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RESPONSES TO REVIEWER #1’s COMMENTS 

 

We are grateful to Reviewer #1 for his/her insightful review. The provided comments have 

contributed substantially to improving the paper. According to them, we have made 

significant efforts to revise the manuscript, with the details explained as follows: 

Point #1 

COMMENT: 

only one error in the equation I could find (line 331, the dot normally indicating placement of 

index “l” should not be there) 

 

RESPONSE: We are thankful for the reviewer’s carefulness, and have corrected this part as 

follows: 
Figure 1 show the locations of these three gauging stations based on the daily stream flow data 

 

 

Point #2 

COMMENT: 

a question on whether all those significant digits are actually warranted in Tables 2-6 and in 

Figures 10-13. 

. 

RESPONSE: We appreciate the reviewer’s comment. The digits in Tables 2-3 and Figures 

10-13 are rounded in Excel, and the digits in Tables 4-6 are generated by the Design-Experts. 

All those significant digits can be warranted.  

 

Point #3 

COMMENT: 

Figure 1 could be expanded I would argue to explicitly indicate copulas, etc and provide a 

few more details on the framework. 

 

RESPONSE: We are grateful for the reviewer’s suggestion. Firstly, we rename the 

full-subsampling factorial copula method to iterative factorial copula, which is more concise. 

Also, the full-subsampling factorial analysis is renamed as iterative factorial analysis. Also, 

we have provided more details for Figure 1 as follows: 

 

Figure 1 illustrates the framework of the proposed IFC approach. The framework consists of 

four modules: (i) selection of marginal distributions, (ii) identification of copulas, (iii) 

parameter uncertainty quantification, (iv) parameter interaction and sensitivity analysis. In IFC, 

modules (i) and (ii) are proposed to construct the most appropriate copula-based hydrologic risk 

model. In detail, a number of distributions, such as Gamma, generalized extreme value (GEV), 

lognormal (LN), Pearson type III (P III), and log-Pearson type III (LP III) distributions, are 

usually employed to describe the probabilistic features of individual random variables (e.g. 

flood peak and volume). Also, in order to quantify the dependence structures of correlated 

random variables, many copula functions have been proposed, such as Gaussian copula, 

Student t copula, Archimedean copula family (e.g. Clayton, Gumbel, Frank and Joe copulas). In 



the current study, the indices of root mean square errors (RMSE) and Akaike information 

criterion (AIC) will be employed to identify the most appropriate model for hydrologic risk 

inference. Module (iii) quantifies parameter uncertainties in marginal distributions and copulas. 

Modules (iv) would be the core part of our study to identify the main sources of uncertainties in 

multivariate risk inference by the proposed iterative factorial analysis (IFA) approach.  

 

Point #4 

COMMENT: 

The two watersheds selected are not very different but you find discrepancies between which 

copulas perform best on which stations (lines 409 to 412) for predicting flood peak and 

volume, and different copulas are chosen to characterize uncertainty in the risks for 

each station (line 414-416). The authors are using data driven methods that have no 

explicit consideration for causal mechanisms (as with most data driven methods) but 

surely the differences in copulas selected are caused by physical differences in the 

watersheds. Can the authors please explain these discrepancies in terms of physical 

watershed characteristics (or perhaps make the case for why the differences cannot 

be ascribed to physical differences)? 

 

RESPONSE: We are thankful for the reviewer’s suggestion. We have added discussion for 

this issue in Section 5.1 as follows: 

 

5.1. Differences for the Hydrologic Risk Models at Different Stations 

 

Different copula functions are applied for different stations, which are chosen based on the indices 

of RMSE and AIC. However, the selection of copula models at different stations may also be 

related with some key characteristics of the drainage areas for those stations. The Gumbel copula 

will be applied for the Zhangjiashan station. It can reflect strong correlation at high values. 

However, the Joe copula, which is adopted for the Xianyang station, can reflect stronger right tail 

positive dependence. Both the Xianyang and Zhangjiashan stations have similar drainage areas. 

The Xianyang station controls a drainage area of 46,480 km2 (Xu et al., 2016), while the 

Zhangjiashan station has a drainage area of 45,412 km2 (Sun et al., 2019). Nevertheless, the major 

reason that lead to different copula functions for these two stations may be due to the elevation 

features for those two drainage areas. The drainage area of Zhangjiashan station is located in the 

central part of Loess Plateau of China and thus the major part of this drainage area is a 

mountainous region. In comparison, even thought a large part of the drainage area of Xianyang 

station is also located in the mountainous region, the Xianyang station also controls a significant 

part of the Guanzhong Plain, as indicated in the red part of Figure 2. Consequently, the flood 

hydrograph at Zhangjiashan station may be sharp while the flood hydrograph at Xianyang station 

is relatively flat and show a stronger right tail dependence among flood peak and volume. In fact, 

the value of Kendall’s tau between peak and volume for the top ten floods at Zhangjiashan station 

is 0.33 while such a value of Kendall’s tau at Xianyang station is 0.6. These facts may explain the 

Gumbel copula is applicable for Zhangjiashan station while the Joe copula is applied for Xianyang 

station. 

 

Point #4 



COMMENT: 

Please detail what part of the analyses is watershed specific and thus, what analysis should 

each user conduct each time and for every station they wish to understand prediction 

uncertainty and parameter interaction with the outcomes of their analyses; or conversely, 

what can they simply adopt from the Tables and Figures for their watersheds 

 

RESPONSE: We are grateful for the reviewer’s suggestion. This study aims to propose a 

reliable uncertainty partition method for multivariate risk inference. Based on this method, 

the decision maker can track the major sources for the uncertainties in the risk inferences. 

The proposed method can be applied for different watersheds. We have highlight the 

usefulness of our study in conclusions as follows: 

 

The proposed method has been applied for flood risk inferences at two gauge stations in Wei River 

basin. The results indicate that uncertainties in the parameters of the copula-based model would 

lead to noticeable uncertainties in the resulting risk inferences, especially for the joint flood risk in 

AND. noticeable uncertainties exist in the predictive joint RP of AND even for a small flood event. 

However, the results from IFA suggested that those uncertainties in risk inferences may mainly be 

attributed to the uncertainties in shape parameter in GEV distribution and the parameter of sdlog in 

LN for both the two stations. In comparison, the parameter uncertainty in the copula function 

would not pose an obvious effect on the resulting uncertainty in risk inferences. Such results 

indicate that, at least that the Wei River basin, the decision makers need to well estimate the values 

or quantify the uncertainties for the shape parameter in GEV distribution and sdlog in the LN 

distribution, in order to obtain reliable risk inferences. For other catchments, the proposed IFC 

method can be adopted to reveal the major sources for uncertainties in risk inferences and then 

provide potential pathways to get reliable risk inferences.  

 



 

Manuscript ID: hess-2019-434  

 

RESPONSES TO REVIEWER #2’s COMMENTS 

 

We are grateful to Reviewer #2 for his/her insightful review. The provided comments have 

contributed substantially to improving the paper. According to them, we have made 

significant efforts to revise the manuscript, with the details explained as follows: 

Point #1 

COMMENT: 

detailed comments in the marked up version 

 

RESPONSE: We are really thankful for the reviewer’s carefulness and comments. We have 

revised all the errors in our manuscript carefully which have been highlighted in the revision 

 

 

Point #2 

COMMENT: 

There is something missing here. Please introduce your 'OR' and 'AND' cases to assist the 

reader.  Also, what are the names of TOR and TAND? what do they describe?  What is Rd? 

 

RESPONSE: We appreciate the reviewer’s comment. We have provided more details about 

the joint return period in OR and AND as follows: 

 

(i) “OR” case TOR: 

* * *

1 2 1 1 2 2

1 1 1

{( , ,..., ) : ... }

1 ( ( | ), ..., ( | ) | )

OR d

d d d

d d d

T x x x R x x x x x x

C F x F x



  

=       

=
−

 (4) 

where Rd is a d-dimensional real space; μ denotes the average time between two adjacent events 

under consideration. The joint RP in OR (denoted as TOR) indicates the occurrence probability of 

the extreme event with one of its variables xi’s, i = 1, 2, …, d, exceeding the corresponding 

threshold 
*

ix    

 

(ii) “AND” case TAND:  

* * *

1 2 1 1 2 2

^

1 2 11 1 2 2

{( , ,..., ) : ... }

( ( | ), ( | ), ..., ( | ) | )

AND d

d d d

d d

T x x x R x x x x x x

C F x F x F x



   

=       

=  (5) 

where 
^

C  is the multivariate survival function of the Xi’s proposed by Salvadori et al. (2013; 

2016), and ( | ) ( ) 1 ( | )i i i i i i iF x P X x F x =  = − . Following Salvadori et al. (2013; 2016), and 



the Inclusion-Exclusion principle proposed by Joe (2014), the multivariate survival function 
^

C  

can be obtained by: 

^

( ) (1 )C C= −u u  (6) 

and 

#( )

1

( ) 1 ( 1) ( : )
d

S

i S i

i S

C u C u i S
= 

= − + −  u   (7) 

where #(S) denotes the cardinality of S. The joint RP in AND (denoted as TAND) of the extreme 

event indicates the occurrence probability with all of its variables xi’s, i = 1, 2, …, d, exceeding the 

corresponding thresholds 
*

ix ’s   

 

Point #3 

COMMENT: 

In order to be accurate, Figs 10 to 12 are tables and should be labelled and referred to as 

such 

 

RESPONSE: We are grateful for the reviewer’s comment. Figures 10 – 12 show the 

contributions of model parameters to uncertainties in risk inferences under different design 

standards and service time periods. These results seem to be presented in tables. However, 

Figures 10-12 are in fact heat maps generated by Excel, in which different parameter 

contributions are highlighted by different colors. Consequently, we labelled them as figures 

rather than tables.   
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Abstract: 

 

Extensive uncertainties exist in hydrologic risk analysis. Particularly for interdependent 

hydrometeorological extremes, the random features in individual variables and their 20 

dependence structures may lead to bias and uncertainty in future risk inferences. In this study, 

an iterative factorial copula (IFC) approach is proposed to quantify parameter uncertainties 

and further reveal their contributions to predictive uncertainties in risk inferences. 

Specifically, an iterative factorial analysis (IFA) approach is developed to diminish the effect 

of the sample size and provide reliable characterization for parameters’ contributions to the 25 

resulting risk inferences. The proposed approach is applied to multivariate flood risk 

inference for the Wei River basin to demonstrate the applicability of IFC for tracking the 

major contributors to resulting uncertainty in a multivariate risk analysis framework. In 
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detail, the multivariate risk model associated with flood peak and volume will be established 

and further introduced into the proposed iterative factorial analysis framework to reveal the 30 

individual and interactive effects of parameter uncertainties on the predictive uncertainties in 

the resulting risk inferences. The results suggest that uncertainties in risk inferences would 

mainly be attributed to some parameters of the marginal distributions while the parameter of 

the dependence structure (i.e. copula function) would not produce noticeable effects. 

Moreover, compared with traditional factorial analysis (FA), the proposed IFA approach 35 

would produce a more reliable visualization for parameters’ impacts on risk inferences, while 

the traditional FA would remarkably overestimate the contribution of parameters’ interaction 

to the failure probability in AND (i.e. all variables would exceed the corresponding 

thresholds), and at the same time, underestimate the contribution of parameters’ interaction to 

the failure probabilities in OR (i.e. one variable would exceed its corresponding threshold) 40 

and Kendall (i.e. the correlated variables would exceed a critical multivariate threshold). 

