 255 July in 2016-2018) when Ald, Ca, and DOC concentrations had not yet reached their annual peak (Table

256	A2). The spring/summer extreme events occurred among the first exceptionally warm days (> 21 °C)
257	of the year, in dry conditions, and when the proportion of Alo/Ald was low (lowering to approximately
258	60-70% from higher levels of around 80-90%) (Figs. These findings are similar to those found NS-by
259	Dennis and Clair (2012) of the proportion of Al, in total aluminum (Al,) (min 4%, max 70.1%,
	12

260	med. = 12.4%), and less than those found by Laeroix (1989) (over 90 % AI_{θ}/AI_{d}). T_{w} and pH have a
261	significant positive correlation with Al ₄ /Al ₄ (Table A3), consistent with an earlier observation that Al
262	toxicity increases with pH (Schofield and Trojnar, 1980). However, even when the percentage of Ak/Al
263	is low, Al, concentrations remain well above thresholds for toxicity (FigB4-B13). Previous studies
264	show Al/Al ₄ is low during baseflow (Bailey et al., 1995, Murdoch and Stoddard, 1992, Schofield et al.,
265	B2-B11). pH was not abnormally low during these events (ranging from 4.8 to 6.13), Ca concentrations
266	were low (less than or equal to 800 μ g L ⁻¹) and DOC concentrations ranged from 15–21 mg L ⁻¹ .
267	In the sites with the longest and most frequent data collection (MR and MPB), Ali concentrations
268	exceed the toxic threshold in consecutive samples for months at a time, particularly in the late summer
269	(Fig. B1). 1985), similar to our findings (Figs. B4-B13); more consistent year-round sampling is needed
270	to obtain a better picture of seasonal patterns in Al speciation in NSA.
271	

272 3.2 Potential Al_i drivers

273	<u>GLMM results reveal, through multiple fixed effect model combinations, that DOC and T_w are</u>
274	the most significant predictors of Ali concentrations (Table A3). When both DOC and Tw were included
275	in the GLMM model, the resulting AIC is markedly lower, indicating that the inclusion of both
276	parameters provides better predictive potential than DOC or Tw alone. Furthermore, the interaction
277	between DOC and Tw was not significant in the model, provided a nominally lower AIC, and the
278	correlation between the effects was low (-0.378), indicating that distinct processes are responsible for
279	Ali concentrations. The strength of the Tw relationship is likely due to the role that increased
280	temperature plays in activating biological drivers that mobilize Al (Hendershot et al., 1986).

281	Thus, the GLMM results show that DOC is positively correlated with Ali in the study area, in
282	contrast to the standard conceptualization that DOC is inversely correlated with Al _i , suggesting that the
283	increased recruitment of Al in soils by DOC may outweigh DOC's protective effects in freshwater,
284	consistent with observations in other studies (e.g., Campbell et al., 1992, Kopáček et al., 2006).
285	<u>Linear regressions show that</u> Al_d is significantly ($\alpha = 0.05$) and positively correlated with Al_i in
286	seven of the ten study sites (ALD, KB, LR, MB, MPB, MR, PMB) (Fig. 32, Table A4), despite the high
287	concentrations of DOC. Al, is also significantly and positively correlated with DOC in four sites (ALD,
288	KB, MPB, MR) (Fig. 3, Table A4), consistent with other studies (A5). Campbell et al., 1992, Kopáček
289	et al., 2006). The positive correlation between DOC and Al _i concentrations may suggest that the ability
290	of DOC to mobilize Al ₄ in soils is stronger than its ability to occlude Al ₄ in streamwaters.
291	Ca is significantly and positively correlated with Al _i at two sites (MPB, MR) (Fig. 32 , Table
292	A4 <u>A5</u>). The positive relationship between Ca and Al _i is the opposite of expectations- (following
293	Rotteveel and Sterling, 2019). We hypothesize that this is due to the two study sites having very low
294	Ca concentrations (mean concentrations below 1 mg L^{-1}), below which soil water Ca concentrations are

too low to retard Al release. T_w-is also significantly positively correlated with Al, at two sites (MR,
 MPB) (Fig. 3, Table A4), likely reflective of the temperature related drivers of Al concentration and
 speciation. Runoff

<u>Discharge</u> is significantly and negatively correlated with Al_i at one site MPB (Fig. 3, Table A4).
<u>2, Table A5), in contrast with previous observations that Al_i concentrations are positively correlated</u>
with discharge (Hooper and Shoemaker, 1985, Neal et al., 1986, Seip et al., 1989, Sullivan et al., 1986).
Runoff data are available for only two of the study sites (MR, MPB) and so); more runoff data are
needed to improve our understanding of the relation between runoff and Al_i in NS_A.

303	We did not observe the negative association between pH and $Al_{\rm i}$ observed in previous studies
304	(Campbell et al., 1992, Kopáček et al., 2006), - pH is negatively correlated with Al _i in four out of ten
305	sites, but none of these relationships are statistically significant (Fig. 32, Table A4). A5). The lack of
306	significant correlation may be due in part to other mechanisms that may cloud the strength of the inverse
307	relationship between pH and Al, such as increased DOC solubility at higher pH, leading to increased
308	Al solubility in soils (Lyderson, 1990), pH buffering by Al in the lower pH range (Tomlinson, 1990),
309	and by the limited pH range in the data set. We did observe a statistically significant positive
310	$relationship between pH and Al_i/Al_{d \ddagger} (\underline{Table \ A4}); thus_a it seems that pH may play a more important role$
311	in determining the proportion of different Al species rather than the absolute value of Al_i present in
312	streamwaters.

313 stream waters in chronically acidified conditions such as those found Nova Scotia. F has also 314 been found to be a complexing agent that affects the speciation of Al at low pH levels and relatively high concentrations of F⁻ (>1 mg L⁻¹) (Berger et al., 2015). The concentrations of F⁻ at the study sites 315 316 are mostly below this threshold (mean across all sites = $0.045 \text{ mg } L^{-1}$); however, there is still a 317 significant positive effect of F on Ali concentrations across at two sites (KB, MPB) (Fig. 32, Table A4A5). NO₃⁻ and SO₄²⁻ are also potential complexing ligands of Al; however, we did not observe any 318 319 correlation between Ali and either of these parameters, except for a significant negative correlation between $SO_4^{2\text{-}}$ and Al_i at MB. 320

321	The highest concentrations of Al _i observed (> 100 ug L ⁻¹) often-occurred in early summer (late
322	June or early July in 2016-2018) when Alas Ca, and DOC concentrations had not yet reached their
323	annual peak (Table A2). The spring/summer extreme events occurred among the first exceptionally
324	warm days (> 21 °C) of the year, in dry conditions, and when the proportion of Al _o /Al _d was low
325	(lowering to approximately 60-70% from higher levels of around 80-90%) (FigsB4-B13). pH was not
	15

326	abnormally low during these events (ranging from 4.8 to 6.13), Ca concentrations were low (less than
327	or equal to 800 μ g L ⁴) and DOC concentrations ranged from 15–21 mg L ⁴ . The observed peak in Al ₁
328	concentrations during times of lower discharge contrasts with studies that found higher Ala
329	concentrations during higher flow (Campbell et al., 1992, Kopacek et al., 2000, Neal et al., 1986,
330	Rodushkin et al., 1995). Further research is required to test hypotheses on why high Al-coincides with
331	high DOC and low flow periods.

332 3.3 Possible seasonal groupings of Al_i in NS_A

333 In the two sites with the most samples, MPB and MR, groupings of data are visible that are 334 temporally contiguous, potentially indicatingsuggesting seasonally-dependent Ali behavior (Fig. 4). This is supported by stronger linear correlations (r²) among variables when grouped by "season" (Table 335 2); for example, for the correlation between pH and Al_i at MR, r^2 improves from 0.02 for year-round 336 337 data (Fig. B17B12) to up to 0.78 in season 1 (Fig. 4). The transition dates between the seasons are 338 similar for the two catchments, but not the same (Table A2), and vary by year. Here we propose an 339 initial characterization of-the potential "seasons"; more research is needed to test these hypotheses on 340 seasonal divisions and their drivers using larger datasets and Generalized Linear Mixed Model analysis 341 to test for statistical significance among the potential seasonal groupings.

Season 1 (approximately April/May) is coincident with snow-melt runoff and is characterized by relatively low concentrations of Al_i (2-46 ug L⁻¹), low pH (4.5-5.3), and lower concentrations of most constituents, including DOC, and cold temperatures ((\leq 4 °C). During this season, Al_i is strongly coupled with pH, DOC, Al_d and Ca in MR, but less so in MPB. A possible explanation is that season 1 is dominated by snowmelt hydrology in which cation exchange between soil and discharge occurs less efficiently, which has been attributed to ice and frozen soil potentially limiting water contact time with

348	soil (Christophersen et al., 1990). It is important to note that we did not likely capture the first flush
349	effect of increased Ali as has been noted in other studies (e.g., Hendershot et al., 1996). The onset of
350	season 2 (approximately late June) is characterized by increasing Ali concentrations, temperature, and
351	DOC. Al $_{i}$ and pH values are higher in this season and Al $_{i}$ becomes strongly negatively correlated with
352	pH as pH increases to the lower threshold for gibbsite. In MR in season 2 $Al_{\rm i}$ has a strong positive
353	relationship with DOC. The highest observed Al_i concentrations of the year occur in season 2 (Fig. 43).
354	Al_i relations are weak in MR in season 3 (approximately September through March), likely due to the
355	lower frequency of measurements during the winter. Season 3 in MR has the highest concentrations of
356	dissolved constituents (Ald, Ca, and DOC), whereas in MPB only Ca has the highest concentrations.
357	With the inclusion of season as the random effect in the GLMM analysis (Table A6) there
358	remains limited data for undertaking a robust comparative analysis but it is included nonetheless to
359	highlight the seasonal impacts that can be garnered from the limited dataset. pH and T_w were omitted
360	due to singularities. The results reinforce that DOC concentrations are associated with Al_i
361	concentrations on a seasonal basis; however, more data are required to ascertain the effects of $T_{\rm w}\mbox{ on}$
362	seasonal Al _i concentrations.
363	In contrast with the conceptualization that peak Al; concentrations occur during storm flow (e.g.,
364	Campbell et al., 1992, Kopacek et al., 2000, Neal et al., 1986, Rodushkin et al., 1995), our data show
365	elevated Ali concentrations during base flow conditions. These results suggest a new pathway for
366	generation of elevated Ali concentrations that is associated with base flow, warmer summer
367	temperatures, and high DOC concentrations, and thus likely more chronic in nature. Nilsson (1985) had
368	suggested that this flowpath has important consequences for Al concentrations in Swedish catchments.
369	We hypothesize that this pathway is caused by increased temperatures causing higher levels of
370	biological activity that mobilize Al in soils (Figure 3) (following Nilsson and Bergkvist, 1983).
I	17

371	Biological activity further generates DOC which mobilizes Al to drainage waters during summer base
372	flow (Figure 4). Other cases of increased Al_i concentrations occurring during low flow and warming
373	temperatures can be found in the literature in locations such as Ontario and Quebec (Hendershot et al.,
374	1985, Hendershot et al., 1996) and in Virginia, USA (Cozzarelli et al., 1987).
375	

376 **3.4 Ecological implications**

377 While the summer peak in Ali that we observed in NSA does not coincide with the smoltification 378 period, when salmon transition from parr to smolt and are highly sensitive to Al exposure-(Kroglund et al., 2007, Monette and McCormick, 2008, Nilsen et al., 2013), continued exposure throughout the year 379 380 may still negatively affect salmon populations, as accumulation of Ali on gills reduces salmon marine 381 and freshwater survival (Kroglund et al., 2007). Further, Al-concentrations as low as 20 ug L⁴-may 382 impair marine survival without reducing freshwater survival (Kroglund and Staurnes, 1999, Staurnes 383 et al., 1996), contributing to the observation that marine threats are driving population declines of 384 Atlantic Salmon (e.g. Gibson et al., 2011). In addition, as the higher Al_i concentrations appear to be 385 driven at least in part by lower flow in the summer months, increases in the length and severity of 386 droughts and heat-waves due to climate change may further increase Al- concentrations and exacerbate 387 Al, effects on aquatic life. Increases in Al have already been observed across areas previously affected 388 by freshwater acidification (Sterling et al., in prep.)., Kroglund and Staurnes, 1999, Staurnes et al., 389 1996, Gibson et al., 2011). 390 For example, because In addition, elevated Ali concentrations appearing during low flow in the

391 <u>summer months suggest a more chronic delivery of elevated Al_i to rivers, for which increases in the</u>
 392 <u>length and severity of droughts and heat-waves due to climate change may further exacerbate effects</u>

393	$\underline{on\ aquatic\ life.\ Because}\ many\ peak\ Al_i\ concentrations\ occur\ on\ the\ first\ exceptionally\ warm\ day\ in\ late$
394	spring, the peaks may be exacerbated with springtime warming associated with climate change. As
395	warm days begin may cause Ali peaks to occur earlier in the season, there may be, thus increasing
396	chance of the peak Al_{i} concentrations overlapping with smoltification season and emergence of salmon
397	fry; both considered, the most vulnerable life stages of Atlantic salmon (e.g., Farmer, 2000), although
398	the phenology of the smolt run is expected to similarly advance earlier in the year.

399 4 Conclusions

400	Our study reveals that Our four-year study of stream chemistry in NSA has two important
401	findings. First, high DOC concentrations in rivers may not protect aquatic life against Ali as previously
402	thought - our GLMM analysis suggests rather the opposite - that higher DOC concentrations drive
403	higher levels of Ali, even possibly on a seasonal basis. Our study thus reveals that despite high DOC
404	$\underline{levels},$ widespread and persistent toxic concentrations of Al_i in NS_A freshwaters pose a risk to aquatic,
405	and potentially terrestrial, life. Previously, high DOC concentrations were presumed to protect aquatic
406	life against Al;; our study shows that this presumption does not hold.
407	Second, our study shows a new hydrological pathway that is associated with high Al_i
408	concentrations: base flow, suggesting a chronically acidified/aluminum dynamic, in addition to episodic
409	$\underline{Al_i}$ peaks associated with storm flow. This new pathway suggests chronically elevated $\underline{Al_i}$

410 concentrations during warmer summer months, which may be exacerbated by atmospheric warming.
411 Our results suggest that the recent 88 to 99% population decline of the Southern Uplands Atlantic
412 salmon population in NS_A (Gibson et al., 2011) may be partially attributable to Al_i, in contrast to earlier
413 studies which downplayed the role of Al_i in Atlantic salmon mortality (Bowlby et al., 2013, Lacroix

and Townsend, 1987). These high Al_i concentrations in NS_A highlight the need to increase our
understanding of the influence of Al_i on both terrestrial and aquatic ecosystems, and its implications for
biodiversity.
The catchments with the highest Al_i levels had particularly low Ca levels, raising concerns as

418 Ca is protective against Ali toxicity, and highlighting coincident threats of Ca depletion and elevated 419 Al. Recent work has identified globally widespread low levels and declines in Ca (Weyhenmeyer et al., 420 2019), raising the question of what other regions may also have Al_i levels exceeding toxic thresholds. 421 _The serious potential consequences of high Ali highlight the importance for actions to further 422 reduce acid emissions and deposition, as critical loads are still exceeded across the province (Keys, 423 2015), and to adapt forest management practices to avoid base cation removal and depletion. Addition 424 of base cations through liming and enhanced weathering of soils and freshwaters may accelerate 425 recovery from acidification.

426

427 Data availability

428 Readers can access our data from HydroShare supported by CUASHI, a FAIR-aligned data
429 repository (<u>https://www.re3data.org/</u>).

430 Author contribution contributions

431	SSSMS conceived the idea and led the writing of the MS. SM led the field data collection. SM*
432	and TAC designed the protocol for Al_i sampling, assisted with data analysis and helped with the writing.
433	LR performed spatial and statistical analysis, produced figures, and assisted with sample collection and
434	draft writing. KH assisted with data analysis, figure production and editing and contributed to the draft.
435	NLO led the GLMM analyses and contributed to the manuscript. TAC provided information on
436	analytical and field sampling methods, and selection of sampling sites. EAH contributed field samples,
437	assisted with data analysis and contributions to the manuscript.

