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Here we respond to each comment raised by the Associate Editor and the
reviewers. Comments are shown in italics and are followed immediately by
our response.

1 Reply to Associate Editor Dr Fabrizio Feni-
cia

The paper received an interesting mix of reviews, some enthusiastic, some
very negative. I think the authors should seriously consider the comments of
the negative reviewer, which they already started to do, and revise their paper
accordingly. The paper will go to another round of review, to evaluate that
the changes made are satisfactory.

We have carefully considered all of the reviewer comments, as per our
detailed responses below. We have revised the manuscript accordingly. The
manuscript has been improved as a result.

While Prof. Ferre suggested no changes to the manuscript, we have re-
sponded in detail to his thoughtful comments. We have addressed almost all
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of the comments by Mr Turnadge through additions and modifications to the
manuscript (and indicated otherwise where appropriate). We have addressed
the anonymous reviewer’s comments surrounding the level of methodological
and case study details presented. We have also addressed their comments
concerning the contribution of our paper with respect to previous studies by
clarifying the text and adding references; this is notwithstanding that these
comments were in contrast to the comments of Prof. Ferre and Mr Turnadge,
who clearly valued the importance and timeliness of our paper.

We look forward to receiving the second round of comments from the
reviewers and moving towards publication.

2 Reply to Short Comment by Ty P. A. Ferre

This is another excellent paper from this group. To me, it sits right be-
tween academic and applied hydrology. The group has such advanced model-
ing skills, that they have immediate credibility when they point out limitations
based on model-based interpretations. In this paper, they carry their analysis
through to the ‘value’ of data for decision support. They make a great case
that data, even if it inherently carries important information, can be mis-
leading if it is viewed through the lens of an imperfect model. Of course, they
are all imperfect models. This is really important work and I feel that HESS
1s just the right target audience. I hope that it inspires continued careful
examination of the interaction of data and models for decision support.

Well done Knowling et al!

Ty Ferre

We thank Prof. Ty Ferre for his positive and encouraging comments!
We acknowledge his significant contribution to the field of decision-support
modeling (the field in which this paper is cast). His comment that our study
strikes a balance between academic and applied hydrology is pleasing as it
reflects our endeavor to tackle problems that are relevant to both researchers
and practitioners.

His comments also reiterate that our findings regarding the potential for
assimilation of information-rich tracer data to cause ill-effects can be ex-
tended beyond just the (imperfect model) tracer data assimilation context
(as covered in the Discussion and Conclusions section of the original mansu-
cript).

Thanks again to Prof. Ferre!



3 Reply to Referee Comment by Ty P. A.
Ferre

I provided an informal review previously, this serves as a somewhat more
detailed formal review:

The authors continue to tackle one of the most important areas of applied
hydrogeology with novel and insightful tools. Here, they challenge an accepted
fact of hydrogeology that more data, and especially more diverse data will
lead to better models for decision support. Their counterintuitive finding that
1sotopic data may have value little of no value for water resources is just the
sort of result that could spark important conversations in our field.

As with their previous work, this group takes full advantage of their po-
sition as leading hydrogeologic modelers to offer constructive criticism for
the field. There is no question that this group can build and calibrate large,
complex models and that they are as able as anyone to extract information
from hydrologic observations. This lends weight to what could otherwise be
criticized as a finding based on lack of response. In this case, the group
makes the point that increased complexity has a place in assimilating more
and more varied data while recognizing that this increased complexity has lim-
its for some applications. Again, the group takes advantage of its abilities to
provide useful guidance for the community.

We thank Prof. Ty Ferre for his more detailed review and for his positive
sentiments. Below we respond to each of his comments.

Prof. Ferre accurately summarizes our intention to challenge by rigor-
ous investigation the widely accepted perspective among hydrologists and
modellers that “more data and more diverse data lead to better model fore-
casts”. Our experience extracting information from hydrologic observations
through large, complex models—and the challenges associated with doing
so—ultimately led us to undertake this study. We hope that our findings
spark important conversations, and that these conversations ultimately lead
to improved decision-support modeling practice.

Prof. Ferre echoes our position that increased model complexity may be
required to appropriately assimilate both information-rich data, and data of
various types, notwithstanding the additional challenges this added model
complexity brings. Striking an appropriate balance between complexity and
simplicity in the imperfect model-data assimilation context is an area that
requires more attention in our opinion.



Personally, I appreciate the terse format of presenting the case studies.
There may be call for providing more detail as supplemental information. I
believe that the accepted White paper supplies these details. But, I will leave
that to other reviewers and the editor to comment on whether it is appropriate
to provide more detail in this manuscript.

We are pleased that Prof. Ferre finds the brevity of the case study details
to be appropriate. We believe that this comment has been addressed by:
() the availability of additional details regarding the second case study—the
Hauraki Plains paired model analyses used for identifying tracer assimilation-
induced bias—following publication of [White et al.| (ress), and (i) the ad-
ditional case study details added in response to the comments of the other
reviewers (see below).

My only recommendation with regard to the authors approach reflects my
own bias. As such, I completely understand if they do not address it in the
paper! Regardless, I would like to hear the authors respond to the following
question. From the perspective of a water manager or someone else tasked
with assessing hydrologic risk, is a statistical reduction in the forecast the right
measure of data value? Would the value of tritium, in this case, be viewed
differently if decision-making were seen to be based on hypothesis testing of
the plausibility of future high loading, for example? More generally, could
the authors comment on the importance of considering the decision making
context underlying the assessment of data worth?

Fantastic work I look forward to reading more in the series!

Ty Ferre

We thank Prof. Ferre for his interesting question on the contextualization
and measurement of data worth (the assessment performed in the first case
study). While there is probably no single “right” measure of data worth from
the perspective of water resource managers across the board, we acknowledge
that the assessment of data worth based on changes in the second moment
(i.e., variance) of a forecast of management interest is unlikely to express
the “full picture” from a decision maker’s perspective. This is because deci-
sion makers need to evaluate forecast PDF's with respect to carefully defined
decision thresholds governing management action. For example, if forecast
variance is reduced through data acquisition, but this reduction in variance
is of no consequence in terms of our ability to test hypotheses (e.g., if the
entire PDF lies on one side of the decision threshold), were the collected data
really worth it, in terms of the specific decision-support context in question?
From the managers perspective, surely not, as the decision was not made any
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easier following the acquisition of data.

A more decision maker-focused measure of data worth may therefore be
to evaluate forecast PDFs (that are conditioned on different observations)
with respect to a specific management decision threshold (or multiple deci-
sion thresholds as is more likely the case in practice; e.g., Vilhelmsen and
Ferre (2018)). We feel that such a hypothesis testing approach to data worth
assessment has significant merit and requires further investigation, notwith-
standing that some excellent related works such as Nowak et al.| (2012) and
Wagner| (1999)) already exist in the literature. We also feel that identifying
optimal monitoring data with respect to “decision difficulty” (e.g., [ Knowling
et al.| (2019)) has potential. For the data worth analysis presented in the
first case study, it is difficult to anticipate how the specific outcomes of the
analysis would be affected through adopting a hypothesis testing approach
to data worth. This is due to the fundamental role that a specified decision
threshold plays in the assessment of management action success/failure.

We also note that robust assessment of data worth in a hypothesis test-
ing framework should ultimately involve non-linear uncertainty quantifica-
tion such that not only the second moments but also the first moments of
forecast PDF's can be assessed with respect to a decision threshold. Such an
approach would also allow for the consequences of data assimilation-induced
forecast bias in proximity to a decision threshold to be quantified (e.g., where
the value of data in terms of variance reduction may be outweighed by its
introduction of bias).

More generally, the decision-support context(s) in which the assessment
of data worth can be framed is fundamentally important to the current study
and more generally. Adopting a decision-support context allows for the pri-
oritization of data collection towards improving the reliability of model fore-
casts that are used to support management decision-making. Exploring data
worth in other contexts can also nevertheless be performed using similar
approaches such as FOSM. For example, in the context of aquifer character-
ization, one can compute the value of, e.g., geophysics data in terms of the
reduction in uncertainty associated with key aquifer properties, which may
form the basis for improved system process understanding.

We welcome Prof. Ferre to contact us to discuss further some of the ideas
above if he is interested.



4 Reply to Short Comment by Chris Tur-
nadge

I would like to thank the authors for their invitation to provide comments
on this manuscript. I believe this manuscript provides a valuable and timely
contribution towards guidance in the use of subsurface environmental trac-
ers to improve the predictive capability of groundwater flow and transport
models. Many publications have implored researchers and practitioners to
include a range of non-standard observation types such as temporal differ-
ences (Peeters et al., 2011), temperatures (Anderson, 2005), isotope concen-
trations and activities and inferred residence time (or “ages”) (Schilling et
al., 2019), and/or geophysical data (Hinnell et al., 2010) in model inversion
and prediction uncertainty minimisation. However, investigations of when
benefits may be obtained (or perhaps more importantly, when not) from these
additional data types (and therefore specific guidance in their use) has been
limated.

We thank Mr Chris Turnadge for his detailed and constructive comments.
We agree that the guidance provided in the manuscript is timely for the rea-
sons Mr Turnadge describes (and for reasons described in the Introduction
and Discussion sections of the manuscript). It was one of our primary mo-
tivations to rigorously investigate the calls for increased use of diverse data
(e.g., Schilling et al. (2019)) in the context of decision-support modeling. We
thank Mr Turnadge for his positive sentiments.

On first reading of the manuscript I questioned whether the authors were
“overreaching” in their conclusions. Having re-read the manuscript, I now
believe that the authors have been careful to state that their conclusions
regarding the applicability of environmental tracer observations are indica-
tive, rather than comprehensive. More generally though, I do believe the
manuscript will benefit from some revisions. Specifically, I would like to pro-
vide three major criticisms of the manuscript. These mainly relate to the
sustability of the experimental design, in terms of the suitability of testing
the hypotheses presented. These are followed by a number of minor criti-
cisms that I believe the authors should also consider addressing. These minor
criticisms mostly relate to the interpretation of environmental tracers, or to
descriptions provided of the parameterisations of the numerical models used.
I hope my comments are helpful to the authors in improving the manuscript
and I am more than willing to provide further clarifications off-line, if they



are needed.

We agree that our conclusions are “indicative”, and we are pleased Mr
Turnadge believes our carefully formulated conclusions are appropriate. We
feel that indicative conclusions are really all that can be drawn on the basis
of two (or even more) real-world case study example demonstrations. We
also consider empirical demonstrations to provide an important adjunct to
theoretical demonstrations; we feel empiricism in the presence of inevitable
site specifics are important to accompany theoretical investigation.

We believe that Mr Turnadge’s comments can be addressed where ap-
propriate through some minor yet important additions and modifications to
the manuscript text. His comments also provide us with an opportunity
to reiterate and expand on some of our current decision-support modeling
perspectives and philosophies. We respond to each of his comments below.

Major comments:

1. Tracer observations are of limited additional value when direct obser-
vations of fluxes are already available

For the Heretaunga Plains example, I do not believe that the addition
of environmental tracer observations (in this case, tritium) when flux ob-
servations (in this case, spring discharge) are already available provides an
ideal (i.e. fair) test case. Tracer concentrations are prozies for fluzes (either
recharge, lateral or discharge) so they are often measured (and subsequently
included in model inversion) when direct observations of fluzes are not avail-
able. Assessing the value of tracer observations when flux observations are
not available would provide a fairer test case and would be of greater inter-
est. For the Heretaunga Plains example, this could be implemented by simply
omitting spring discharge observations from all model inversion.

We consider the first case study to represent a fair and useful test case for
the following reasons. First, our results do in fact already show the worth of
MRT observations in the absence of spring discharge observations (albeit in
the absence of other observations too—therefore representing the case where
the maximum worth of MRT observations is apparent with an otherwise
“empty” observation dataset). Please see the blue bars in the MRT column
of Figure 2.