 

1. Introduction 

 

Many hydrological and climatological extremes are highly correlated among each other, and 45 

it is desired to explore their interdependence through multivariate approaches. Examples 

include sea level rise and fluvial flood (Moftakhari et al., 2017), drought and heat waves (Sun 

et al., 2019), soil moisture and precipitation (AghaKouchak, 2015). Moreover, even one 

specific hydrological extreme may have multiple attributes, such as the peak and volume for 

a flood, duration and severity for a drought, and duration and intensity of a storm (Karmakar 50 



3 
 

and Simonovic, 2009; Kong et al., 2019). Traditional univariate approaches, mainly focusing 

on one variable or one attribute of hydrological extremes (e.g. flood peak), may not be 

sufficient to describe those hydrological extemes containing multivariate characteristics. Thus 

the univariate frequency/risk analysis methods may be unable to obtain reliable risk 

inferences for the failure probability or recurrence intervals of interdependent extreme events 55 

(Chebana and Ouarda, 2011; Requena et al., 2013; Salvadori et al., 2016; Sadegh et al., 2017) 

 

Since the introduction of the copula function into hydrology and geosciences by De Michele 

and Salvadori (2003), the copula-based approaches have been widely used for multivariate 

hydrologic risk analysis. The copula functions are able to model correlated variables with 60 

complex or nonlinear dependence structures. Also, these kinds of methods are easily 

implemented since the marginal distributions and dependence models can be estimated in 

separate processes, which also give flexibility in the selection of both marginal and 

dependence models. A large amount of research has been developed for multivariate 

hydrologic simulation through copula functions, such as multivariate flood frequency 65 

analysis (Sraj et al., 2014; Xu et al., 2016; Fan et al., 2018, 2020); drought assessments (Song 

and Singh 2010; Kao and Govindaraju 2010; Ma et al. 2013); storm or rainfall dependence 

analysis (Zhang and Singh 2007; Vandenberghe et al. 2010); streamflow simulation (Lee and 

Salas 2011; Kong et al., 2015) and other water and environmental engineering applications 

(Fan et al., 2017; Huang et al., 2017). 70 

 

For both univariate and multivariate analyses for hydrometeorological risks, uncertainty 

would be one of the unavoidable issues which needs to be well addressed. The uncertainty in 
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hydrometeorological risk inference mainly results from stochastic variability of 

hydrometeorological processes and incomplete knowledge of the watershed systems (Merz 75 

and Thieken, 2005). Many studies have been proposed to address uncertainty in both 

univariate and multivariate hydrological risk analysis (e.g. Merz and Thieken, 2005; 

Serinaldi, 2013; Dung et al., 2015; Zhang et al., 2015; Sadegh et al., 2017; Fan et al., 2018). 

However, one critical issue in uncertainty quantification of hydrological inference is how to 

characterize the major sources for uncertain risk inference. Qi et al. (2016) employed a 80 

subsampling ANOVA approach (Bosshard et al., 2013) to quantify individual and interactive 

impacts of the uncertainties in data, probability distribution functions and probability 

distribution parameters, on the total cost for flood control in terms of flood peak flows. Even 

though the subsampling ANOVA approach is able to reduce the effect of the biased estimator 

on quantification of variance contribution resulting from the traditional ANOVA approach, it 85 

should be noticed that merely subsampling one uncertainty parameter/factor (referred as 

single-subsampling ANOVA), as used in the studies by Bosshard et al. (2013) and Qi et al. 

(2016a), will lead to (i) an underestimation of the individual contribution for the factor to be 

sampled and (2) overestimation of contributions from those non-sampled factors. Moreover, 

few studies have been reported to characterize the individual and interactive effects of 90 

parameter uncertainties in marginal and dependence models on the multivariate risk 

inferences.  

 

Consequently, as an extension of previous research, this study aims to propose an iterative 

factorial copula (IFC) approach for quantifying and partitioning uncertainty metrics from 95 

different sources in multivariate hydrologic risk inference. In detail, the parameter 
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uncertainties are quantified through a Monte Carlo-based Bootstrap algorithm. The 

interactions of parameter uncertainties are explored through a multilevel factorial analysis 

approach. The contributions of parameter uncertainties are analyzed through an iterative 

factorial analysis (IFA) method, in which all uncertainty factors will be subsampled to 100 

generate more reliable results. The applicability of the proposed IFC approach will be 

demonstrated through case studies of flood risk analysis in the Wei River basin in China. 

 

2. Methodology 

Figure 1 illustrates the framework of the proposed IFC approach. The framework consists of 105 

four modules: (i) selection of marginal distributions, (ii) identification of copulas, (iii) 

parameter uncertainty quantification, and (iv) parameter interaction and sensitivity analysis. 

In IFC, modules (i) and (ii) are proposed to construct the most appropriate copula-based 

hydrologic risk model. In detail, a number of distributions, such as Gamma, generalized 

extreme value (GEV), lognormal (LN), Pearson type III (P III), and log-Pearson type III (LP 110 

III) distributions, are usually employed to describe the probabilistic features of individual 

random variables (e.g. flood peak and volume). Also, in order to quantify the dependence 

structures of correlated random variables, many copula functions have been proposed, such as 

Gaussian copula, Student t copula, Archimedean copula family (e.g. Clayton, Gumbel, Frank 

and Joe copulas). In the current study, the indices of root mean square errors (RMSE) and 115 

Akaike information criterion (AIC) will be employed to identify the most appropriate model 

for hydrologic risk inference. Module (iii) quantifies parameter uncertainties in marginal 

distributions and copulas. Modules (iv) would be the core part of our study to identify the 
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main sources of uncertainties in multivariate risk inference by the proposed iterative factorial 

analysis (IFA) approach.  120 

 

---------------------------------------- 

Place Figure 1 here 

---------------------------------------- 

 125 

2.2. Copula-based Multivariate Risk Inference Framework  

 

A copula function is a multivariate distribution function with uniform margins on the interval 

[0, 1]. Sklar’s Theorem states that any d-dimensional distribution function F can be 

formulated through a copula and its marginal distributions (Nelsen, 2006). In detail, a 130 

multivariate copula function can be expressed as: 

1 21 2 1 2 1 1 2 2( , , ..., | , ,..., , ) ( ( | ), ( | ), ..., ( | ) | )
dd d X X X d dF x x x C F x F x F x       =  (1) 

where
1 21 1 2 2( | ), ( | ), ..., ( | )

dX X X d dF x F x F x   are marginal distributions of the random vector 

(X1, X2, …, Xd), with γ1, γ2, …, γd respectively being the unknown parameters of the marginal 

distributions. θ is the parameter in the copula function describing dependence among the 135 

correlated variables. If these marginal distributions are continuous, then a single copula 

function C exists, which can be written as (Nelsen, 2006): 

1 2

1 1 1

1 2 1 1 2 2( , , ..., | ) ( ( | ), ( | ), ..., ( | ))
dd X X X d dC u u u F F u F u F u   − − −=  (2)   

where 
11 1 1( | )Xu F x =  , 

22 2 2( | )Xu F x =  , …, ( | )
dd X d du F x =  . More details on the 
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theoretical background and properties of various copula families can be found in Nelsen (2006).  140 

 

If appropriate copula functions are specified to reflect the joint probabilistic characteristics 

for a multivariate extreme event, the conditional, primary and secondary return periods (RP) 

can be obtained. Consider one kind of hydrological extreme (denoted as X) with d attributes 

(i.e. X = (x1, x2, …, xd)), and for a specific extreme event X* with its attributes being X* = (x1
*, 145 

x2
*, …, xd

*), three categories of multivariate RP can be applied for determining the potential 

risk of X*. 

 

(i) “OR” case TOR: 

* * *

1 2 1 1 2 2

1 1 1

{( , ,..., ) : ... }

1 ( ( | ), ..., ( | ) | )

OR d

d d d

d d d

T x x x R x x x x x x

C F x F x



  

=       

=
−

 (4) 150 

where Rd is a d-dimensional real space; μ denotes the average time between two adjacent 

events under consideration. The joint RP in OR (denoted as TOR) indicates the occurrence 

probability of the extreme event with one of its variables xi’s, i = 1, 2, …, d, exceeding the 

corresponding threshold *

ix    

 155 

(ii) “AND” case TAND:  

* * *

1 2 1 1 2 2

^

1 2 11 1 2 2

{( , ,..., ) : ... }

( ( | ), ( | ), ..., ( | ) | )

AND d

d d d

d d

T x x x R x x x x x x

C F x F x F x



   

=       

=  (5) 
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where 
^

C  is the multivariate survival function of the Xi’s proposed by Salvadori et al. (2013; 

2016), and ( | ) ( ) 1 ( | )i i i i i i iF x P X x F x =  = − . Following Salvadori et al. (2013; 2016), 

and the Inclusion-Exclusion principle proposed by Joe (2014), the multivariate survival 160 

function 
^

C  can be obtained by: 

^

( ) (1 )C C= −u u  (6) 

and 

#( )

1

( ) 1 ( 1) ( : )
d

S

i S i

i S

C u C u i S
= 

= − + −  u   (7) 

where #(S) denotes the cardinality of S. The joint RP in AND (denoted as TAND) of the 165 

extreme event indicates the occurrence probability with all of its variables xi’s, i = 1, 2, …, d, 

exceeding the corresponding thresholds *

ix ’s   

 

(iii) “Kendall” case: The Kendall RP characterizes the hydrologic disasters exceeding a 

critical layer as defined by (Salvadori et al., 2011): { : ( ) }F d

tL R F t=  =x x . The Kendall RP 170 

can be expressed as (Salvadori et al., 2011): 

1 ( )

Kendall

C

T
K t


=

−
 (8) 

where KC is the Kendall distribution function associated with the copula C, which can be 

expressed as: 

1 1 1( ) ( ( ( | ), ..., ( | ) | ) )C d d dK t P C F x F x t  =    (9) 175 
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In addition to the multivariate RP, Failure probability (FP) can be another index to provide 

more coherent, general and well devised tools for multivariate risk assessment and 

communication. In general, the failure probability 
Mp  to indicate the occurrence of a critical 

event for at least one time in M years of design life can be defined as (Salvadori et al., 2016): 180 

1

1 (1 ) 1 ( ( ))
M

M

M j d

j

p p F x
=

= − − = −   (10)  

Similar to the multivariate RP concept, the failure probability in a multivariate context can 

also be characterized in “OR”, “AND”, and “Kendall” scenarios expressed by the following 

equations. For a given critical threshold 
* * * *

1 2{ , ,..., }dx x x=x , the failure probabilities 

violating this critical value can be expressed as (Salvadori et al., 2016): 185 

* * *

1 1 1 1 2 21 ( ( ( | ), ( | ),..., ( | ) | ))OR T

T d d dp C F x F x F x   = −  (11a) 

^
* * *

1 2 11 1 2 21 (1 ( ( | ), ( | ), ..., ( | ) | ))AND T

T d dp C F x F x F x   = − −  (11b) 

* * *

1 1 1 1 2 21 ( ( ( ( | ), ( | ),..., ( | ) | ) ))Kendall T

T d d dp P C F x F x F x t   = −   (11c) 

where 
OR

Tp , 
AND

Tp , and 
Kendall

Tp respectively denote the failure probability in “AND”, “OR” 

and “Kendall” cases. T indicates the service time of the facilities under consideration.  190 

 

Focusing on a bivariate case, the joint RP and the associated failure probability in “OR”, 

“AND”, and “Kendall” scenarios can be formulated as (Salvadori et al., 2007, 2011; Graler et 

al., 2013; Sraj et al., 2014; Serinaldi, 2015): 
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1 2

1 2

,

1 21 ( , | )

OR

u u

U U

T
C u u




=

−
 (12a) 195 

1 2

1 2

,

1 2 1 21 ( , | )

AND

u u

U U

T
u u C u u




=

− − +
 (12b) 

1 2

1 2

, * *

1 21 ( ( , ) )

Kendall

u u

U U

T
P C u u t


=

− 
 (12c) 

1 2

* *

1 21 ( ( , | ))OR T

T U Up C u u = −  (12d) 

1 2

^
* * * *

1 2 1 21 ( ( , | ))AND T
U UTp u u C u u = − + −  (12e) 

1 2

* *

1 21 ( ( ( , | ) ))Kendall T

T U Up P C u u t= −   (12f) 200 

where 1 1 1 1( | )u F x = , 2 2 2 2( | )u F x = , 
* *

1 1 1 1( | )u F x = ,
* *

2 2 2 2( | )u F x = , (
*

1x ,
*

2x ) defines the 

bivariate threshold.  

