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Response to Editor’s comment on the manuscript hess-2019-432 “Ability of an 

Australian reanalysis dataset to characterise sub-daily precipitation” by Suwash 

Chandra Acharya et al. 

 

We would like to thank the editor Micha Werner for his very constructive comments and suggestions 

on our paper. The specificity of these comments and the evident care given to reading the paper is 

greatly appreciated. In the following, we have grouped the comments and provided a response to the 

comments and suggestions by the editor to improve the manuscript. The editor’s comments (in black), 

our corresponding reply (in blue), and modifications (underlined).  

  

Technical corrections 

L54 Please check this sentence - appears as if there is a word missing (large precipitation amounts) 

L99-100 Rephrase sentence: The spatial evaluation across the whole of Australia is impeded by the lack 

of the availability of a high-resolution observation-based dataset. 

L331 climate in these regions 

L 332 would it be more suitable to call this "frontal" rainfall? 

L 378 This sentence should be revised. A suggestion: One of the potential applications of BARRA is 

for deriving probabilistic design rainfall events for engineering applications, which utilise information 

on the relationship between rainfall magnitude and its exceedance probability either at a point or over 

an area. Such applications are probabilistic in nature and are less sensitive to spatial and temporal errors 

of the individual events.  

 

We agree to these suggestions made and we have revised the sentences accordingly. 

 

L164 while I appreciate the change of title, I do not think diurnal is the appropriate word as this suggest 

a day/night pattern which is not implied. Also change in the results section. 

We have replaced “diurnal” with “sub-daily” which is appropriate for this study. The revised the title 

of sub-sections in methodology (3.2) and results section (4.2) to “Neighbourhood-based sub-daily 

patterns at point locations”. 

 

Conclusion: Summary points 

L 358-359 This conclusion should be made a little more specific. First indicate that you mean the Sub-

daily precipitation estimates from BARRA. That is somewhat implicit. Also check the second sentence.  

The statement that it is lowest at daily accumulation I assume only comes from the fact that daily is the 

largest temporal aggregation considered. I would assume the bias will continue to decrease as the 

temporal accumulation increases beyond the day. 

L 360 As with the previous conclusion this sentence needs to be rephrased as it does not in itself 

represent a conclusion. This should be self-standing, and not suggest that it is evident. Please rephrase. 



2 

 

L363-364 While this conclusion is well put (and clearer than the previous two, it is not common to 

include references in the conclusions. That is reserved for the discussion. I would suggest to drop the 

phrase after the comma, and double check that this is addressed in the discussion (which I believe it is). 

L 365 This seems very similar to the second conclusions. So perhaps in strengthening that as suggested 

these can be combined. 

We agree with the editor’s suggestions to make the conclusion more specific. We have explicitly 

included “BARRA” where deemed necessary. We have combined the points summarising the effect of 

temporal accumulations. The revised conclusion reads as follows: 

1. Sub-daily precipitation from BARRA exhibits negative bias at higher quantiles. The magnitude 

of bias varies with event severity and temporal accumulation. 

2. There is some tendency for BARRA reanalysis rainfalls to exhibit spatial displacement, and 

this is more pronounced for rainfall corresponding to higher quantiles.  

3. The performance of BARRA precipitation depends on spatial location with poorer performance 

in tropical relative to temperate regions. These spatial trends are consistent across evaluations 

undertaken using both gauged point rainfalls and blended radar observations.  

4. Bias in BARRA precipitation quantiles at point scale and spatial displacement errors at spatial 

scale decrease with increasing time aggregation and the performance is reasonably skilful at 

most of the locations for temporal accumulations of 3h and greater. 

 

Conclusion: Final paragraph 

L384-389 I find this final paragraph a little weak and seems to suggest work that should be done is the 

work that is presented. First I would reconsider using words as "may" in the final paragraph of the 

conclusions as it leaves the reader somewhat unsure. Also, I would assume that further research should 

be directed at the behaviour of hydrological fluxes at sub-daily scale using sub-daily precipitation from 

BARRA. I also suggest to look again at the last sentence as I am not so sure if design applications will 

address what the sentences before suggests. 