Second, the Heretaunga Plains case study presented reflects a real-world
investigation, i.e., whereby tritium concentrations were measured after and
in combination with discharge measurements. It is not the experience of the
authors that tracer concentrations are typically only sampled where flux ob-
servations are lacking. This would imply that flux and tracer data contain
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the same information and can therefore be substituted for one another. Con-
trast this with much literature suggesting the benefits of as many data types
and as much data as possible (as acknowledged by Mr Turnadge above).

We also note that in the Discussion and Conclusions section, we provided
a detailed description of circumstances by which the apparent worth of MRT
observations in the first case study would likely have been higher (see Lines
246-254 of original manuscript).

2. Tracer observations are of limited additional value when collected up-
stream of prediction locations

For the Hauraki Plains example, subsurface tritium observations were
recorded far upstream of nitrate discharge predictions. Since environmental
tracers such as tritium integrate information along flow paths, it is intuitive
that these tritium observations would contain limited information of value
to predictions of nitrate concentration located far downstream. If subsurface
trititum concentrations are available from locations in the vicinity of the pre-
dictions of interest, then I suggest that it would be more relevant to include
these in the case study.

We regret that this comment appears to reflect a misunderstanding (and
therefore a need to improve the communication of the manuscript). While
we agree with Mr Turnadge’s intuition regarding the integration of tracer-
derived information along flow paths, we do not show that tritium concentra-
tion observations in the second case study are of limited value or “worth” (re-
gardless of where the observations occurred within the basin). In fact, despite
that the second case study does not actually explore the worth or information
content of tritium observations, the results suggest that the tritium obser-
vations contain “too much” information (or, rather, misinformation when
considered through the lens of an imperfect model that lacks parameter re-
ceptacles for the information contained in the tritium observations). That is,
the sensitivity of the forecast of interest to uncertain parameters that were
conditioned by tritium concentration observations led to forecast bias. This
occurs due to two factors: (i) the “Firth” nitrate-load forecast aggregates
flow paths across the entire domain (i.e., this forecast represents the only
nitrate flux sink of the system) and in time; and (i7) the tritium observations
provide insight into spatially and temporally averaged recharge and lateral
flux rates in the upgradient portion of the domain, where most of the sur-
facewater /groundwater exchange occurs. In other words, the bias reflects
the information content of the upgradient tritium observations related to
averaged upgradient model parameters on which the forecast is sensitive.
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To address this comment, we have added the text “This forecast aggre-
gates flow paths across the entire model domain (i.e., it represents the only
nitrate-flux sink of the system).” to the Second case study section of the
revised manuscript.

We have also added the text “The biases identified reflect the sensitivity
of the Firth forecast to uncertain parameters that were conditioned by tri-
tium concentration observations. This occurs due to the spatially integrated
nature of the Firth nitrate-load forecast, and because the tritium observa-
tions provide insight into spatially and temporally averaged recharge and
lateral flux rates in the upgradient portion of the domain, where most of the
surface-water /groundwater exchange occurs.” to the Results section of the
second case study.

3. Conservativeness and management thresholds when presenting predic-
tion uncertainty

For the Hauraki Plains example, I believe that the authors criticise simple
modelling approaches without providing any discussion of whether modelled
predictions are conservative. Prediction histograms are presented in the ab-
sence of a management threshold; in this case, an upper permissible limit for
nitrate discharge. I suggest that the authors present a relevant management
threshold when presenting prediction uncertainty results. This would allow
the authors the additional benefit of exploring whether predictions produced
using stmple and complex parameterisation approaches were conservative.

We agree that exploration of the conservativeness or otherwise of simpli-
fied model forecast PDF's (the former of which can be viewed as a metric for
accepting such a simplified model) is an important undertaking, especially
when performed with respect to a specific management decision threshold.
We are pleased to inform Mr Turnadge that we have two papers that explicitly
tackle this question—the first in terms of model parameterization (Knowling
et al., 2019)) and the second in terms of model vertical discretization (White
et al., ress)).

We therefore address this comment by adding an explicit reference to
these manuscripts and how they cover a broader scope than that of the cur-
rent manuscript in the Discussion and Conclusions section: “We refer the
reader to Knowling et al. (2019) and [White et al. (ress|) for a broader explo-
ration of the consequences of model simplification (in the form of parameteri-
zation reduction and vertical-discretization coarsening respectively) in terms
of the decision-relevant forecast bias-variance trade-off and its implications
for management decision making more generally.”.
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To further address this comment, we have added the text “(we refer the
reader to White et al.| (ress) for an exploration of the appropriateness of
reduced-discretization models in decision support more generally)” to the
Second case study section.

Minor comments

1. Mean residence times

Mean residence time (MRTs) values were used to quantify the age of
groundwaters. However, MRTs are equivalent to groundwater ages only under
very strict assumptions; specifically, requiring highly simplified conceptualisa-
tions. The latter are the basis of mixing functions used in lumped parameter
models. In most (complex, real-world) cases, MRTs act as a fitting parame-
ter. This is especially true if MRTs are derived from binary mixing models,
which arbitrarily blend two mixing models, which generally undermines their
physical bases. As a solution, and rather than the use of lumped parameter
models to derived mean residence times, where possible I suggest simulating
the reactive transport (or at least, non-reactive transport with first order de-
cay) of environmental tracer concentrations (or activities. Admittedly, for
some tracers (such as carbon-14) the complexity of reactions may make reac-
tive transport simulation prohibitive. However, the examples presented by the
authors already feature combined numerical flow and transport models. Addi-
tionally, the authors examples also feature a relatively simple tracer requiring
only the simulation of first order decay, so I would assume that reactive trans-
port simulation would be feasible.

We agree with Mr Turnadge regarding the simplicity and lack of physical
basis of LPMs, and the potential benefits of full advective-dispersive (and re-
active) transport numerical models for simulating tracer concentrations (as
described comprehensively by Turnadge and Smerdon| (2014))), notwithstand-
ing their practical limitations, which are amplified in formal decision-support
modeling contexts.

Importantly, however, we reiterate that LPM-derived MRT observations
are only used in the first case study (in combination with advective-transport
simulations); the second study employs full advective-dispersive transport
modelling together with a first-order reaction rate to simulate radioactive
decay of tritium (see also comment below). Our intention here was to employ
both of these “standard practice” tracer modeling techniques as a basis for
exploring the ramifications of model tracer-data assimilation, such that the
findings can be as useful as possible to industry. The literature reflects the
common use of both advective-only particle-tracking simulations (combined
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with LPM-based “age” observations) and advective-dispersive simulations
(combined with tracer concentrations) (e.g., Gusyev et al. (2014)).

We have addressed this comment by more explicitly stating in the In-
troduction section (where the two case studies are introduced) the different
modeling approaches undertaken for the two case studies.

2. Binary mixing models

The authors state that, as part of lumped parameter modelling, binary
mizing models (BMMs) were used to derive mean residence times from sub-
surface tritium concentrations. BMMs are a linear combination of two other
(ideally) physically-based mizing models. I suggest that the authors describe
which mizing models were combined using the BMMs, the relative contribu-
tion of each, and the physical meaning of the combined result.

The MRT observations that are considered in the first case study only,
were derived using a combination of exponential piston flow models (EPMs)
and BMMs (comprising two “parallel” EPMs), as described in detail in [Mor-
genstern et al.| (2018)).

We have addressed this comment by adding the following text to the
First case study section of the manuscript: “Specifically, a combination of
exponential piston-flow models (EPMs) and binary-mixing models (BMMs)
(that comprise two EPMs) were used. BMMs were employed for wells where
long time-series data are available for multiple tracers, and where an adequate
fit to different tracer signals could not be obtained on the basis of a single
EPM. Relative EPM mixing fractions were specified on the basis of aquifer
confinement conditions and well-screen length (mixing fractions of 80-95%
were applied for wells with a long screen in unconfined conditions, whereas
mixing fractions of 50-60% were applied for wells with shorter screens in
confined conditions). The reader is referred to Morgenstern et al.| (2018)) for
more details. 7.

3. Atmospheric tritium concentrations

The authors state that the historic record of atmospheric tritium concen-
tration features a “shape [that allows] for unique interpretation” (lines 69 -
70). It is unclear what the authors mean by the term “unique” in this con-
text. Unlike SF6, it would not be true to state that the historical atmospheric
tritium record 1s consistently monotonic. Tritium values increased initially
due to nuclear weapons testing and have declined ever since. In some cases,
the historical atmospheric tritium record features more than one peak value
after the cessation of nuclear weapons testing. In addition, historic records
of atmospheric tritium concentrations at various locations are typically quite
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noisy, unlike SF6. See Figure 1 in McCallum et al. (2014) for an exam-
ple of a noisy, two-peak example of a historical atmospheric tritium record.
For this example, and following correction for radiometric decay in the sub-
surface, a tritium observation of 20 TU would correspond to any of four
different recharge times (and therefore ages). In comparison, a historical
atmospheric SF6 record is also shown by McCallum et al. (2014), which in-
creases monotonically and would therefore permit unique interpretations of
ages from measured concentrations. I suggest that the authors could state
instead that tritium is a popular tracer for the identification of young age
groundwaters (i.e. <70 years old) for the following reasons. Unlike CFCs,
it is not affected by microbial degradation or contamination and, unlike SF6,
it is not affected by potential subsurface sources. The authors may wish to
cite Beyer et al. (2014), who provided a comparison of traditional (e.g. 3H,
CFCs, SF6) and emerging (e.g. Halon-1301, SF5CF3) young age tracers.

We agree with the need to be more specific regarding the reasons why
tritium is a often-favoured tracer and indeed why its consideration herein is
relevant. We thank Mr Turnadge for his suggested revision to the text. We
have revised the manuscript directly following his suggestion.

4. Non-reactive modelling of contaminant transport

The Hauraki Plains model simulated nitrate as a non-reactive constituent.
In practice, nitrates in the subsurface are subject to a range of processes:
assimilation, nitrification/denitrification, volatilisation, sorption/desorption
and retardation (Kendall and Aravena, 2000). For this reason, I suggest that
the authors explain why nitrate was not simulated as a reactive constituent
in the forward model.

The second case study does in fact use a first-order decay rate to simulate
the process of denitrification reactions. We consider this approach to be
“standard” modeling practice.

We have addressed this comment by adding the text “Denitrification and
radioactive tritium decay processes are simulated using first-order reaction
rates.” to the Second case study section of the revised manuscript.

5. Screen lengths of wells sampled for environmental tracers

When interpreting subsurface concentrations of environmental tracers,
knowledge of the length of screened sections in sampled groundwater wells is
crucial. If lumped parameter models are used, this affects the choice of mizing
model. For example, if sampled wells are open holes or fully screened then
the exponential mizing, exponential-piston flow, or dispersion models may
be appropriate. Alternatively, if sampled wells are partially screened then
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the partial exponential model may be appropriate. Given the importance of
this information to tracer interpretation, I suggest that the authors describe
the screen extents of each sampled well. The authors could also state how
this information was used to select an appropriate mizing model for lumped
parameter modelling, from which mean residence times were calculated.

We agree with Mr Turnadge regarding the importance of the well screen
length for tracer interpretation—especially when using LPMs for interpreta-
tion (as is the case for the first case study).

We have addressed this comment by indicating the role that well screen
lengths had on the deployment of LPMs to infer MRT in the First case study
section, as per our response to minor comment (2). A full description of
well details such as depth, screen interval and the corresponding LPM used
for MRT interpretation can be found in Morgenstern et al. (2018)) (publicly
available online, as referenced in the original manuscript). We therefore
prefer not to repeat these details in the current manuscript.

6. Pilot point parameterisation

Pilot point parameterisations of the Heretaunga Plains and Hauraki Plains
models are not described explicitly in the manuscript. Specifically, it is not
clear which parameters were parameterised using this method. I suggest that
the authors describe explicitly which model parameters were implemented on
a cell-by-cell basis, or using pilot points, zonation or using spatially uni-
form values, including horizontal and vertical hydraulic conductivity, specific
yield/storage, recharge and, for transport models, porosity.

We have addressed this comment by the following changes.