 

 

2.3. Uncertainty in the Copula-based Risk Model 205 

 

Extensive uncertainties may be involved in the parametric estimation of a copula function 

due to: (i) the inherent uncertainty in the flooding process; (ii) uncertainty in the selection of 

appropriate marginal functions and copulas; and, (iii) statistical uncertainty or parameter 

uncertainty within the parameter estimation process (e.g. the availability of samples) (Zhang 210 

et al., 2015). Several methods have been proposed to quantify parameter uncertainties in 

copula-based models. For instance, Dung et al. (2015) proposed bootstrap-based methods for 
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quantifying the parameter uncertainties in bivariate copula models. Zhang et al. (2015) 

employed a Bayesian inference approach for evaluating uncertainties in copula-based 

hydrologic drought models, in which the Component-wise Hit-And-Run Metropolis 215 

algorithm is adopted to estimate the posterior probabilities of model parameters.  

 

In this study, a bootstrap-based algorithm, is applied to quantify parameter uncertainties in 

the copula-based multivariate risk model. The procedures describing the bootstrap-based 

algorithm to derive probabilistic distributions of the parameters in both marginal and 220 

dependence models are presented as follows: 

1. Predefine a large number of bootstrapping samplings NB 

2. Implement the resampling with replacement over observed pairs Z = (X, Y) to obtain Z* = 

(X*, Y*); Z* has the same size as Z. 

3. Fit the chosen marginal distributions to X* and Y*, and estimate the associated parameters 225 

( ,X Y  ). 

4. Fit the chosen copula to Z*, and estimate the parameter in the copula function θ. 

5. Repeat step 2–5 NB times, and obtain NB sets of ( , , )X Y   . Moreover, in order to reject 

those parameters that lead to bad fits for both marginal and copula models, the A-D test and 

the Cramer-von-Mises test are introduced in the bootstrap procedure to ensure that the 230 

obtained parameters can pass statistical tests for both the marginal distribution and copula 

models. Then the kernel method will be adopted to quantify the probabilistic features for 

X ,
Y , . 

6. In order to derive bivariate uncertainty bands for a predefined quantile curve (QC) with 
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certain joint RP in ‘AND’, ‘OR’ or ‘Kendall’ (denoted as TAND, TOR, TKendall), sample 
1BN sets 235 

of ( , , )X Y    from the obtained NB samples 

7. Sample a large number (Ns) of xi yj from their marginal distributions. 

8. For each set of ( , , )X Y   from 
1BN , evaluate the joint RPs of (xi, yj) (i = 1, 2, …, Ns; y = 

1, 2, …, Ns), and store the pairs of (xi, yj) approaching the predefined joint RPs. 

9. Repeat step 8 for 
1BN , and for each predefined QC, and plot the bivariate uncertainty 240 

bands for each quantile QC  

 

2.4. Interactive and Sensitivity Analysis for Parameter Uncertainties 

 

Due to the uncertainties existing in the unknown values of parameters for a copula model, the 245 

associated risk or the return period for a flooding event may also be uncertain. Few studies 

have been reported to analyze the effect of uncertainties in the copula model on evaluating 

the risk for a flood event. To address the above issue, an iterative factorial analysis (IFA) 

approach will be proposed to reveal the individual and interactive effects of parameter 

uncertainties on the predictive uncertainties of different risk inferences.  250 

 

Consider a copula-based bivariate risk assessment model which has two marginal 

distributions (A and B) and one copula (C). The parameters in the two marginal distributions 

are assumed to be respectively denoted as γA with a levels and γB with b levels, while the 

parameter in the copula is denoted with θC with c levels. The three factor ANOVA model for 255 
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such a factorial design in terms of the predictive risk (denoted as R) in response to the 

parameters γA, γB, θC and n replicates, can be expressed as: 

 

0

1,2,...,

1,2,...,

1,2,...

1,2,...,

C A B C A C B A B C A B
i j k i j i k j k i j k

ijkl ijkl

i c

j a
R R R R R R R R R

k b

l n

           


=


=
= + + + + + + + + 

=
 =

 (13) 

where R0 denotes the overall mean effect; , ,C A B
i j k

R R R
  

respectively indicate the effect for 260 

parameter θC in the copula at the ith level, parameter γA in the first marginal distribution at the 

jth level, and parameter γB in the first marginal distribution at the kth level; , ,C A C B A B
i j i k j k

R R R
     

indicate interactions between factors θC and γA, θC and γB, as well as γA and γB, respectively; 

C A B
i j k

R
  

denotes the interaction of factors θC , γA and γB; εijkl denotes the random error 

component.  265 

 

Based on Equation (13), the total variability of the predictive risk can be decomposed into its 

component parts as follows (Montgomery, 2001): 

 

C A BT I eSS SS SS SS SS SS
  

= + + + +  (14a) 270 

and  

2
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= −  (14b) 
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where
. 1

n

ijk ijkll
R R

=
= , ... 1 1 1

a b n

i ijklj k l
R R

= = =
=   ,

. .. 1 1 1

c b n

j ijkli k l
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= = =
=   ,

.. . 1 1 1

c a n

k ijkli j l
R R

= = =
=   .... 1 1 1 1

c a b n

ijkli j k l
R R

= = = =
=    . Then the contributions of parameter 280 

uncertainties in marginal distributions and dependence structures can be calculated as: 

(1) Contribution of parameters in marginal distributions A and B 

/AA TSS SS


 =   (15a) 

/BB TSS SS


 =  (15b) 

(2) Contribution of the parameter in the dependence structure 285 

/CC TSS SS


 =  (15c) 

(3) Contribution of internal variability  

/e e TSS SS =  (15d) 
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(4) Contribution of parameter interactions 

1I A B C e    = − − − −  (15e) 290 

 

However, one major issue for the ANOVA approach is that the biased variance estimator in 

ANOVA would underestimate the variance in small sample size scenarios (Bosshard et al., 

2013). Thus the sample size may significantly affect the resulting variance contributions 

expressed in Equations (15a) – (15e). A subsampling approach has been advanced by 295 

Bosshard et al. (2013) to diminish the effect of the sample size in ANOVA and has been 

employed for uncertainty partitioning in flood design and hydrological simulation (Qi et al., 

2016a, b). In such a subsampling scheme, one factor (denoted as X) with T levels (these 

levels can be different values for numerical parameters, or different types for non-numerical 

factor (e.g. model type)), would choose two levels in each iteration. For T possible levels of 300 

X, we can obtain a total of 2

TC  possible pairs for X, expressed as a 
22 TC  matrix as 

follows: 

 

1 1 1 2 2 2 2 1

2 3 3 4 1

( , )
T T T

T T T T

X X X X X X X X
g h j

X X X X X X X X

− − −

−

 
=  
 

 (16) 

 305 

However, such a subsampling approach is mainly applied to subsample merely one factor or 

one parameter (here we refer to this method as single-subsampling ANOVA) in previous 

studies (Bosshard et al. 2013; Qi et al., 2016a, b). However, a critical issue for the single-

subsampling ANOVA it that it will lead to an underestimation of the individual contribution 
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for the factor to be sampled and overestimation of contributions for those non-sampled 310 

factors. Consequently, in this study, we will propose an IFA approach to subsample all the 

factors to be addressed, and then quantify the contribution of each factor to the response 

variation. In the IFA approach, all factors under consideration will be subsampled, and the 

corresponding sum of squares will be obtained. The contribution of one factor would be 

characterized by the mean value of its contribution in each iteration. In detail, for the three 315 

factor ANOVA model expressed by Equation (13), the subsampling schemes for the three 

parameters can be formulated as: 

 

1 1 1 2 2 2 2 1

2 3 3 4 1

( , )C

C C C C C C C C

c c c

C C C C C C C C C C

c c c c

g h j
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=  
 

 (17a) 
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 (17b) 320 

1 1 1 2 2 2 2 1

2 3 3 4 1

( , )B

B B B B B B B B

b b b

B B B B B B B B B B

b b b b

g h j


       

       

− − −

−

 
=  
 

 (17c) 

Consequently, there are a total number of 2 2 2

c a bC C C  iterations in IFA for the three-factor model 

expressed as Equation (13). For each iteration, the sums of squares can be reformulated as: 
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where 
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Also, for each iteration, the corresponding contributions for each factor can be obtained as:  

A

j j j

A TSS SS


 =  (19a) 340 

B

j j j

B TSS SS


 =  (19b) 

C

j j j

C TSS SS


 =  (19c) 
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j j j

e e TSS SS =  (19d) 

1j j j j j

I A B C e    = − − − −  (19e) 

Finally, the individual and interactive contributions for those factors can be obtained by 345 

averaging the corresponding contributions in all iterations, expressed as: 
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where 2 2 2

c a bJ C C C=   

3. Applications 

 

The proposed IFC approach can be applied to various multivariate risk inference problems. In 355 

this study, we will apply IFC for multivariate flood risk inference at the Wei River basin in 

China. The Weihe River plays a key role in the economic development of western China, and 

thus is known regionally as the ‘Mother River’ of the Guanzhong Plain of the southern part of 

the loess plateau (Song et al. 2007; Zuo et al. 2014; Du et al. 2015, Xu et al., 2016). It 
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originates from the Niaoshu Mountain at an elevation of 3485 m above mean sea level in 360 

Weiyuan County of Gansu Province (Du et al. 2015). The Weihe River basin is characterized 

by a semi-arid and sub-humid continental monsoon climate, resulting in significant temporal-

spatial variations in precipitation, with an annual average precipitation of 559 mm (Xu et al., 

2016). Furthermore, there is a strong decreasing gradient from south to north, in which the 

southern region experiences a sub-humid climate with annual precipitation ranging from 800 365 

to 1000 mm, whereas the northern region has a semi-arid climate with annual precipitation 

ranging from 400 to 700 mm (Xu et al., 2016). Over the entire basin, the mean temperature 

ranges from 6 to 14 0C, the annual potential evapotranspiration fluctuates from 660 to 1,600, 

and the annual actual evapotranspiration is about 500 mm (Du et al. 2015). 

 370 

Observed daily streamflow data at Xianyang and Zhangjiashan gauging stations were used 

for hydrologic risk analysis. Figure 2 show the locations of these two gauging stations based 

on the daily stream flow data, the flood peak applied is defined as the maximum daily flow 

over a period and the associated flood volume is considered as the cumulative flow during the 

flood period. In this study, the flood characteristics are obtained based on an annual scale. 375 

This means that one flood event is identified in each year. The detailed method to identify the 

flood peak and the associated flood volume can be found in Yue (2000, 2001). Table 1 shows 

some descriptive statistical values for the considered variables (peak discharge, Q; 

hydrograph volume, V), in which 47 and 55 flood events are characterized at the Xianyang 

and Zhangjiashan station, respectively. 380 

 

-------------------------------- 
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Place Figure 2 and Table 1 here 

-------------------------------- 

 385 

4. Results Analysis 

4.1. Model Evaluation and Selection  

 

There are a number of potential probabilistic models for modelling individual flood variables 

and their dependence structures. In this study, five alternative distributions, including gamma, 390 

generalized extreme value (GEV), lognormal (LN), Pearson type III (P III), and log-Pearson 

type III (LP III) distributions, are employed to describe the probabilistic features of the 

chosen flood variables (i.e. peak and volume). Moreover, goodness-of-fit tests are performed 

through the indices of Kolmogorov-Smirnov test (K-S test), root mean square error (RMSE) 

and Akaike Information Criterion (AIC), to screen the performance of those potential models. 395 

The results are presented in Table 2. The results indicate that all five parametric distributions 

can produce satisfactory results, with all p-values larger than 0.05. However, it can be 

concluded that the GEV and lognormal approaches show the best performance for 

respectively modelling flood peak and volume at both gauging stations.  