 

We agree with the point raised by the editor. Accordingly, we have revised the final paragraph as 

follows: 

The strength of BARRA dataset is that it provides estimates of sub-daily areal rainfall which can be 

used across diverse hydrological applications that require such estimates. In addition to providing 

absolute estimates of precipitation, BARRA would also appear well suited to providing information on 

sub-daily patterns of areal rainfalls which can be used as a means of disaggregating daily rainfalls 

obtained from more reliable sources. The extent to which such estimates might provide a better 

representation of areal sub-daily rainfall for design and hydrological modelling warrants further 

investigation. 
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Abstract. The high spatio-temporal variability of precipitation is often difficult to characterise due to limited measurements.

The available low-resolution global reanalysis datasets inadequately represent the spatio-temporal variability of precipitation

relevant to catchment hydrology. The Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia

(BARRA) provides a high-resolution atmospheric reanalysis dataset across the Australasian region. For hydrometeorological

applications, however, it is essential to properly evaluate the sub-daily precipitation from this reanalysis. In this regard, this5

paper evaluates the sub-daily precipitation from BARRA for a period of 6 years (2010-2015) over Australia against point

observations and blended radar products. We utilise a range of existing and bespoke metrics for evaluation at point and spatial

scales. We examine bias in quantile estimates and spatial displacement of sub-daily rainfall at a point scale. At a spatial

scale, we use the Fractions Skill Score as a spatial evaluation metric. The results show that the performance of BARRA

precipitation depends on spatial location with poorer performance in tropical relative to temperate regions. A possible spatial10

displacement during large rainfall is also found at point locations. This displacement, evaluated by comparing the distribution

of rainfall within a day, could be quantified by considering the neighbourhood grids. On spatial evaluation, hourly precipitation

from BARRA are found to be skilful at a spatial scale of less than 100km (150km) for a threshold of 75th percentile (90th

percentile) at most of the locations. The performance across all the metrics improves significantly at time resolutions higher

than 3 h. Our evaluations illustrate that the BARRA precipitation, despite discernible spatial displacements, serves as a useful15

dataset for Australia, especially at sub-daily resolutions. Users of BARRA are recommended to properly account for possible

spatio-temporal displacement errors, especially for applications where the spatial and temporal characteristics of rainfall are

deemed very important.

1 Introduction

Precipitation is highly variable across both space and time, especially at spatial and temporal scales relevant to catchment20

hydrology (Michaelides et al., 2009). An understanding of the spatio-temporal pattern of precipitation is vital for many scien-

tific and operational applications such as hydro-climatic modelling and the forecasting of floods (Golding et al., 2016; Kucera

et al., 2013; Paschalis et al., 2014). This understanding relies on access to high-resolution precipitation datasets. However, the

availability of fine-scale precipitation products (e.g. spatial resolution less than around 0.25° at hourly time scale) are limited.
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The general sources of precipitation data are gauge measurements, ground-based radars, satellites and atmospheric reanalysis25

models (Michaelides et al., 2009). Gauge measurements, which are localised in nature, are hindered by the sparse and uneven

distribution of gauge network, whereas the coverage of ground-based radars is limited. Global reanalysis datasets (e.g. NCEP-

CFSR, Saha et al., 2010; ERA-Interim, Dee et al., 2011; JRA-55, Kobayashi et al., 2015) and satellite products (e.g. TMPA,

Huffman et al., 2007; IMERG, Huffman et al., 2018) provide a continuous and consistent estimate at varying spatial (0.05◦ to

2.5◦) and temporal resolution (hourly to daily).30

An atmospheric reanalysis merges observations and models to provide a four-dimensional earth system data at a regular

spatial and temporal resolution over long time period, often years and decades (Parker, 2016). The variables in the reanalysis

(such as precipitation, cloud and soil moisture) are related to one another through modelled physical relations and with the

analysed observations. By undertaking modelling over a limited area, a regional atmospheric reanalysis can provide precip-

itation estimates at finer spatial and temporal scale than a global reanalysis. It can incorporate more observations at a finer35

scale to better constrain the evolution of a higher-resolution model, and thus can account for the effects of mountains, coast-

lines, and mesoscale atmospheric circulations in greater detail. Such analyses can thereby provide precipitation estimates with

greater spatial relevance to local fine-scale studies than coarser-scale models. BARRA (Bureau of Meteorology atmospheric

high-resolution regional reanalysis for Australia) is one such high-resolution (~12 km) regional reanalysis (BARRA-R). It is

driven with initial and boundary conditions from the global ERA-Interim reanalysis (~79 km) and provides estimates over the40

Australasian region from 1990 to 2018 (Jakob et al., 2017; Su et al., 2019).