438 Competing interests

439 The authors declare that they have no conflict of interest.

440 Acknowledgements

441	The two anonymous referees contributed suggestions that improved the manuscript. The
442	Atlantic Salmon Conservation Foundation, Atlantic Canada Opportunities Agency, the Nova Scotia
443	Salmon Association, and Fisheries and Oceans Canada provided financial support for the field data

Formatted: Jus	tified
----------------	--------

444 collection and the laboratory analyses. Marley Geddes, Siobhan Takla, Franz Heubach, Lorena

445 Heubach, Emily Bibeau and Ryan Currie provided field assistance.

Formatted: Font: 18 pt

447 References

448	Akaike, H.: A new look at statistical-model identification, IEEE Trans. Autom. Control, 19,
449	<u>716-723, 1974.</u>
450	Bailey, S. W., Driscoll, C. T. and Hornbeck, J. W.: Acid-base chemistry and aluminum
451	transport in an acidic watershed and pond in New Hampshire, Biogeochemistry, 28, 69-91, 1995.
452	Baldigo, B. P. and Lawrence, G. B.: Composition of fish communities in relation to stream
453	acidification and habitat in the Neversink River, New York, Trans. Am. Fish. Soc., 129, 60-76, 2000.
454	Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting linear mixed-effects models using
455	lme4, J. Stat. Soft., 67(1): 1-48, doi: 10.18637/jss.v067.i01, 2015.
456	Beneš, F., Horecký, J., Senoo, T., Kamasová, L., Lamačová, A., Tátosová, J., Hardekopf, D.
457	W. and Stuchlík, E.: Evidence for responses in water chemistry and macroinvertebrates in a strongly
458	acidified mountain stream, Biologia, 72, 1049-1058, 2017.
459	Berger, T., Mathurin, F. A., Gustafsson, J. P., Peltola, P. and Åström, M. E.: The impact of
460	fluoride on Al abundance and speciation in boreal streams, Chem. Geol., 409, 118-124, 2015.
461	Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H.,
462	White, J-S. S.: Generalized linear mixed models: a practical guide for ecology and evolution, Trends
463	Ecol. Evol., 24, 127-135, 2009.

464	Boudot, J. P., Becquer, T., Merlet, D. and Rouiller, J.: Aluminium toxicity in declining
465	forests: a general overview with a seasonal assessment in a silver fir forest in the Vosges mountains
466	(France), in: Annales des seiences forestièresSciences Forestières, 1994.
467	Bowlby, H. D., Horsman, T., Mitchell, S. C. and Gibson, A.: Recovery potential assessment
468	for southern upland atlantic salmon: habitat requirements and availability, threats to populations, and
469	feasibility of habitat restoration, DFO Canadian Science Advisory Secretariat, 2013.
470	Brown, D.: Effect of calcium and aluminum concentrations on the survival of brown trout
471	(Salmo trutta) at low pH, Bull. Environ. Contam. Toxicol., 30, 582-587, 1983.
472	Buchanan, C., Smith, Z. and Nagel, A.: Long-Term Water Quality Trends in USEPA Region 3
473	(Mid-Atlantic), 2017.
474	Burns, D. A., McHale, M. R., Driscoll, C. T. and Roy, K. M.: Response of surface water
475	chemistry to reduced levels of acid precipitation: comparison of trends in two regions of New York,
476	USA, Hydrological Processes: An International Journal, 20, 1611-1627, 2006.
477	Campbell, P. G., Hansen, H. J., Dubreuil, B. and Nelson, W. O.: Geochemistry of Quebec
478	north shore salmon rivers during snowmelt: organic acid pulse and aluminum mobilization, Can. J.
479	Fish. Aquat. Sci., 49, 1938-1952, 1992.
480	Chew, H., Johnston, L. M., Craig, D. and Inch, K.: Aluminum contamination of groundwater:
481	spring melt in Chalk River and Turkey Lakes Watersheds-preliminary results, Can. J. Fish. Aquat.

482 <u>Sci., 45, s66-s71, 1988.</u>

483	Christophersen, N., Vogt, R. D., Neal, C., Anderson, H. A., Ferrier, R. C., Miller, J. D. and
484	Seip, H. M.: Controlling mechanisms for stream water chemistry at the Pristine Ingabekken Site in
485	mid-Norway: Some implications for acidification models, Water Resour. Res., 26, 59-67, 1990.
486	Clair, T. A., Dennis, I. F., Vet, R. and Laudon, H.: Long-term trends in catchment organic
487	carbon and nitrogen exports from three acidified catchments in Nova Scotia, Canada,
488	Biogeochemistry, 87, 83-97, 2008.
489	Clair, T. A., Dennis, I. F., Scruton, D. A. and Gilliss, M.: Freshwater acidification research in
490	Atlantic Canada: a review of results and predictions for the future, Env. Rev., 15, 153-167, 2007.
491	Clair, T. A., Dennis, I. F. and Vet, R.: Water chemistry and dissolved organic carbon trends in
492	lakes from Canada's Atlantic Provinces: no recovery from acidification measured after 25 years of
493	lake monitoring, Can. J. Fish. Aquat. Sci., 68, 663-674, 2011.
494	Cozzarelli, I. M., Herman, J. S. and Parnell Jr, R. A.: The mobilization of aluminum in a
495	natural soil system: effects of hydrologic pathways, Water Resour. Res., 23, 859-874, 1987.
496	Davies, J., Jenkins, A., Monteith, D. T., Evans, C. D. and Cooper, D. M.: Trends in surface
497	water chemistry of acidified UK freshwaters, 1988–2002, Environmental Pollution, 137, 27-39, 2005.
498	Dennis, I. F. and Clair, T. A.: The distribution of dissolved aluminum in Atlantic salmon
499	(Salmo salar) rivers of Atlantic Canada and its potential effect on aquatic populations, Can. J. Fish.
500	Aquat. Sci., 69, 1174-1183, 2012.

501	DeWalle, D. R., Swistock, B. R. and Sharpe, W. E.: Episodic flow-duration analysis: a
502	method of assessing toxic exposure of brook trout (Salvelinus fontinalis) to episodic increases in
503	aluminum, Can. J. Fish. Aquat. Sci., 52, 816-827, 1995.
504	Driscoll, C. T., Baker, J. P., Bisogni, J. J. and Schofield, C. L.: Effect of aluminium speciation
505	on fish in dilute acidified waters, Nature, 284, 161-164, 1980.
506	Driscoll, C. T. and Schecher, W. D.: The chemistry of aluminum in the environment, Environ.
507	Geochem. Health, 12, 28-49, 1990.
508	Edzwald, J. K. and Van Benschoten, J. E.: Aluminum coagulation of natural organic matter,
509	in: Chemical water and wastewater treatment, Springer, 341-359, 1990.
510	Erlandsson, M., Cory, N., Köhler, S. and Bishop, K.: Direct and indirect effects of increasing
511	dissolved organic carbon levels on pH in lakes recovering from acidification, Journal of Geophysical
512	Research: Biogeosciences, 115, 2010.
513	Evans, C. D., Cullen, J. M., Alewell, C., Kopácek, J., Marchetto, A., Moldan, F., Prechtel, A.,
514	Rogora, M., Veselý, J. and Wright, R.: Recovery from acidification in European surface waters,
515	Hydrology and Earth System Sciences Discussions, 5, 283-298, 2001.
516	Evans, C. D. and Monteith, D. T.: Chemical trends at lakes and streams in the UK Acid
517	Waters Monitoring Network, 1988-2000: Evidence for recent recovery at a national scale, Hydrology
518	and Earth System Sciences Discussions, 5, 351-366, 2001.

- 519 Exley, C., Chappell, J. S. and Birchall, J. D.: A mechanism for acute aluminium toxicity in fish, J. Theor. Biol., 151, 417-428, 1991. 520
- 521 Farmer, G. J.: Effects of low environmental pH on Atlantic salmon (Salmo salar L.) in Nova 522 Scotia, Department of Fisheries and Oceans Canada, 2000.
- 523 Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S. and Cosby, B. J.: Experimental
- 524 acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine, Soil Sci. Soc. 525 Am. J., 67, 1909-1919, 2003.
- 526 Freedman, B. and Clair, T. A.: Ion mass balances and seasonal fluxes from four acidic
- 527 brownwater streams in Nova Scotia, Can. J. Fish. Aquat. Sci., 44, 538-548, 1987.
- 528 Gensemer, R. W., Gondek, J. C., Rodriquez, P. H., Arbildua, J. J., Stubblefield, W. A.,
- Cardwell, A. S., Santore, R. C., Ryan, A. C., Adams, W. J. and Nordheim, E.: Evaluating the effects 529
- 530 of pH, hardness, and dissolved organic carbon on the toxicity of aluminum to freshwater aquatic
- 531 organisms under circumneutral conditions, Environmental toxicology Toxicology and
- 532 chemistryChemistry, 37, 49-60, 2018.
- 533 Gensemer, R. W., Playle, R. C.: The bioavailability and toxicity of aluminum in aquatic
- 534 environments, Critical Reviews in Environmental Science and Technology, 29:4, 315-450,
- 535 DOI:10.1080/10643389991259245, 1999.
- Gibson, A. J. F., Bowlby, H. D., Hardie, D. C. and O'Reilly, P. T.: Populations on the brink: 536
- 537 low abundance of Southern Upland Atlantic salmon in Nova Scotia, Canada, N. Am. J. Fish.
- 538 Manage., 31, 733-741, 2011.

539	Ginn, B. K., Cumming, B. F. and Smol, J. P.: Assessing pH changes since pre-industrial times
540	in 51 low-alkalinity lakes in Nova Scotia, Canada, Can. J. Fish. Aquat. Sci., 64, 1043-1054, 2007.
541	Gorham, E., Underwood, J. K., Martini, F. B. and Ogden III, J. G.: Natural and anthropogenic
542	causes of lake acidification in Nova Scotia, Nature, 324, 451, 1986.
543	Helliweli, S., Batley, G. E., Florence, T. M. and Lumsden, B. C.: Speciation and toxicity of
544	aluminium in a model fresh water, Environ. Technol., 4, 141-144, 1983.
545	Hendershot, W. H., Dufresne, A., Lalande, H. and Courchesne, F.: Temporal variation in
546	aluminum speciation and concentration during snowmelt, in: Acidic Precipitation, Springer, 1285-
547	<u>1291, 1986.</u>
548	Hendershot, W.H., F. Courchense, D.S. Jeffries: Aluminum geochemistry at the catchment
549	scale in watersheds influenced by acidic precipitation. In Sposito, G., The Environmental Chemistry
550	of Aluminum, Lewis Publishers, NY, 1996.
551	Henriksen, A., Skogheim, O. K. and Rosseland, B. O.: Episodic changes in pH and
552	aluminium-speciation kill fish in a Norwegian salmon river, Vatten, 40, 255-260, 1984.
553	Hesthagen, T. and Hansen, L. P.: Estimates of the annual loss of Atlantic salmon, Salmo salar
554	L., in Norway due to acidification, Aquacult. Res., 22, 85-92, 1991.
555	Hesthagen, T., Fiske, P. and Saksgård, R.: Recovery of young brown trout (Salmo trutta) in
556	acidified streams: What are the critical values for acid-neutralizing capacity?, Atmos. Environ., 146,
557	236-244, 2016.

558		Hindar, A.: Recommended liming strategies for salmon rivers in Nova Scotia, Canada, NIVA,
559	2001.	

560	Hooper, R. P. and Shoemaker, C. A.: Aluminum mobilization in an acidic headwater stream:
561	temporal variation and mineral dissolution disequilibria, Science, 229, 463-465, 1985.
562 563	Houle, D., Ouimet, R., Couture, S. and Gagnon, C.: Base cation reservoirs in soil control the buffering capacity of lakes in forested catchments, Can. J. Fish. Aquat. Sci., 63, 471-474, 2006.
564 565	Howells, G., Dalziel, T., Reader, J. P. and Solbe, J. F.: EIFAC water quality criteria for European freshwater fish: report on aluminium, Chem. Ecol., 4, 117-173, 1990.
566	Jansen, B., Nierop, K. G. and Verstraten, J. M.: Mobility of Fe (II), Fe (III) and Al in acidic
567	forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon
568	ratios, Geoderma, 113, 323-340, 2003.
569	Josephson, D. C., Robinson, J. M., Chiotti, J., Jirka, K. J. and Kraft, C. E.: Chemical and
570	biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA,
571	Environ. Monit. Assess., 186, 4391-4409, 2014.
572	Kerekes, J., Beauchamp, S., Tordon, R., Tremblay, C. and Pollock, T.: Organic versus
573	anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia, Water Air
574	Soil Pollut., 31, 165-1793, 1986.
575	Keys, K.: Acid Deposition and Base Cation Depletion in Northeastern Forest Soils:

a Review with Focus on Nova Scotia Conditions-thesis, Dalhousie University, 2015.

577	Kopacek, J., Hejzlar, J. and Porcal, P.: Seasonal patterns in chemistry of tributaries to
578	plesnePlesne and certovoČertovo lakes in the 1998 hydrological year, Silva Gabreta, 4, 105-116
579	2000.

Kopáček, J., Turek, J., Hejzlar, J., Kaňa, J. and Porcal, P.: Element fluxes in watershed-lake
ecosystems recovering from acidification: Čertovo Lake, the Bohemian Forest, 2001–2005, Biologia,
61, S41-S426, 2006.

583 Krám, P., Hruška, J., Driscoll, C. T., Johnson, C. E. and Oulehle, F.: Long-term changes in
584 aluminum fractions of drainage waters in two forest catchments with contrasting lithology, J. Inorg.
585 Biochem., 103, 1465-1472, 2009.

586 Kristensen, T., Åtland, Å, Rosten, T., Urke, H. A. and Rosseland, B. O.: Important influent587 water quality parameters at freshwater production sites in two salmon producing countries, Aquacult.
588 Eng., 41, 53-59, 2009.

Kroglund, F., Finstad, B., Stefansson, S. O., Nilsen, T. O., Kristensen, T., Rosseland, B. O.,
Teien, H. C. and Salbu, B.: Exposure to moderate acid water and aluminum reduces Atlantic salmon
post-smolt survival, Aquaculture, 273, 360-373, 2007.

592 Kroglund, F., Rosseland, B. O., Teien, H., Salbu, B., Kristensen, T. and Finstad, B.: Water

593 quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and

594 increased aluminum simulating episodes, Hydrology and Earth System Sciences Discussions, 4,

595 3317-3355, 2007.

596	Kroglund, F. and Staurnes, M.: Water quality requirements of smolting Atlantic salmon
597	(Salmo salar) in limed acid rivers, Can. J. Fish. Aquat. Sci., 56, 2078-2086, 1999.
598	Lacoul, P., Freedman, B. and Clair, T.: Effects of acidification on aquatic biota in Atlantic
599	Canada, Env. Rev., 19, 429-460, 2011.
600	Lacroix, G. L.: Ecological and physiological responses of Atlantic salmon in acidic organic
601	rivers of Nova Scotia, Canada, Water Air Soil Pollut., 46, 375-386, 1989.
602	Lacroix, G. L. and Kan, K. T.: Speciation of Aluminum in Acidic Rivers of Nova Scotia
603	Supporting Atlantic Salmon: A Methodological Evaluation, 1986.
604	Lacroix, G. L. and Townsend, D. R.: Responses of juvenile Atlantic salmon (Salmo salar) to
605	episodic increases in acidity of Nova Scotia rivers, Can. J. Fish. Aquat. Sci., 44, 1475-1484, 1987.
606	Langan, S. J. and Wilson, M. J.: Predicting the regional occurrence of acid surface waters in
607	Scotland using an approach based on geology, soils and land use, Journal of hydrologyHydrology,
608	138, 515-528, 1992.
609	Lawrence, G.B., Dukett, J.E., Houck, N., Snyder, P. and Capone, C.: Increases in dissolved
610	organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification,
611	Environmental science and technology Technology, 47, 7095-7100, 2013.
612	LaZerte, B. D.: Forms of aqueous aluminum in acidified catchments of central Ontario: a
613	methodological analysis, Can. J. Fish. Aquat. Sci., 41, 766-776, 1984.

614	Lydersen, E.: The solubility and hydrolysis of aqueous aluminium hydroxides in dilute fresh
615	waters at different temperatures, Hydrology Research, 21, 195-204, 1990.
616	McCormick, S. D., Lerner, D. T., Monette, M. Y., Nieves-Puigdoller, K., Kelly, J. T. and
617	Björnsson, B. T.: Taking it with you when you go: how perturbations to the freshwater environment,
618	including temperature, dams, and contaminants, affect marine survival of salmon, in: American
619	Fisheries Society Symposium, 2009.
620	McKnight, D. and Bencala, K. E.: Diel variations in iron chemistry in an acidic stream in the
621	Colorado Rocky Mountains, USA, Arct. Alp. Res., 20, 492-500, 1988.
622	Monette, M. Y. and McCormick, S. D.: Impacts of short-term acid and aluminum exposure on
623	Atlantic salmon (Salmo salar) physiology: a direct comparison of parr and smolts, Aquatic
624	Toxicology, 86, 216-226, 2008.
625	Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L. and Malcolm, I. A.: Trends in
626	the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008, Ecol. Ind., 37, 287-303,
627	2014.
628	Mulder, J., Christophersen, N., Hauhs, M., Vogt, R. D., Andersen, S. and Andersen, D. O.:
629	Water flow paths and hydrochemical controls in the Birkenes catchment as inferred from a rainstorm
630	high in seasalts, Water Resour. Res., 26, 611-622, 1990.
631	Murdoch, P. S. and Stoddard, J. L.: The role of nitrate in the acidification of streams in the
632	Catskill Mountains of New York, Water Resour. Res., 28, 2707-2720, 1992.