 400 

------------------------------------------- 

Place Tables 2 here 

------------------------------------------- 

 

In addition, a total number of six copulas, including Gaussian, Student t, Clayton, Gumbel, 405 

Frank and Joe copulas, are considered as the candidate models for quantifying the 
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dependence structures for flood peak-volume at Xianyang and Zhangjiashan gauging stations. 

Also, the goodness-of-fit statistic test is performed based on the Cramér von Mises statistic 

proposed by Genest et al. (2009). The indices of RMSE and AIC were employed to evaluate 

the performance of the obtained copulas and identify the most appropriate ones. Table 3 410 

shows statistical test results for the selected copulas. The results show that, for the 

Zhangjiashan station, all candidate copulas except the Joe copula performed well, while all 

six copulas would be able to provide satisfactory risk inferences at the Xianyang station. 

Moreover, based on the values of RMSE and AIC, the Gumbel copula was chosen to model 

the dependence of flood peak and volume at Zhangjiashan station, while the Joe copulas 415 

performed best at the Xianyang station, except that although the p-value is slightly lower than 

Gumbel, the overall result favours Joe. Consequently, the Gumbel and Joe copula were 

chosen in this study to further characterize the uncertainty in model parameters and the 

resulting risks at Zhangjiashan and Xianyang station, respectively.  

 420 

-------------------------------- 

Place Tables 3 here 

-------------------------------- 

 

 425 

4.2. Uncertainty in Model Parameters and Risk Inferences 

 

Based on the results in Tables 2 and 3, the multivariate risk inference model was established, 

in which the GEV and lognormal distributions would respectively be adopted to model the 
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individual flood variables at both gauging stations, while in comparison, the Gumbel and Joe 430 

copulas would respectively be employed for Zhangjiashan and Xianyang stations. Afterward, 

uncertainties would be characterized based on the bootstrap algorithm illustrated in Section 

2.3. In this study, a total number of 5000 samples were chosen in order to generally visualize 

the uncertainty features in the model parameters. The probabilistic features for obtained 

parameters values (i.e. shape, scale and location for GEV, meanlog, sdlog for LN, and theta 435 

for copula) for each sample scenario would be described by the kernel method. Figure 3 

exhibits the probabilistic distributions for the six unknow parameters in the established 

multivariate risk inference model. Extensive uncertainties exist in the parameters for both the 

marginal distribution and dependence model. As presented in Figure 3, each parameter, 

except the meanlog in the LN distribution, exhibits noticeable uncertainty. Moreover, most of 440 

the parameter uncertainties are approximately normally distributed except the shape 

parameter in GEV for Xianyang.  

 

-------------------------------- 

Place Figure 3 here 445 

-------------------------------- 

 

It is quite apparent that different parameter values in the copula model would lead to different 

risk inference results. Consequently, parameter uncertainties in the marginal distributions and 

copula functions would definitely result in uncertainties in multivariate risk inferences. Based 450 

on the copula model, some multivariate risk indices can be easily obtained, such as the joint 

return period in OR, AND and Kendall, as expressed in Equations (12a) – (12c). However, 
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due to parameter uncertainties, these risk indices may also exhibit some degrees of 

uncertainty. Figures 4 – 6 describe uncertainties for the joint RP in AND, OR and Kendall at 

the two stations. In general, the predictive RP in AND exhibit most significant uncertainty, 455 

followed by the predictive RP in OR and Kendall. However, for moderate or large flood 

events, considerable uncertainties can be observed in the inferences for all the three joint RPs. 

Specifically, noticeable uncertainties exist in the predictive joint RP of AND even for a minor 

flood event with a 5-year joint RP. For some large flood events with a joint RP around 100 

years, the predictive RP in AND shows remarkable uncertainty, ranging from less than 50 460 

years to larger than 200 years. For the joint RP in OR and Kendall, slight uncertainty may 

exist for small flood events (e.g. 2-year or 5-year joint RP). Nevertheless, apparently 

uncertainties can be observed in the predictive joint RP even for moderate flood events. As 

shown in Figure 5, considerable uncertainties may appear in the predictive joint RP of OR 

even for a flood with an actual joint RP of 20 years, while prediction of the Kendall RP for a 465 

20-year (in Kendall RP) flood event may range from 10 to 50 years, as presented in Figure 6.   

 

-------------------------------- 

Place Figures 4-6 here 

-------------------------------- 470 

 

4.3 Individual and Interactive Effects of Parameter Uncertainties 

 

It has been observed that parameter uncertainties in the copula-based multivariate risk model 

would lead to significantly imprecise risk predictions. However, one critical issue to be 475 

addressed is how the parameter uncertainties and their interactions would influence the risk 
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inference. Consequently, a multilevel factorial analysis, based on Equations (13) and (14), 

were proposed to primarily visualize the individual and interactive effects of parameter 

uncertainties in the marginal and dependence models on the resulting risk inferences. In this 

study, a total number of 6 parameters (i.e. three from GEV, two from LN, and one from 480 

copula) was addresses, and based on probabilistic features of these parameters, three quantile 

levels (i.e. 0.1, 0.5 and 0.9) were chosen to characterize the resulting risk inferences under 

different parameter values. This would finally form a 36 factorial design, which has six 

factors with each having three levels. The failure probability denoted as Equations (11) would 

be considered as the response in this factorial design.  485 

 

The main and interactive effects of parameters uncertainties on the failure probabilities in 

AND are visualized in Figure 7. It is noticeable that at the two gauge stations, parameters 

uncertainties pose similar main and interactive effects on the failure probabilities in AND, 

which indicates that parameters’ effects (individual and interactive) on the failure probability 490 

in AND are independent of the location of gauge stations. More specifically, variations in the 

shape parameter in GEV and sdlog parameter in LN would lead to more changes in the 

corresponding responses (i.e. failure probability in AND) than the variations in other 

parameters. Also, as shown in Figure 7, the parameter in the copula function (i.e. Cop_theta), 

describing dependence of the two flood variables, would not have an effect on the resulting 495 

risk as much as the effects from the parameters (except the location parameter in GEV) in the 

marginal distributions. In terms of parameter interactions, the significance of interactive 

effects for different parameters varies. The interactive curves for some parameters (e.g. 

GEV_shape and GEV_location) are nearly parallel at the three levels, indicating an 
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insignificant interaction for these two parameters on the inferred risk. In comparison, there 500 

are also some interactive curves intersecting each other (e.g. GEV_shape and LN_meanlog), 

implying a significant interaction between these two parameters. Table 4 provides the results 

from an ANOVA table for the failure probability in AND. It is quite interesting that: i) even 

though the effect from the parameter in the copula function is not as visible as the effects 

from the parameters (except the location parameter in GEV) in the marginal distributions (as 505 

shown in Figure 7), such an effect is still statistically significant; ii) the effect from the 

location parameter of GEV is statistically insignificant, which also lead to insignificant 

interactive effects between the location parameter and other parameters; iii) the interactions 

between the parameter in copula and the parameters in marginal distributions would be more 

likely statistically insignificant; iv) the statistical significance (significant or not) for 510 

individual and interactive effects from parameters is almost the same between these two 

gauge stations. All these conclusions obtained from Table 4 are consistent with the 

implications described in Figure 7.  

 

-------------------------------- 515 

Place Figures 7 and Table 4 here 

-------------------------------- 

 

In terms of the failure probabilities in OR and Kendall, as presented in Figures 8 and 9, these 

have similar patterns with the failure probability in AND (presented in Figure 7). The 520 

individual/main effects from the marginal distributions (except the location parameter in 

GEV) are generally more visible than the parameters in copula functions. Also, some 
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interactive curves, especially the curves between GEV_location and others, are parallel, 

showing insignificant interaction between those parameters. More detailed characterizations 

of the main and interactive effects for the failure probabilities in OR and Kendall are 525 

described in the ANOVA tables in Tables 5 and 6. These two tables show some slight 

differences from the conclusions given by Table 4. The location parameter in GEV also has a 

statistically significant effect on the failure probabilities results in OR and Kendall, which 

also leads to some significant interactions between this parameter and other model 

parameters. For the failure probability in Kendall, the parameter in the copula would have 530 

more interactions with other parameters in marginal distributions than the interactions in the 

failure probability in AND and OR. As presented in Table 6, the parameter in the copula 

would have a statistically significant effect on the inferred failure probability in Kendall with 

other parameters except the location parameter in GEV. These results are also implied in the 

main effects plots and full interactions plot matrices in Figures 8 and 9.  535 

 

-------------------------------------------- 

Place Figures 8-9 and Table 5 - 6 here 

-------------------------------------------- 

 540 

Based on the three-level factorial analysis, it can be generally concluded that the parameters 

in the marginal distributions (except the location parameter in GEV) would have more 

individual effects on joint risk inference than the parameter in the copula. The risk indices 

(i.e. AND, OR, or Kendall) would not have significantly influenced the individual effects of 

model parameters. However, for the interactive effects among model parameters, they may 545 
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exhibit slightly different patterns. Specifically, the parameter in the copula would have more 

significant interactions with parameters in the marginal distributions on the failure risk in 

Kendall than the other two risk indices. Moreover, the individual and interactive effects from 

the model parameters on risk inferences would not be influenced by the location of the gauge 

stations.  550 

 

4.4. Contribution Partition of Uncertainty Sources 

 

As a result of parameter uncertainties, the predictive failure probabilities exhibit noticeable 

uncertainties, as shown in Figures 4-6. The three-level factorial analysis based on Equations 555 

(11) is able to provide a primary description and visualization related to the individual and 

interactive effects of parameter uncertainty on the inferred failure probabilities. However, two 

critical issues to be answered are: (i) how much would parameter uncertainties contribute to 

the variation of the inferred risk values? and (ii) do these contributions change significantly 

for failure probabilities with different service time scenarios? To address these two issues and 560 

get reliable results, an iterative factorial approach (IFA) has been proposed, which is 

formulated as Equations (16) – (20). Also, like the three-level factorial analysis, three 

quantile levels were selected at 0.1, 0.5, and 0.9. Based on IFA, each parameter at its three 

quantile values (0.1, 0.5, 0.9) would be further subsampled into three scenarios of two 

quantile values (i.e. (0.1, 0.5), (0.1, 0.9), and (0.5, 0.9)). For this study, we have a total 565 

number of 6 parameters with each having three quantile values at 0.1, 0.5, and 0.9, which 

would lead to a total number of 729 (i.e. 36) two-level factorial designs.   

 



28 
 

Figure 10 shows the detailed contribution table of the model parameters on uncertainty in 

predictive failure probabilities of AND at the two gauge stations. It can be observed that, 570 

even though some discrepancies exist at Zhangjiashan and Xingshan stations, the detailed 

contributions for each parameter and their interaction show quite similar features between 

these two stations. In detail, uncertainty in the shape parameter in GEV has the most 

significant impact on the failure probability in AND, followed by sdlog in LN, parameter 

interaction, meanlog in LN, and scale parameter in GEV. Moreover, the uncertainty in the 575 

parameter in the copula would not lead to a significant variation in the resulting failure 

probability predictions in AND, which merely makes a contribution less than 0.5%. Such 

conclusions are also generally consistent with the ANOVA results presented in Figure 7 and 

Table 4. Furthermore, with the increase in service time, the contributions of each parameter 

and their interactions do not vary significantly. Some individual contributions from parameter 580 

uncertainties would slightly increase while other individual contributions may slightly 

decrease. However, the effect from parameter interactions would generally increase with the 

increase of service time. In comparison, the enhancement in design standards for hydraulic 

infrastructures would lead to a greater chance for deceases in individual effects and, at the 

same time, increases in parameter interactions. For instance, as the flood design standard 585 

increases from 200-year to 500-year for a hydraulic facility with 30-year service time near the 

Zhangjishan station, the interactive effect of model parameters would increase from 15.14% 

to 18.09%.  