BARRA-R (referred to here as simply BARRA) provides hourly precipitation estimates at 12 km horizontal resolution

(Jakob et al., 2017; Su et al., 2019). Rainfall observations are not assimilated in this reanalysis and precipitation is estimated

by model physics and parameterisation. Evaluating its suitability for scientific studies and its use in hydrological applications

can be facilitated by identifying its strengths and limitations through a quantitative assessment. An initial assessment of daily45

precipitation from BARRA showed that it was able to reproduce the precipitation statistics and large precipitation
:::::::
amounts

at point (gauged locations) and grid scale of 5 km (Acharya et al., 2019; Su et al., 2019). However, precipitation data at sub-

daily temporal resolutions are essential to support the application of flood modelling (Chiaravalloti et al., 2018) and analysis

of precipitation extremes in convective systems. Therefore, it is useful to assess the performance of BARRA at sub-daily

resolution along with its ability to represent the spatial structure of rainfall events.50

The performance of BARRA at a daily scale was summarised using continuous metrics and categorical metrics at both

point and grid scales (Acharya et al., 2019). However, at sub-daily scales, such one-on-one evaluations can be misleading

for several reasons (Jermey and Renshaw, 2016). First, sub-daily precipitation is dominated by zero values and has a highly

skewed distribution, which makes it difficult to interpret the correlation statistics. In addition, these metrics doubly penalise

a modelled rainfall field that is displaced in space or time: once as a missed observation, and again as a false alarm. This55

situation is popularly known as “double-penalty problem” (Rossa et al., 2008), and to mitigate this issue it is necessary to adopt

an evaluation approach which considers likely displacements in space and time (Gilleland et al., 2009; Jermey and Renshaw,

2016; Thiemig et al., 2012). For example, when evaluating heavy rainfall events at point scale, Thiemig et al. (2012) adopted

an error metric that explicitly considers possible time-lags in the gridded dataset. Similarly, Jermey and Renshaw (2016)
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considered temporal displacement while evaluating the precipitation by grouping the events into seven synthetic categories with60

varying temporal shift and bias structure. Besides these methods which look at temporal displacement, a possible shift across

space can be considered when evaluating high-resolution precipitation datasets. However, such evaluations may be limited by

the availability of suitable gridded observation data for comparison, and it is thus preferable to undertake assessments using

multiple evaluation techniques (Jermey and Renshaw, 2016).

The metrics used to undertake the evaluation need to match the prospective use of the dataset. For example, it may be65

sufficient for some urban and stormwater design problems to only evaluate the non-conditional frequency distribution of pre-

cipitation at a point. However, for most hydrological modelling purposes, it is necessary to evaluate the representation of

spatio-temporal characteristics of rainfall events over the catchment of interest. The spatial and temporal resolution of the

prospective applications also play a critical role in selection of the performance measures, so it is useful to assess the efficacy

of the reanalysis over a range of different temporal and spatial accumulations.70

The objective of this paper is to present an evaluation of sub-daily BARRA precipitation over temporal and spatial resolutions

that are relevant to catchment hydrology applications. The evaluation is undertaken using ground measurements and radar-

based rainfall observations across Australia over a six-year period spanning 2010-2015. Following the assessment of BARRA

at daily scale (Acharya et al., 2019), this study further explores BARRA precipitation at different time accumulations ranging

from hourly to daily. In addition, we compare the temporal distribution of gauged rainfalls with neighbouring grids, specifically75

for large rainfall events. We also employ a spatial evaluation metric (Roberts and Lean, 2008) to evaluate the ability of the

reanalysis dataset to represent the spatial distribution of rainfalls against a gauge-corrected radar dataset. Overall, our aim is to

assess the ability of BARRA to capture the behaviour of sub-daily precipitation at the catchment scale, particularly for large

events. To this end, we use a combination of existing and bespoke metrics to evaluate performance over different temporal and

spatial accumulations in different climatic zones.80

2 Study area and data sources

The primary sources of reference data used to evaluate the performance of BARRA data were derived from pluviometer

gauges and radar-based products. Ground-based observations are not assimilated in BARRA and thus these data serve as an

independent dataset for evaluation. The pluviometer observations in this study encompass three of the broad climatic zones

across Australia, namely tropical, temperate and arid (Fig. 1). Rainfall in Australia is highly variable across space and time.85