633	Neal, C., Smith, C. J., Walls, J. and Dunn, C. S.: Major, minor and trace element mobility in
634	the acidic upland forested catchment of the upper River Severn, Mid Wales, Journal of the Geological
635	Society, 143, 635-648, 1986.
636	Neville, C. M.: Physiological response of juvenile rainbow trout, Salmo gairdneri, to acid and
637	aluminum—prediction of field responses from laboratory data, Can. J. Fish. Aquat. Sci., 42, 2004-
638	2019, 1985.
639	Nilsen, T. O., Ebbesson, L. O., Handeland, S. O., Kroglund, F., Finstad, B., Angotzi, A. R.
640	and Stefansson, S. O.: Atlantic salmon (Salmo salar L.) smolts require more than two weeks to
641	recover from acidic water and aluminium exposure, Aquatic toxicology Toxicology, 142, 33-44, 2013.
642	Nilsen, T. O., Ebbesson, L. O., Kverneland, O. G., Kroglund, F., Finstad, B. and Stefansson,
643	S. O.: Effects of acidic water and aluminum exposure on gill Na , K -ATPase α -subunit isoforms,
644	enzyme activity, physiology and return rates in Atlantic salmon (Salmo salar L.), Aquatic Toxicology,
645	97, 250-259, 2010.
646	Nilsson, S. I.: Budgets of aluminium species, iron and manganese in the Lake Gårdsjön
647	catchment in SW Sweden, Ecological Bulletins, 120-132, 1985.
648	Nilsson, S. I. and Bergkvist, B. O.: Aluminium chemistry and acidification processes in a
649	shallow podzol on the Swedish west coast, Water Air Soil Pollut., 20, 311-329, 1983.
650	Parent, L., and Campbell, P. G. C.: Aluminum bioavailability to the green alga Chlorella
651	pyrenoidosa in acidified synthetic soft water, Environmental. Toxicol. Chem. 13(4), 587-598, 1994.

652	Parrish, D. L., Behnke, R. J., Gephard, S. R., McCormick, S. D. and Reeves, G. H.: Why
653	aren't there more Atlantic salmon (Salmo salar)?, Can. J. Fish. Aquat. Sci., 55, 281-287, 1998.
654	Poléo, A. B.: Aluminium polymerization—a mechanism of acute toxicity of aqueous
655	aluminium to fish, Aquatic toxicology Toxicology, 31, 347-356, 1995.
656	R Core Team .: R: A language and environment for statistical computing. R Foundation for
657	Statistical Computing, Vienna Austria. Available at: https://www.r-project.org/, 2019.
658	Raudenbush, S. W., Yang, ML., and Yosef, M.: Maximum likelihood for generalized linear
659	models with nested random effects via high-order, multivariate Laplace approximation, J. Comput.
660	<u>Graph. Statist., 9, 141-157, 2000.</u>
661	Regish, A. M., Kelly, J. T., O'Dea, M. F. and McCormick, S. D.: Sensitivity of Na /K -
662	ATPase isoforms to acid and aluminum explains differential effects on Atlantic salmon
663	osmoregulation in fresh water and seawater, Can. J. Fish. Aquat. Sci., 75, 1319-1328, 2018.
664	Rodushkin, I., Moiseenko, T. and Kudravsjeva, L.: Aluminium in the surface waters of the
665	Kola Peninsula, Russia, Sci. Total Environ., 163, 55-59, 1995.
666	Rosseland, B. O., Eldhuset, T. D. and Staurnes, M.: Environmental effects of aluminium,
667	Environ. Geochem. Health, 12, 17-27, 1990.
668	Rotteveel, L. and Sterling, S.: Five Aluminum Seasonality Regimes Identified in Chronically
669	Acidified Rivers of Nova Scotia, Environmental Science & Technology, 54, 807-817, 2019.

670	Schlesinger, W. H. and Bernhardt, E. S.: Biogeochemistry: an analysis of global change,
671	Academic press, 2013.
672	Schofield, C. L., Galloway, J. N. and Hendry, G. R.: Surface water chemistry in the ILWAS
673	basins, Water Air Soil Pollut., 26, 403-423, 1985.
674	Schofield, C. L. and Trojnar, J. R.: Aluminum toxicity to brook trout (Salvelinusfontinalis) in
675	acidified waters, in: Polluted rain, Springer, 341-366, 1980.
676	Seip, H. M., Andersen, D. O., Christophersen, N., Sullivan, T. J. and Vogt, R. D.: Variations
677	in concentrations of aqueous aluminium and other chemical species during hydrological episodes at
678	Birkenes, southernmost Norway, Journal of Hydrology, 108, 387-405, 1989.
679	Simpson, S.L., C. R. Vardanega, C. Jarolimek, D.F. Jolley, B.M. Angel, L.M. Mosley, 2014,
680	Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic
681	drainage water, Chemosphere, 103, 172-180.
682	Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J.,
683	Mannio, J., Monteith, D. T., Mosello, R. and Rogora, M.: Regional scale evidence for improvements
684	in surface water chemistry 1990–2001, Environmental Pollution, 137, 165-176, 2005.
685	Staurnes, M., Hansen, L. P., Fugelli, K. and Haraldstad, Ø: Short-term exposure to acid water
686	impairs osmoregulation, seawater tolerance, and subsequent marine survival of smolts of Altantic

687 salmon (Salmo salar), Can. J. Fish. Aquat. Sci., 53, 1695-1704, 1996.

688	Sterling, S.	, Rotteveel, L	Hart. K	Macleod, S.,	Biörnerås.	C., Heubach.	F., Clair, T.,

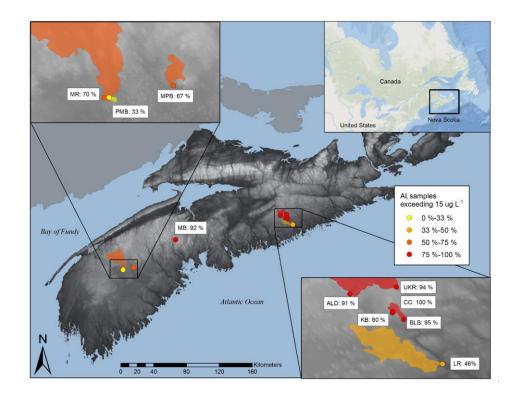
- 689 Howden, N., Bailey, S., Burns, D., Creed, I., de Wit, H., Driscoll, C., Evans, C., Fernandez, I., Green,
- 690 W., Kortelainen, P., Kritzberg, E., Laudon, H., Lawrence, G., Lehtoranta, J., Malcolm, I., Monteith,
- 691 D., Oulehle, F., Norton, S., Pembrook, H., Räike, A., Riise, G., Rusak, J., Webster, K. and
- 692 Weyhenmeyer, G.: Increasing aluminium in lakes and rivers, In prep.
- 693 Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T.,
- 694 Forsius, M., Johannessen, M., Kahl, J. S. and Kellogg, J. H.: Regional trends in aquatic recovery from
- acidification in North America and Europe, Nature, 401, 575, 1999.
- 696 Strock, K. E., Nelson, S. J., Kahl, J. S., Saros, J. E. and McDowell, W. H.: Decadal trends
- reveal recent acceleration in the rate of recovery from acidification in the northeastern US, Environ.Sci. Technol., 48, 4681-4689, 2014.
- Summers, P. W. and Whelpdale, D. M.: Acid precipitation in Canada, Water Air Soil Pollut.,
 6, 447-455, 1976.
- Sullivan, T. J., Christophersen, N., Muniz, I. P., Seip, H. M. and Sullivan, P. D.: Aqueous
 aluminium chemistry response to episodic increases in discharge, Nature, 323, 324, 1986.
 Tipping, E.: Acid-sensitive waters of the English Lake District: a steady-state model of
 streamwater chemistry in the upper Duddon catchment, Environmental Pollution, 60, 181-208, 1989.
 Tomlinson, G.H., Tomlinson, F.L., Grennfelt, P., Höttl, R., Höttermann, A., Mehne, B.M., and
 von Tiedemann S.: Effects of acid deposition on the forests of Europe and North America. CRC Press
 Inc., 1990, 281 pp.
 - 37

708	US EPA: Method 6020A (SW-846): Inductively coupled plasma-mass spectrometry, 1998.
709	US EPA.: "Method 200.8: Determination of Trace Elements in Waters and Wastes by
710	Inductively Coupled Plasma-Mass Spectrometry," Revision 5.4, 1994.
711	Vogt, R. D. and Muniz, I. P.: Soil and stream water chemistry in a pristine and boggy site in
712	mid-Norway, Hydrobiologia, 348, 19-38, 1997.
713	Walker, W. J., Cronan, C. S. and Bloom, P. R.: Aluminum solubility in organic soil horizons
714	from northern and southern forested watersheds, Soil Sci. Soc. Am. J., 54, 369-374, 1990.
715	Wang, D., He, Y., Liang, J., Liu, P. and Zhuang, P.: Distribution and source analysis of
716	aluminum in rivers near Xi'an City, China, Environ. Monit. Assess., 185, 1041-1053, 2013.
717	Warby, R. A., Johnson, C. E. and Driscoll, C. T.: Continuing acidification of organic soils
718	across the northeastern USA: 1984–2001, Soil Sci. Soc. Am. J., 73, 274-284, 2009.
719	Warby, R. A., Johnson, C. E. and Driscoll, C. T.: Chemical recovery of surface waters across
720	the northeastern United States from reduced inputs of acidic deposition: 1984-2001, Environ. Sci.
721	Technol., 39, 6548-6554, 2005.
722	Watmough, S. A., Eimers, C. and Baker, S.: Impediments to recovery from acid deposition,
723	Atmos. Environ., 146, 15-27, 2016.
724	Watt, W. D.: A summary of the impact of acid rain on Atlantic salmon (Salmo salar) in

725 Canada, Water Air Soil Pollut., 35, 27-35, 1987.

/26	Watt, W. D., Scott, C. D., Zamora, P. J. and White, W. J.: Acid toxicity levels in Nova Scotian
727	rivers have not declined in synchrony with the decline in sulfate levels, Water Air Soil Pollut., 118,
728	203-229, 2000.
720	
729	Wauer, G. and Teien, H.: Risk of acute toxicity for fish during aluminium application to
730	hardwater lakes, Sci. Total Environ., 408, 4020-4025, 2010.
731	Weyhenmeyer G.A., Hartmann J., Hessen D.O., Kopáček J., Hejzlar J., Jacquet S., Hamilton
732	S.K., Verburg P., Leach T.H., Schmid M., Flaim G. Widespread diminishing anthropogenic effects on
733	calcium in freshwaters. Scientific reports <u>Reports</u> . 18;9(1), 10450, 2019.
734	Whitfield, C. J., Aherne, J., Watmough, S. A., Dillon, P. J. and Clair, T. A.: Recovery from
735	acidification in Nova Scotia: temporal trends and critical loads for 20 headwater lakes, Can. J. Fish.
736	Aquat. Sci., 63, 1504-1514, 2006.
737	Whitfield, C. J., Aherne, J., Dillon, P. J., and Watmough, S. A.: Modelling acidification,
738	recovery and target loads for headwater catchments in Nova Scotia, Canada, Hydrol. Earth Syst. Sci.,
739	11, 951–963, doi:10.5194/hess-11-951-2007, 2007.
740	
741	Witters, H. E., Van Puymbroeck, S., Vangenechten, J. and Vanderborght, O.: The effect of
742	humic substances on the toxicity of aluminium to adult rainbow trout, Oncorhynchus mykiss
743	(Walbaum), J. Fish Biol., 37, 43-53, 1990.
744	
745	
746	

747 Tables


- 748 Table 1 Study site characteristics. "n" refers to the number of sampling events. Number in brackets after the mean concentration is the standard deviation. One
- $749 \qquad \text{Al}_i \text{ outlier removed for MR (value: 2 \ \mu g \cdot L^{\cdot 1}, \ date: 30 \ April \ 2015). \ pH \ is calibrated using the method outlined in Appendix D.4.}$

Site	Lat	Long	Area (km ²)	n	Land use	Dominant Bedrock Type	Mean Al <u>i</u> (ug L ⁻¹)	Mean DOC (mg L ⁻¹)	Mean Al _d (ug L ⁻ 1)	Mean Ca (ug L ⁻¹)	Mean pH		Formatted: Subscript Formatted: Subscript
Mersey River (MR)	44.437	-65.223	292.8	47	Natural forest	Granite	22.5 (11.7)	8.6 (2.7)	195 (54.9)	699 (120)	5.1		
Moose Pit Brook (MPB)	44.462	-65.048	15.8	39	Natural forest	Granite/slate	20.8 (12.2)	15.8 (6.1)	249 (85.9)	826 (344)	5.0		
Pine Marten Brook (PMB)	44.436	-65.209	1.5	15	Natural forest	Slate	13.5 (12.0)	8.6 (3.3)	149 (43.4)	969 (536)	5.1		
Maria Brook (MB)	44.779	-64.414	0.2	12	Natural forest	Granite	40.1 (23.2)	9.8 (4.4)	319 (99.2)	1292 (286)	5.1		
Brandon Lake Brook (BLB)	45.021	-62.690	1.3	22	Natural forest	Sandstone/slate	48.7 (27.6)	16.0 (8.3)	350 (71.0)	836 (272)	4.9		
Upstream of West River Lime Doser (ALD)	45.054	-62.800	32.3	22	Natural forest	Sandstone/slate	45.3 (26.7)	13.8 (3.7)	243 (64.8)	759 (126)	5.2		
Upper Killag River (UKR)	45.064	-62.705	36.8	18	Natural forest	Sandstone/slate	43.5 (23.5)	12.8 (3.0)	224 (68.3)	739 (230)	5.3		
Little River (LR)	44.952	-62.611	47.1	13	Natural forest	Sandstone/slate	15.1 (11.7)	7.2 (1.9)	109 (46.1)	746 (166)	5.4		
Keef Brook (KB)	45.0284	-62.7153	2.3	5	Natural forest	Sandstone/slate	28.2 (11.5)	10.8 (3.6)	281 (80.4)	621 (275)	5.1		
Colwell Creek (CC)	45.0279	-62.7127	1.7	8	Natural forest	Sandstone/slate	58.9 (41.7)	23.1 (5.1)	411 (117)	750 (568)	5.0		

Table 2. Al_i relations with other stream chemistry parameters separated by possible seasons. Dark shading represents $r^2 > 0.6$. Medium shading represents $r^2 0.2$ -0.6. Light shading represents $r^2 0.0$ -0.2. Green indicates negative relation. Orange indicates positive relation.

	рН		DOC		Tw		Al_d		Ca		
	slope	r^2	slope	r ²	slope	r ²	slope	r ²	slope	r ²	
Season 1											
MR	-7.67	0.78	1.78	0.49	-0.26	0.42	0.084	0.67	0.0329	0.50	
MPB	8.44	0.0045	2.62	0.71	2.66	0.72	0.13	0.68	0.053	0.59	
Season 2											
MR	-53.2	0.27	7.5	0.51	0.72	0.034	0.23	0.52	0.13	0.37	
MPB	-19.6	0.22	1.4	0.43	1.43	0.23	0.1	0.42	0.039	0.42	
Season 3											
MR	4.57	0.046	0.089	0.0014	0.25	0.088	0.021	0.014	0.006	0.0001	
MPB	-39.6	0.56	1.33	0.73	-2.42	0.44	0.086	0.66	0.018	0.49	

Figures

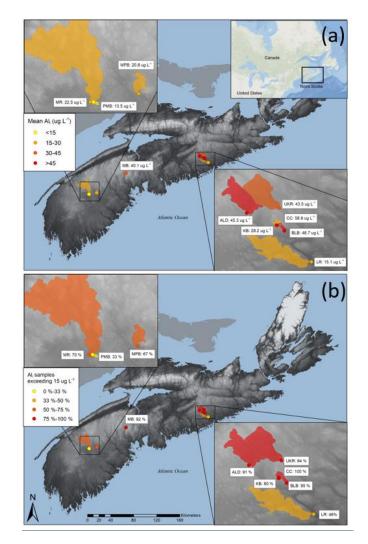


Figure 1. Study site locations showing (a) mean Al_i concentrations and (b) proportion of samples when Al_i concentrations exceeded the 15 μ g L⁻¹ toxic threshold-, between spring 2015 and fall 2018. Shaded region corresponds to the catchments of monitoring sites. For additional site details, refer to Table 1.