First, we have added the following text to the First case study section:
“Spatially-distributed parameterization of hydraulic conductivity (horizon-
tal and horizontal /vertical anisotropy ratio), effective porosity, specific stor-
age and specific yield is achieved using pilot points (e.g., Doherty] 2003).
Spatially-distributed river-bed and boundary conductance parameters are
defined on a reach and zone basis, respectively. We refer the reader to the
Supplementary Information for more information”.

Second, we have added the following text to the Second case study section:
“Spatially-distributed parameterization of (horizontal and vertical) hydraulic
conductivity, effective porosity, recharge rate, first-order denitrification rate,
initial concentration and dispersivity is achieved using a combination of cell-
based and zone-based multipliers. Nitrate-loading rate and abstraction well
rate is parameterized using cell-by-cell and well-based mulitipliers, respec-
tively. Streamflow-routing (SFR) elements are parameterized on a stream-

13



segment basis.”.

7. Variogram definitions

It is not clear whether, for a given model, the same variogram was used
to implement pilot point parameterisation for one or many parameter types.
For example, I would not expect that the spatial correlation between hydraulic
conductivity values to be the same as for recharge rates. I suggest that the
authors state explicitly which variogram parameter values (e.g. correlation
length, range, sill, nugget) were used to define which model parameter val-
ues, and describe the spatial analyses used to quantify spatial correlation
between parameter values. Given that the degree of model complexity (partic-
ularly in relation to the ability of a model to assimilate observed data) is a
key focus of the manuscript, I believe that detailed descriptions of the model
parameterisation used are relevant.

Briefly, for the Heretaunga Plains case study, the same variogram (vari-
ogram parameters already defined in manuscript—see Lines 136-139) is used
for pilot-point based distributed parameters; no spatial correlation is assumed
otherwise. We have addressed this comment by adding “pilot-point based”
to Line 137 of the original manuscript. This addition, in combination with
the details on parameterization devices added in response to minor comment
(6), addresses this comment for the first case study.

For the Hauraki Plains case study, variogram details regarding the various
different parameter types have already been described in both [White| (2018])
and White et al. (ress). We therefore address this comment by adding a
reference to the additions made in response to minor comment (6): “We
refer the reader to|White| (2018) and [White et al.| (ress) for more information
on model parameterization and construction of prior parameter covariance
matrices”.

On a more general note, we agree that variograms could theoretically be
defined on a parameter type-specific basis from a physically-based (or perhaps
more appropriately a “physically-motivated”) parameter standpoint. How-
ever, given our recent experience and findings regarding the significant poten-
tial for ill-effects (e.g., forecast bias) in real-world decision-support modeling
(e.g., Knowling et al. (2019)); White et al.|(ress)), we tend to consider spatially
distributed parameters employed by regional-scale models to be significant
“abstractions” (i.e., from their intended property representation; e.g., Wat-
son et al.| (2013])). It follows that questions such as “what is the variogram for
spatially distributed recharge bias-correction parameters?” and “how do we
represent uncertainty in the variogram model used to describe prior param-
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eter correlation and heterogeneity (i.e., a “hyper-parameter”)?” arise when
trying to rigorously deal with real-world model error.

8. Bias and underestimation

The authors state that the assimilation of tritium can induce “biased first
moments or underestimated second moments” (line 55). I suggest that the
authors could unpack this statement by providing simple examples to support
this statement, for both bias and underestimation. The authors could also
state explicitly the nature of the bias; i.e. whether prediction mean values
were under- or overestimated.

On Line 55 (of the original manuscript), we are making only a gen-
eral statement that data assimilation through history matching an imperfect
model can result in forecast bias (either mean over- or under-estimation)
and/or uncertainty underestimation; these ill effects occur as a result of both
model simplification and history matching. We cite literature that demon-
strate these phenomena. This statement does not relate to tracers or tritium
specifically, or any other data in particular. Therefore, no comments can
be made at this point as to the nature of bias or variance underestima-
tion. The “direction” of tritium assimilation-induced bias (i.e., under- or
over-estimation) is covered in the Results section of the second case study
(although we note that the direction of bias may not be very generalizable
between different forecasts and between different sites).

9. Ensemble size representativeness

The authors state that their implementation of the Iterative Ensemble
Smoother featured ensemble sizes of 100 (lines 194-195). This value ap-
pears to have been selected arbitrarily, likely based on logistical constraints
(e.g. forward model and inversion computing times). Was bootstrapping or
other representativeness/convergence testing methods used to assess whether
an ensemble size of 100 representative, and/or whether ensemble statistics
converged as the ensemble size approached 1007 I suggest that the authors
demonstrate that the ensemble size used was representative.

The ensemble size was in fact selected on the basis of an approximation of
the solution-space dimensionality. This approximation was obtained through
a subspace analysis of predictive error variance (Moore and Doherty, [2005)).
We refer Mr Turnadge to the Supplementary Information of Knowling et al.
(2019) for more information on this, including a plot of the singular-value
spectrum.

To address this comment, we have added the above-mentioned singular-
value spectrum plot to the Supplementary Information, and a supporting
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sentence to the Second case study section.

10. Vertical coarsening of model grid

The authors provide limited explanation of why vertical coarsening of the
model grid led to fewer relatively long flow paths. Since this observation is
crucial to the interpretation of the authors results, I suggest that the authors
expand their discussion of this key point.

Fewer relatively long flow paths occur when vertically coarsening the
model grid simply due to the aggregation of numerical discretization effects—
the flow paths of a coarser-layer model will be a smoother and averaged rep-
resentation of those derived from a finer-layer model. As described above,
the ramifications of model simplification in terms of reduced vertical dis-
cretization in the uncertainty quantification and data assimilation context
more generally is covered by the separate manuscript White et al.| (ress).
Nevertheless, we agree that this is an important explanation to support the
current findings.

We have therefore added the following explanation to the Results section
of the second case study in the revised manuscript: “Briefly, this occurs due
to the aggregation of numerical discretization effects—the flow paths of a
coarser-layer model will be a smoother and averaged representation of those
derived from a finer-layer model.”.

Many thanks again to Mr Turnadge for his helpful comments.

5 Reply to Anonymous Referee #2

In the present manuscript, Knowling et al. aim to demonstrate that environ-
mental tracer observations in general are not as informative for groundwater
model data assimilation as previously thought because, in their eyes, flow
models are typically too wrong for adequate physical representation of tracer
behavior. The authors base their conclusions on only two case studies in-
volving groundwater model calibration against only one environmental tracer
(i.e. tritium, in one case study using tritium-derived groundwater residence
times and in a second case study using tritium concentrations directly). The
authors specifically identify errors in groundwater model vertical discretiza-
tion as a reason for why data assimilation of groundwater model with tritium
concentrations 1s prone to result in biased model predictions.

While a systematic study on this topic is potentially interesting and use-
ful, the present study lacks the necessary rigor in experimental design and
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standard in scientific reporting to be able to demonstrate what the study aims
to demonstrate and to be a valid contribution to HESS. Shortcomings include:
Failure to properly describe (1) the model calibration procedures, (2) the ob-
servation data, and (3) the models and assumptions used to derive residence
times from tritium concentrations. The authors also fail in properly refer-
encing scientific literature which already demonstrated aspects of the present
study. Moreover, misleading statements are made about existing studies, and
the general conclusions that were drawn on the value of environmental tracer
observations for groundwater model calibration in general are not justified
from the results of the simple experimental setup and use of tritium alone.
Due to the lack in reporting, it isnt even possible to fully understand, assess
or reproduce the findings. Below I elaborate on some of the shortcomings of
the study which I see as reasons for rejecting of this paper.

We thank the anonymous reviewer for their comments. We believe that
their comments can be addressed where appropriate through some minor, yet
important additions and clarifications to the manuscript text. The comments
also provide us with an opportunity to revisit and expand on some of our
findings and recommendations.

First we wish to clarify the following points related to the reviewer’s
summary of our work:

1. Not only do we assess the apparent or “theoretical” information con-
tent of environmental tracer observations for decision-support groundwater
model data assimilation, as judged by rigorous data worth exploration, we
also assess the potential for the assimilation of these data to cause unwanted
effects such as forecast bias, by considering model error and using paired
complex/simple models. To our knowledge, no other work has examined
the assimilation of environmental tracers in the context of the bias-variance
trade-off relevant to the use of imperfect models. We feel that this cen-
tral aspect of our paper has been over-looked by the reviewer. Framing our
findings and recommendations in the context of real-world decision-support
modeling is fundamentally important to the purpose of our paper. The im-
portance of this aspect was acknowledged by the other reviewers, e.g., “They
make a great case that data, even if it inherently carries important infor-
mation, can be misleading if it is viewed through the lens of an imperfect
model” and “This manuscript provides a valuable and timely contribution
towards guidance in the use of subsurface environmental tracers to improve
the predictive capability of groundwater flow and transport models. Many
publications have implored researchers and practitioners to include a range
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of non-standard observation types ... However, investigations of when ben-
efits may be obtained (or perhaps more importantly, when not) from these
additional data types (and therefore specific guidance in their use) has been
limited”.

2. We wish to follow-up on the reviewers comment that “in (our) eyes,
flow models are typically too wrong for adequate physical representation of
tracer behavior”. Recent studies have showed that even seemingly minor
model defects can cause significant ill-effects such as bias and uncertainty
under-estimation. However, even more importantly, the outcome of these
ill-effects depends on the purpose of the modeling analysis. The challenge is
therefore to try to avoid these ill-effects in the context of the given modeling
analysis and its purpose. We are advocating for careful and forecast-specific
model design, to ensure that the rich information contained within tracer
data can be properly assimilated. Potential use of more abstract means to
assimilate these data into simpler models, is a promising model design option
as it alleviates the need for increased model complexity and the costs associ-
ated with it. We suggest that this is an area of future work, as discussed in
the Discussion and Conclusions section of the manuscript. These recommen-
dations were explicitly valued by the other reviewers, e.g., “In this case, the
group makes the point that increased complexity has a place in assimilating
more and more varied data while recognizing that this increased complexity
has limits for some applications.”

The reviewer’s summary suggests that our conclusions are not warranted
on the basis of two case studies and the consideration of one environmental
tracer. We wish to point out that an exhaustive exploration of how and
when environmental tracers can be most usefully assimilated into models
represents a research field in itself. The purpose of our paper is to raise
and illustrate the following two points: (7) the assimilation of environmental
tracer observations may not always be worthwhile, depending on the forecast
being made, and (7i) careful model design is central to the ability to assimilate
environmental tracer observations into models.

We now address each of the reviewer’s comments in detail below.

e The manuscript lacks key information on model calibration:

The present manuscript doesn’t sufficiently explain the observation data,
models which were used to derive the different observation types or
calibration procedures. In the first case study, the value of observa-
tions of tritium-derived groundwater residence times are compared to
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the value of groundwater levels and spring discharge observations for
the reduction of the predictive uncertainty of spring discharge predic-
tions. However, information about the calibration procedure is not pro-
vided, i.e., it isnt clear whether an ensemble-based data assimilation
procedure (i.e., the iterative ensemble smoother as mentioned in the
abstract), or whether a classic history matching calibration procedure
(i.e., based on a weighted, multivariate mazimum likelihood estimation
procedure as described in a referenced modelling report) is used. Even
though in the abstract it is stated that iterative ensemble smoother was
used in the present study, the method isnt explained in the methods
section of model study 1.