Rainfall is concentrated during summer in the tropical north, whereas rainfall is more prevalent during winter in the temperate

south and southwest. The southeast region experiences a more consistent rainfall throughout the year. The central arid region

receives the least total rainfall, and the eastern coast the highest average rainfall. The spatial evaluation across the entire
:::::
whole

::
of Australia is impeded by the availability of high-resolution observation-based dataset. Therefore, the spatial evaluation is

undertaken by using radar-based datasets at four city-centred regions (Brisbane, Darwin, Melbourne and Sydney). These study90

areas are located in the tropical and temperate zones with varying rainfall climates.
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Hourly rainfall observations from pluviometer gauges were obtained from the Australian Bureau of Meteorology. Obser-

vations from a total of 441 gauges were selected, covering a common period of record between 2010 and 2015 (Fig. 1). The

observed rainfall is used to approximate precipitation as most precipitation in Australia is in the form of rainfall.

The blended radar precipitation dataset was also obtained from the Australian Bureau of Meteorology for regions surround-95

ing the four city centres (Fig. 1). The spatial resolution of the radar data is 1.5 km, and it is only available from 2014. The

radar fields have been blended with the observed rainfall using conditional merging (Sinclair and Pegram, 2005). The ap-

proach is in principle close to a copula-based approach, which exhibits less bias and yields a smaller error metric compared to

non-parametric radar rainfall estimation (Hasan et al., 2016). The blended radar estimates are still likely to be erroneous and

biased due to reasons that include: errors in reflectivity measurement (e.g., radar beam overshoot, terrain blocking, clutter),100

inaccurate radar reflectivity and rain rate relationship, tendency of the radar to underestimate rainfall at distance, and quality

control algorithms rejecting gauge data used for bias adjustment (Chumchean et al., 2006; Seo et al., 2010). Further, there is a

fundamental difference in representativity between radar measurements and modelled precipitation, where radar infers precip-

itations at height over a cubic kilometre in size. However, we follow prior studies (e.g. Mittermaier et al., 2013; Roberts and

Lean, 2008) and use radar rainfall to compare spatial rainfall at sub-daily time steps assuming that the spatial distribution of105

rainfall is preserved. In addition, we apply quantile-based thresholds in order to remove the potential bias in the daily rainfall

totals, although we note the strategy remains limited by the fact that the bias is spatially varying.

BARRA utilises the Unified Model (UM, Davies et al., 2005) and its 4D variational data assimilation system (4D Var).

BARRA extends spatially over 65.0◦ to 196.9◦ east, -65.0◦ to 19.4◦ north at a spatial resolution of 0.11◦ (approximately 12

km) and with 70 levels up to 80 km into the atmosphere. The model includes a comprehensive set of parametrisations, including110

a modified boundary layer scheme, mixed phase cloud microphysics, a mass flux convection scheme, and a radiation scheme.

The model parameterisation in BARRA is mainly inherited from the UKMO Global Atmosphere (GA) 6.0 configurations as

described in Walters et al. (2017). Observations from land surface stations, ships, buoys, aircrafts, radiosondes, and satellites

are assimilated in BARRA, conducted 4 times a day with a 6-hour analysis window centred at time t0 = 0, 6, 12 and 18

UTC. Surface and satellite rainfall observations are not assimilated, and the precipitation fields are determined by the modelled115

dynamics. In particular, they are estimated from the 12-hour (h) forecast runs of the UM from t0 – 3h, using the microphysics

scheme based on Wilson and Ballard (1999) and the mass flux convective parameterisation scheme of Gregory and Rowntree

(1990) . The former describes the atmospheric processes that transfer water between the various states of water to remove

moisture resolved on the grid scale. At 12 km horizontal resolution, BARRA requires the convection scheme to model sub-

grid scale convection using an ensemble of cumulus clouds as a single entraining-detraining plume (Clark et al., 2016). The120

scheme prevents unstable growth of cloud structures on the grid and explicit vertical circulations, and can only predict an

area-average rainfall instead of a spectrum of rainfall rates. This parameterisation scheme adopted for sub-grid convection is

limiting in resolving convective rainfall and affects the locations dominated by such rainfall (especially tropics). Further details

on parameterisation and assimilation schemes in BARRA are provided by (Su et al., 2019).
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3 Methodology125

Hourly BARRA precipitation estimates at 12 km resolution are evaluated at varying spatial and temporal scales. A range

of point-to-grid and grid-to-grid evaluations are undertaken using gauged rainfall and blended radar estimates over various

temporal and spatial scales.