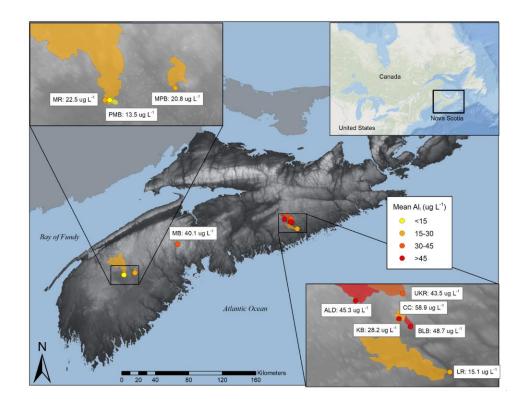


Figure 2. Mean Al; concentrations between spring 2015 to fall 2018.

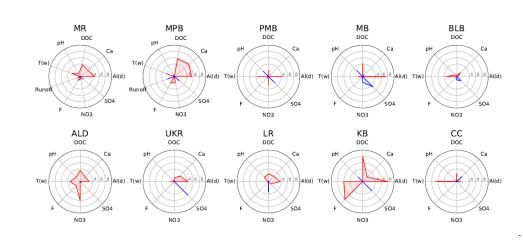
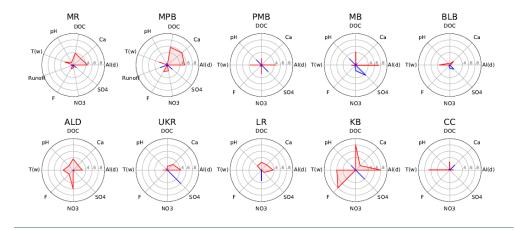



Figure 3.

 $\label{eq:Figure 2.} \ensuremath{\underline{\text{Figure 2.}}} \ensuremath{\text{Correlation}} \ensuremath{\text{among water chemistry parameters and Al}_i \ensuremath{\text{concentration}}, where red polygons and lines indicate a positive correlation with Al}_i, and blue polygons and lines indicate a negative correlation$

with Al_i . One Al_i outlier removed for MR (value: 2 μ g L⁻¹, date: 30 April 2015). Correlation data are listed in Table

<u>A4.A5.</u>

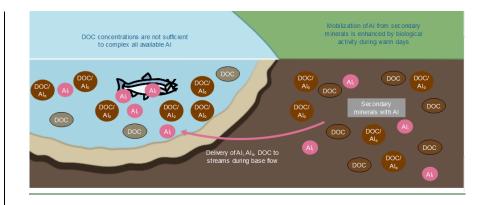


Figure 3. Conceptual model of new mechanism that can produce high concentrations of Al_i in freshwaters. Warm days increase biological activity that helps to mobilize Al from secondary minerals and enhances production of DOC which in turn reduces pH and reduces Al saturation in soil solution by forming Al-organic complexes, thus maintaining Al concentration gradient away from secondary minerals. In rivers, the amount of DOC is insufficient to protect the fish from the amount of Al_i mobilized in soils.

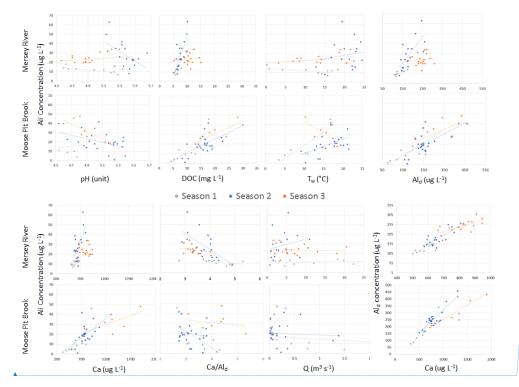


Figure 4. Scatterplot relationships among water chemistry parameters for seasons 1, 2, and 3 at MR and MPB. R² values are listed in Table <u>A5A7</u>. One runoff outlier removed for MR (value: 17.294 m3 s⁻¹, date: 22 April 2015). One runoff outlier removed for MPB (value: 34.994 m3 s⁻¹, date: 22 April 2015).

Formatted: English (United States)

Supplementary Information and Appendices for "Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow"

Appendix A. Tables

fable	A1 Al _i ter	minology, speciation me	ethodology, and trends	s from published stud	ties. Several metho	ods do not measure	Formatted: Font: Bold				
Al _i in s	itu, whicł	n can cause error due to c	changes in temperatur	e, DOC and pH, which	ch vary during tran	sit to the lab.					
ncreas	sed pH and	d increased temperature	in lab conditions can	cause the underestim	ation of Al _i . Al _{nl} =n	on-labile Al,					
∖l _{tm} =to	otal mono	meric Al, Al _{om} =organic	monomeric Al, Al _{tr} =to	otal reactive Al, Al _{nln}	n=non-labile monoi	meric Al,					
λl _m =m	l _m =monomeric Al. CEC= Cation Exchange Column, ICP-AES= Inductively Coupled Plasma-Atomic Emission										
pectro	oscopy. A	WMN= Acid Waters M	onitoring Network.								
	Α	Definition	Analys	sis Tre	Locat	Refer					
1			Method	nd	ion	ence					
Spec	cies										
	A	Inorganic Al	Colouri	Decrea	AWM	Monteit 🔹	Formatted Table				
li			metry	sing Al _i from	N in UK	h et al. (2014)					
			(Al _t -	1988-2008							
			Al _{nl})								
				D	New	Josephs					
	А	Inorganic	Colouri	Decrea	140 W	· · · · · · · · · · · · · · · · · · ·					
l _{im}		Inorganic onomeric Al	Colouri metry	sing Al _i from	York, USA	on et al. (2014)					

				(Altm-			
			Al _{om})				
	А	Ionic Al		CEC	Mean	Atlanti	Dennis
l_i			(Al _t -Al	a)	NS Al _i =25.3	c Canada	and Clair (2012)
					µg/L		
					Mean		
					NB Al _i =31.0		
					µg/L		
	А	Ionic Al		Colouri	Decrea	Norwa	Hesthag
li			metry		sing Al_i in lakes	у	en et al. (2011)
	L	Inorganic Al		ICP-	15% of	Norwa	Kristens
A1		(sum of inorganic and	AES, F	low	LA1 samples	у	en et al. (2009)
		monomeric Al species)	injectio	n,	were >10 μ g/L		
			Pyrocat	echol			
			violet, a	and CEC			
			(Al _{tr} -Al	nl)			
	А	Labile/cationic/in		Colouri	Decrea	AWM	Evans
1-1		organic monomeric Al	metry		sing Al-l across	N in UK	& Monteith
				(Al _{tm} -	the UK		(2001)
			Al _{nlm})				
	А	Labile Al (free		Van	Mean	China	Wang et
l _{im}		and inorganically	Bensch	oten	Al_{im} of 72 $\mu g/L$		al. (2013)
		complexed Al)	method		from 2009-2010		

	А	Inorganic	Colouri	Al_i	Czech	Kram et
l_{i}	mo	nomeric	metry and CEC	fraction	Republic	al. (2009)
			(Al _m -Al _o)	decreased in		
				catchments		
				between 1991 &		
				2007		
	А	Inorganic Al	AAS	Decrea	Adiron	Strock
l_i				sing Al_i from	dack	et al. (2014)
				1990-2010	Mountains,	
					USA	

 Table A2 Raw sample data. RL: rising limb of hydrograph, FL: falling limb of hydrograph, and BF: base flow. Air temperature (T_a) data were collected from the

 Kejimkujik 1 weather station (Climate ID: 8202592; 44.24'11.020 °N, 65.12'11.070 °W) for MR, MPB, PMB, and MB, and the Stanfield Airport weather station

 (Climate ID: 8202251; 44°52'52.000" N, 63°30'31.000" W) for CC, KB, ALD, BLB, UKR, and LR. Missing T_a data were replaced with data from another local

 meteorological tower located one kilometer to the northwest of the MPB site (44.469549, -65.061295).

ite	ate	l _i (μg L ^{- 1})	A lo/Ald (%)	eason	S l _d (µg L ⁻¹)	а (µg L ⁻¹)	OC (mg	5 O4 (µg L ⁻¹)	H (unit)	1 w(°C) a (°C)	D ischarge (m ³ s ⁻¹)	I unoff (mm day ^{- 1})	H ydrograph Stage
LD	016-04- 29	9	8 7.7		1 55	91	L ⁻¹)	۶ 99	.67	6 .8		day ^{- 1})	
LD	016-05- 19	2	9 4.1		02	00	0.7	1 414	.89	2.0			
LD	016-06-	5	9 0.7	:	2 68	22	2.5	6 39	.02	1 6.6 3.2			

Formatted: Font: 10 pt, Bold, Highlight Formatted: Indent: First line: 0 cm, Line spacing: single Formatted: Font: Bold

LD	016-06-	2	8 8.3	2	74	74	2.9	5 78	.99	1 3.2	3
LD	016-06- 28	8	8 9.4	2	65	20	2.2	ç 59	.26	2 2.1	4.2
LD	016-07- 15	7	8 7	2	85	92	5	7 61	.11	2 0.7	9.6
LD	016-08- 05	8	7 9.9		39	00	9.4	1 414	.98		1.2
LD	016-09- 10	8	7 8.2		20	000	4.8	2 000	.03		0.8
LD	016-10- 02	3	9 2.3		69	000	4.4	3 000	.27		1.4

LD	016-11-		8					1			<i>,</i>
	19	4	2		45	00	4.6	414	.03		.6
	:		_							7	
LD	017-04-		8					1		.8	.2
	19	7	1.1	1	43	00	0.4	209	.55		
	017-05-		6					ç		1	
LD	14	9	1	2	77	00	2.1	23	.92	3.4	
	14	,	1	2	,,	00	2.1	25	.92		
										1	
LD	017-05-		8					2		1	
LD	30	7	5.8	2	61	00	1.8	536	.77	4.3	2.2
										2	
LD	017-06-		5					1		2.8	5
	22	00	9.8	2	49	00	5.2	414	.17		
	017-07-		8					1		2	
LD	13	2	0.3	2	15	00	9.3	414	.24	0.6	8.5
	15	2	0.5	2	15	00	9.5	414	.24		

LD	017-08- 01	6	8 9	2	36	00	5.1	1 414	.96	2 5.6	8.4
LD	017-08- 23	5	8 4.4	2	24	00	3.2	1 125	.14	2 1.8	1
LD	017-09-	7	8 2.5	2	39	000	3.5		.73	2 0.7	8.7
LD	018-05- 10	6	7 5.7		89	00	.8	1 414	.64		.5
LD	018-06- 07	3	8 3.8		66	00	6.1	1 414	.13		1.0
LD	018-07-	19	6 2.5		17	00	3.6	1 414	.61		3.8

LD	018-11-		7					1			9.1
	23	0	6		08	00	0.1	414	.45		
	, ,									F	
LB	016-04-		8					ç		5 .7	
LD	29	0	9.5	2	90	76	.2	36	.03	.7	
	016-06-		8					ć		1	
LB	03	0	2.1	4	36	70	1.9	69	.78	0.1	3.5
	016-06-		9					1		9	
LB	16	3	1.2	4	73	89	3.2	158	.77	.8	3
	016-06-		9					1		1	
LB	28	6	3.3	4	88	94	3.6	251	.67	3.1	3.9
	20	0	5.5	-	00	74	5.0	231	.07		
										1	
LB	016-07-		9					7			8.7
	15	2	0.5	4	43	87	6.7	23	.77		

LB	016-08-		9					1			1.2
	05		8.6		29	000	6.2	414	.29		1.2
LB	016-09-		7					1			0.8
	10	1	7.1		54	00	8.3	414	.87		0.0
LB	016-10-		9					2			1.4
	02	3	0.1		35	000	8.5	000	.1		
			_								
LB	016-11-		9					1			.6
	19	8	2.6		79	000	7.2	414	.76		
	:										
	017-04-		7					1		4	
LB										.2	
	19	1	9.1	4	96	00	.6	927			
	017-05-		8					1		7	
LB	14	6	2.6	4	64	00	2.9	550		.7	
	14	0	2.0	4	04	00	2.7	550			

										8	
LB	017-05-		8					1		.4	4.9
	30	6	8.3	4	08	00	1.3	795			
	017-06-		7					1		1	
LB	22	10	0.1	4	68	00	4.9	414	.8	7.3	4.6
	015.05		0							1	
LB	017-07-	0	8		27	0.0		1	07	5.8	7
	13	0	8.3	4	27	00	7.6	414	.87		
	:									2	
LB	017-08-		9					1		0.6	9
LD	01	7	0.7	4	96	00	7.9	414	.7	0.0	9
	017-08-		8					1		1	
LB	23	4	5.8	3	81	000	7.1	172	.94	8.3	1
	25	-	5.0	5	01	000	7.1	172	.)+		
	1 -									1	
LB	017-09-		9							6.6	8.9
LD	16	4	1.9	4	20	000	7.3		.52	0.0	0.7

`	010.05	Ö	

LB	018-05-		8					1			.5
	10	7	5.5		56	00	.5	414	.16		.5
	:										
LB	018-06-		7					1			
	07	6	5		44	00	5.7	414	.29		1.0
LB	018-07-		8					1			
	05	3	0.3		21	00	3.8	414	.42		3.8
LB	018-10-		б					1			
LD	010-10-	04	7.4		19	600	2.4	414	.04		.7
	:										
LB	018-11- 23	4	9 3.5		67	0.7	0.5	1 414	.8		9.1
	25	4	5.5		07	0.7	0.5	414	.0		
	,									1	
С	016-06-		9					3		1.2	3.5
	03	2	1.9	4	97	01	5.2	85	.66		

С	016-06- 16	6	8 8.9	4	13	20	7.7	3 04	.71	1 0.4	2.8
С	016-06- 28	07	7 8.9	4	07	37	: 1	4 01	.82	1 4.8	4.2
С	016-07- 15	3	8 9.9	4	24	42	6	2 08	.6	1 4.6	8.7
С	016-08- 05	40	6 8.6		46	00	9.3	1 414	.73		1.2
С	016-09-	2	8 6.9		44	00	2.2	1 414	.72		0.8
С	016-10- 02	4	8 5.5		34	00	8.8	1 414	.95		1.4

С	016-11- 19	7	9 4.9		27	100	4.9	1 414	.11		.6
В	016-04- 29	4	9 0.6	2	49	110	.7	1 061	.69	8 .2	
В	016-06- 03	0	9 2.5	2	67	59	.9	¢ 11	.89	1 4.1	3.5
В	016-06- 16	8	8 7.7	2	10	15	1.3	۶ 52	.9	1 2.3	0.8
В	016-06- 28	8	9 1.3	2	23	86	1.7	۶ 87	.06	1 7.8	4.5
В	016-07-	1	8 8.5	2	56	35	5.6	6 21	.03	1 8.7	8.7

R	016-08-		5					1			1.0	
	05	7	0		4	100	.7	414	.03		1.2	
	: :											
R	016-09-		9					1			0.8	
	10		2.1		8	00	.4	414	.07		0.8	
	с — а -											
R	016-10-		9					2			1.4	
	02		5.2		24	00	0.1	000	.76			
	н -											
R	017-04-		9					1		6	.7	
	19		6.6	1	16	00	.1	416	.87			
			0							1		
R	017-05-		8					1		2.3		
	14	0	4.6	2	30	00	.1	213	.95			
	017-05-		8					1		1		
R		-			~ 4	0.0	-			5	2.5	
	30	7	9	2	54	00	.6	572	.21			

R	017-06- 22	4	6 9.9	2	13	00	.2	1 414	.51	1 9.6	9
R	017-07- 13	2	8 8.7	2	06	00	.4	1 414	.54	2 1.8	8
R	017-08- 01		9 6.9	2	5	00	.6	1 414	.1	1 9.6	4.8
R	017-08- 23		8 8.4	2	3	00	.1	1 371	.37	2 1.6	1.3
R	017-09-		9 4.9	2	9	00	.7	1 414	.01	1 9.4	5.8
R	018-05- 10	5	7 4.1		35	00	.7	1 414	.54		.5