 

-------------------------------------------- 590 

Place Figure 10 here 
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-------------------------------------------- 

 

In terms of the failure probability in OR, the individual and interactive effects of model 

parameters on predictive risk uncertainties show similar patterns with the parameters’ effects 595 

on the failure probability in AND. As shown in Figure 11, the shape parameter in the GEV 

distribution and the sdlog in the LN distribution are the two major sources of uncertainty in 

failure probabilities in OR. However, compared with the failure probability in AND, 

parameter interaction has a less effect on the resulting uncertainty of risk inference in OR. As 

shown in Figures 10 and 11, the effect of parameter interaction on the risk in AND ranges 600 

between 13.96% and 20.05%, while in comparison, the parameters’ interactive effect on the 

risk in OR varies between 10.25% and 11.57%. Apparently, it can also be observed that some 

external factors such as the design standard and service time of hydraulic infrastructures have 

less influence on the parameters’ interaction on risk in OR than the risk in AND. However, 

the first contributor (i.e. shape parameter in GEV) would have a larger contribution on the 605 

predictive uncertainty in the failure probability in OR as the increase in the design standard, 

while in comparison, this contributor would have a lower contribution on the risk in AND. 

For instance, as the design return period of flood (i.e. design standard) increases from 200 to 

500 years and the service time of the hydraulic facility is 30 years, the contribution of the 

shape parameter in GEV would increase from 47.62% to 50.64% for the failure probability in 610 

OR at the Xianyang station, while the parameter’s contribution on the failure probability in 

AND decreases from 49.26% to 45.77%.  

 

-------------------------------------------- 
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Place Figure 11 here 615 

-------------------------------------------- 

 

For the failure probability in Kendall, the contributions of model parameters and their 

interaction are presented in Figure 12. Similar to the failure probabilities in AND and OR, the 

shape parameter in the GEV distribution and the sdlog parameter in the LN distribution are 620 

the two major contributors, which can account for nearly 70% or more in the predictive 

uncertainty of the failure probability in Kendall. Meanwhile, the scale parameter in GEV, 

meanlog in LN, and parameters’ interaction also have noticeable effects on the risk in 

Kendall, ranging from 4.72% (scale parameter in GEV) to 12.64% (meanlog in LN). 

Conversely, the location parameter in GEV and the dependence parameter in copula merely 625 

have relatively minor individual effects. However, it is noticeable that, although the 

dependence parameter has a minor effect (0.78%, 1.03%) on the risk in Kendall, such an 

effect is much higher than the effect on the risk in AND (less than 0.23%) and the risk in OR 

(less than 0.06%). 

 630 

-------------------------------------------- 

Place Figure 12 here 

-------------------------------------------- 

 

Even through the prediction equations for the failure probabilities in AND, OR and Kendall, 635 

as presented in Equations (12) are different, the impacts of parameter uncertainties show 

quite similar features, in which the shape parameter in GEV and the sdlog in LN are the two 
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major contributors to the predictive uncertainties in risk inferences. Nearly 70% and more 

variability in the uncertainties in risk inferences can be attributed by the uncertainties in the 

shape parameter in GEV and sdlog parameter in LN. Also some external factors such as 640 

flood design and facility service time may have different influences on parameters’ effects for 

different risk indices, such influences are not significant and would not lead to remarkable 

changes in parameters’ contribution to risk inferences. Parameters’ interaction has a greater 

effect on risk inference in AND than the other two risk indices (i.e. OR, Kendall), while the 

contribution from the dependence parameter, even though not noteworthy, has a larger effect 645 

on the risk inference in Kendall.   

 

5. Discussion  

5.1. Differences for the Hydrologic Risk Models at Different Stations 

 650 

Different copula functions are applied for different stations, which are chosen based on the 

indices of RMSE and AIC. However, the selection of copula models at different stations may 

also be related with some key characteristics of the drainage areas for those stations. The 

Gumbel copula will be applied for the Zhangjiashan station. It can reflect strong correlation 

at high values. However, the Joe copula, which is adopted at the Xianyang station, can reflect 655 

a stronger right tail positive dependence than Gumbel copula. Both the Xianyang and 

Zhangjiashan stations have similar drainage areas. The Xianyang station controls a drainage 

area of 46,480 km2 (Xu et al., 2016), while the Zhangjiashan station has a drainage area of 

45,412 km2 (Sun et al., 2019). Nevertheless, the major reason that lead to different copula 
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functions at these two stations may be due to the elevation features for those two drainage 660 

areas. The drainage area of Zhangjiashan station is located in the central part of Loess Plateau 

of China, which is mainly characterized as a mountainous region. In comparison, even though 

a large part of the drainage area of Xianyang station is also located in the mountainous 

region, the Xianyang station also controls a large part of the Guanzhong Plain, as indicated in 

the red part of Figure 2. Consequently, the flood hydrograph at Zhangjiashan station may be 665 

sharp while the flood hydrograph at Xianyang station is relatively flat and show a stronger 

right tail dependence among flood peak and volume. In fact, the value of Kendall’s tau 

between peak and volume for the top ten floods at Zhangjiashan station is 0.33 while such a 

value of Kendall’s tau at Xianyang station is 0.6. These facts may explain that the Gumbel 

copula is applicable for Zhangjiashan station while the Joe copula is applied for Xianyang 670 

station. However, this is an initial guess and may need to be further demonstrated through 

more cases in different areas.   

 

5.2. Contribution Partition of Uncertainty Sources through Different Approaches 

 675 

In this study, the individual and interactive contributions of parameter uncertainties are 

quantified through the developed IFA approach, in which each parameter has three levels (i.e. 

0.1, 0.5, 0.9 quantiles) to be subsampled. In fact, the parameters’ contributions can also be 

characterized by the traditional factorial analysis (FA) approach based on Equations (15) as 

well as the IFA approach with more factor levels (e.g. 4 or 5 levels for each parameter).  680 

 

Figure 13 shows the comparison of parameter contributions to predictive uncertainty for 
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failure probabilities in AND at the Zhangjiashan station for three and four parameter levels 

scenarios for the design standard of 200-year. The results of Figure 13(b) are obtained 

through the IFA approach with each parameter having four levels to be its quantiles at 0.1, 685 

0.35, 0.6, 0.85. Also, Table 7 presents the parameter contributions to predictive uncertainty in 

failure probabilities obtained by traditional FA approach for Zhangjiashan stations with the 

design standard of 200-year and service time of 30-year.  

-------------------------------------------- 

Place Figure 13 and Table 7 here 690 

-------------------------------------------- 

 

It can be seen that for different subsampling scenarios, the resulting contributions may be 

different. However, such a difference would be tolerable since (1) the variations of 

parameters’ contributions are relatively small and mainly happen for the first two 695 

contributors, (2) the total contribution of the first two contributors does not change 

remarkably (around 70% in total), (3) the contributions of other factors especially the 

parameters’ interaction do not vary significantly, and (4) the rank of the contributions from 

different sources does not change for the two subsampling scenarios. In comparison, as 

presented in Table 7, the contribution partition of parameter uncertainties obtained through 700 

traditional FA shows totally different patterns for different risk inferences. Specifically, the 

traditional FA approach would significantly overestimate parameter interactive effects on risk 

inference in AND, at the same time, underestimate the interactive effects on risk inference in 

OR and Kendall. Consequently, the contribution rank of parameter uncertainties from 

traditional FA is different from the results obtained through the developed IFA approach.   705 
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As shown in Figure 13, the proposed IFA approach may lead to slightly different results for 

different subsampling schemes (four or five levels). However, an increase in parameter level 

would highly increase computational demand. For instance, if each parameter has four levels, 

the IFA approach would lead to a total number of 46,656 (i.e. 66) two-level factorial designs. 710 

Moreover, the subsampling scheme for factors with five levels would lead to a total number 

of one million (i.e. 106) two-level factorial designs. Consequently, the three-level 

subsampling scheme would generally be recommended and also can generate acceptable 

results.  

 715 

5.3. Correlation among Parameters’ Contributions 

 

The proposed IFA approach would generally produce a great number of two-level factorial 

designs. For one specific factor (e.g. GEV_shape), it would have two levels (lower and upper 

levels) for all factorial designs. However, the detailed value for the lower or upper level may 720 

be different in different factorial designs. This may finally lead to different contributions for 

this factor. Figure 14 presents the variations of parameters’ contributions to the prediction of 

failure probabilities in AND, OR, and Kendall. We already concluded that the shape 

parameter in GEV (i.e. GEV_shape) and the sdlog in LN (i.e. LN_sdlog) distribution would 

generally have the most significant contributions to predictive uncertainties in risk inferences. 725 

However, as shown in Figure 14, the detailed contributions for these two parameters would 

vary remarkably for different level values in different factorial designs. In comparison, the 

contributions from other parameters and their interaction have less fluctuation than the 
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individual contributions of GEV_shape and LN_sdlog. For instance, although the meanlog in 

LN (i.e. LN_meanlog), with an average contribution of more than 10%, may have some 730 

chance to pose a predominant contribution of more than 50%, most of its contribution is 

positively distributed within [0, 25%]. Also, even though the parameters’ interaction has a 

noteworthy average contribution larger than 10%, all the detailed contributions in different 

factorial designs are located within [0, 25%].    

 735 

-------------------------------------------- 

Place Figure 14 here 

-------------------------------------------- 

 

It has been observed that the parameters’ contribution may vary significantly due to the 740 

differences in factor values in different factorial designs. One potential issue to be addressed 

is that how those individual and interactive contributions correlate with each other. Figure 15 

presents the Pearson’s correlation among individual and interactive contributions of model 

parameters to different risk inferences (i.e. failure probabilities in AND, OR, and Kendall). It 

is noticeable that the parameters in the LN distribution (i.e. LN_sdlog, LN_meanlog) are 745 

generally negatively correlated with the parameters in the GEV distribution (i.e. GEV_shape, 

GEV_scale, and GEV_location). Also, for one marginal distribution (LN or GEV), its 

parameters are positively correlated. This implies that an increase in the contribution of one 

parameter would lead to a contribution increase for parameters within the same distribution 

and at the same time result in a contribution decrease for all parameters in the other 750 

distribution. Moreover, if statistically significant, the contribution of the dependent parameter 
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(i.e. parameter in copula) generally has positive correlation with the contributions from other 

parameters except GEV_shape and parameters’ interaction. Also, the contributions from 

parameters’ interactions are generally negatively correlated with the individual contributions 

from other parameters if such correlation is statistically significant.   755 

 

-------------------------------------------- 

Place Figure 15 here 

-------------------------------------------- 

 760 

The proposed IFA approach can generally characterize how parameter uncertainties would 

influence the predictive uncertainties in risk inferences. A large number of two-level factorial 

designs were produced due to different subsampling procedures and then used to generate 

different partition results for parameters’ contributions. However, for different risk inferences 

(i.e. failure probabilities in AND, OR, and Kendall), these partition results have similar 765 

variation features and also show similar correlation plots.  