3.1 Frequency distribution of sub-daily rainfall

A point-to-grid analysis is undertaken to evaluate the sub-daily frequency distribution of BARRA precipitation. At each gauge130

location as shown in Fig. 1, corresponding BARRA estimates are obtained using the nearest neighbour interpolation. The

basis of comparison requires some thought as the fraction of zero values in sub-daily rainfall data is high (the 95% quantiles

at hourly temporal resolution are zero). This issue could be addressed by selecting suitable conditional thresholds, though

different thresholds would need to be adopted for each temporal accumulation. For example, a threshold of 0.1mm/h could

be adopted for hourly data and 1 mm/day for daily. However, the slight problem with this approach is that any trends in135

the performance metric with temporal accumulation will be confounded by the somewhat arbitrary choice of thresholds for

intermediate temporal accumulations (3h, 6h, and 12h). Accordingly, we derived quantiles for sub-daily rainfalls that occurred

only on the rain days for each dataset individually, where, a “rain day” is defined based on a threshold of 1 mm d−1 (Ebert

et al., 2007).

In investigating the frequency of rainfall, we compute the various quantiles (80, 90, 95, 99%) at different time accumulations140

(1h, 3h, 6h, 12h and 24h). The analysis of frequencies corresponding to different accumulations (up to 24 h) is selected to be of

relevance for design rainfall applications. We then estimate percentage bias using (m− o)/o ∗ 100, where m and o denote the

reanalysis and observed precipitation corresponding to the selected quantiles. This evaluation is further stratified across three

broad climatic zones (arid, tropical, and temperate) as defined by the Köppen-Geiger classification (Peel et al.,2007 ; Fig. 1). It

is worth noting that comparisons of point (gauged) and areal (gridded) rainfall are generally biased as the average precipitation145

over a grid cell is lower than rainfall recorded at a particular point. It would also be expected that sub-daily point rainfalls are

more variable than those averaged over a grid cell area.

3.2 Neighbourhood-based diurnal
::::::::
sub-daily patterns at point locations

A direct comparison of precipitation, especially in higher resolution datasets, is difficult as the conventional metrics are not

able to penalise intensity and location errors in a desirable manner (Rossa et al., 2008). Performance metrics which compare150

point observations with model estimates averaged over a grid cell are heavily influenced by errors in the spatial pattern and

location of rainfall events, even if the average rainfall depths over the local domain are the same. This is particularly the case

with high-resolution precipitation datasets, and with the analysis of sub-daily periods.

To mitigate this problem in a gauge-based evaluation, we adopt an approach that allows for possible timing and displace-

ment differences in rainfall occurrence. The approach is similar to the neighbourhood (or “fuzzy”) approach used with single155

observation-neighbourhood forecasts (Ebert, 2008), in which gridded observations were evaluated against gridded forecasts.
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This method accounts for situations where an event defined on the basis of gauge measurements may miss the nearby grid cell

resulting in spatial error, and/or appear non-coincident at the nearby grid cell signifying a temporal error. For the former case,

an evaluation that considers neighbouring grid cells can account for spatial errors. For cases involving a time displacement,

a moving storm may appear at a neighbouring grid cell at the time-step under consideration, approaching towards the nearby160

grid cell.

To account for these different types of errors, we employ an analysis that explicitly considers the occurrence and timing of

rainfalls at neighbouring grid cells. This evaluation is undertaken by selecting large rainfall events (greater than 10mm/day) in

the gauge dataset. The cumulative fraction of rainfall over the day is computed for the gauge and the nearest neighbouring grid

(Eq. 1). The squared difference in the fraction of cumulative rainfall occurring in each hour between the gauge and reanalysis165

rainfalls is then averaged to provide an error score (Eq. 2).