One can either assume that it was the same as for model study 2, i.e.
Iterative Ensemble Smoother. This is suggested by the wording of the
abstract and the term data assimilation via history matching (line 117).
An Iterative Ensemble Smoother approach, and ensemble-based data as-
similation procedures in general, would however make the direct appli-
cation of linear predictive uncertainty analysis based on FOSM impos-
sible because to the jacobi matriz isn’t calculated by these approaches.
Or, one could assume that data assimilation was not conducted but
instead classic history matching after reading a referenced modelling
report (however, Rakowski and Knowling, 2018, is not referenced in
the respective model calibration and uncertainty quantification method-
ology section (2.4)). Using classic history matching would be a contrast
to what was stated in the abstract and make the data worth assessment
difficult to compare to the findings of modelling case study 2. The au-
thors should also explain in detail what they mean by how the jacobi
matrix was populated. For the second modelling case study, in section
3 after the description of methods and results of model study 1, it is ex-
plained that an Iterative Ensemble Smoother with 100 realisations was
used. While for model study 1 it was stated that 882 parameters were
calibrated, for model study 2 one does not learn how many parameters
were calibrated. While for model study 1 there is a referenced mod-
elling report available, the report referenced for model study 2 was not
accepted or published at the time of the article submission and therefore
not available for checking (on lines 184-185 it is stated: ‘The model,
and the vertical-discretization simplification analysis, is described in
detail in White et al. (forthcoming)’ and the said study is listed in the
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bibliography as ‘accepted, subject to minor revisions’). Key informa-
tion in the calibration procedure is essential when the purpose of the
study is to demonstrate the value of different observation types, as the
calibration procedure strongly influence the data worth results.

The reviewer states that “information about the calibration procedure
is not provided” for the first case study. This comment reflects a mis-
understanding, and therefore a need to improve the presentation of this
portion of manuscript. We employ FOSM techniques to quantitatively
assess the worth of tritium-derived MRT along with other hydrologic
observations by comparing forecast uncertainty changes following the
notional data assimilation of different observations (e.g., see Lines 71-
72, 75-78 and 128-130). FOSM analyses do not rely on formal history
matching or on the pre-existence of a “calibrated model”. To be clear,
no actual parameter estimation is undertaken as part of the first case
study. FOSM techniques have been widely employed for data worth
assessment in this notional context in many settings as it enables rapid
exploration of the worth of many different combinations of conditional
forecast variances in a computationally efficient manner (e.g., Wallis
et al.| (2014); Zell et al.| (2018))).

We have addressed this comment by revising Line 117 (i.e., add “notion-
ally”, remove “via history matching”) and by replacing the “History
matching” sub-section heading with “Observations for assimilation”.

We feel that these changes will address the reviewer’s confusion regard-
ing whether the iterative ensemble smoother was used for the first case
study. The ensemble smoother was used only for the second case study,
where we explore the potential for model simplification-induced fore-
cast bias and how this may be exacerbated when assimilating tracer
concentration observations.

To further address this comment, we have made the distinction between
the two different data assimilation approaches undertaken for the two
case studies more explicit throughout the revised manuscript.

The paired complex/simple model analysis undertaken for the second
case study involves formal history matching and non-linear uncertainty
quantification (via the iterative ensemble smoother) for various models
with varying vertical discretizations. Each of these analyses are per-
formed twice, once with and once without tritium concentration data
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for assimilation (i.e., Figure 4 is the result of six ensemble smoother
experiments). This first-of-its-kind analysis for environmental tracer
assimilation allows us to identify biases arising directly from the assim-
ilation of these information-rich observations with imperfect, real-world
groundwater models in a decision-support setting. This approach was
necessary to explore otherwise invisible biases induced through assimi-
lating tritium data. As discussed above, we feel this critical and novel
part of the paper has been over-looked by the reviewer.

While the number of uncertain model parameters used in the second
case study (for each of the 7-, 2- and 1-layer models) is provided in the
now-published article White et al. (ress), we agree with the reviewer
that this constitutes an important detail that, when absent, may ob-
scure some details regarding the second case study. We have therefore
added the following text to Section 3.2 (as well as other data assimi-
lation details; see responses below): “This parameterization approach
gives rise to a problem dimensionality of 141268, 50180 and 29050 for
the 7-layer, 2-layer and 1-layer model history-matching experiments,
respectively.”

The manuscript lacks key information about the used observation data:

Observation data which were used for the modelling study are not pro-
vided, even though this is critical information to understand and repro-
duce the reported findings. While for model study 1 at least the different
observation types which were used are mentioned, for model study 2 it
15 completely unclear what observations were used alongside tritium. It
wsn’t clear how many observations of tritium, what uncertainty these
observations are associated with, and the study which probably contains
such information was not accepted at the time of submission and is not
available.

The reviewer is correct that the second case study does not contain in-
formation regarding observations used for history matching aside from
tritium concentration observations. While the other hydrologic ob-
servations used for history matching are described in detail in |White
(2018) and |White et al.| (ress|), we note that this omission was purpose-
ful in the original manuscript: the second case study does not compare
the relative value of different data including tritium observations (as is
the case in the first case study). Instead, the second case study investi-
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gates an additional and equally-relevant aspect of environmental tracer
assimilation concerning differences in the posterior forecast distribution
in terms of first-moment (i.e., bias) and second-moment (i.e., variance)
characteristics. These differences arise directly from the assimilation of
tritium concentration observations using models that are progressively
less equipped to assimilate this information.

Nevertheless, to address this comment for completeness, we have added
details on the observation data used for history matching in the sec-
ond case study (other than tritium concentration observations), includ-
ing plots of observation locations in the Supplementary Information:
“Other observations such as long-term averaged groundwater levels
and surface-water flows, and transient surface-water and groundwa-
ter nitrate conentrations were also used for history matching (see the
Supplementary Information for observation locations)”.

While more information regarding the tritium concentration observa-
tion data used for history matching in the second case study are also
presented in White| (2018) and White et al| (ress|), we agree with the
reviewer that these details are warranted here. We have therefore
added the following: “The history-matching experiments included 20
tritium concentration observations from the groundwater system (Fig-
ure ?77) (see also Supplementary Information for observation locations
per model layer)” to the Second case study section.

Key questions that should be addressed before data worth can be objec-
tively assessed are: What data were used alongside tritium? Is tritium
an informative tracer for each of the two given systems, i.e., is the
groundwater residence time in both catchments sensitive to tritium?
How was trititum analyzed and which equations were used to postpro-
cess tritium concentrations into groundwater residence times? How
were flux measurements obtained? What is the uncertainty of spring
discharge observations? Are the uncertainties comparable to tritium-
based residence time uncertainties? What are the weights that were
used during calibration and do they reflect the uncertainty of the dif-
ferent observations? None of this is described in the manuscript. This
information is needed for the readers to assess whether the results of
the present study are correct and meaningful.

Our response to each question above are as follows:
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- As described above, we have added details to the Supplementary
Information regarding the other observations used alongside tritium
for assimilation in the second case study.

- Tritium is indeed an “informative tracer” for the hydrologic settings
in both case studies. We agree it is important to state this more explic-
itly. We therefore address this comment by adding “.... in hydrological
environments where young groundwater components are decision rel-
evant” to “we focus specifically on the ramifications of assimilating
the information contained within tritium concentration observations
and tritium-derived mean residence time (MRT) observations for deci-
sion support concerning low flow and nutrient transport at the regional
scale” in the Introduction section. We have also added the following
text to the Introduction (in response to Mr Turnadge’s comments):
“Tritium is a popular tracer for the identification of relatively young
age groundwaters (i.e., <70 years old), for the following reasons: ()
unlike CFCs, tritium is not affected by microbial degradation or con-
tamination; and (i7) unlike SF6, it is not affected by potential subsur-
face sources (e.g., Morgenstern and Daughney, 2012; |Cartwright and
Morgenstern, [2012; Beyer et al., [2014)”.

- We agree with the reviewer that details regarding how tritium mea-
surements were interpreted (for the first case study) are warranted.
This was also raised by Mr Chris Turnadge in his review comments.
We have added details on the interpretation of MRT from tritium mea-
surements to the description of the first case study (i.e., where MRT
observations were used)—see responses to Mr Turnadge above.

- We have added the following text to the revised manuscript regard-
ing the field techniques used to measure fluxes: “..., obtained using a
range of techniques including flow gauging, electrical conductivity and
temperature surveys, water isotopic analyses, etc. (Wilding, [2017)”.

- The spring discharge measurement uncertainty is assumed to be pro-
portional to the absolute flux magnitude (i.e., a heteroscedastic error
model; e.g., [Sorooshian| (1981))). The assumed measurement uncer-
tainty for MRT observations are also assumed to be proportional to
the MRT magnitude, and are generally lower than those of spring dis-
charge observations (primarily reflecting the difference in magnitudes).
However, as described on Lines 144-146 and 300-301, in order to ap-
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proximately account for the role of model error in reducing a model’s
ability to fit observations (i.e., we should not be fitting observations
to a level commensurate with measurement noise given the presence
of model error), we use the model-to-measurement residuals as a basis
to adjust the uncertainty surrounding observations (see, e.g., Doherty’
(2015)). We address this comment by adding an explicit reference to
Appendix A (where this is discussed in more detail) on Line 143: “(see
Appendix A)”.

- Observation weights assigned to different observations used for as-
similation indeed reflect uncertainty—specifically epistemic uncertainty
(accounting for both measurement and structural sources of uncertainty)—
as described above. This is stated on Line 143.

The relevance of the authors findings is over-stated:

It is unclear why it is concluded that tritium is representative of environ-
mental tracers in general. The manuscript lacks an important number
of references which have already published similar results on the value of
spring discharge or tritium or which have shown, in much more system-
atic and rigorous experimental approaches, that environmental tracers
are highly valuable for groundwater model calibration. While the title
1s very broad, i.e.: ‘On the assimilation of environmental tracer ob-
servations for model-based decision support’, the present study does not
generally assess the value of environmental tracer data in a data assim-
tlation context. It appears as if only for one of the two modelling studies
formal data assimilation has been conducted (however, as outlined in
the previous comment, it is not entirely clear what calibration approach
was used in the first modelling case study). Furthermore, only one
single environmental tracer is used: tritium. Tritium is certainly not
reflective of all environmental tracers and for many groundwater sys-
tems, tritium is not a useful tracer because groundwater residence times
are of an order on which tritium isnt sensitive. The wording of abstract,
introduction, discussion and conclusions strongly suggests that the au-
thors believe that their two case studies of tritium are representative
of the wider worth of environmental tracer data for groundwater model
calibration (e.g., Lines 268-271) : “We consider this recommendation
to be in stark contrast to the common belief that calibrating to more data
improves the model and its predictions. We therefore also consider this
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recommendation to be of significant implication to decision-support en-
vironmental modeling practitioners. It is expected that this finding can
be extended to the general approach of assimilating diverse observation
types in environmental modeling.”

All comments are addressed in detail in the following responses. First
we respond in more general terms.

The purpose of this paper is to show, through two real-world decision-
support models, that the assimilation of environmental tracers is not
a panacea to all the ills of environmental simulation, and that care in
the model design is essential to ensure that the information contained
within these tracers is not squandered. While we have endeavored to
make this purpose more clear in the text to avoid misinterpretation,
we note that the comment that “the relevance of our findings is over-
stated” is in direct contrast to the technically detailed comments by Mr
Turnadge, who explicitly stated the carefulness with which our conclu-
sions were drawn: “Having re-read the manuscript, I now believe that
the authors have been careful to state that their conclusions regarding
the applicability of environmental tracer observations are indicative,
rather than comprehensive” (see our response above). We have taken
care to ensure that all general statements are accompanied by appro-
priate caveats. Prof. Ferre’s comments also reflect the more general
implications of our findings (i.e., beyond tritium data assimilation):
“They make a great case that data, even if it inherently carries impor-
tant information, can be misleading if it is viewed through the lens of
an imperfect model”.

While we agree that a “systematic study on this topic is potentially
interesting and useful” (the reviewer’s words), a comprehensive anal-
ysis into the value or otherwise of assimilating environmental tracers,
and the models required to do so, can never be systematic because it
will always be context specific. This context reflects a combination of
important factors, such as the decision-support quantities of interest,
the hydrologic setting, the complexity (or otherwise) of the model, the
other available observations, among others.