 

6. Conclusions  

 

Uncertainty quantification is an essential issue for both univariate and multivariate 770 

hydrological risk analyses. A number of research works have been posed to reveal uncertain 

features in multivariate hydrological risk inference. However, it is required to know the major 

sources/contributors for predictive uncertainties in multivariate risk inferences. In this study, 

an iterative factorial copula approach (IFC) has been proposed for uncertainty quantification 
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and partition in multivariate hydrologic risk inference. In IFC, a copula-based multivariate 775 

risk model has been developed and the bootstrap method is adopted to quantify the 

probabilistic features for the parameters in both marginal distributions and the dependence 

model. An iterative factorial analysis (IFA) approach is finally developed to diminish the 

effect of the sample size in traditional ANOVA computation and provided reliable 

contribution partition for parameter uncertainties in different risk inferences.  780 

 

The proposed method has been applied for flood risk inferences at two gauge stations in Wei 

River basin. The results indicate that uncertainties in the parameters of the copula-based 

model would lead to noticeable uncertainties in the resulting risk inferences, especially for 

the joint flood risk in AND. noticeable uncertainties exist in the predictive joint RP of AND 785 

even for a small flood event. However, the results from IFA suggested that those uncertainties 

in risk inferences may mainly be attributed to the uncertainties in shape parameter in GEV 

distribution and the parameter of sdlog in LN for both the two stations. In comparison, the 

parameter uncertainty in the copula function would not pose an obvious effect on the 

resulting uncertainty in risk inferences. Such results indicate that, at least that the Wei River 790 

basin, the decision makers need to well estimate the values or quantify the uncertainties for 

the shape parameter in GEV distribution and sdlog in the LN distribution, in order to obtain 

reliable risk inferences. For other catchments, the proposed IFC method can be adopted to 

reveal the major sources for uncertainties in risk inferences and then provide potential 

pathways to get reliable risk inferences.  795 

 

This study is the first attempt to characterize parameter uncertainties in a copula-based 
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multivariate hydrological risk model and further reveal their contributions to predictive 

uncertainties for different risk inferences. As an improvement of ANOVA, the developed IFA 

method can mitigate the effect of bias variance estimation in ANOVA and generate reliable 800 

results. Moreover, another noteworthy feature for the IFA approach is that it does not only 

characterize the impacts for continuous factors (e.g. model parameters in this study), but also 

reveals the impacts of discrete or non-numeric factors. Such a feature can allow the proposed 

IFA approach to be employed to further explore the impacts of non-numeric factors (e.g. 

model structures, sample size) in hydrologic systems analysis.  805 
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authors  

 810 

Author contributions. YRF, KH, GHH and YPL designed the research. YRF and FW carried 

out the research, developed the model code and performed the simulations. YRF prepared the 

manuscript with contributions from all co-authors. 

 

Competing interests. The authors declare that they have no conflict of interest. 815 

 

Financial support. This work was jointly funded by the Brunel University Open Access 

Publishing Fund, the National Key Research and Development Plan (2016YFC0502800), the 

National Natural Science Foundation of China (51520105013), and the Natural Sciences and 

Engineering Research Council of Canada.  820 



39 
 

 

Acknowledgement: We are very grateful for the editor’s and the anonymous reviewers’ 

insightful and constructive comments 

 

References 825 

Bobee, B., Cavidas, G., Ashkar, F., Bernier, J., Rasmussen, P.: Towards a systematic approach to 

comparing distributions used in flood frequency analysis, J. Hydrol., 142, 121–136, 1993. 

Bosshard, T., Carambia M., Georgen K., Kotlarski S., Krahe P., Zappa M., Schar C.,: Quantifying 

uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour. Res., 

49(3): 1523-1536, DOI:10.1029/2011wr011533, 2013. 830 

Chebana F., and Ouarda T.B.M.,: Multivariate quantiles in hydrological frequency analysis. 

Environmetrics, 22(1), 63-78, 2011. 

Cunnane, C.: Statistical distributions for flood frequency analysis. Operational Hydrological Report, No. 

5/33, World Meteorological Organization (WMO), Geneva, Switzerland, 1989. 

De Michele C, Salvadori G.: A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-835 

copulas. J. Geophys. Res., 108(D2), 4067, doi:10.1029/2002JD002534, 2003. 

Dung N.V., Merz B., Bardossy A., Apel H.:. Handling uncertainty in bivariate quantile estimation – An 

application to flood hazard analysis in the Mekong Delta. J. Hydrol., 527, 704-717, 2015. 

Du T, Xiong L, Xu CY, Gippel CJ, Guo S, Liu P.: Return period and risk analysis of nonstationary low-

flow series under climate change. J. Hydrol., 527, 234-250, 2015. 840 

Fan Y.R., Huang K., Huang G.H., Li Y.P.,: A factorial Bayesian copula framework for partitioning 

uncertainties in multivariate risk inference. Environ. Res., 183, 109215, 2020. 

Fan Y.R., Huang W.W., Huang G.H., Huang K., Zhou X.,: A PCM-based stochastic hydrologic model for 

uncertainty quantification in watershed systems. Stochastic Environ. Res. Risk Assess., 29(3) 915-927, 

2015a. 845 



40 
 

Fan Y.R., Huang W.W., Li Y.P., Huang G.H., Huang K.: A coupled ensemble filtering and probabilistic 

collocation approach for uncertainty quantification of hydrological models. J. Hydrol., 530, 255-272, 

2015b. 

Fan Y.R., Huang W.W., Huang G.H., Huang K., Li Y.P., Kong X.M.: Bivariate hydrologic risk analysis 

based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area, 850 

China, Theor. Appl. Climatol., 125 (1-2), 381-397, doi:10.1007/s00704-015-1505-z, 2016a 

Fan Y.R., Huang W.W., Huang G.H., Li Y.P., Huang K.: Hydrologic Risk Analysis in the Yangtze River 

basin through Coupling Gaussian Mixtures into Copulas. Adv. Water Resour., 88, 170-185, 2016b. 

Fan Y.R., Huang G.H., Baetz B.W., Li Y.P., Huang K.,: Development of a Copula‐based Particle Filter 

(CopPF) Approach for Hydrologic Data Assimilation under Consideration of Parameter 855 

Interdependence. Water Resour. Res., 53(6), 4850-4875, 2017. 

Fan Y.R., Huang G.H., Zhang Y., Li Y.P.,: Uncertainty quantification for multivariate eco-hydrological risk 

in the Xiangxi River within the Three Gorges Reservoir Area in China, Engineering 4 (5), 617-626, 

2018. 

Genest C, Rémillard B, Beaudoin D.: Goodness-of-fit tests for copulas: A review and a power study. 860 

Insurance: Mathematics and Economics, 44:199-213, 2009.  

Graler B., van den Berg M.J., Vandenberghe S., Petroselli A., Grimaldi S., De Baets B., Verhoest N.E.C.,: 

Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design 

hydrograph estimation. Hydrol. Earth Syst. Sci. 17: 1281–1296, 2013. 

Huang K., Dai L.M., Yao M., Fan Y.R., Kong X.M.: Modelling dependence between traffic noise and 865 

traffic flow through an entropy-copula method, J. Environ. Inform., 29(2) 134-151, 

doi:10.3808/jei.201500302, 2017. 

Kao S.C., Govindaraju R.S.: A copula-based joint deficit index for droughts. J. Hydrol., 380, 121-134, 

2010. 

Karmakar S., Simonovic S.P.: Bivariate flood frequency analysis. Part 2: a copula-based approach with 870 

mixed marginal distributions. J. Flood Risk Manage., 2, 32-44, 2009. 

https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=sg_yIIMAAAAJ&sortby=pubdate&citation_for_view=sg_yIIMAAAAJ:4fKUyHm3Qg0C
https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=sg_yIIMAAAAJ&sortby=pubdate&citation_for_view=sg_yIIMAAAAJ:4fKUyHm3Qg0C
https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=sg_yIIMAAAAJ&sortby=pubdate&citation_for_view=sg_yIIMAAAAJ:mvPsJ3kp5DgC
https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=sg_yIIMAAAAJ&sortby=pubdate&citation_for_view=sg_yIIMAAAAJ:mvPsJ3kp5DgC
https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=sg_yIIMAAAAJ&cstart=20&pagesize=80&citation_for_view=sg_yIIMAAAAJ:tS2w5q8j5-wC
https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=sg_yIIMAAAAJ&cstart=20&pagesize=80&citation_for_view=sg_yIIMAAAAJ:tS2w5q8j5-wC


41 
 

Kidson R., Richards K.S.: Flood frequency analysis: assumption and alternatives. Prog. Phys. Geogr., 

29(3), 392-410, 2005. 

Kong X.M., Zeng X.T., Chen C., Fan Y.R., Huang G.H., Li Y.P., Wang C.X.: Development of a Maximum 

Entropy-Archimedean Copula-Based Bayesian Network Method for Streamflow Frequency Analysis—875 

A Case Study of the Kaidu River Basin, China, Water, 11(1), 42, 2019 

Kong X.M., Huang G.H., Fan Y.R., Li Y.P.: Maximum entropy-Gumbel-Hougaard copula method for 

simulation of monthly streamflow in Xiangxi river, China. Stochastic Environ. Res. Risk Assess., 29, 

833-846, 2015 

Lee T, Salas JD.: Copula-based stochastic simulation of hydrological data applied to Nile River flows. 880 

Hydrol. Res. 42(4): 318–330, 2011. 

Ma M., Song S., Ren L., Jiang S., Song J.: Multivariate drought characteristics using trivariate Gaussian 

and Student copula. Hydrol. Processes, 27, 1175-1190, 2013. 

Merz B, Thieken A.H.: Separating natural and epistemic uncertainty in flood frequency analysis. J. 

Hydrol., 309(1–4):114–132, 2005. 885 

Montgomery, D. C. (Eds.). Design and analysis of experiments (5th ed.). New York: John Wiley & Sons 

Inc., 2001. 

Nelsen R.B., (Eds.). An Introduction to Copulas. Springer: New York, 2006.  

Qi, W., Zhang, C., Fu, G., Zhou, H.: Imprecise probabilistic estimation of design floods with epistemic 

uncertainties. Water Resour. Res., 52(6), 4823–4844, doi:10.1002/2015WR017663, 2016a. 890 

Qi, W., Zhang, C., Fu, G., Zhou, H.: Quantifying dynamic sensitivity of optimization algorithm parameters 

to improve hydrological model calibration. J. Hydrol., 533: 213-223, 

DOI:10.1016/j.jhydrol.2015.11.052, 2016b 

Requena A., Mediero L., Garrote L.: A bivariate return period based on copulas for hydrologic dam design: 

Accounting for reservoir routing in risk estimation. Hydrol. Earth Syst. Sci. 17(8):3023-3038, 2013. 895 



42 
 

Reddy M.J., Ganguli P.: Bivariate flood frequency analysis of Upper Godavari River flows using 

Archimedean copulas. Water Resour. Manage. 26 (14), 3995-4018, 2012 

Sadegh M., Ragno E., AghaKouchak, A.: Multivariate Copula Analysis Toolbox (MvCAT): Describing 

dependence and underlying uncertainty using a Bayesian framework, Water Resour. Res., 53, 5166–

5183, doi:10.1002/ 2016WR020242, 2017 900 

Salvadori G., De Michele C., Durante F.: On the return period and design in a multivariate framework. 

Hydrol. Earth Syst. Sci. 15: 3293–3305, 2011 

Salvadori, G., F. Durante, C. De Michele, M. Bernardi, and L. Petrella: A multivariate copula-based 

framework for dealing with hazard scenarios and failure probabilities, Water Resour. Res., 52, 3701–

3721, doi:10.1002/2015WR017225, 2016 905 

Salvadori G., De Michele C., Kottegoda N.T., Rosso R., (Eds.). Extremes in Nature: an Approach using 

Copula. Springer: Dordrencht; 2007. 

Sarhadi, A., D. H. Burn, M. C. Ausín, and M. P. Wiper: Time-varying nonstationary multivariate risk 

analysis using a dynamic Bayesian copula, Water Resour. Res., 52, 2327–2349, 

doi:10.1002/2015WR01852, 2016 910 

Song J, Xu Z, Liu C, Li H.: Ecological and environmental instream flow requirements for the Wei River – 

the largest tributary of the Yellow River. Hydrol. Processes, 21, 1066-1073, 2007 

Song S., Singh V.P.: Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. 

Stochastic Environ. Res. Risk Assess., 24(3), 425-444, 2010. 

Sraj M., Bezak N., Brilly M.: Bivariate flood frequency analysis using the copula function: a case study of 915 

the Litija station on the Sava River. Hydrol. Processes, 29(2), 225-238, 2014. 

Sun C.X., Huang G.H., Fan Y.R., Zhou X., Lu C., Wang X.W.: Drought occurring with hot extremes: 

Changes under future climate change on Loess Plateau, China, Earth's Future, 7(6), 587-604, 2019. 