R	018-06-		8					1			1.0
	07	6	4.0		62	00	.2	414	.55		1.0
										9	
В	016-05-		8					1		.8	2
Б	27	0	8.9	2	70	200	.8	278	.14	.0	2
										1	
В	016-06-		9					1		1.2	4.6
	15	5	4.2	2	60	590	.4	497	.61		
										1	
В	016-06-		9					1		6.3	6.7
	27	7	0.5	2	84	610	.6	851	.28		
	016-07-		8					1		1	
В		0		2	05	780	4		4	5.5	8.5
	14	0	6.9	2	05	780	.4	747	.4		
	017-04-		8					1		2	
В	20	5	9.8	1	46	48		996	.86	.3	
	20	5	2.0	1	-0	-10		770	.00		

В	017-05-	8	8 4.1	1	02	77	.2	1 385	.76	9 .1	7
В	017-05- 29	0	8 7.9	2	30	100		1 977	.99	9 .1	4.5
В	017-06- 21	6	8 1.2	2	10	480	5.8	5 51	.18	1 3.7	3.3
В	017-07-	6	8 7.7	2	75	320	1.5	2 8968	.13	1 5.8	5.9
В	017-07- 31	3	8 7.7	2	51	470	2.1	1 629	.08	1 5.6	7.4
В	017-08-	0	8 5.7	2	60	500	1	٤ 28	.91	1 5.5	7.6

В	017-09- 17	0	8 9.3	3	80	600	1	1 258	.14	1 4.7	3			
РВ	015-04- 22		9 7.1	1	7	23	.3	1 009			.3	6 .41	3 4.992	R
РВ	015-04- 30		9 5.9	1	8	79	.4	1 272	.77	3 .5	.5	1 .49	8 .134	FL
РВ	015-05- 06		9 5.8	1	20	46	.6	1 304			4	0 .76	4 .149	B
РВ	015-05-		9 6.8	2	58	98	.2	ç 58	.18	1 3.6		0 .36	1 .965	R
РВ	015-05-20		9 9.4	2	70	21	.3	8 15	.25	1 0.4	2	0 .23	1 .256	R

	4									1		0	0	R
DD	015-05-		9					e			1			
PB	27		7.2	2	77	67	0.4	99	.39	4.1	1	.15	.819	L
	4 •									9		1	6	R
PB	015-06-		9					e		.2		.27	.933	L
12	03	3	5	2	60	10	7.3	39	.03			/	1700	-
	,													
	:									1		0	1	R
PB	015-06-		9					4		4.6	0	.32	.747	L
	10	7	2.8	2	36	51	3.6	43	.24					
	015-06-		8					5		1		0	1	R
PB	17	8	8.3	2	20	51	5.6	60	15	4.6	6	.2	.092	L
	17	0	8.5	2	39	51	5.0	00	.15					
													_	
	015-06-		9					3		1		1	7	R
PB	24	8	3.4	2	71	51	9	57		3.2	8	.38	.533	L
										1		0	1	В
PB	015-07-		8					3		6.9	0	.29		F
rD	02	2	3.8	2	59	05	7.6	22	.05	0.9	0	.29	.583	r

	015-07-		9					4		1		0	0	В
PB	08	9	2.3	2	47	24	6.4	00	.24	9.4	3	.07	.382	F
										_		_		-
	015-07-		9					4		2		0	0	В
РВ	15	9	2.3	2	48	10	7	64	.18	0.1	8	.05	.273	F
	015-07-		9					5		1		0	0	R
PB	22	1	1.5	2	47	56	6.3	52	.36	8.4	7	.05	.273	L
	:													
	015-07-		9					1		1		0	0	R
PB	29	8	2.5	2	40	12	8.2	146	.29	7.7	9	.15	.819	L
	:													
	015-08-		9					e		2		0	0	FL
PB	05	5	3.9	2	44	63	9	50	.35	1.5	9	.04	.218	
	:													
										1		0	0	R
PB	015-08-		8					ϵ		8.9		.04	.218	

РВ	015-08- 19	6	8 5.4	2	47	41	6.3	7 21	.83	2 1.2	4	0 .02	0 .109	B
РВ	015-08- 26	0	9 1.1	2	24	61	0	<i>е</i> 07	.26	2 1.1	6	0 .02	0 .109	B
PB	015-09- 02	6	8 7.5	3	08	60	4.7	7 11	.9	1 7.4	1	0 .02	0 .109	B F
РВ	015-09- 09	8	9 0.8	3	96	22	4.5	8 23	.2	1 8.5	0		0	R
РВ	015-09-	0	9 2	3	50	330	3	4 375	.13	1 6.5	9	0 .08	0 .437	B F
РВ	015-09- 23	5	8 8.2	3	97	320	0	2 598		1 4.3	7	0 .02	0 .109	B F

F
R
в
U
F
·
R
L
R
L
R
L
FL

										1		0	0	
	016-06-		9					5		1		0	0	FL
РВ	27	1	2.4	2	75	78	7.2	87	.93	8	7	.01	.055	
										1		0	0	
PB	016-07-		9					1		5.5	0	.03	.164	FL
ГD	14	6	2.9	2	25	28	5	447	.86	5.5	0	.03	.104	
PB	017-04-		9				1	1		5			0	
	20		4.5	1	63	95	.4	625	.65					
	:									1		0	4	
PB	017-05-		9					1		0.4	7	.79	.313	FL
	13	1	5.2	1	29	12	1.5	430	.54					
	:													
	017-05-		9					1		1		0	2	FL
PB	29	0		1	60	00	2		74	0.9	2	.44	.402	
	29	0	6.2	1	00	90	3	567	.74					
	017-06-		8					2		1		0	1	FL
РВ	21	6	6.5	1	41	01	7.8	26	.73	6.8	4.2	.32	.747	

РВ	017-07-	7	9 3	2	84	060	2.3	2 29	.96	1 9.5	5.9	0 .05	0 .273	FL
РВ	017-07- 31	3	9 2.4	2	03	72	2.8	7 24	.65	1 7.8	7	0 .02	0 .109	FL
РВ	017-08- 22	0	9 1.3	2	60	300	0	2 55	.54	1 6.9	8.4	0 .62	3 .385	FL
РВ	017-09-	0	9 0.5	3	20	300	0	3 01	.6	1 7.3	0.1	0 .1	0 .546	FL
R	015-04-22	2	9 0.2	1	22	48	.9	1 321			.3	5 8.61	1 .837	R
R	015-04- 30		9 8	1	02	00	.6	1 189		4 .2	.5	3 3.03	1 .454	FL

R	015-05-		9 1.8	1	10	27	.8	1 112			4	2 2.33	1 .269	B
R	015-05- 13	0	9 1.8	1	22	17	.5	1 117	.23	1 3.3		1 2.05	1 .048	FL
R	015-05- 20		9 2.3	1	17	74	.3	1 101	.19	1 4.2	2	6 .95	0 .912	FL
R	015-05- 27		9 4.1	1	18	48	.8	1 161	.28	1 5.7	1	4	0 .835	FL
R	015-06- 03	6	8 9.2	2	48	29	.6	1 069	.35	1 2.7		8 .42	0 .946	R
R	015-06-	9	7 4.2	2	51	90	.2	1 220	.33	1 7.4	0	7 .8	0 .934	R

R	015-06-		8					1		1		4	0	
	17	4	3.1		42	75	.1	175	.39	9.2		.98	.858	
R	015-06-		8					ç		1		1	1	
	24	6	6.2		88	47	.8	68	.3	6.6		0.58	.028	
	015-07-		8					٤		1		1	1	В
R		-			0.6				25		0			F
	02	5	2.1	2	96	02	.1	97	.25	9.9		0.94	.018	
	:													_
	015-07-		8					ç		2		5	0	В
R	015-07-	5		2	77	13	.3		.37		3			B F
R		5	8 0.2	2	77	13	.3	ç 72	.37	2 3.1	3	5 .14	0 .864	
R	015-07-	5		2	77	13	.3		.37		3			
	015-07-	5		2	77	13	.3		.37					F
R R	015-07- 08	5	0.2	2	77 77	13 93	.3	72	.37 .46	3.1	3 8	.14	.864	F
	015-07- 08 015-07- 15		0.2					72 ç		3.1		.14	.864 0	F
	015-07- 08 015-07- 15		0.2 8 7					72 5		3.1 2 4.5		.14 2 .9	.864 0 .76	F
	015-07- 08 015-07- 15		0.2					72 ç		3.1		.14	.864 0	F B F

R	015-07- 29	4	8 5.3	2	63	11	.7	1 146	.54	2 1.2	9	2 .45	0 .735	R
R	015-08- 05	0	8 2	2	67	70	.5	1 077	.65	2 5.2	9	1 .46	0 .671	FL
R	015-08-	3	9 1	2	45	29	.5	1 094	.43	2 2	1	1 .53	0 .686	R
R	015-08- 19	3	8 6.9	2	76	41	.4	1 097	.48	2 5.3	4	0 .96	0 .632	B
R	015-08- 26	2	8 3.9	2	61	08	ŗ	1 179	.33	2 4.1	6	4 .47	0 .731	B F
R	015-09- 02	4	8 7.5	3	71	59	2.3	1 168	.3	2 1.5	1	1 .59	0 .681	B F

R	015-09- 09	2	9 0.4	3	29	51	0.2	7 76	.47	2 2.3	0	0 .93	0 .63	B
R	015-09- 16	4	8 7	3	61	28	2.5	1 108	.2	1 8.9	9	3.2	0 .781	B F
R	015-09- 23	3	9 4.7	3	46	75	1.3	ç 00	.34	1 8.3	7	3 .44	0 .789	B
R	015-09- 30	1	8 6.2	3	25	62	.6	ç 11	.05	1 8.6	9	2 .3	0 .733	B
R	015-10- 07	1	9 1.3		41	94	0.7	ç 89	.87	1 3		5 .16	0 .869	
R	015-10-	4	9 0.7	3	57	24	1.4	1 166	.87	1 4.1	6	6 .26	0 .905	R

														в
R	015-10-		8					8		8		4	0	F
ĸ	21	5	9.5	3	37	35	1	90	.91	.9		.83	.855	г
	,													
	015-10-		9					1		6		3	0	FL
R							0							
	28	2	1.3	3	53	37	0	153	.95	.9		.98	.814	
	:													
	015-11-		9					ç		7		8	0	R
R	04	5	1.3	3	86	45	4.4	67	.7	.9		.1	.947	L
	:													
R	015-12-		9					1		3		1	1	FL
	02	0	2.4	3	62	46	2	139	.73	.2		7.96	.183	
	016-01-		8					1				9	0	FL
R	05	0	8.9	3	70	80	1	245			20	.62	.998	
	05	0	0.9	5	70	80	1	243				.02	.998	
	4													
_	016-02-		9					1		0	_	7	0	R
R	02	8	1.7	3	17	75	0.1	290	.62	.2	3	.75	.926	L

R	016-02- 23	4	9 2	1	75	51	.9	1 316	.59	0 .8	6	1 8.21	.2	B
R	016-03- 29	3	9 1.1	1	46	06	.1	1 060	.65	4 .2		1 9.81	1 .248	R
R	016-04- 28	3	9 1	1	45	72		ç 37	.75	1 0.2		5 .85	0 .892	FL
R	016-05- 27	2	9 2.3	1	56	35	.8	ç 22	.98	1 6.8	2	3 .11	0 .81	FL
R	016-06-	2	9 2.3	1	55	95	.7	1 217	.1	1 5.7	4.4	2 .05	0 .773	FL
R	016-06- 27	6	8 9.5	2	53	24	.8	1 263	.24	2 2.7	4	1 .04	0 .649	FL

R	016-07- 14		9 4	2	34	54	.4	1 697	.42	1 5	6	0 .68	0 .635	B
R	017-04-20	2	8 7.3	3	73	92	.3	1 625	.56	8 .5		1 3		FL
R	017-05-	7	8 6.3	3	97	83	0.5	1 437	.7	1 3.4	3	2 0.5	1 .28	FL
R	017-05- 29	0	9 1.3	3	30	10	ţ.	1 774	.87	1 3.9	0.4	7 .08	0 .905	FL
R	017-06- 21	3	7 4.2	2	44	52	0.1	4 58	.17	1 9.4	0.2	5 .42	0 .881	FL
R	017-07-	2	8 7.4	2	54	29	0	ç 82	.15	2 2.9	3.9	3 .55	0 .813	FL

R	017-07-		7				1	1		2	4.9	1	0	FL
ĸ	31	0	6.7	2	15	66	.88	116	.13	2.5	4.7	.37	.665	
	017-08-		9					8		2		5	0	FL
R	22	0	3.5	3	10	10	5	61	.92	0.4	5.5	.26	.878	
			0					ç		2		1	0	EI
R	017-09-		9					8		2	7.3	1	0	FL
	17	0	2	3	50	90	5	17	.84	0.6		.98	.715	
	:													
	015-05-		9					8		1				
MB	27		8.4	2	28	42	.2	45	.62	2.6	1			
	015-06-		9					1		1				
MB									•	2.2				
	03		5.7	2	38	86	.8	042	.28					
										0				
MD	016-04-		9					1		8				
MB	28		3.6	2	3	75	.6	244	.25	.2				

MB	016-05-		7					ć		1 2.7	2
	27	5	8.1	2	60	00		91	.93		
MB	016-06-		9 6.7	2	51	150	.1	1 229	.14	1 0.9	4.2
MB	016-06- 27		9 4.3	2	2	570	.4	3 167	.35	1 4	4
MB	016-07- 14	0	8 9.3	2	6	770	.9	5 652	.4	1 5	2
MB	017-04-20		9 6.5	1	14	1	.3	2 234	.78	8 .5	
MB	017-05-	1	9 2.1	1	39	1	.2	1 328	.69	9 .8	6

MB	017-05- 29	0	9 3.8	2	60	30		2 405	.03	1 3.9	0.8
MB	017-06- 21	2	8 5.6	2	22	55	1.1	2 89	.98	1 5.5	1.4
MB	017-07-	5	8 0.3	2	78	580	0.7	1 428	.21	1 6	4.6
MB	017-07- 31		9 9.3	2	48	780	3	2 746	.99	1 3.8	5.6
MB	017-08-	0	9 0.9	3	20	60	3	5 71	.85	1 6.4	6.9
MB	017-09-	0	9 0	3	00	90	5	<i>е</i> 40	.7	1 6	7.8

KR	016-05-		8					1		2.0
	19	1	9.7		03	00	0.4	414.2	.83	2.0
KR	016-08-		8					1		1.2
	05	8	8.5		57	00	5.1	414.2	.56	1.2
	1 •									
KR	016-09-		8					1		0.8
	10	6	9.9		58	00	2.1	414.2	.58	
KR	016-10-		9					1		1.4
	02	5	1.8		82	00	3.8	414.2	.77	
KR	016-11-		8					2		
i kit		1			(2)	100	5 1		80	.6
	19	1	4.4		62	100	5.1	000	.89	
	:									
	017-04-		7				1	1		7
KR	19	8	2.3	3	37	00	.5	292		.3 .4
	- /	-								

KR	017-05- 14	4	8 7.2	2	87	00	2.6	1 049		1 2.9	
KR	017-05- 30	7	8 3.3	2	21	00	.8	1 115		1 5.2	2.5
KR	017-06- 22	6	6 7.5	2	03	00	2.1	1 414	.22	2 3.4	4.2
KR	017-07- 13	7	8 5.4	2	22	00	7.6	1 414	.21	2 2.3	9
KR	017-08- 01	6	8 9.1	2	39	00	5	1 414	.29	2 5.6	9.1
KR	017-08- 23	4	6 5.6	2	15	00	2.8	۶ 89	.31	2 1.8	1.1

	017.00		8	2						2	
KR	017-09- 16	6	2	2	22	000	0.6		.77	0.8	9.2
KR	018-05-		7					1			
	10	7	8.1		69	00	.2	414.2	.31		.5
KR	018-06-		7					1			
	07	9	3.3		21	00	2.9	414.2	.34		1.0
	,										
KR	018-07-		6					1			2.0
	05	9	6.3		94	00	2.2	414.2	.46		3.8
KR	018-10-		7					1			.7
	02	7	7.3		07	100	0.5	414.2	.78		.,
KR	018-11-		8					1			9.1
	23	3	1.1		27	00	0.8	414.2	.81		

Table A3

Formatted: Left: 1.75 cm, Top: 2.5 cm, Width: 21.59 cm, Height: 27.94 cm

Fixed	rarameter	walu t Test	<u>r-</u>	1.70
Effect	Estimate	Statistic	Value	AIC
Ca	0.281	1.551	0.121	
DOC	0.536	3.285	<u>0.001</u>	
F	-0.04	-0.79	0.429	
<u>NO3</u>	0.068	3.269	<u>0.001</u>	1316.9
pH	-1.123	<u>-0.952</u>	0.341	
<u>SO4</u>	-0.295	-3.038	0.002	
Tw	0.34	1.551	0.046	
DOC	0.321	5.647	<u>0</u>	1946.3
DOC	0.149	4.954	<u>0</u>	
<u>NO3</u>	0.417	2.721	0.007	1816.7
<u>SO4</u>	-0.417	-2.667	0.008	
DOC	0.256	6.908	<u>0</u>	
<u>NO3</u>	0.12	3.335	<u>0</u>	1837.2
DOC*NO3	<u>1.1</u>	4.545	<u>0</u>	
Tw	0.548	4.574	<u>0</u>	1467.8
DOC	<u>1.135</u>	<u>3.445</u>	<u>0</u>	
Tw	<u>0.678</u>	2.215	0.027	1438.2
DOC*Tw	-0.470	0.109	0.109	
DOC	0.623	<u>6.391</u>	<u>0</u>	1429 €
<u>Tw</u>	0.24	<u>1.943</u>	<u>0.052</u>	<u>1438.6</u>

Wald t Test

P-

Table A3 Generalized linear mixed model (GLMM) results for complete field data.