Fh =

h∑
i=1

fi, 1≤ h≤ 24 (1)

where, fi is the fraction of daily rainfall occurring at ith hour.

errorscore=
1

23

23∑
h=1

(Fh,model −Fh,gauge)
2 (2)

Note that 23 is used in the denominator as F24,model = F24,gauge = 1 and are not included in the computation of the error170

score. The temporal error is considered by using cumulative precipitation at a daily scale, which penalises large temporal

errors more than small ones. Similarly, to account for possible spatial displacement, we analyse the temporal distribution of

precipitation by searching over neighbourhood space to find the best performing grid cell. The error score is computed for both

the nearest grid and the neighbourhood grid cells equidistant from the nearest grid. The minimum error score is selected and

then averaged across all rainfall events at a location.175

The average error score varies between 0 and 1. A score of 1 represents the worse possible situation in which rainfall occurs

in the first hour in one dataset and the last hour in the other. Conversely, a score of 0 indicates a perfect match between

observations and model estimates. Scores between 0 and 1 indicate differing degrees of temporal error, where for example, a

score of 0.33 indicates that rainfall occurs in either the first or last hour in one data set and is distributed uniformly throughout

the day in the other.180

3.3 Neighbourhood-based spatial evaluation

Finally, a spatial evaluation of reanalysis precipitation against blended radar estimates is undertaken. For each spatial domain,

the largest 25 rainfall events to have occurred over the 3-year period are selected based on domain-averaged daily precipitation.

Radar precipitation, which is available as 30-minute accumulations, is aggregated to hourly to match the temporal resolution

of BARRA. Similarly, a common spatial resolution is adopted. The precipitation from BARRA (~12km) is re-gridded to the185
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resolution of the radar grid (~1.5km) using area-weighted re-gridding, which means that single BARRA precipitation estimates

are distributed over 8×8 radar grid cells.

Different metrics have been developed for undertaking spatially variable evaluations (Ebert, 2008, 2009). This study adopts

the FSS from Roberts and Lean (2008), as it measures the variation of skill across increasing spatial scales and hence indicates

the minimum spatial scale at which the model is skilful.190

The FSS metric is based on the likelihood that rainfall over a given threshold occurs somewhere within the neighbouring

window of grid cells. A common threshold rainfall rate is selected for both the observed and modelled grid cells. An increasing

window of size n∗n centred on a particular grid is selected (which yields N windows over the whole domain). For each window

i, a fraction of grid points exceeding the threshold in observed rainfall (po,i) and modelled rainfall (pm,i) are computed. Then,

the FSS is calculated as:195

FSS = 1−
1
N

∑N
i=1 (pm,i − po,i)

2

1
N

∑N
i=1 p

2
m,i +

1
N

∑N
i=1 p

2
o,i

(3)

The FSS score varies between 0 and 1. A score of 0 represents a complete mismatch between two rainfall fields and a

score of 1 represents a perfect match. Usually, FSS is computed for varying size of spatial windows and results are plotted

as a function of window size. A random score (FSSrandom) is the FSS that would be achieved, on average, by a random field

with the same fraction of observed events (po) over the domain. A benchmark score, a target or ‘uniform’ skill (FSSuniform), is200

given to a uniform field with a probability of occurrence equal to po at each grid cell (Roberts and Lean, 2008). FSSuniform is

expressed as 0.5+ po/2, which is halfway between a perfect score (1) and a random score (FSSrandom = po). This FSSuniform

can be approximated to 0.5 when po is small, as in the case of larger precipitation thresholds.

The thresholds used to calculate FSS are based on rainfall quantiles in observed and reanalysis data which are derived

for each time step. A rainfall intensity greater than 0.2 mm h−1 is used as a threshold to define a rainy grid cell for which205

quantile-based thresholds are computed. This ensures that the model and observed rainfall fields have an identical fraction of

rain events for each threshold value. The application of quantile based thresholds aims to remove the impact of any bias in

rainfall amount and focus solely on spatial accuracy of modelled precipitation (Mittermaier et al., 2013; Roberts and Lean,

2008; Skok and Roberts, 2018). It is worth noting that FSS metric only provides information on variation of performance with

increasing spatial scale. The timing errors at finer temporal scales can be indirectly discerned by analysing variation of FSS210

with time accumulations. Therefore, the FSS is evaluated at temporal aggregations of 3h and 6h.