Tritium is not representative of environmental tracers in general, as
it requires more complex mathematical simulation procedures to do its
complezx decay and production pathways justice. Showing that a sim-
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ple one-layer model cannot properly represent tritium transport and
therefore calibrating it against tritium results in biased predictions is
not generating insights representative for environmental tracer value
i general. Numerous previous studies have much more systematically
analysed and identified the large benefits of environmental tracers for
groundwater model calibration in general, but the large majority are not
referenced in the present manuscript. Here are a few examples:

Carniato et al. (2015), Highly parameterized inversion of groundwater
reactive transport for a complex field site. DOI: 10.1016/j.jconhyd.2014.12.001

Delsmann et al. (2016), Global sampling to assess the value of diverse
observations in conditioning a real-world groundwater flow and trans-

port model. DOI: 10.1002/2014WR016476

Hunt et al. (2006), The importance of diverse data types to calibrate a
watershed model of the Trout Lake Basin, Northern Wisconsin, USA.
DOI: 10.1016/j.5hydrol.2005.08.005 (cited in the present manuscript)

Rasa et al. (2013), Effect of different transport observations on inverse
modeling results: case study of a long-term groundwater tracer test
monitored at high resolution. DOI: 10.1007/s10040-013-1026-8 (cited

in the present manuscript)

Xu and Gomez-Hernandez (2016): Characterization of non-Gaussian
conductivities and porosities with hydraulic heads, solute concentra-

tions, and water temperatures. DOI: 10.1002/2016 WR019011

Oehlmann et al. (2015), Reducing the ambiguity of karst aquifer models
by pattern matching of flow and transport on catchment scale. DOI:
10.5194 /hess-19-893-2015

Masbruch et al. (2014), Hydrology and numerical simulation of ground-
water movement and heat transport in Snake Valley and surrounding
areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and
Lincoln Counties, Nevada. DOI: 10.3133/sir20145103

We do not “conclude” that tritium is representative of tracers in gen-
eral. Instead, we consider tritium as a representative environmental
tracer in the context of the potential outcomes of its assimilation into
imperfect models in general. Our consideration of tritium simply re-
flects that it is one of the most widely used environmental tracers in
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younger groundwater systems (as is the case for our two case studies—
see comments above).

The purpose of the paper is not to assess the representativeness of tri-
tium relative to other tracers. Instead, it is to demonstrate that the use-
fulness or otherwise of information-rich data, including environmental
tracers, is related to the forecasts being made, and that such data may
induce (undetectable) forecast bias, when assimilated into imperfect
models. We believe that these issues are relevant and transferrable to
the assimilation of environmental tracers in general. This reflects that
we consider the primary barrier to appropriate assimilation of tracer
data to be the difficulties associated with extracting information from
spatially-discrete concentration observations when using upscaled or
simplified representations of hydraulic properties within a model that
simulates tracer concentrations using the advection-dispersion equa-
tion. To the extent that the simulated output corresponding to ob-
served tracer concentration(s) are sensitive to model details or param-
eters that are “missing” in a simplified model (e.g., White et al.|(2014)),
inappropriate parameter compensation will occur. Then, to the extent
that the forecast of management interest is dependent on these biased
parameter estimates, the forecast will be biased, potentially leading
to resource mismanagement. Therefore, we believe that these factors,
which all real-world decision-support model analyses share, will also
cause issues for tracer data assimilation and assimilation of diverse data
in imperfect models more generally. Despite this, we believe that the
larger challenge for the transferability of our work is the specificity of
different decision-support contexts, and the infinite spectrum of model
design, as we discuss in the Discussion and Conclusions section.

To address comments related to how our findings can be applied to
other tracers, for example, we have added a paragraph to the Discus-
sion and Conclusions section of the revised manuscript based on the
response above.

What is demonstrated in the first modeling case study, i.e., the compli-
cated nature of using residence/travel time observations derived from
tritium for groundwater model calibration, is very well known and was
already subject of multiple much more systematic and thorough com-
parisons and reviews, some of which are even referenced in the present
manuscript (e.g., Turnadge and Smerdon 2014 (DOI: 10.1016/j.jhydrol.2014.10.056),
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McCallum et al. 2014 (DOI: 10.1111/qwat.12052) and 2015 (DOI:
doi:10.1111/qwat.12237), Schilling et al. 2019 (DOI: 10.1029/2018RG000619),
Sanford 2011 (DOI: 10.1007/s10040-010-0637-6)). All these studies
concluded already that it is better to calibrate a flow model against en-
vironmental tracer concentrations, or yet even better, direct flux obser-
vations, rather than against residence times due to the fact that the
simulation of residence times is often faulty due to structural inaccura-

cies in the numerical groundwater model.

We agree with the reviewer that it has been reported in the literature
that it is a preferred approach to simulate tracer concentrations (involv-
ing solution of the advective-dispersive equation) and history match to
tracer concentrations directly, rather than simulate residence times (in-
volving advective-only particle-tracking schemes) and history match to
derived quantities such as MRT. We state this on Line 40-43 (original
manuscript). However, in real-world modeling, the compounding chal-
lenges associated with simulation of tracer concentrations, e.g., com-
putational demands, can complicate the assimilation of tracers. These
challenges are why the latter approach is still popular in the industry
(e.g., Turnadge and Smerdon| (2014); Gusyev et al| (2014])), as stated
in the manuscript.

It is interesting that the reviewer states that model “structural inaccu-
racies” generally explain why residence times cannot be reliably simu-
lated. We contend that a significant degree of “structural inaccuracy”
will persist, even when dispersive and decay processes are simulated
explicitly (i.e., rather than simplified advective-only simulations), as is
demonstrated explicitly in the second case study. The difficulty in sim-
ulating spatially and temporally distributed tracer concentrations (or
more generally, simulating advective-dispersive transport) has been dis-
cussed by many (e.g., Zheng and Gorelick (2003); Riva et al.| (2008]))—
see also our response to the previous comment. Our second case study
demonstrates how discretization-related model error combined with as-
similation of discrete-point concentration observations can induce con-
siderable biases and ultimately corrupt resource management.

Specifically, the fact that spring discharge observations contain the largest
amount of information for spring discharge predictions is neither sur-
prising nor new. Fxchange fluzes in general, be it groundwater dis-
charging as spring water or into a surface water body, or surface water
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infiltrating into the subsurface, have been demonstrated to not only be
more valuable data for groundwater model calibration than travel /residence
times observations, but also to be much less prone to bias due to straight-
forward implementation into flow model calibration compared to the
more complex physical underpinnings required for groundwater resi-
dence times simulations. The authors even reference one study which
has demonstrated this systematically in comparison to groundwater resi-
dence time observations: Hunt et al. (2006, DOI: 10.1016/j.5hydrol. 2005.08.005,
already cited in the manuscript) compared the worth of several different
fluz observations to the worth of hydraulic heads, environmental tracer
concentrations and travel time information, and found that groundwa-
ter exfiltration onto the surface (providing baseflow of a stream) was
the most information rich data type overall, and that many other flux
observation types were also more informative than travel time observa-
tions.

The authors failed to reference studies which have already demonstrated
the high tmportance of spring discharge more specifically: Masbruch et
al. (2014, DOI: 10.3133/sir20145103, not cited in the manuscript)
systematically compared the information content of spring discharge
to observations of groundwater levels, temperature and environmental
tracers, and found that spring discharge observations were the most
informative overall data type. A similarly high tmportance of spring
discharge observations was identified by La Vigna et al. (2006, DOI:
10.1007/s10040-016-1393-z, not cited in the manuscript), who system-
atically elaborated the worth of spring discharge observations for the
calibration of groundwater flow models in comparison to hydraulic head
observations. Oehlmann et al. (2015, DOI: 10.5194/hess-19-893-2015,
not cited in the manuscript) systematically analysed the calibration
of karst groundwater models against observations of spring discharge,
groundwater residence times and groundwater levels. They identified
that spring discharge observations provide indispensable information
for karst groundwater model calibration, but also showed the large in-
formation content of residence time observations. The use of all three
observation types together was the most beneficial approach for ground-
water model parameterisation.

The authors’ literature review is unbalanced, misses many key refer-
ences, and makes incorrect statements about findings of key studies.
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We agree that the specific finding from the first case study that the
spring discharge observations are of most “worth” when considering
spring discharge forecasts is not surprising. We state this explicitly
on Lines 243-245: “The worth of MRT observations relative to vari-
ous hydraulic potential and discharge observations across the different

forecasts are, in general terms, similar to those reported by Zell et al.
(2018)”.

To address this comment, we will add the Hunt et al.| (2006]), Masbruch
et al.| (2014) and Oehlmann et al. (2015) reference to further support
this sentence.

We note that the reviewer states that only “aspects” of our study have
been demonstrated in other studies. We agree. However, as discussed
in detail above, the aspects that the reviewer is referring to do not
encapsulate the thrust of our paper. We agree with the reviewer that
numerous studies have explored the value in environmental tracer data
for history matching groundwater models, and we accept that we have
not cited every paper on this in our literature review. However, we do
not feel that it is necessary to do so, as the literature we cite in the
Introduction collectively expresses the state of the science: that studies
have “identified the large benefits of environmental tracers for ground-
water model calibration in general” (to use the reviewer’s words).

In contrast, our study provides an important demonstration of how
“variable” the worth of these data may actually be, e.g., in the pres-
ence of other data and when making water quantity-related forecasts.
We provide a series of detailed explanations for this—we refer the re-
viewer to Lines 235-254 of the Discussion and Conclusions sections. We
feel that such “worked examples” are important for the community to
see—this perspective was strongly supported by the other reviewers,
e.g., “This is really important work and I feel that HESS is just the
right target audience”, “this is just the sort of result that could spark
important conversations in our field” and “the group takes advantage
of its abilities to provide useful guidance for the community” (Prof.
Ferre), and “this manuscript provides a valuable and timely contribu-
tion towards guidance in the use of subsurface environmental tracers”
and “investigations of when benefits may be obtained (or perhaps more
importantly, when not) from these additional data types (and therefore
specific guidance in their use) has been limited” (Mr Turnadge).
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Furthermore, we note that the references suggested by the reviewer do
not tackle the entangled issues of model error, data assimilation and
predictive reliability—in contrast to our study. For example, following
consideration of the references suggested by the reviewer, we consider
questions such as: (i) how could these studies explore the potential for
forecast bias given that history matching was undertaken using only a
single model?; and (i7) how can the observation data responsible for
inducing forecast bias through assimilation be identified? These ques-
tions illuminate how our study differs from previous studies. This also
provides an insight into the importance of the context is which our pa-
per is framed—and how this differs to groundwater modeling practice
in general terms. We were very careful to make this point clear, e.g.,
“Modeling for the purpose of decision support is the context in which
the remainder of this paper is framed” (Line 29), and “The benefit or
otherwise of direct assimilation of tritium concentration data in other
decision contexts, or for more general system understanding and con-
ceptual model development, is therefore not the focus of the current
study—this study is concerned with a models ability to “predict” (in
two decision-support contexts) rather than “explain” (observed system
behavior), as contrasted by Shmueli (2010).” (a revised version of Line
231).
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Abstract. It has been advocated that history-matching numerical models to a diverse range of observation data types, par-
ticularly including environmental tracer concentrations and their interpretations/derivatives (e.g., mean age), constitutes an
effective and appropriate means to improve model forecast reliability. This study presents two regional-scale modeling case
studies that directly and rigorously assess the value of discrete tritium concentration observations and tritium-derived mean
residence time (MRT) estimates in two decision-support contexts; “value” herein-is-measured-as-is measured herein as both
the improvement (or otherwise) in the reliability of forecasts through uncertainty variance reduction and bias minimization as
a result of assimilating tritium or tritium-derived MRT observations. The first case study (Heretaunga Plains, New Zealand)
utilizes a suite of steady-state and transient flow models and an advection-only particle-tracking model to evaluate the worth of
tritium-derived MRT estimates relative to hydraulic potential, spring discharge and river/aquifer exchange flux observations.
The worth of MRT observations is quantified in terms of the change in the uncertainty surrounding ecologically-sensitive
spring discharge forecasts via first-order second-moment (FOSM) analyses. The second case study (Hauraki Plains, New
Zealand) employs paired simple/complex transient flow and transport models to evaluate the potential for assimilation-induced
bias in simulated surface-water nitrate discharge to an ecologically-sensitive estuary system; formal data assimilation of tri-
tium observations is undertaken using an iterative ensemble smoother. The results of these case studies indicate that, for the
decision-relevant forecasts considered, tritium observations are of variable benefit and may induce damaging bias in forecasts;
these biases are a result of an imperfect model’s inability to properly and directly assimilate the rich information content of
the tritium observations. The findings of this study challenge the unqualified advocacy of the increasing use of tracers, and
diverse data types more generally, whenever environmental model data assimilation is undertaken with imperfect models. This
study also highlights the need for improved imperfect-model data assimilation strategies. While these strategies will likely re-
quire increased model complexity (including advanced discretization, processes and parameterization) to allow for appropriate
assimilation of rich and diverse data types that operate across a range of spatial and temporal scales commensurate with a
forecast of management interest, it is critical that increased model complexity does not preclude the application of formal data

assimilation and uncertainty quantification techniques due to model instability and excessive run times.
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1 Introduction

Numerical models used to provide water resources management decision support are often subjected to data assimilation
through history matching (or “calibration”). This is due to the large information deficit accompanying the development of
these models, and the potential for the history matching process to lead to an increased reliability of simulated outputs of
management interest (herein referred to as “forecasts”) through variance reduction. Modeling for the purpose of decision-
support is the context in which the remainder of the paper is framed.