Parameter

Fixed

-significant parameters at the 5% significance level are bolded

-significant parameters at the 10% significance level are italicized

-Effect connected by "*" represent an interaction term.

<u>Table A4</u> Linear correlation r^2 values and significance ($\alpha = 0.05$) between Al_i/Al_d and other water chemistry parameters

across all sites.

		Correlation	Significance
Variable	Unit	with $Al_i/Al_d \left(R^2 \right)$	(p-value)
Ald	μg	0.007	0.247
	L ⁻¹		
Ca	μg	0.001	0.676
	L-1		
DOC	mg	0.007	0.247
	L ⁻¹		
pH	unit	0.077	0.000
Water	°C	0.114	0.000
Temp.			
\mathbf{F}^{+}	μg	0.003	0.537
	L-1		
NO ₃ -	μg	0.002	0.624
	L-1		
SO4 ²⁻	μg	0.000	0.952
	L-1		

Table A4<u>A5</u> Kendal-tau correlation and significance ($\alpha = 0.05$) between Al_i and other water chemistry parameters

Formatted: Font: Bold

for each study site. One Al_i outlier removed for MR calculations (value: 2 μg L^-l, date: 30 April 2015).

						Correlation	Significance
Site		Variable		Unit	Slope	(p	-value)
				μg			
		Ald	L ⁻¹			0.29	0.044
				μg			
		Ca	L ⁻¹			0.22	0.143
				mg			
		DOC	L ⁻¹			0.36	0.013
ALD		рН		unit		0.19	0.190
		Water					
	Temp.			°C		0.32	0.093
		F+		μg		0.182	0.533
			L ⁻¹			0.182	0.555
		NO ₃ -		μg		0.600	0.142
			L ⁻¹			0.000	0.142
		SO42-		μg		-0.037	0.876
			L ⁻¹			-0.037	0.870
				μg			
		Ald	L ⁻¹			0.03	0.852
				μg			
		Ca	L ⁻¹			0.17	0.238
				mg			
		DOC	L ⁻¹			0.08	0.575
		рН		unit		0.07	0.622
BLB		Water					
	Temp.			°C		0.35	0.099
		F ⁺		μg		0.020	0.001
			L ⁻¹			-0.036	0.901
		NO ₃ -		μg		0.100	0 709
			L ⁻¹			-0.109	0.708
		SO42-		μg		0.184	0.469
			L ⁻¹			-0.184	0.468
СС				μg			

	-			μg		
		Ca	L ⁻¹		-0.22	0.451
				mg		
		DOC	L ⁻¹		0.25	0.383
		рН		unit	-0.04	0.901
		Water				
	Temp.			°C	0.67	0.174
		F+		μg		
			L ⁻¹			
		NO₃ ⁻	1	μg		
		60 J	L ⁻¹			
		SO42-	L ⁻¹	μg		
			L '			
		Ald	L ⁻¹	μg	0.800	0.050
		Alu		μg	0.000	0.050
		Ca	L ⁻¹	PЪ	0.200	0.624
		64	-	mg	0.200	0.02.1
		DOC	L ⁻¹	0	0.800	0.050
		pН		unit	-0.200	0.624
КВ		Water				
	Temp.			°C	0.600	0.142
		F+		μg	0.800	0.050
			L ⁻¹		0.800	0.050
		NO ₃ -		μg		
			L ⁻¹			
		SO42-		μg	-0.400	0.327
			L ⁻¹			
				μg		
		Ald	L ⁻¹		0.37	0.047
		6-	ı –1	μg	0.24	0.225
		Ca	L ⁻¹		0.24	0.226
LR		DOC	L ⁻¹	mg	0.25	0.189
		рН	L	unit	0.19	0.189
		рп Water		unit	0.15	0.315
	Temp.	water		°C	0.02	0.937
	- -			C	0.02	0.557

		F+		μg		
			L ⁻¹			
		NO ₃ -		μg	-0.333	0.348
			L ⁻¹		-0.333	0.348
		SO42-		μg	0.105	0.801
			L ⁻¹		0.105	0.801
				μg		
		Ald	L ⁻¹		0.739	0.001
				μg		
		Ca	L ⁻¹		-0.062	0.783
				mg		
		DOC	L ⁻¹		0.400	0.073
		рН		unit	-0.279	0.214
MB		Water				
	Temp.			°C	0.125	0.580
		F+		μg	-0.028	0.917
			L ⁻¹		-0.028	0.917
		NO ₃ -		μg	-0.182	0.533
			L ⁻¹		-0.182	0.533
		SO42-		μg	-0.463	0.050
			L ⁻¹		-0.465	0.030
				μg		
		Ald	L ⁻¹		0.550	0.000
				μg		
		Ca	L ⁻¹		0.580	0.000
				mg		
		DOC	L ⁻¹		0.574	0.000
		рН		unit	-0.169	0.146
MPB		Water				
	Temp.			°C	0.280	0.016
				mm		
		Runoff	day ⁻¹		-0.232	0.042
		F+		μg	0.220	0.042
			L ⁻¹		0.239	0.042
		NO ₃ -		μg	0.100	0.100
			L ⁻¹		0.190	0.160
	-				1	

		504 ²⁻	L ⁻¹	μg	-0.206	0.067
				μg		<u> </u>
		Ald	L ⁻¹		0.459	0.000
				μg		
		Ca	L ⁻¹		0.317	0.002
				mg		
		DOC	L ⁻¹		0.382	0.000
		pН		unit	0.097	0.362
		Water				
MR	Temp.			°C	0.285	0.007
	·			mm		
		RunOff	day ⁻¹		-0.108	0.291
		F+	,	μg		
			L ⁻¹	РÐ	0.139	0.188
		NO3 ⁻	-	μg		
			L ⁻¹	РÐ	0.086	0.450
		SO4 ²⁻	-	μg		
		504	L ⁻¹	μр	-0.127	0.215
			-	μg		
		Ald	L ⁻¹	μБ	0.46	0.019
		Alu		μg	0.40	0.015
		Ca	L ⁻¹	μg	0.01	0.960
		Ca	L	ma	0.01	0.900
		DOC	L ⁻¹	mg	0.21	0.295
			L			
DN 4D		рH		unit	-0.23	0.232
PMB	T	Water		**	0.20	0.005
	Temp.	_		°C	0.36	0.065
		F+		μg	-0.063	0.782
			L ⁻¹			
		NO3 ⁻		μg	0.276	0.444
			L ⁻¹			
		SO4 ²⁻		μg	-0.293	0.135
			L ⁻¹			
UKR				μg		
		Ald	L ⁻¹		0.34	0.071

				μg		
		Ca	L ⁻¹	10	0.38	0.053
				mg		
		DOC	L ⁻¹		0.32	0.086
		pН		unit	0.35	0.063
		Water				
١	Temp.			°C	0.14	0.621
		F+		μg		
			L ⁻¹			
		NO ₃ -		μg		
			L ⁻¹			
		SO42-		μg	-0.600	0 1/2
			L ⁻¹		0.000	0.172
					-0.600	0.142

<u>Fixed</u> Effect	<u>Parameter</u> <u>Estimate</u>	<u>Wald t Test</u> <u>Statistic</u>	<u>P-</u> <u>Value</u>	AIC
Ald	0.264	6.17	<u>0</u>	
Ca	-0.007	-0.183	0.855	
DOC	0.143	3.727	<u>0</u>	17015
<u>F</u>	-0.020	-0.207	0.836	<u>1736.5</u>
<u>NO3</u>	0.146	0.991	0.322	
<u>SO4</u>	-0.133	-1.129	0.259	
ALd	0.281	6.921	<u>0</u>	10(7.2
DOC	0.078	1.877	<u>0.061</u>	<u>1867.3</u>
ALd	0.313	7.393	<u>0</u>	
DOC	0.158	3.152	0.002	1862.8
ALd*DOC	-0.076	-2.490	0.013	
ALd	0.332	<u>11.49</u>	<u>0</u>	1868.3
DOC	0.229	<u>9.445</u>	<u>0</u>	1909.9
DOC	0.247	9.744	<u>0</u>	
NO3	0.329	-2.399	0.016	1768.4
<u>SO4</u>	-0.316	2.515	0.012	
DOC	0.287	9.453	<u>0</u>	
<u>NO3</u>	0.063	1.733	<u>0.083</u>	<u>1797.3</u>
DOC*NO3	0.41	1.709	0.088	

 Table A5A6 Generalized linear mixed model (GLMM) results for seasonal field data.

Formatted: Font: Bold

-significant parameters at the 5% significance level are bolded

-significant parameters at the 10% significance level are italicized

-Effect connected by "*" represent an interaction term.

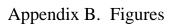
		Season	Relationship	\mathbb{R}^2
	Da	tes		
MR	S1	April-	Al _i -pH	0.78131
	Ma	ау		
MR	S2	June-	Al _i -pH	0.27845
	Au	g		
MR	S 3	Sept-	Al _i -pH	0.04551
	Fel	b		
MR	S 1	April-	Al _i -DOC	0.48879
	Ma	ау		
MR	S2	June-	Al _i -DOC	0.51343
	Au	g		
MR	S3	Sept-	Al _i -DOC	0.0014
	Fel	b		
MR	S 1	April-	Al_i - T_w	0.42004
	Ma	ау		
MR	S2	June-	Al_i - T_w	0.03442
	Au	g		

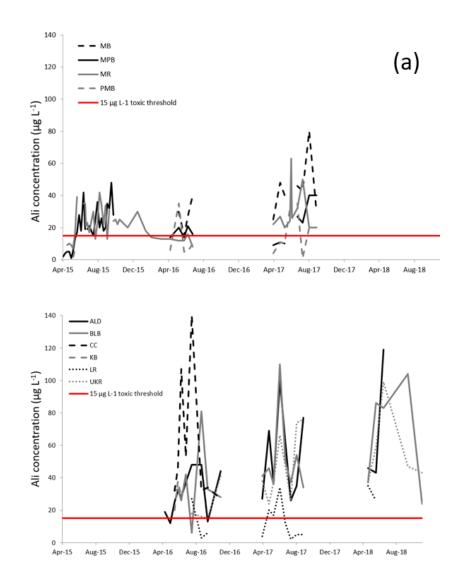
<u>Table A7</u> R² values for scatterplots of water chemistry relationships shown in Figure $\underline{34}$

MR	S 3		Sept-	Al_i - T_w	0.08795
		Feb			
MR	S 1		April-	$Al_i - Al_d$	0.66782
		May			
MR	S2		June-	$Al_i - Al_d$	0.52313
		Aug			
MR	S 3		Sept-	$Al_i - Al_d$	0.0141
		Feb			
MR	S 1		April-	Al _i -Ca	0.50399
		May			
MR	S2		June-	Al _i -Ca	0.37339
		Aug			
MR	S 3		Sept-	Al _i -Ca	0.00009
		Feb			
MR	S 1		April-	Al _i -Ca/Al _d	0.41377
		May			
MR	S2		June-	Al _i -Ca/Al _d	0.32486
		Aug			
MR	S 3		Sept-	Al _i -Ca/Al _d	0.0382
		Feb			
MR	S1		April-	Al _i -Q	0.0374
		May			
MR	S2		June-	Al _i -Q	0.0703
		Aug			
MR	S3		Sept-	Al _i -Q	0.0063
		Feb			

MR	S 1		April-	Al _d -Ca	0.55308
		May			
MR	S2		June-	Al _d -Ca	0.63892
		Aug			
MR	S 3		Sept-	Al _d -Ca	0.5074
		Feb			
MPB	S1		April-	Al _i -pH	0.00447
		June			
MPB	S2		July-	Al _i -pH	0.21629
		Aug			
MPB	S 3		Sept-	Al _i -pH	0.56
		Oct			
MPB	S1		April-	Al _i -DOC	0.70785
	60	June	x 1		0.42026
MPB	S2	•	July-	Al _i -DOC	0.43036
MPB	S 3	Aug	Sept-	Al _i -DOC	0.72722
MI D	33	Oct	Sept-	Al _i -DOC	0.72722
MPB	S 1	001	April-	Al _i -T _w	0.72067
ini b	51	June	ripin	THI IW	0.72007
MPB	S 2	build	July-	Al _i -T _w	0.2356
		Aug	2		
MPB	S 3	U	Sept-	Al_i - T_w	0.4353
		Oct	*		
MPB	S 1		April-	Al _i -Al _d	0.67571
		June			

MPB	S 2		July-	$Al_i - Al_d$	0.4225
		Aug			
MPB	S 3		Sept-	Al _i -Al _d	0.65683
		Oct			
MPB	S 1		April-	Al _i -Ca	0.59175
		June			
MPB	S2		July-	Al _i -Ca	0.4214
		Aug			
MPB	S 3		Sept-	Al _i -Ca	0.49111
		Oct	-		
MPB	S 1		April-	Al _i -Ca/Al _d	0.51142
		June	*		
MPB	S2		July-	Al _i -Ca/Al _d	0.03067
		Aug		i i i u	
MPB	S 3	ing	Sept-	Al _i -Ca/Al _d	0.02961
	50	Oct	Sept		0.02901
MPB	S 1	001	April-	Al _i -Q	0.1734
WI D	51	June	Арш-	Λι _i -γ	0.1754
MPB	S2	June	July-	Al _i -Q	0.0039
MPB	52		July-	Al _i -Q	0.0039
	60	Aug	a .		0.0004
MPB	S 3		Sept-	Al _i -Q	0.0004
		Oct			
MPB	S1		April-	Al _d -Ca	0.96289
		June			
MPB	S2		July-	Al _d -Ca	0.7685
		Aug			


MPB	S 3	Sept-	Al _d -Ca	0.72173


Oct

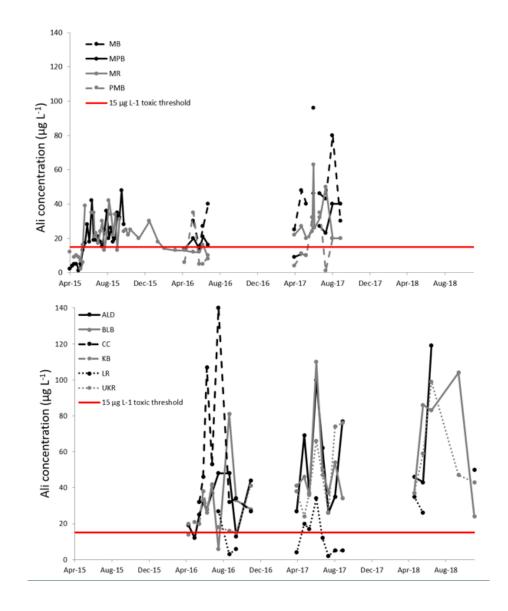

Chemistry		Value		
Parameter	Units	HERC	Maxxam	AGAT
рН	μg L ⁻¹	n/a	n/a	n/a
DOC	mg L ⁻¹	n/a	0.50	n/a
TOC	mg L ⁻¹	n/a	n/a	0.5
\mathbf{SO}_4	$\mu g L^{-1}$	10.00	n/a	2000
Al _d	$\mu g L^{-1}$	n/a	5.00	5
Al _t	$\mu g L^{-1}$	n/a	5.00	5
Al _o	$\mu g L^{-1}$	n/a	5.00	5
Ca _t			100 μg L-1	0.1 mg
Cdt	$\mu g L^{-1}$	n/a	100 μg L L ⁻¹	
Ca _d	$\mu g L^{-1}$	n/a	100	100

Table A6A8 Laboratory detection limit comparison.