43 
 

The European Parliament and The Council: Directive 2007/60/EC: On the assessment and management of 

flood risks, Official Journal of the European Union, 116 pp, 2007 920 

Vandenberghe S, Verhoest NEC, De Baets B.: Fitting bivariate copulas to the dependence structure 

between storm characteristics: a detailed analysis based on 105 year 10 min rainfall. Water Resour. Res., 

46. DOI: 10.1029/2009wr007857, 2010. 

Xu Y., Huang G.H., Fan Y.R.: Multivariate flood risk analysis for Wei River. Stochastic Environ. Res. Risk 

Assess., 31 (1), 225-242 doi: 10.1007/s00477-015-1196-0, 2016 925 

Yue S.: The bivariate lognormal distribution to model a multivariate flood episode. Hydrol. Processes, 

14(14), 2575-2588, 2000 

Yue S.: A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol. Processes, 

15(6), 1033-1045, 2001 

Zhang L, Singh VP: Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol., 930 

332(1–2):93–109, 2007.  

Zhang Q., Xiao M.Z., Singh V.P.: Uncertainty evaluation of copula analysis of hydrological droughts in the 

East River basin, China. Global Planet. Change, 129, 1-9, 2015. 

  



44 
 

Captions of Tables 935 

Table 1. Flood characteristics for different stations 

Table 2. Statistical test results for marginal distribution estimation: LN means lognormal 

distribution, P III means Pearson Type III distribution, and LP III means log-Pearson Type III 

distribution. K-S test denotes the Kolmogorov–Smirnov test. 

Table 3. Performance for quantifying the joint distributions between flood peak and volume 940 

through different copulas: CvM is the Cramér von Mises statistic proposed by Genest et al. 

(2009), with p-value larger than 0.05 indicating satisfactory performance.Table 4. Statistical 

test results for marginal distribution estimation 

Table 4. ANOVA table for failure probability in AND: A indicates the shape parameter in GEV, 

B indicates the scale parameter of GEV, C indicates the location parameter of GEV, D means 945 

the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula 

Comparison of RMSE and AIC values for joint distributions through different copulas  

Table 5. ANOVA table for failure probability in OR: A indicates the shape parameter in GEV, 

B indicates the scale parameter of GEV, C indicates the location parameter of GEV, D means 

the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula  950 

Table 6. ANOVA table for failure probability in Kendall: A indicates the shape parameter in 

GEV, B indicates the scale parameter of GEV, C indicates the location parameter of GEV, D 

means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in  

Table 7. Contributions of parameter uncertainties obtained by three level ANOVA to 

predictive failure probabilities for a design return period of 200-year and service time of 30-955 

year 

 

Captions of Figures 

Figure 1: Framework of the proposed IFC approach 

Figure 2. The location of the studied watersheds. Wei River is the largest tributary of Yellow 960 

river, with a drainage area of 135,000 km2. The historical flood data from Xianyang and 

Zhangjiashan stations on the Wei River are analyzed through the proposed IFC approach. 

Figure 3. Probabilistic features for parameters in marginal distributions and copula: for both 

Xianyang and Zhangjiashan stations, the GEV (parameters include shape, scale and location) 

function would be employed to quantify the distribution of flood peak, while the lognormal 965 

distribution (parameters denoted as meanlog and sdlog) is applied for flood volume. The 
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Gumbel and Joe copula (parameter denoted as theta) would be respectively adopted to model 

the dependence between flood peak and volume at Zhangjiashan and Xianyang stations. 

Figure 4. Uncertainty quantification of the joint RP in “AND”: the red dash lines indicate the 

predictive means, the two blue dash lines respectively indicate the 5% and 95% quantiles, and 970 

the grey lines indicate the predictions under different parameter samples with the same joint 

RP of the red and blue dash lines; The cyan lines denote the predictions under different return 

periods with the model parameters being their mean values. 

Figure 5. Uncertainty quantification of the joint RP in “OR”: the red dash lines indicate the 

predictive means, the two blue dash lines respectively indicate the 5% and 95% quantiles, and 975 

the grey lines indicate the predictions under different parameter samples with the same joint 

RP of the red and blue dash lines; The cyan lines denote the predictions under different return 

periods with the model parameters being their mean values. 

Figure 6. Uncertainty quantification of the joint RP in “Kendall”: the red dash lines indicate 

the predictive means, the two blue dash lines respectively indicate the 5% and 95% quantiles, 980 

and the grey lines indicate the predictions under different parameter samples with the same 

joint RP of the red and blue dash lines; The cyan lines denote the predictions under different 

return periods with the model parameters being their mean values 

Figure 7. Main effects plot and full interactions plot matrix for parameters on the failure 

probability in AND at the two gauge stations 985 

Figure 8. Main effects plot and full interactions plot matrix for parameters on the failure 

probability in OR at the two gauge stations  

Figure 9. Main effects plot and full interactions plot matrix for parameters on the failure 

probability in Kendall at the two gauge stations  

Figure 10. Contributions of parameter uncertainties to predictive failure probabilities in AND 990 

under different design standards (i.e. return periods (RP)) and different service periods  

Figure 11. Contributions of parameter uncertainties to predictive failure probabilities in OR 

under different design standards (i.e. return periods (RP)) and different service periods 

Figure 12. Contributions of parameter uncertainties to predictive failure probabilities in 

Kendall under different design standards (i.e. return periods (RP)) and different service periods 995 

Figure 13. Comparison of parameter contributions to predictive uncertainty for failure 

probabilities under different levels of subsampling for Zhangjiashan station: three (i.e. 0.1, 

0.5, 0.9) and four (i.e. 0.1, 0.35, 0.6, 0.85) level quantiles are adopted for subsampling and 

the design return period is 200 years.   

Figure 14. Variation of parameters’ contributions for different risk inferences at the 1000 

Zhangjiashan Station for a design standard of 200-year and a service time of 30-year  
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Figure 15. Correlation for parameters’ contributions on risk inferences at Zhangjiashan 

station for a design standard of 200-year and a service time of 30-year: The cross sign 

indicates the correlation is statistically insignificant 

 1005 
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Table 1. Flood characteristics for different stations 

Station name period  flood variable 

   Peak (m3/s) Volume (m3/(s day)) 

  Minimum 139 317 

Xianyang 1960-2006 Median 1350 2491 

  Maximum 12380 17802 

  Minimum 217 303.7 

Zhangjiashan 1958-2012 Median 775 1365.3 

  Maximum 3730 7576.1 



48 
 

 

Table 2. Statistical test results for marginal distribution estimation: LN means lognormal 

distribution, P III means Pearson Type III distribution, and LP III means log-Pearson Type III 

distribution. K-S test denotes the Kolmogorov–Smirnov test. 

Station name Flooding 

variables 

Marginal 

distribution 

K-S test 
RMSE AIC 

T  P-value 

Zhangjiashan 

Peak 

Gamma 0.0745 0.5471 0.0378 -323.5512 

GEV 0.0724 0.9151 0.0275 -389.3956 

LN 0.0805 0.8403 0.0283 -388.3297 

P III 0.0893 0.7386 0.0395 -349.3274 

LP III 0.0795 0.8508 0.0324 -371.3614 

Volume 

Gamma 0.1460 0.1735 0.0596 -306.2925 

GEV 0.1017 0.5839 0.0369 -357.0852 

LN 0.0904 0.7250 0.0361 -361.3353 

P III 0.1589 0.1112 0.0737 -280.8701 

 LP III 0.0967 0.6468 0.0367 -357.5476 

Xianyang 

Peak 

Gamma 0.1159 0.5533 0.0372 -305.4087 

GEV 0.0875 0.8645 0.0305 -321.9202 

LN 0.1051 0.6763 0.0436 -290.5248 

P III 0.1202 0.5051 0.0416 -292.8448 

LP III 0.1321 0.3848 0.0617 -255.8931 

Volume 

Gamma 0.1146 0.5305 0.0450 -287.4880 

GEV 0.0540 0.9980 0.0195 -364.3058 

LN 0.0670 0.9749 0.0192 -367.3885 

P III 0.1005 0.6913 0.0377 -302.0492 

 LP III 0.0722 0.9522 0.0313 -319.6540 
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Table 3. Performance for quantifying the joint distributions between flood peak and volume 

through different copulas: CvM is the Cramér von Mises statistic proposed by Genest et al. 

(2009), with p-value larger than 0.05 indicating satisfactory performance. 

  RMSE AIC CvM p-value 

 Gaussian 0.0669 -295.5144 7.9302 0.7770 

 Student t 0.0669 -293.5237 8.5203 0.5976 

Zhangjiashan Clayton 0.0843 -270.0616 9.4615 0.3290 

 Gumbel 0.0637 -300.8577 7.9342 0.7580 

 Frank 0.0690 -292.0723 9.0704 0.4480 

 Joe 0.0606 -306.3185 11.0321 0.0290 

 Gaussian 0.0513 -277.1704 8.4731 0.2400 

 Student t 0.0510 -275.6834 8.2295 0.2885 

Xinshan Clayton 0.0618 -259.7391 8.2051 0.3240 

 Gumbel 0.0477 -283.9933 7.1344 0.6700 

 Frank 0.0562 -268.6861 8.2725 0.2940 

 Joe 0.0446 -290.2631 6.9905 0.6540 
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Table 4. ANOVA table for failure probability in AND: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C 

indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula  

 Parameter 
Zhangjiashan Xianyang 

SS DF MS F-Value P-value SS DF MS F-Value P-value 

A 0.37 2 0.18 7512.32 < 0.0001 0.59 2 0.30 5079.77 < 0.0001 

B 0.018 2 8.905E-003 362.65 < 0.0001 0.013 2 6.527E-003 111.71 < 0.0001 

C 8.313E-005 2 4.156E-005 1.69 0.1849 8.642E-005 2 4.321E-005 0.74 0.4777 

D 0.059 2 0.029 1195.61 < 0.0001 0.082 2 0.041 701.54 < 0.0001 

E 0.18 2 0.092 3766.70 < 0.0001 0.31 2 0.16 2656.85 < 0.0001 

F 9.379E-004 2 4.690E-004 19.10 < 0.0001 7.813E-004 2 3.907E-004 6.69 0.0013 

AB 2.874E-003 4 7.186E-004 29.26 < 0.0001 8.730E-003 4 2.183E-003 37.35 < 0.0001 

AC 1.179E-005 4 2.948E-006 0.12 0.9753 5.434E-005 4 1.359E-005 0.23 0.9201 

AD 0.047 4 0.012 473.52 < 0.0001 0.079 4 0.020 338.27 < 0.0001 

AE 0.14 4 0.036 1448.10 < 0.0001 0.28 4 0.070 1193.40 < 0.0001 

AF 4.311E-004 4 1.078E-004 4.39 0.0017 4.687E-004 4 1.172E-004 2.01 0.0921 

BC 2.905E-007 4 7.263E-008 2.958E-003 1.0000 2.235E-008 4 5.588E-009 9.564E-005 1.0000 

BD 2.422E-003 4 6.055E-004 24.66 < 0.0001 2.465E-003 4 6.162E-004 10.55 < 0.0001 

BE 6.956E-003 4 1.739E-003 70.81 < 0.0001 8.669E-003 4 2.167E-003 37.09 < 0.0001 

BF 8.325E-006 4 2.081E-006 0.085 0.9871 2.355E-006 4 5.888E-007 0.010 0.9998 

CD 1.143E-005 4 2.859E-006 0.12 0.9767 1.652E-005 4 4.131E-006 0.071 0.9909 

CE 3.235E-005 4 8.088E-006 0.33 0.8583 5.669E-005 4 1.417E-005 0.24 0.9142 

CF 3.820E-008 4 9.551E-009 3.889E-004 1.0000 1.559E-008 4 3.897E-009 6.670E-005 1.0000 

DE 1.792E-003 4 4.481E-004 18.25 < 0.0001 6.919E-003 4 1.730E-003 29.60 < 0.0001 

DF 9.625E-005 4 2.406E-005 0.98 0.4178 1.288E-004 4 3.221E-005 0.55 0.6982 

EF 3.238E-004 4 8.095E-005 3.30 0.0109 4.540E-004 4 1.135E-004 1.94 0.1017 

Error 0.016 656 2.456E-005   0.038 656 5.843E-005   

Total SS 0.85 728    1.42 728    
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Table 5. ANOVA table for failure probability in OR: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C 

indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula  

 Parameter 
Zhangjiashan Xianyang 

SS DF MS F-Value P-value SS DF MS F-Value P-value 

A 2.04 2 1.02 39285.40 < 0.0001 3.71 2 1.85 30534.64 < 0.0001 

B 0.20 2 0.098 3784.17 < 0.0001 0.26 2 0.13 2165.79 < 0.0001 

C 9.466E-004 2 4.733E-004 18.22 < 0.0001 1.811E-003 2 9.054E-004 14.91 < 0.0001 

D 0.24 2 0.12 4679.22 < 0.0001 0.30 2 0.15 2498.09 < 0.0001 

E 0.60 2 0.30 11626.79 < 0.0001 0.87 2 0.43 7132.20 < 0.0001 

F 7.833E-004 2 3.916E-004 15.08 < 0.0001 6.382E-004 2 3.191E-004 5.26 0.0054 

AB 0.17 4 0.043 1666.34 < 0.0001 0.27 4 0.069 1128.63 < 0.0001 

AC 8.076E-004 4 2.019E-004 7.77 < 0.0001 1.830E-003 4 4.575E-004 7.54 < 0.0001 

AD 0.048 4 0.012 465.73 < 0.0001 0.081 4 0.020 335.01 < 0.0001 

AE 0.15 4 0.037 1418.17 < 0.0001 0.29 4 0.071 1175.81 < 0.0001 

AF 3.442E-004 4 8.604E-005 3.31 0.0106 3.658E-004 4 9.144E-005 1.51 0.1986 

BC 8.013E-005 4 2.003E-005 0.77 0.5442 1.226E-004 4 3.064E-005 0.50 0.7323 

BD 2.528E-003 4 6.319E-004 24.33 < 0.0001 2.534E-003 4 6.334E-004 10.43 < 0.0001 

BE 7.212E-003 4 1.803E-003 69.40 < 0.0001 8.837E-003 4 2.209E-003 36.39 < 0.0001 

BF 5.294E-006 4 1.323E-006 0.051 0.9951 1.077E-006 4 2.693E-007 4.436E-003 1.0000 

CD 1.192E-005 4 2.981E-006 0.11 0.9773 1.697E-005 4 4.242E-006 0.070 0.9911 

CE 3.353E-005 4 8.382E-006 0.32 0.8628 5.780E-005 4 1.445E-005 0.24 0.9169 

CF 2.416E-008 4 6.040E-009 2.325E-004 1.0000 7.119E-009 4 1.780E-009 2.932E-005 1.0000 

DE 0.11 4 0.028 1069.79 < 0.0001 0.17 4 0.042 691.60 < 0.0001 

DF 7.482E-005 4 1.870E-005 0.72 0.5784 9.919E-005 4 2.480E-005 0.41 0.8026 

EF 2.568E-004 4 6.420E-005 2.47 0.0435 3.550E-004 4 8.876E-005 1.46 0.2121 

Error 0.017 656 2.598E-005   0.040 656 6.071E-005   

Total SS 3.60 728    6.01 728    
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Table 6. ANOVA table for failure probability in Kendall: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C 

indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula  

 Parameter 
Zhangjiashan Xianyang 

SS DF MS F-Value P-value SS DF MS F-Value P-value 

A 0.97 2 0.48 33813.15 < 0.0001 2.08 2 1.04 27047.85 < 0.0001 

B 0.096 2 0.048 3349.45 < 0.0001 0.15 2 0.076 1983.83 < 0.0001 

C 4.627E-004 2 2.313E-004 16.19 < 0.0001 1.055E-003 2 5.274E-004 13.72 < 0.0001 

D 0.11 2 0.057 3987.58 < 0.0001 0.17 2 0.084 2181.53 < 0.0001 

E 0.28 2 0.14 9809.61 < 0.0001 0.47 2 0.24 6153.63 < 0.0001 

F 0.013 2 6.451E-003 451.42 < 0.0001 0.025 2 0.013 331.58 < 0.0001 

AB 0.087 4 0.022 1525.14 < 0.0001 0.16 4 0.041 1066.18 < 0.0001 

AC 4.090E-004 4 1.022E-004 7.15 < 0.0001 1.101E-003 4 2.754E-004 7.16 < 0.0001 

AD 0.022 4 5.448E-003 381.22 < 0.0001 0.044 4 0.011 286.00 < 0.0001 

AE 0.066 4 0.017 1156.06 < 0.0001 0.15 4 0.038 995.79 < 0.0001 

AF 2.163E-003 4 5.407E-004 37.84 < 0.0001 5.986E-003 4 1.496E-003 38.93 < 0.0001 

BC 4.233E-005 4 1.058E-005 0.74 0.5645 7.800E-005 4 1.950E-005 0.51 0.7304 

BD 1.147E-003 4 2.866E-004 20.06 < 0.0001 1.377E-003 4 3.444E-004 8.96 < 0.0001 

BE 3.254E-003 4 8.135E-004 56.93 < 0.0001 4.755E-003 4 1.189E-003 30.93 < 0.0001 

BF 2.479E-004 4 6.198E-005 4.34 0.0018 4.939E-004 4 1.235E-004 3.21 0.0126 

CD 5.408E-006 4 1.352E-006 0.095 0.9842 9.226E-006 4 2.307E-006 0.060 0.9933 

CE 1.513E-005 4 3.782E-006 0.26 0.9007 3.112E-005 4 7.781E-006 0.20 0.9370 

CF 1.190E-006 4 2.974E-007 0.021 0.9992 3.369E-006 4 8.423E-007 0.022 0.9991 

DE 0.054 4 0.014 950.06 < 0.0001 0.096 4 0.024 623.48 < 0.0001 

DF 1.870E-004 4 4.676E-005 3.27 0.0114 3.437E-004 4 8.592E-005 2.24 0.0638 

EF 4.113E-004 4 1.028E-004 7.20 < 0.0001 9.130E-004 4 2.282E-004 5.94 0.0001 

Error 9.374E-003 656 1.429E-005   0.025 656 3.844E-005   

Total SS 1.72 728    3.40 728    
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Table 7. Contributions of parameter uncertainties obtained by three level ANOVA to 

predictive failure probabilities for a design return period of 200-year and service time 

of 30-year 

Factor FPand FPor  FPkendall 

A 43.53% 56.67% 56.40% 

B 2.12% 5.56% 5.58% 

C 0.01% 0.03% 0.03% 

D 6.94% 6.67% 6.40% 

E 21.18% 16.67% 16.28% 

F 0.11% 0.02% 0.76% 

Interaction 26.12% 4.72% 5.06% 
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Figure 1. Framework of the proposed IFC approach.  
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Figure 2. The location of the studied watersheds. Wei River is the largest tributary of Yellow river, 

with a drainage area of 135,000 km2. The historical flood data from Xianyang and Zhangjiashan 

stations on the Wei River are analyzed through the proposed IFC approach.  

 

Wei River
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Figure 3. Probabilistic features for parameters in marginal distributions and copula: for both 

Xianyang and Zhangjiashan stations, the GEV (parameters include shape, scale and location) 

function would be employed to quantify the distribution of flood peak, while the lognormal 

distribution (parameters denoted as meanlog and sdlog) is applied for flood volume. The Gumbel 

and Joe copula (parameter denoted as theta) would be respectively adopted to model the 

dependence between flood peak and volume at Zhangjiashan and Xianyang stations.  

 

(a
) 

Z
h

a
n

g
jia

s
h

a
n

(b
) 

X
ia

n
ya

n
g



57 
 

 
Figure 4. Uncertainty quantification of the joint RP in “AND”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5% 

and 95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines 

denote the predictions under different return periods with the model parameters being their mean values. 
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Figure 5. Uncertainty quantification of the joint RP in “OR”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5% and 

95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines 

denote the predictions under different return periods with the model parameters being their mean values.  
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Figure 6. Uncertainty quantification of the joint RP in “Kendall”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5% 

and 95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines 

denote the predictions under different return periods with the model parameters being their mean values. 
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Figure 7. Main effects plot and full interactions plot matrix for parameters on the failure probability in AND at the two gauge stations.  
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Figure 8. Main effects plot and full interactions plot matrix for parameters on the failure probability in OR at the two gauge stations   
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Figure 9. Main effects plot and full interactions plot matrix for parameters on the failure probability in Kendall at the two gauge stations

Main Effect

Interactive EffectMain Effect

Interactive Effect

(a
) 

Z
h

a
n

g
jia

s
h

a
n

(b
) 

X
ia

n
ya

n
g



63 
 

 

 
Figure 10. Contributions of parameter uncertainties to predictive failure probabilities in AND 

under different design standards (i.e. return periods (RP)) and different service periods  
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Figure 11. Contributions of parameter uncertainties to predictive failure probabilities in OR under 

different design standards (i.e. return periods (RP)) and different service periods  
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Figure 12. Contributions of parameter uncertainties to predictive failure probabilities in Kendall 

under different design standards (i.e. return periods (RP)) and different service periods  

 

  

(a) Zhangjiashan (b) Xianyang

R
P

: 
3
0
0

R
P

: 
2
0
0

R
P

: 
5
0
0

Legend
1%

10%
20%

30%
40%

50%

GEV_shape 45.02% 45.15% 45.21%

GEV_scale 7.06% 6.82% 6.58%

GEV_location 0.07% 0.07% 0.07%

LN_meanlog 12.46% 12.45% 12.43%

LN_sdlog 24.03% 24.24% 24.43%

Cop_theta 1.02% 0.98% 0.94%

Par_interaction 10.33% 10.29% 10.34%

GEV_shape 46.37% 46.51% 46.60%

GEV_scale 6.57% 6.36% 6.16%

GEV_location 0.05% 0.05% 0.05%

LN_meanlog 11.52% 11.51% 11.49%

LN_sdlog 23.95% 24.14% 24.32%

Cop_theta 0.94% 0.91% 0.88%

Par_interaction 10.60% 10.53% 10.51%

GEV_shape 47.89% 48.01% 48.10%

GEV_scale 6.08% 5.92% 5.77%

GEV_location 0.03% 0.03% 0.03%

LN_meanlog 10.54% 10.53% 10.52%

LN_sdlog 23.76% 23.91% 24.06%

Cop_theta 0.85% 0.83% 0.80%

Par_interaction 10.86% 10.78% 10.72%

30 year 50 year 70 year

47.04% 47.13% 47.09%

5.38% 5.04% 4.72%

0.08% 0.07% 0.06%

10.84% 10.82% 10.79%

24.00% 24.36% 24.70%

1.03% 0.96% 0.90%

11.64% 11.62% 11.72%

48.45% 48.57% 48.62%

5.16% 4.87% 4.59%

0.05% 0.05% 0.05%

9.99% 9.98% 9.96%

23.71% 24.04% 24.35%

0.94% 0.89% 0.85%

11.69% 11.60% 11.58%

50.03% 50.17% 50.26%

4.94% 4.71% 4.49%

0.04% 0.03% 0.03%

9.13% 9.12% 9.10%

23.30% 23.56% 23.82%

0.85% 0.82% 0.78%

11.71% 11.59% 11.52%

30 year 50 year 70 year



66 
 

 

Figure 13. Comparison of parameter contributions to predictive uncertainty for failure 

probabilities under different levels of subsampling for Zhangjiashan station: three (i.e. 0.1, 0.5, 

0.9) and four (i.e. 0.1, 0.35, 0.6, 0.85) level quantiles are adopted for subsampling and the design 

return period is 200 years.    
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Figure 14. Variation of parameters’ contributions for different risk inferences at the Zhangjiashan 

Station for a design standard of 200-year and a service time of 30-year 
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Figure 15. Correlation for parameters’ contributions on risk inferences at Zhangjiashan station for a design standard of 200-year and a service time of 30-year: The 

cross sign indicates the correlation is statistically insignificant.  

 

(b) FPor(a) FPand (c) FPkendall