It is widely advocated that the assimilation of multiple types of state observations (i.e., “diverse data”) is of benefit in “con-
straining” models. In other words, as more data are used for history matching, and the more diverse those data are, the reliability

of the forecasts increases. This is an intuitive stance arising from direct application of Bayes equation and from the recognized

rich information content of diverse data types; this intuition is supported by many studies, e—g-Sanford-et-al(2004); Michael-and-Voss-(20(

Sanford et al., 2004; Michael and Voss, 2009; Ginn et al., 2009; Li et al., 2009; Gusyev et al., 2013; Hansen et al., 2013

. For example, Hunt et al. (2006) demonstrated the importance of unconventional observations including lake/aquifer exchange

—(e.g.,

fluxes, depth of lake isotope plume and groundwater travel times in achieving “well-constrained parameter values” (e.g., ac-
ceptable posterior variance) through history matching a regional-scale groundwater model.

History-matching to environmental tracer observations, in particular, is widely a regarded mechanism to improve the reliabil-
ity of forecasts. In a review of approaches for modeling environmental tracers in groundwater systems, Turnadge and Smerdon
(2014) state that age data have been useful for constraining models; in particular, “simulation of environmental tracer transport
that explicitly accounts for the accumulation and decay of tracer mass, has proven to be highly beneficial in constraining nu-
merical models”. Zell et al. (2018) showed the relative importance of water-level, stream discharge and environmental tracers
(including tritium, CFCs, SF6) in the conditioning of groundwater travel time forecasts. They reported that, overall, tracer
data were of considerable benefit in terms of forecast uncertainty reduction. In a recent review paper, Schilling et al. (2019)
state that assimilation of concentration observations through surface water/groundwater flow model history matching “harbors

huge potential”, based on the findings of previous studies, while assimilation of tracer-derived residence time observations in
these models also often help significantly (where an appropriate approach is adopted, e—g-Sanferd-(201Zuberet-al204H
Y—(e.g., Sanford, 2011; Zuber et al., 2011).

However, the notion that unabated assimilation of diverse data types (including environmental tracers) is always of ben-
efit holds only from a theoretical standpoint. Direct evaluation of the likelihood term of Bayes theorem is predicated on a
“perfect” simulator to appropriately condition uncertain model parameters through data assimilation. In real-world model-

ing contexts, however, the presence of model error can invalidate even the most rigorous data assimilation techniques fe—g=

. Therefore, when an imperfect simulator is used in a data assimilation framework, extreme care must be taken to assure that the
model imperfections do not corrupt (through biased first moments, or under-estimated second moments) the forecast posterior
distributions. A number of recent works have shown that the failure to appropriately frame the imperfect-model data assimila-

tion problem can result in severely biased results

—(e.g., Doherty and Welter, 2010; White et al., 2014; Oliver ai
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., Doherty and Christensen, 2011; Knowling et al., 2019; White et al., in press). The largely unknown ability of an im-

perfect regional-scale model to simultaneously assimilate diverse data types that operate over different spatial and temporal
scales—and how these imperfections may affect model-based decision support in some contexts—serves as motivation for the
current study.

A subtle, yet very important distinction should be made at this point. There is no doubting that diverse data types, and in par-

ticular environmental tracers, have contributed significantly to the understanding of catchment processes and properties {e—g=

. However, as discussed, this study focuses instead on the role of (imperfect) models in two selected decision-support contexts,

and how the assimilation of environmental tracers in particular affects their utility in these contexts, i.e., by increasing (or
otherwise) the reliability of forecasts.

Herein, we focus specifically on the ramifications of assimilating the information contained within tritium concentration ob-
servations and tritium-derived mean residence time (MRT) observations for model-based decision support concerning low

flow and nutrient transport at the regional scale in_hydrological environments where young groundwater components are

decision relevant. Tritium is &g

unique-interpretation-(ea popular tracer for the identification of relatively young age groundwaters (i.e., <70 years old), for the

following reasons: (z) unlike CFCs, tritium is not affected by microbial degradation or contamination; and (¢7) unlike SF6, it is

The objeetives-objective of this study are-is two-fold. First, we evaluate-investigate the theoretical worth of tritium-derived
MRT observations (as-quantified-by-forecast-varianee-reduction)relative to other observation data types. This investigation is
performed using a case study (Heretaunga Plains, New Zealand) that adopts first-order second-moment (FOSM) techniques;
our analysis focuses on the relative worth of MRT observations in terms of changes in the uncertainty associated with spring
discharge forecasts at various locations that are of management interest due to their ecological significance. This first case
study employs advective-only particle-tracking modeling approach to simulate MRT.

Second, we investigate-explore the use of discrete tritium concentration observations in data assimilation in the context of

a controlled model simplification experiment as a means to understand what, if any, ill-effects may be induced by using these

rieh-information-rich data types in a simplified (i.e., imperfect) model.

using a second case study that employs a mcmgp}mryggpalred 51mple/complex model ana1y51s to-rigoroushy-investigate-the
(White et al., in press)
mmmmmmmmmmwmmmm and uncer-




tainty under-estimation surrounding #

of nutrient load to an ecologically-sensitive estuary system. This second case study simulates (tritium and nitrate) tracer

concentrations directly—using a full advective-dispersive modeling a;

95 roach that also accounts for first-order reaction rates.

2 First case study

The first case study serves to investigate the ability of tritium-derived MRT observations to constrain ecologically-sensitive
spring discharge forecasts (i.e., the “worth” of these observations) using a model of the groundwater system of the Heretaunga
Plains (New Zealand) (Figure 1). The model was constructed primarily for the purposes of groundwater allocation management

100 decision-support.
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Figure 1. Heretaunga Plains model schematic, including river boundary conditions (blue lines), top-layer confinement status (unconfined
areas shaded blue and confined areas shaded yellow), coastal general-head boundary (magenta line). The location of groundwater tritium-
derived MRT observations are shown as red triangles. The location of forecasts—spring discharge rates during summer and winter—are

shown as white markers.



2.1 The model

The model comprises 302 rows and 501 columns (uniform 100 m by 100 m horizontal grid discretization). Two layers are
used for flow simulations, whereas six layers are used to generate more vertically detailed cell-by-cell flow budgets for
particle tracking simulations. MODFLOW-2005 (Harbaugh, 2005) is used to simulate groundwater flow under steady-state
105 and transient conditions. Separate simulations are conducted for data assimilation and forecasting purposes spanning differ-
ent time periods (and temporal resolutions) of interest (e.g., separate transient flow simulations are conducted using annual
stress periods for the period 1980—2015, and using monthly stress periods for the periods 1997—1999 and 2011—2015).
MODPATH (Pollock, 2012) is used to simulate advection-only (i.e., neglecting diffusion, dispersion and retardation) re-
verse particle tracking, thereby providing a basis for assimilating tritium-derived MRT estimates (Figure 1). Specifically, the
110 mean particle exit time corresponding to each observation location is compared with tritium-derived MRT estimates {e—g=

Sanferd- (201 -Gusyev-et-al2044p—(e.g., Sanford, 2011; Gusyeyv et al., 2014).

Relevant aspects of the model are as follows:

— Land-surface recharge estimates, derived from a daily soil water balance modeling assessment (Rajanayaka and Fisk,

2018), are specified using the (specified flux) recharge package.

115 — The interaction between groundwater and surface water (including rivers, streams and springs) is simulated using the
(head-dependent flux) river package. Time-varying river stage values are specified for the three main rivers in the region
based on observed values. River-bed conductance values are varied seasonally to reflect in an approximate manner the

non-linear relationship between field observations of spring discharge and groundwater levels.

— The coastal boundary condition is represented using the (head-dependent flux) general-head boundary package. The
120 general-head stage is specified using a density-corrected mean sea-level (e-—g--Merganetal-(2042))—(e.g., Morgan et al., 2012

A~

— Groundwater abstraction rates, based on observed and estimated data, are represented using the (specified flux) well

package.

For a more detailed description of the Heretaunga Plains models, the reader is referred to Rakowski and Knowling (2018).
125 2.2 Forecasts

We focus on the following forecasts—due to their ecological significance and their potential to be impacted by groundwater

abstraction:

— spring-Spring discharge rate during summer at two locations (one in the central Heretaunga Plains, and one in the upper

reaches of the catchment) (Figure 1)

130 — spring-Spring discharge rate during winter at the central Heretaunga Plains location (Figure 1)



2.3 i ingObservations for assimilation

Data assimilation via-history-matchingis-undertaken-s undertaken notionally via FOSM techniques using the following obser-

vations:

— 6,167 groundwater levels (comprising time-averaged water-levels, absolute and deviation-from-mean annual, monthly

135 and daily water-levels, long-term differences in water-level, and vertical head differences);

— 92 surface-water/groundwater fluxes (time-averaged and transient river gain and loss fluxes and spring discharge fluxes}

(neluding time-averaged-and-transient, obtained using a range of techniques including flow gauging, electrical conductivit
and temperature surveys, water isotopic analyses, etc. (Wilding, 2017)); and

— 52 groundwater MRT estimates derived from tritium concentrations using binary-mixinganalyticalmodels(Morgenstern-et-al5 2018y

140 lumped-parameter models. Specifically, a combination of exponential piston-flow models (EPMs) and binary-mixin

models (BMMs) (that comprise two EPMs) were used. BMMs were employed for wells where long time-series data

are available for multiple tracers, and where an adequate fit to different tracer signals could not be obtained on the

basis of a single EPM. Relative EPM mixing fractions were specified on the basis of aguifer confinement conditions

and well-screen length (mixing fractions of 80-95% were applied for wells with a long screen in unconfined conditions,
145 whereas mixing fractions of 50-60% were applied for wells with shorter screens in confined conditions). The reader is

referred to Morgenstern et al. (2018) for more details.

A highly parameterized approach was adopted (e-g-Huntet-al(2007); Knowling-et-al(2049));(e.g., Hunt et al., 2007; Knowling et al.,
,involving a total of 822 uncertain parameters¢see-Supplementary-Material). Spatially-distributed parameterization of hydraulic

conductivity (horizontal and horizontal/vertical anisotropy ratio), effective porosity, specific storage and specific yield is

150 achieved using pilot points {e—gDPeherty(20031H—(e.g., Doherty, 2003). Spatially-distributed river-bed and boundary conductance
arameters are defined on a reach and zone basis, respectively. We refer the reader to the Supplementary Information for more

2.4 Uncertainty quantification and data-worth exploration

Here we employ FOSM techniques (e-gTFarantola(2005); Deherty(2045))(e.g., Tarantola, 2005; Doherty, 2015) to investi-

155 gate the theoretical worth of various observation data types in terms of the their influence on the uncertainty variance surround-
ing forecasts following data assimilation. Application of FOSM in this context requires only consideration of the relative dif-

ferences in estimated forecast variance as a result of conditioning on different observation data types. Use of FOSM in relative

contexts has been shown to be especially robust

y—(e.g., Dausman et al., 2010; Herckenrath et al., 2011; Knowling et al., 2019).