Formatted: Font: Bold

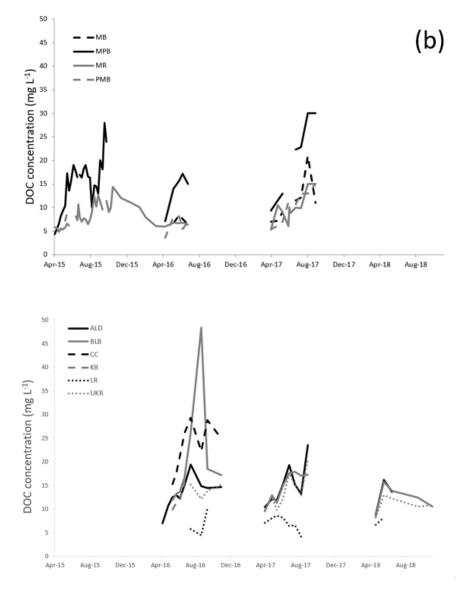
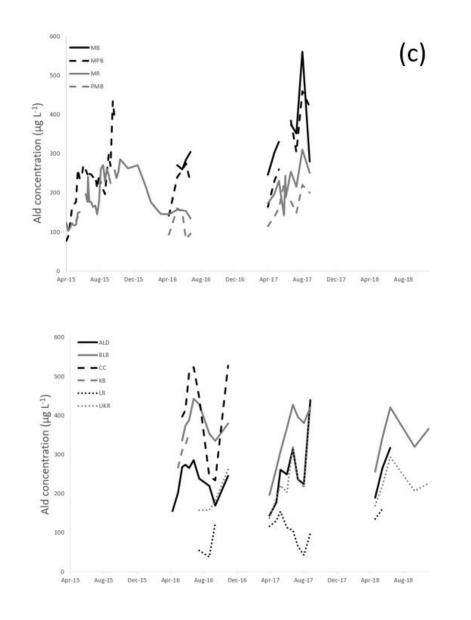
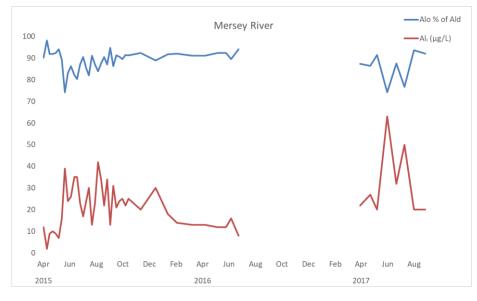


Figure B1 Timeseries of Al_i concentration between 22 April 2015 and 23 November 2018.

Figure B2 Time series of DOC concentration between 22 April 2015 and 23 November 2018

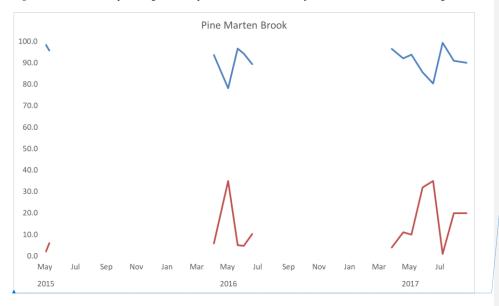
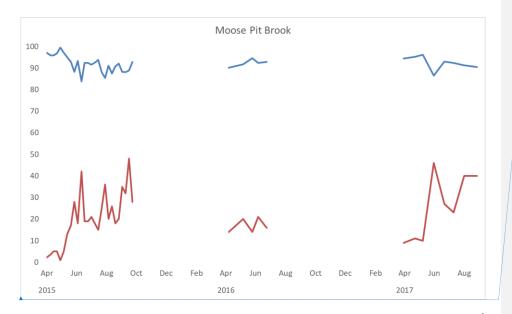


Figure B3 Time series of Al₄ concentration between 22 April 2015 and 23 November 2018.



 $\underline{Figure \ B2} \ Time \ series \ of \ percentage \ Al_d \ comprised \ of \ Al_o \ for \ MR, \ compared \ to \ absolute \ value \ of \ Al_i \ in \ ug \ L^{-1}.$

Figure $\underline{B5B3}$ Time series of percentage Al_d comprised of Al_o for PMB, compared to absolute value of Al_i in ug L⁻¹.

108

Formatted: English (United States)

Formatted: English (United States)

 $Figure \ \underline{\textbf{B6}\underline{B4}} Time \ series \ of \ percentage \ Al_d \ comprised \ of \ Al_o \ for \ MPB, \ compared \ to \ absolute \ value \ of \ Al_i \ in \ ug \ L^{-1}.$

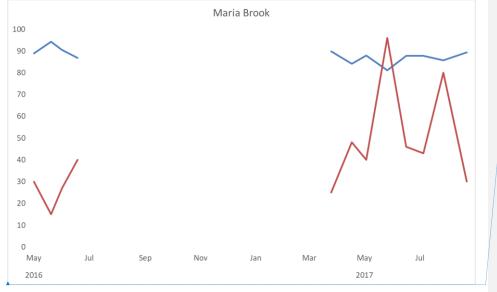
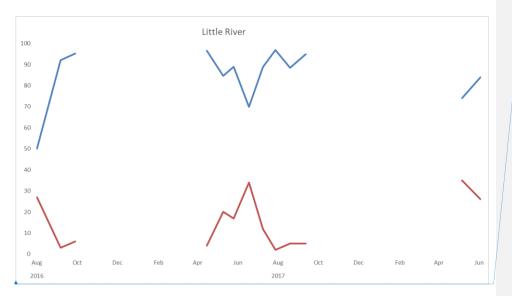
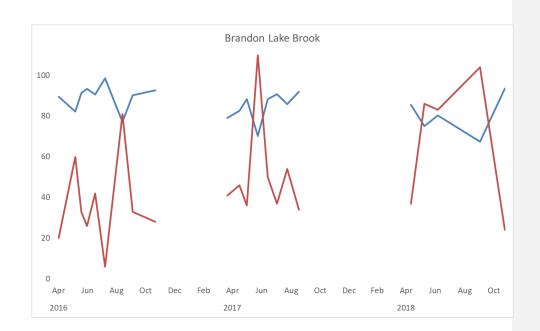


Figure $\frac{\mathbf{B7}B5}{\mathbf{B5}}$ Time series of percentage Al_d comprised of Al_o for MB, compared to absolute value of Al_i in ug L⁻¹.

Formatted: English (United States)



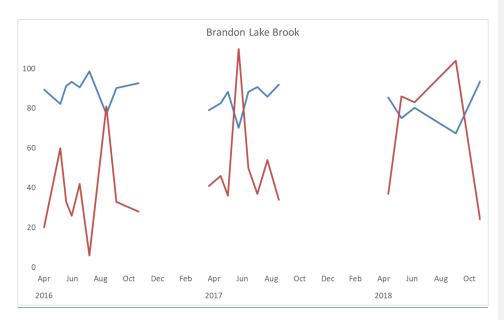
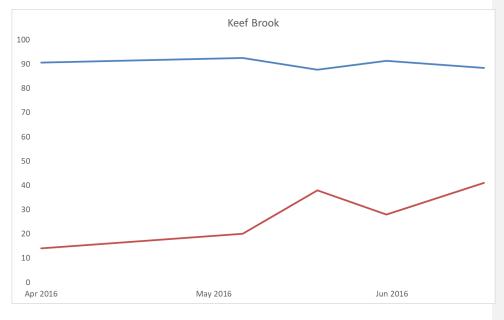

Figure $\underline{B8B6}$ Time series of percentage Al_d comprised of Al_o for LR, compared to absolute value of Al_i in ug L^{-1} .

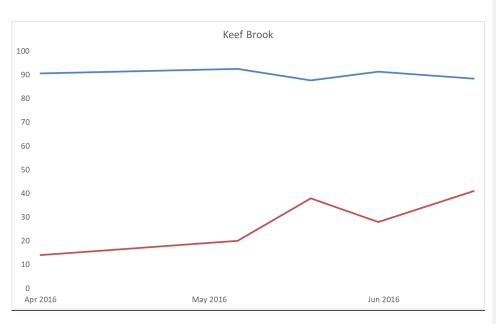
Formatted: English (United States)

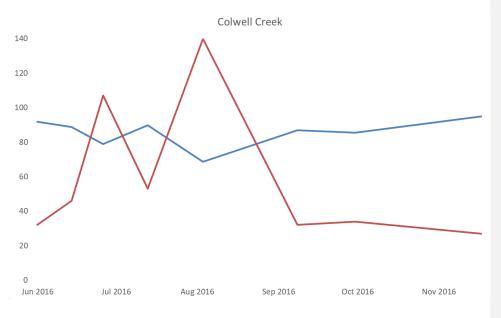
Formatted: English (United States)

110

 $Figure \ \underline{\textbf{B9B7}} Time \ series \ of \ percentage \ Al_d \ comprised \ of \ Al_o \ for \ UKR, \ compared \ to \ absolute \ value \ of \ Al_i \ in \ ug \ L^{-1}.$


Figure $\frac{B10}{B8}$ Time series of percentage Al_d comprised of Al_o for BLB, compared to absolute value of Al_i in ug L⁻¹.



 $Figure \ \underline{\texttt{B11}\underline{B9}} \ Time \ series \ of \ percentage \ Al_d \ comprised \ of \ Al_o \ for \ ALD, \ compared \ to \ absolute \ value \ of \ Al_i \ in \ ug \ L^{-1}.$

 $Figure \ \underline{\texttt{B12}B10} \ Time \ series \ of \ percentage \ Al_d \ comprised \ of \ Al_o \ for \ KB, \ compared \ to \ absolute \ value \ of \ Al_i \ in \ ug \ L^{-1}.$

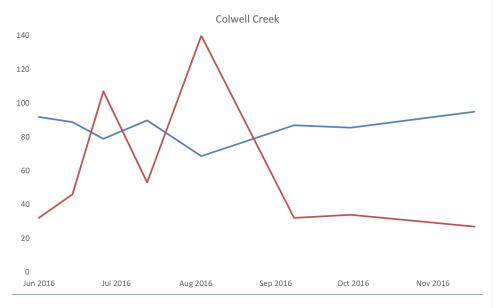
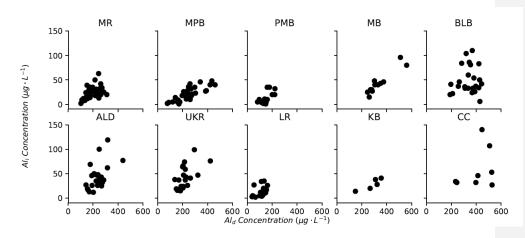



Figure B13B11 Time series of percentage Al_d comprised of Al_o for CC, compared to absolute value of Al_i in ug L¹

Formatted: Superscript

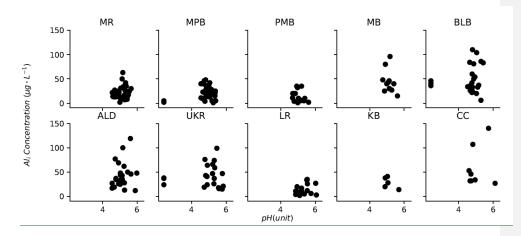
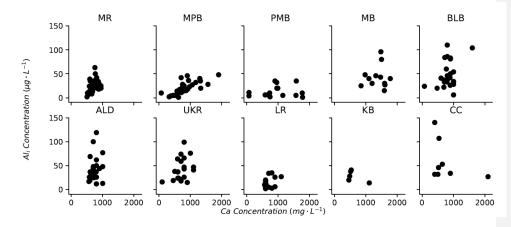
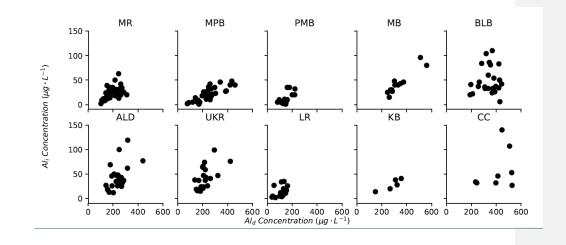
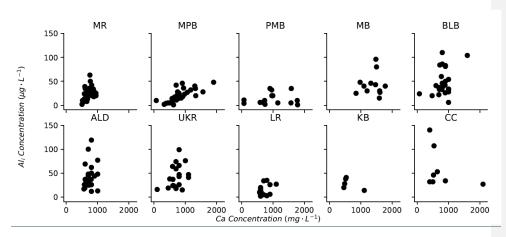
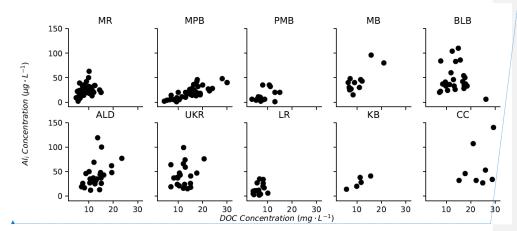





Figure <u>B14B12</u> Least-squares linear regression of Al_i versus <u>Al_apH</u> for each study site. One Al_i outlier removed for MR (value: 2 µg L-1, date: 30 April 2015).



 $\underline{Figure \ BX \ Least-squares \ linear \ regression \ of \ Al_i \ versus \ Al_d \ for \ each \ study \ site. \ One \ Al_i \ outlier \ removed \ for \ MR$

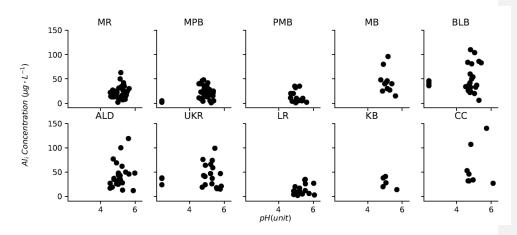
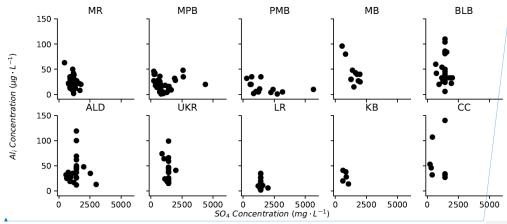
<u>Figure BX</u> Least-squares linear regression of Al_i versus Ca for each study site. One Al_i outlier removed for MR (value: $2 \ \mu g \ L-1$, date: $30 \ April \ 2015$). One Ca outlier for KB removed (value: $1110 \ \mu g \ L-1$, date: $29 \ April \ 2016$).

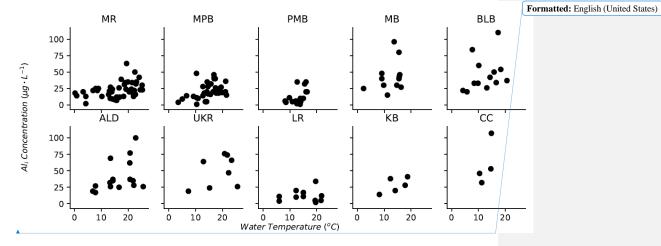
Formatted: English (United States)

 $Figure \ \underline{B16\underline{BX}} \ Least-squares \ linear \ regression \ of \ Al_i \ versus \ DOC \ \underline{for \ each \ study \ site.} \ One \ \underline{Al_i} \ outlier \ removed \ for$

MR (value: 2 µg L-1, date: 30 April 2015).

(value: 2 µg L-1, date: 30 April 2015).


Figure B17 Least squares linear regression of Al_i versus pH for each study site. One Al_i outlier removed for MR

(value: 2 µg L-1, date: 30 April 2015).

Formatted: English (United States)

Figure <u>B18BX</u> Least-squares linear regression of Al_i versus SO_4^{2} for each study site. One Al_i outlier removed for MR (value: 2 µg L-1, date: 30 April 2015).

 $Figure \ {\hbox{\scriptsize B19BX}} Least-squares \ linear \ regression \ of \ Al_i \ versus \ T_w \ for \ each \ study \ site. \ One \ Al_i \ outlier \ removed \ for \ MR$

(value: 2 µg L-1, date: 30 April 2015).

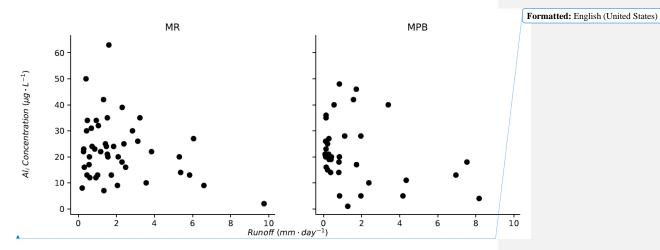
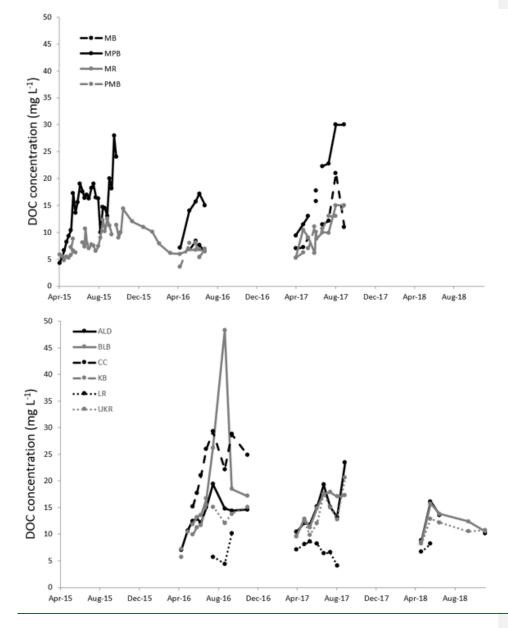



Figure <u>B20BX</u> Least-squares linear regression of Al_i versus runoff for each study site. One Al_i outlier removed for MR (value: 2 µg L-1, date: 30 April 2015). One runoff outlier for MR removed (value: 17.294 mm day-1, date: 22 April 2015), and one runoff outlier for MPB removed (value: 34.994 mm day-1, date: 22 April 2015).