160 The theoretical underpinnings of FOSM-based uncertainty quantification and data-worth assessment and details related to
its application herein are presented in Appendix A.

Aspects that are relevant to the application of FOSM herein include:
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— The prior parameter covariance matrix g was specified as a block-diagonal matrix whereby geostatistical correlation
between pilot-point based spatially-distributed parameter-parameters is represented through use of an exponential vari-
ogram with a range of approximately 10,000 m, and a sill proportional to the expected prior variance (the range of the
square-root of the diagonal elements of ¥, i.e., the standard deviation of prior parameter uncertainty, is given in the Sup-
plementary Materiallnformation). Non-spatially- and temporally-distributed parameters are assumed to be uncorrelated

and therefore occupy diagonal matrix elements only.
— The Jacobian matrix J was populated using 1% two-point derivative increments.

— The diagonal elements of the epistemic noise covariance matrix 3. (see Appendix A) was specified on the basis of
observation “weights”, adjusted in such a way that the measurement objective function equals the number of non-zero

weighted observations, in order to approximate epistemic noise (i.e., the combined impact of random measurement errors

and model simplification errors) based on model residuals {e—g5DPoeherty-(26451)—(e.g., Doherty, 2015).

2.5 Results

For the summer spring discharge forecast in the central Heretaunga Plains, MRT observations display a worth that is consid-
erably less than that of spring discharge observations during the summer months (i.e., when lower flows persist) and transient
head observations (Figure 2 A). This is not surprising given that the forecast and the summer spring discharge observations are
of the same type and represent the same temporal condition, and transient head observations are plentiful (5,704), spanning
different time periods at annual, monthly and daily resolutions. The worth of MRT observations is greater than winter spring
discharge observations, indicating a higher relevance of the spatially and temporally integrated information contained within
MRT observations for this low-flow related prediction compared to the higher frequency and magnitude signals captured within
spring discharge observations during winter.

Similar results from a relative perspective are apparent for the summer spring discharge forecast in the upper portion of the
Heretaunga Plains. That is, transient head observations and spring discharge observations during summer are of highest worth,
followed by observations of time-averaged heads, MRT and winter spring discharge (Figure 2 B)—for reasons described above.
The greater worth of MRT observations for this forecast compared to the summer spring discharge forecast located down-
gradient indicates that this forecast is more senstive to (uncertain) model parameters that are conditioned through assimilating
MRT observations. This is due to the fact that the forecast is located where the aquifer is unconfined and receives rainfall and
river recharge—these recharge rates are informed by MRT observations and have a large influence on the forecast.

For the winter spring discharge forecast, the worth of MRT observations is lower than that of other observations (Figure 2
C). This indicates a low relevance of the spatially and temporally integrated information contained in MRT observations with
respect to a forecast concerning higher frequency and magnitude signals. This is also supported by the relatively low worth of
the time-averaged head observations due to the temporally integrated nature of these quantities. As expected, a significantly
greater worth of spring discharge observations during winter is evident for this forecast due to the unique and directly relevant

information content associated with discharge observations that capture high-flow transience signals.
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Across the three forecasts, a significantly larger worth is evident when MRT observations are added to the observation dataset
compared to when MRT observations are removed from the observation dataset (red versus blue; Figure 2). This indicates that
correlation occurs between the information contained within MRT observations and other observations. This is generally in

contrast to the more unique information contained within spring discharge observations.
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Figure 2. Worth of different observation groups (%DW) with respect to forecasts: (A) spring discharge flux during summer in central
Heretaunga Plains; (B) spring discharge flux during summer in upper portion of Heretaunga Plains; and (C) spring discharge flux during
winter in central Heretaunga Plains (see Figure 1 for locations). %DW is quantified as both the increase in forecast uncertainty variance
following the removal of an observation group available for conditioning (red), and the decrease in forecast uncertainty variance following

the addition of an observation group available for conditioning (blue) (see Appendix A). Note the different scales on the y-axes.

3 Second case study

The second case study serves to evaluate how assimilating discrete groundwater tritium concentration observations may affect
the robustness of forecasts in the context of a controlled model simplification experiment, where the simplification is related to
model vertical discretization - we refer the reader to White et al. (in press) for an exploration of the appropriateness
of reduced-discretization models in decision support more generally). In contrast to the first case study, which focused on
the theoretical worth of derived tritium observations in terms of changes in forecast variance, this case study proceeds with
repeated data assimilation in a paired simple/complex model analysis both with and without assimilating tritium observations.

Through these paired-model analyses, any potential biases or under-estimation of variances arising from the assimilation of



tritium observations with a simplified model wil-can be exposed. A linked hydrologic-nutrient transport model of the Hauraki

Plains (New Zealand) (Figure 3) is used as a basis for the model simplification experiment.

Figure 3. Hauraki Plains model extent (red dashed line), layer-1 inactive area (shaded), and surface-water network (blue lines). The terminal
surface-water reaches that discharge to the Firth of Thames are shown as blue triangles. The location of groundwater tritium measurements

are shown as magenta dots.

210 3.1 The model

The linked hydrologic-nutrient transport model simulates groundwater and surface-water flow using MODFLOW-NWT (Nis-
wonger et al., 2011); advective and dispersive transport of nitrate and tritium in the groundwater and surface water system
is simulated using MT3D-USGS (Bedekar et al., 2016). Fhe-medelDenitrification and radioactive tritium decay processes

215 simplification analysis is described in detail in White et al. (in press).
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Herein, we focus on a single forecast: the cumulative load of nitrate discharging from the surface-water system to the Firth
of Thames—an ecologically-sensitive estuary system—over a 10-year projection scenario involving present-day (2018) flow
and transport model forcing conditions. This forecast aggregates flow paths across the entire model domain (i.e., it represents
the only nitrate-flux sink of the system). This forecast is referred to herein as the “Firth forecast”.

3.2 Histery-matehing-Data assimilation and uneertainty-quantifieation-methedelogyuncertainty quantification

As described in White et al. (in press), data assimilation was undertaken via history matching three versions of the model,

each with a different vertical discretization scheme;—were-history-matched—; history matching was performed using the it-
erative ensemble smoother PESTPP-IES (White, 2018). Each-history—matchine—experiment-employed—a—dense—grid-sea

History matching was conducted using 100 stochastic parameter realizations;feHewing-. An ensemble size of 100 was

deemed sufficient to avoid under-utilization of observation data (i.e., “under-fitting’”) based on an exploration of the solution-space

dimensionality using a subspace analysis (Moore and Doherty, 2005) (see the Supplementary Information and Knowling et al. (2019
for more details). Following history matching, the 10-year projection scenario was evaluated with the 100 history-matched re-
alizations (effectively a 100-member sample of the posterior distribution). From the resulting 100 scenario evaluations, a
posterior probability density function (PDF) of the First forecast was constructed-—Each-of-these-,_

The reader is referred to White (2018) and White et al. (in press) for a full description fo the Hauraki Plains model data
assimilation process; a brief overview is nevertheless provided as follows:

— Model parameterization. Spatially-distributed parameterization of (horizontal and vertical) hydraulic conductivity, effective

porosity, recharge rate, first-order denitrification rate, initial concentration and dispersivity is achieved using a combination
of cell-based and zone-based multipliers. Nitrate-loading rate and abstraction well rate is parameterized using cell-by-cell
and well-based mulitipliers, respectively. Streamflow-routing (SFR) elements are parameterized on a stream-segment
basis. This parameterization approach gives rise to a problem dimensionality of 141268, 50180 and 29030 for the 7-layer,
2-layer and 1-layer model history-matching experimentsineluded-available-diserete-tritim-, respectively. We refer the
reader to White (2018) and White et al. (in press) for more information on parameterization and construction of prior

— Observation data for assimilation. The history-matching experiments included 20 tritium concentration observations
from the groundwater system (Figure 3) —(see also Supplementary Information for observation locations per model
layer). Other observations such as long-term averaged groundwater levels and surface-water flows, and transient surface-water
and groundwater nitrate conentrations were also used for history matching (see the Supplementary Information for
observation locations).

As shown in White et al. (in press), the reduced-discretization (1-layer and 2-layer) model posterior PDFs for the Firth fore-
cast display significant bias compared to the corresponding 7-layer model posterior PDF (Figure 4 A,D,G). In White et al. (in
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press), it was hypothesized that the tritium observations were giving rise to the apparent bias in the 1-layer and 2-layer posterior

PDFs through the phenomenon of (inappropriate) parameter compensation {e-g-Clark-and-Vrugt-(2006);-White-et-al-2044)
>(e.g., Clark and Vrugt, 2006; White et al., 2014) arising from history matching models with simplified model vertical dis-

cretization. Herein, we test this hypothesis by conditioning all three uniquely-discretized models again, but without using the
discrete tritium observations, and then comparing the resulting posterior PDFs to the corresponding PDFs in White et al. (in
press). Any apparent difference in the posterior PDFs for the Firth forecast is therefore directly attributable to the exclusion of

the tritium observations during history matching.
3.3 Results

The process of history-matching with and without available groundwater tritium concentration observations yields substantial
differences in the posterior PDFs of the Firth forecast (Figure 4). In the case of the 7-layer “complex model” (Figure 4 A,B),
excluding the tritium observations results in a posterior PDF with a larger second moment and a slightly larger first moment
compared to including tritium observations for history matching; the difference between the Firth forecast posterior PDFs with
and without assimilating tritium observations is between 0 and 2-<+67k¢-2 x 107 kg of nitrate (Figure 4 C). The larger second
moment of the posterior PDF when excluding tritium observations represents an intuitive and expected outcome: using fewer
observations for parameter conditioning through history matching should (theoretically) result in a larger posterior variance for
the forecasts that depend on those parameters.

Herein, for the purposes of identifying bias, the 7-layer model is considered to represent the best-available estimate of
the Firth forecast. Using this construct, we see that there are significant differences in posterior PDFs across the uniquely-
discretized models arising from data assimilation that included the tritium observations (Figure 4 A,D,G). This is largely in
contrast to the case where data assimilation is undertaken without the tritium observations, which leads to much more subtle
differences in posterior PDFs across the uniquely-discretized models (Figure 4 B,E,H).

The bias apparent in the posterior difference PDFs for the reduced-layer models relative to the 7-layer model (Figure 4 C,E]I)
are directly attributable to the use of tritium observations in the data assimilation process. The difference between the Firth
forecast PDFs resulting from data assimilation with and without tritium is most pronounced for the 1-layer model (Figure 4
I). In this case, excluding tritium observations from the history matching results in a decrease in simulated nitrate discharge
of 2 x 107 to 46" hg—approximatety-4 x 107 kg—approximately a 40% decrease in simulated mean nitrate discharge. We
attribute the apparent 1-layer PDF bias to the loss of simulated vertical flow and associated deeper groundwater flow paths.
While-these Briefly, this occurs due to the aggregation of numerical discretization effects—the flow paths of a coarser-layer
model will be a smoother and averaged representation of those derived from a finer-layer model. While these deeper flow paths

are not important for simulating the nitrate transport cycle (given the relatively high denitrification rates in the Hauraki system),
it is apparently important for assimilating the tritium concentration observations.

The biases identified reflect the sensitivity of the Firth forecast to uncertain parameters that were conditioned by tritium
concentration observations. This occurs due to the spatially integrated nature of the Firth nitrate-load forecast, and because

11
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the tritium observations provide insight into spatially and temporally averaged recharge and lateral flux rates in the upgradient

ortion of the domain, where most of the surface-water/groundwater exchange occurs.
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Figure 4. Comparison of posterior probability density functions (PDFs) for the Firth forecast. The left column (A,D,G) allows identification
of bias as a result of both model simplification and tritium assimilation. By comparing to the middle column (B,E,H), model simplification-
induced bias can be separated from that induced by assimilating tritium observations. The isolation of tritium assimilation-induced bias
evident with different simplified models is shown in the right column (C,E]I). Including tritium observations in the conditioning of the 1-
layer and 2-layer models (G,D) yields significant bias compared to the 7-layer PDF (A). However, if tritium observations are excluded from
conditioning, the 1-layer and 2-layer PDFs (H,E) have considerably less bias compared to the corresponding 7-layer PDF (B). The differences

in the PDFs (C,E]) show that the tritium observations have the greatest biasing effect on the Firth forecast for the 1-layer model.

4 Discussion and Conclusions

This study explores the ramifications of assimilating tritium concentration and tritium-derived interpretation observations,
specifically in the context of two examples of decision-support modeling. The benefit or otherwise of tritium data in other
contexts such as site system characterization/understanding and conceptual model development is therefore not the focus of
the current study—this study is concerned with a model’s ability to “predict” (in two decision-support contexts) rather than

“explain” (observed system behavior), as contrasted by Shmueli (2010).

12



290 The first case study presented herein serves to demonstrate that assimilating the rich information contained within tritium-
derived MRT observations may be of variable worth in terms of improving the reliability of forecasts, especially where MRT
observations are correlated with other available state observations (e.g., where hydraulic data are widespread, given the ap-
parent spatially and temporally integrated information content of MRT observations, as supported by Ginn et al. (2009)).
Moreover, the worth of MRT observations is shown to vary between forecasts in such a way that reflects the underlying

295 physics represented by the model (e.g., the MRT observations are of greatest worth for forecasts that are located where the
aquifer is receiving recharge)—these physics dictate the “information flow” rather than the spatial proximity of the MRT
observations and the forecast. The forecast-specific nature of observation worth has also been reported previously fe—g-

—~(e.g., Dausman et al., 2010; Fienen et al., 2010; White et al., 2016

. The worth of MRT observations relative to various hydraulic potential and discharge observations across the different fore-

300 casts are, in general terms, similar to those reported by Hunt et al. (2006), Masbruch et al. (2014), Oehlmann et al. (2015) and

Zell et al. (2018) (especially when considering the discussion point in the following paragraph).

While the particle-tracking model used in the first case study provides a mechanism for MRT observations to inform uncer-
tain model parameters, including aquifer porosity (which is otherwise uninformed by other historical field observations), it is
important to note that the forecasts are insensitive to porosity. That is, the information contained within MRT observations is

305 spread between parameters that both do and do not play a role in constraining forecasts—effectively “diluting” the information
available for conditioning. It is therefore expected that the worth of MRT observations presented herein would generally be
larger for forecasts that are dependent on both uncertain hydraulic and transport parameters (e.g., particle travel times)¢. This
is notwithstanding that the uncertainty variance for such forecasts may be larger given the additional source of uncertainty
associated with porosity). These findings are nevertheless highly relevant in that MRT observations are widely regarded to be

310 of benefit in constraining uncertain model parameters more generally (Schilling et al., 2019)—regardless of the forecast.

The second case study serves to demonstrate that assimilating tritium concentration observations with simplified (i.e., imper-
fect) numerical models may induce significant bias in forecasts—bias that is undetectable without a complex/simple model pair

—(e.g., Doherty and Christensen, 2011; White et al., 20

. The forecast bias revealed in the second case study occurs as a result of the vertical discretization-simplified model’s inability

315 to appropriately assimilate the rich information content of the tritium observations. Generally, the observed pattern of sim-
plification and resulting forecast bias implies that as the simplification of the model increases, the dangers of assimilating
rich and diverse data types also grows. This result is highly relevant to decision-support modeling practitioners since all nu-
merical models are gross simplifications of real environmental systems that they attempt to simulate. We refer the reader to

Knowling et al. (2019) and White et al. (in press) for a broader exploration of the consequences of model simplification (in

the form of parameterization reduction and vertical-discretization coarsening respectivel

forecast bias-variance trade-off and its implications for management decision making more generally.
Collectively, these results suggest that the assimilation of tritium and tritium-derived observations through history match-

320 in terms of the decision-relevant

ing with an imperfect model should be strategic and approached with caution. It is recommended that these information-rich

observations should not indiscriminately be incorporated in a data assimilation framework, given that this study has shown
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325 that such an approach (i) may enly-be of variable benefit—apparent benefit, depending on the forecast being made, and (¢%)

when using imperfect models, may produce far worse forecast outcomes than those that would have been arrived at without
assimilating these observations at @
dation to be in stark contrast to the common belief that “calibrating to more data improves the model and its predictions”-
330 We-therefore-also-consider-this-recommendation-to-be-, and therefore of significant implication to decision-support environ-

mental modeling practitioners. f-is-expeeted-that-thisfinding-can-be-extended-to-the-general-approach-of-assimilating-divers

Furthermore, we expect the above-mentioned issues associated with imperfect-model data assimilation to be relevant and
largely transferrable to the assimilation of other environmental tracers, other information-rich observations and diverse data
335 types more generally. This is because we consider the primary barrier to appropriate assimilation of tritium observation data
encountered in the second case study to be fundamental challenges associated with extracting appropriate information from
spatially-discrete concentration observations when using upscaled or simplified representations of hydraulic properties within a
regional-scale model that simulates tracer concentrations using the advection-dispersion equation (e.g., Zheng and Gorelick, 2003; Riva et :
- To the extent that simulated outputs corresponding to observed tracer concentrations are sensitive to model details or parameters
., White et al., 2014 ., Clark and Vrugt, 2006)
- To the extent that the forecast of management interest is dependent on these biased parameter estimates, the forecast will also
become biased, potentially leading to resource mismanagement. The ubiquitous nature of model error and the challenges in
appropriately accounting for differences in, e.g., representative spatial scales between field observations and model-derived
quantities, suggests that the ill-effects identified in this study such as history matching-induced bias are not unigue to_the

consideration of tritium as a tracer). The similar findings and recommendations of Brynjarsdéttir and O’Hagan (:

340 thatare “missing’ in a simplified model (e. arameter compensation will occur (e.

345 specifics of our study (e.

3

in our findings and recommendations to data assimilation in other envrionmental modelling contexts.

If diverse and information-rich data such as tritium and MRT observations are available, and data assimilation through

history matching is deemed necessary and/or appropriate, then a targeted modeling approach is needed that identifies which

350 of these data are relevant to the forecast. This is critical to avoiding the ill-effects of model error in the context of decision
support modeling fe-g- White-et-ak-(2014): Knowling et ak-(2019)(e.g.. White et al., 2014; Knowling et al.. 2019), as well
as to avoid adding unnecessary complexity (through processes and parameters) needed to simulate the equivalent values of the
diverse data for assimilation purposes, which may greatly increase the computational cost of the modeling analysis.

It should be noted, however, that even when the forecast is well “aligned” with observation data (i.e., the forecast is solution-

355 space dependent), some degree of parameter compensation will inevitably occur—all models are gross simplifications and
therefore model parameters do not perfectly represent real-world properties {e—g-Clark-and-Vrugt(2006);-White-et-al(2014)
)(e.g., Clark and Vrugt, 2006; White et al., 2014). However, if the data used for assimilation are commensurate with the fore-
casts, then the ill-effects of model error may be expected to be negligible (e—gDoherty-and-Christensen(20HH-Watsonetal+(20143)

14



360 The above findings and recommendations suggest that there is a significant need to identify better ways to assimilate di-
verse observation types including tracer concentration and tracer interpretation observations in numerical models for decision
support. An enhanced ability to assimilate tracer observations, for example, will likely require increased model complexity
(including advanced discretization, process representation and parameterization) to provide appropriate assimilation of rich
and diverse data types that operate across a range of spatial and temporal scales commensurate with a given forecast.

365 However, an important and challenging compromise will be encountered: the need for enough model complexity to appro-
priately assimilate rich and diverse observations, while simultaneously ensuring that this level of complexity does not preclude
the application of formal data assimilation and uncertainty quantification techniques due to the associated numerical instability
and excessive run times. The navagation of this trade-off is central to effective and efficient decision-support modeling practice.
In the meantime, tracer data model assimilation should involve processing or transforming of concentrations into quantities that

370 may be more useful and may guard against ill-effects of history matching imperfect models (e.g., by integrating observations in

(e.g., Rasa et al., 2013; Knowling et al., 2019; White e

space and time;

Appendix A: First-order second-moment (FOSM) uneertainty-quantification-and-data-worth-assessmentmethodolo

This section provides a description of the FOSM approach used in the first case study to quantify uncertainty variance and
375  assess data worth.

The posterior (i-e-pest-history-matehing)-covariance matrix of uncertain model parameters g ;-can be approximated
using the Schur complement {Gelub-and-Vantean;1+996)(Golub and Van Loan, 1996; Tarantola, 2005):

So =0 — eI [I8eI" +3.] ' I (A1)

where Xy is the prior G-epre-history-matehing)-parameter covariance matrix, which is specified based on expert knowledge

380 pertaining to site system characteristics, 3 is the epistemic observation noise covariance matrix (often assumed to have
non-zero diagonal elements only), which includes the effects of model structural errors and measurement errors, and J is
the Jacobian matrix of partial first derivatives (i.e., sensitivities) of simulated model outputs with respect to parameters. The
Schur complement can be considered a linearized form of Bayes equation to estimate the second moment of the parameter
and forecast posterior distribution {e-—g-

385 Y—(e.g., Goldstein and Wooff, 2007; Christensen and Doherty, 2008; Dausman et al., 2010).

Equation A1l assumes a linear relation between model parameters and simulated outputs (i.e., the sensitivities encapsu-

lated within the J matrix is independent of the parameter values 8). It also assumes that parameter and epistemic uncertainty
distributions are Gaussian (i.e., normal).
While the posterior parameter and forecast uncertainty variances yielded by FOSM may only be approximate (depending

390 on the validity of the linear assumption), the computational efficiency with which a large number of different number of
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conditioning “experiments” can be performed is unparalleled—these experiments facilitate rapid evaluation of the worth of
different types of observations to reduce forecast variance. In addition, a number of studies have shown support for its usage
especially in a relative second-moment sense {e—gDPausman-et-al(2010); Herekenrath-et-al-204H); Knowlinget-al(2019))-
.g., Dausman et al., 2010; Herckenrath et al., 2011; Knowling et al., 2019).

The prior and posterior uncertainty variance surrounding a forecast o2 can be expressed by mapping uncertainty from

parameter to forecast “space”. This is achieved by computing the sensitivity of the forecast to model parameters, comprising

the vector y (i.e., a row of J). That is:

o=y Soy (A2)
and
7. =y’ Sy (A3)

The worth of data, expressed as a percentage, is given by:

|U:2tob9 - UE(L@P'
N DW = —==3 5o x 100 (A4)
mln{abase’aiobs}

where 0%, is the increase/decrease in forecast uncertainty variance as a result of the removal/addition of one or more
observations or observation groups used for parameter conditioning, respectively, and o2, . is either the forecast uncertainty
calculated on the basis of all observation data/zero observation data, depending on whether data worth is being quantified by
adding or removing observations.

Herein, we quantify %DW as a result of both the removal and addition of observation groups. We primarily focus on %DW
values based on the removal of an observation group from an otherwise full observation dataset available for assimilation,
given that these values reflect the unique (i.e., uncorrelated) information content of observations. However, the difference
between %DW values arising from these different data-worth quantification approaches is used herein to comment on the level
of information uniqueness/redundancy within observation groups.

It is important to note that each FOSM-based data worth assessment is conducted with respect to a single forecast (notwith-
standing that we evaluate the worth of different observation data with respect to a number of different forecasts). We consider
this to be a side-benefit of this approach, especially given the need for decision-support modeling to be undertaken in a forecast-

targeted manner, as discussed recently by White (2017).
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