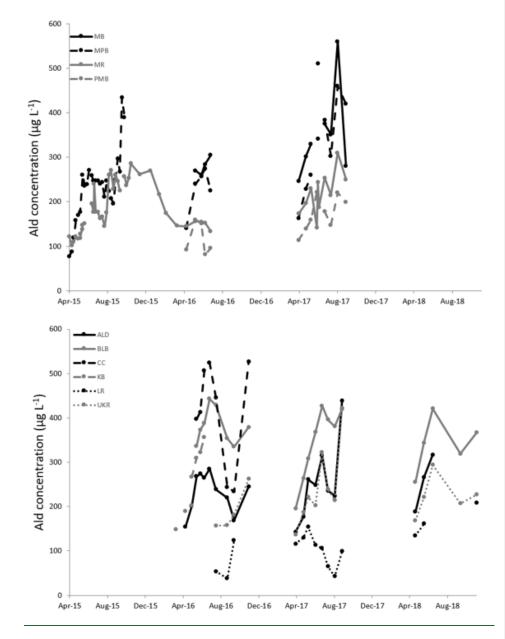


Figure BX Time series of Ald concentration between 22 April 2015 and 23 November 2018.

Formatted: Font: 10 pt Formatted: Figure/Table

Appendix C. Scripts

C.1. Linear regression

"""Linear regression calculation script

:author: Lobke Rotteveel

:email: lobke.rotteveel@dal.ca

.....

Import modules

from scipy import stats

import pandas as pd

import csv

Import data

df = pd.read_csv('Input.csv')

Run Mann Kendall test on site-variable groups and create table of results

results = []

results.append(['site_id', 'variable', 'tau', 'pvalue', 'slope', 'std error of slope'])

grouped = df.groupby('Site')

for name, group in grouped:

chem_groups = [group['Ald'], group['Ca'], group['DOC_TOC'], group['CalibpH'],

group['Tw'], group['RunOff']]

```
Ali = group['Ali']
```

```
for i in chem_groups:
```

```
pair = {'i':i,'Ali':Ali}
```

pair = pd.DataFrame(pair)

pair = pair.dropna()

if not pair.empty:

ken_tau = stats.kendalltau(pair['i'], pair['Ali'])

slope = stats.linregress(pair['i'], pair['Ali'])

result_row = [name, i.name, ken_tau.correlation, ken_tau.pvalue, slope.slope,

slope.stderr]

```
results.append(result_row)
```

```
with open('LinearRegression_Out.csv', 'w') as f:
```

writer = csv.writer(f)

writer.writerows(results)

C.2. Laboratory comparison

```
"""Laboratory result comparison script
```

:author: Lobke Rotteveel

:email: lobke.rotteveel@dal.ca

.....

Import modules

import pandas as pd

import numpy as np

import scipy as sp

from scipy import stats

import warnings

warnings.simplefilter('ignore', np.RankWarning)

Importing data

df = pd.read_csv('SampDat_CompareInput_LimSur_171105_LR.csv', ',', header=0)

#print (df.head(n=5))

Run comparisson

with open('SampData_Compare_LimSur.txt', 'w') as f:

 $x = df.filter(regex='B_.*').columns$

 $y = df.filter(regex='A_.*').columns$

for x_col, y_col in zip(x,y):

Sig = sp.stats.wilcoxon(df[x_col],df[y_col])

f.write('x: { }, y: { }, sig:{ }\n'.format(x_col, y_col, Sig))

Script for GLMM model

#setwd

setwd("C:\\Users\\50nlo\\Documents\\Research\\MS_AliPatterns\\Dat

a")

#load packages

#require(lme4)

require(car)

require(MASS)

#Read in Data

ALiDatDF<-as.data.frame(read.csv("GLMM_Input_V2.csv",header=T))

ALiDat<-ALiDatDF\$Ali_ugL

#Exploratory data analysis of ALi data hist(ALiDat) #data are skewed

#Test goodness-of-fit of lognormal data

#Normal QQ plot for comparison
gqnorm(ALiDat)
gqline(ALiDat)

qqp(ALiDat, "norm")

#lognormal QQ plot

fit_params <- fitdistr(ALiDat,"lognormal")</pre>

quants <-seq(0,1,length=length(ALiDat))[2:138]</pre>

fit quants <- qlnorm(quants,fit params\$estimate['meanlog'],</pre>

fit params\$estimate['sdlog'])

data_quants <- quantile(ALiDat,quants)</pre>

plot(fit_quants, data_quants, xlab="Theoretical Quantiles",

ylab="Sample Quantiles")

title(main = "Q-Q plot of lognormal fit against data")

abline(0,1)

qqp(ALiDat, "lnorm")

#Gamma QQ plot

gamma <- fitdistr(ALiDat, "gamma")

qqp(ALiDat, "gamma", shape = gamma\$estimate[[1]], rate =

gamma\$estimate[[2]])

#Exponential QQ plot exp <- fitdistr(ALiDat, "exponential") gqp(ALiDat, "exp", rate = gamma\$estimate[[1]])

Site<-ALiDatDF\$Site

Season<-ALiDatDF\$Season

ALd<-scale(ALiDatDF\$Ald_ugL)

Ca<-scale(ALiDatDF\$Ca_ugL)

DOC<-scale(ALiDatDF\$DOC mgL)

pH<-scale(ALiDatDF\$Calib pH)</pre>

SO4<-scale(ALiDatDF\$SO4 ugL)

Tw<-scale(ALiDatDF\$Tw C)

F<-scale(ALiDatDF\$F_ugL)

NO3<-scale(ALiDatDF\$NO3_ugL)

Dis<-scale(ALiDatDF\$Disch_m3s)</pre>

#ALd and Season cause a singular fit (overfit)

#This means that the effect structure is too complex to be

supported by the data

#ALd is likely due to it being a function of ALi

#Season is due to limited seasonal data at each site.

Models <- glmer(ALiDat ~ DOC + Tw + Ca+ pH + SO4 + F + NO3 + (1 |

Site), family = gaussian(link = "log"),

control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)))

summary(Models)

Models <- glmer(ALiDat ~ DOC + SO4 + NO3 + (1 | Site), family =
gaussian(link = "log"),</pre>

control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)))

summary(Models)

Models <- glmer(ALiDat ~ DOC + NO3 + DOC*NO3+(1 | Site), family =
gaussian(link = "log"),</pre>

control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)))

summary(Models)

Models <- glmer(ALiDat ~ DOC +(1 | Site), family = gaussian(link
= "log"),</pre>

control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)))
summary(Models)

Models <- glmer(ALiDat ~ Tw +(1 | Site), family = gaussian(link =
"log"))</pre>

summary(Models)

Models <- glmer(ALiDat ~ DOC + Tw +(1 | Site), family =</pre>

gaussian(link = "log"))

summary(Models)

Models <- glmer(ALiDat ~ DOC + Tw + DOC*Tw + (1 | Site), family =
gaussian(link = "log"))</pre>

summary(Models)

#pH and Tw causes a singular fit (overfit)

Models <- glmer(ALiDat ~ ALd + DOC + Ca + SO4 + F + NO3 + (1 |

Season), family = gaussian(link = "log"))

summary(Models)

Models <- glmer(ALiDat ~ ALd + DOC + (1 | Season), family =
gaussian(link = "log"))</pre>

summary(Models)

Models <- glmer(ALiDat ~ ALd + DOC + ALd*DOC + (1 | Season),
family = gaussian(link = "log"))</pre>

summary(Models)

Models <- glmer(ALiDat ~ ALd + (1 | Season), family =
gaussian(link = "log"))</pre>

summary(Models)

Models <- glmer(ALiDat ~ DOC + (1 | Season), family =

gaussian(link = "log"))

summary(Models)

Models <- glmer(ALiDat ~ DOC + SO4 + NO3 + (1 | Season), family =
gaussian(link = "log"))</pre>

summary(Models)

Models <- glmer(ALiDat ~ DOC + NO3 + DOC*NO3+(1 | Season), family

= gaussian(link = "log"))

summary(Models)

#95% confidence intervals

fm1W <- confint.merMod(Models, method="Wald")</pre>

#Check for singularity

tt <- getME(Models,"theta")</pre>

ll <- getME(Models,"lower")</pre>

min(tt[ll==0])

#Use penalized quazilikelihood to estimate non-normal parameters

PQL <- glmmPQL(ALiDat ~ ALd + DOC + pH + SO4+ Tw + NO3 + Ca, ~1 |
Site, family = gaussian(link = "log"), verbose = FALSE)</pre>

#Fluoride is confounded, remove from model.

summary(PQL)

 $\underline{\texttt{#At}}$ the 5% sig. level, pH, SO4, NO3, and Ca are not significant effects

#Use penalized quazilikelihood to estimate non-normal parameters
PQL <- glmmPQL(ALiDat ~ ALd + Tw + DOC + ALd*pH + Tw*pH, ~1 |
Site, family = gaussian(link = "log"), verbose = FALSE)</pre>

summary(PQL)

resid<-as.matrix(PQL\$residuals[,1])
#Explore the model residuals
acf(resid) #good</pre>

Appendix D. Additional methods

D.1 Laboratory analysis methods	Formatted: Font: Bold
Samples were analyzed at Maxxam Analytics Laboratory, Health and Environmental	
Research Centre (HERC), and AGAT Laboratories. Samples from MR, MPB, PMB, MB, KB,	
and CC were analyzed at Maxxam and HERC labs only. Samples from BLB, ALD, UKR, and	
LR were analyzed at all three labs.	
D1.1 Maxxam Laboratory	Formatted: Font: Bold
The protocol at Maxxam Laboratory in Bedford, NS, adheres to methods approved by the	
United States Environmental Protection Agency (US EPA) for identifying trace elements in	
water (US EPA, 1994) and analyzing samples using Inductively Coupled Plasma-Mass	
Spectrometry (ICP-MS) (US EPA, 1998). Cations and anions were analyzed using ICP-MS,	
while a Continuous Flow Analyzer was used to measure DOC. pH was measured using a	
standard hydrogen electrode and reference electrode.	
D1.2 HERC Laboratory	Formatted: Font: Bold
SO4 ²⁻ samples were analyzed at HERC Laboratory in Halifax, NS, due to lower detection	
limits at the Maxxam laboratory. Once delivered to the laboratory, samples were filtered using a	
0.45 µm glass fiber filter and analyzed using an Ion-Chromatography System (ICS) 5000 Dionex	
detector.	
D1.3 AGAT Laboratory	Formatted: Font: Bold
Samples collected in the West River, Sheet Harbour area (UKR, ALD, LR, BLB, KB,	

CC) were analyzed at the AGAT laboratory in Dartmouth, NS. This laboratory holds the

9001:2015 and 17025:2005 International Organization for Standardization accreditations. Cation samples were analyzed using ICP-MS, laboratory pH was measured using a standard hydrogen electrode and reference electrode, and SO₄²⁻ and anions were measured using ICS. Samples analyzed at AGAT were analyzed for total organic carbon (TOC) as opposed to DOC and were analyzed using Infrared Combustion (IR Combustion).

D.2 Data quality assurance and control

Blanks were used to assess contamination during the Al_o extraction procedure. Blanks were collected on 10% of samples, taken on arbitrary sampling events. Triple deionized water was collected before passing through filter and column ("Blank Before"), and after ("Blank After"). The triple-deionized water had traces of chemicals below the laboratory detection limits, providing "Not Detectable" results for the Blank Before sample. If chemicals were detected in the Blank After sample, this would have indicated leaching of chemicals from the column.

Duplicates were collected and analyzed for 10% of the samples; on arbitrarily selected sampling events, Al_o and Al_{filtered} or Al_{unfiltered}, were analyzed twice, independently, by Maxxam laboratory. All laboratories also conducted additional duplicate, blank, reference material, and matrix spike testing, in addition to instrument calibration in adherence to industry standards for quality control and assurance.

Spiked blank samples were conducted using ICP AI standard, 1000 ug/mL, HNO₃ (SCP Science). Three types of measurements were taken. The 'total' measurement was an unaltered sample of the diluted solution created above. The 'dissolved' measurement was a sample of the above solution passed through a 0.45um PES filter. The 'organic' measurement as a sample of the above solution passed through a 0.45um PES filter and a cation exchange column. Formatted: Font: Bold

The spiked column blanks show that the columns are performing well; the cation exchange column removed virtually all of the Al in the solution (detection limit = 4 ug/L). Additional blanks were conducted in the Dalhousie hydrology lab that was used to prepare the sampling equipment before field collection. The blanks showed no contamination.

To verify that sample analysis results from the Maxxam/HERC laboratory combination were comparable to AGAT, three sets of duplicate samples were collected for ALD, BLB, UKR, and LR (19 April 2017, 14 May 2017, and 30 May 2017) and analyzed by both laboratories. Laboratory results were compared using Wilcoxon Rank Sum statistical test in Python 3.6.5 using the SciPy Stats module (version 0.19) (Appendix C.2). Results indicated a significant difference in pH values between laboratories (T = 1, p = 0.04), therefore, statistical analysis on pH data was conducted on the calibrated YSI Pro Plus sonde field data. Alo, Alfiltered, and Alunfiltered results were found to be comparable between laboratories (T = 8.5, p = 0.674; T = 5.0, p = 0.249; and T = 8.0, p = 0.600, respectively). After adjusting for detection limits (Table A6), Ca results were also found to be comparable between laboratories (T = 4.0, p = 0.173). However, due to the large difference in SO_4^{2-} detection limits between HERC and AGAT (10 µg L⁻¹ and 2 mg L^{-1} , respectively), results for SO₄²⁻ are not comparable between laboratories. Lastly, organic carbon analyzed at Maxxam was analyzed for DOC, while AGAT analyzed for TOC, therefore these results cannot be compared. For dates where duplicate data is present, AGAT data was used to maintain data source consistency, apart from SO_4^{2-} data, for which HERC data was used due to superior detection limits. Analysis for BLB and ALD transitioned from Maxxam to AGAT 19 April 2017 and consequently DOC is approximated as TOC for these two sites after this date.

The YSI Pro Plus sonde was calibrated within 36 hours of in-stream data collection.

D.3 Toxic thresholds of Ali

Identified toxic thresholds of Al_i for *Salmo salar* vary in the literature. Based on toxicological and geochemical studies on Al and *Salmo salar*, the EIFAC suggested an Al_i toxic threshold of 15 ug L⁻¹ for Atlantic salmon in freshwaters for pH between 5.0 and 6.0, and 30 ug L⁻¹ in pH <5 (Howells et al., 1990). The lower threshold at higher pH is to account for the increased fraction in the Al(OH)₂⁺ species. At pH > 6, the toxic effects of Al_i to *Salmo salar* are considered negligible, and toxic effects are dominated by other dissolved and precipitated forms (Gensemer et al., 2018), due to the decreased solubility of Al at pH > 6 (Dennis and Clair 2012). However, in colder rivers, the pH-toxicity threshold may be higher, closer to pH 6.5 (Lydersen, 1990). For the purposes of this study, we use the toxic threshold of Al_i at 15 ug L⁻¹, as the majority of our pH observations were greater than or equal to 5.0 (Table A2).

D.4 Calibration of pH measurements

In situ pH measurements were taken using a YSI Pro Plus sonde and confirmed with a YSI Ecosense pH Pen. It was found that measurements taken with the YSI Pro Plus sonde deviated from the YSI Ecosense Pen, which is known to measure pH accurately $(0.47 \pm 0.44 \text{ pH} \text{ units below in-stream pH}$ as measured by YSI Ecosense Pen). Therefore, a calibration curve was created based on simultaneous side-by-side measurements of both instruments (n = 69 pairs) and the in situ pH data were adjusted accordingly (Eq. 1).

 $YSI \ Ecosense \ Pen \ pH = 0.595(Pro \ Plus \ pH) + 2.3868 \tag{1}$

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Figure/Table