4 Results

4.1 Frequency distribution of sub-daily rainfall

Fig. 2 illustrates the spatial distribution of quantile bias and its summary across climatic zones. Overall, the spatial distribution

of bias across all time accumulations and quantiles exhibit a similar pattern. The biases in the northern region are higher and215
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spatially more variable than those in the southern region. The variation in bias across quantiles is the highest for hourly rainfall,

especially in arid and tropical climatic zones. For the 80% quantile of hourly rainfalls, all stations in the arid and tropical zones

exhibit a higher positive bias than those in the temperate zone. This difference is partly due to the tendency of BARRA to

overestimate light rain events (Su et al., 2019). Despite considering wet days only in comparing quantiles, hourly rainfall at

80% quantile for arid and tropical region dominated by small precipitation amount which results in a high positive bias. At220

higher quantiles, the BARRA estimates are all lower than the gauged point rainfalls. This negative bias is largest in the tropical

zone, followed by the arid zone. Although the nature of the high hourly bias varies with location, a step reduction in bias is

observed when the accumulation time periods increase from 1 to 3 and 6 hours. This is partly due to reduced inherent bias

arising from the adoption of longer temporal accumulations which reduces the potential for differences in timing between

observations and model estimates.225

The spatial distribution of biases associated with the different quantiles exhibits a similar pattern for all temporal accumula-

tions considered. At shorter accumulations (up to 3 hours), the biases change from positive to negative and gradually increase

in magnitude with increasing quantile. At higher accumulations (6, 12 and 24 hours), the bias is negative but decreases in mag-

nitude with increasing quantiles. At higher quantiles (95% and 99%), the bias is the least at the temperate zone. The BARRA

estimates are under-predicted at all time accumulations, but this improves with increasing temporal accumulations.230

4.2 Neighbourhood-based diurnal
::::::::
sub-daily patterns at point locations

Figure 3 shows how the minimum error score changes with varying neighbourhood grid size. It is seen that the error score

decreases significantly when a neighbourhood of 3×3 grid cells (about 35×35 km) is considered instead of a single nearest

neighbour only. The error score continues to decrease slightly as the size of the neighbourhood increases, though the adoption

of a larger neighbourhood increases the likelihood that rainfall events unrelated to the gauge observations are being considered.235

The results show that the temporal distribution of the BARRA precipitation estimates within a wet day are representative yet

displaced in terms of location. The error scores are all less than 0.33, which indicates that the temporal distribution of sub-daily

BARRA precipitation is on average superior to a uniform distribution of estimates derived by simply disaggregating daily

rainfalls over a day.

4.3 Neighbourhood-based spatial evaluation240

Fig. 4 shows the hourly precipitation rates corresponding to different quantile thresholds in the Brisbane, Darwin, Melbourne,

and Sydney regions, for the largest 25 events that occurred between 2014 to 2016. The Melbourne and Sydney regions are

similar than other domains in terms of the frequency distribution of hourly precipitation and the discrepancy between radar and

BARRA precipitation.

Overall, the rainfall magnitude corresponding to quantiles is higher for the radar estimates than for BARRA, and this can be245

attributed to the difference in spatial scale and the area-weighted re-gridding scheme. The difference between the two datasets

is greater at higher quantiles. However, at around 99% quantiles, the precipitation from BARRA is close to or greater than

radar precipitation.
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FSS is calculated for varying quantile thresholds (50, 75, 90, 95, and 99%) at different accumulations across time (1h, 3h

and 6h) and presented in Fig. 5. As expected, FSS increases with increasing neighbourhood size and decreases with increasing250

threshold. If there is no frequency bias, then the FSS curve is expected to asymptote to 1 as the neighbourhood size is increased.

In Fig. 5, the maximum FSS of 1 is not achieved even at the neighbourhood size of 300 km, which signifies a frequency bias

in BARRA.

The FSS scores vary with location, where the regions in increasing order of performance are: Darwin, Brisbane, Melbourne,

and Sydney. The results for hourly precipitation and 75% quantile threshold suggest that the skilful spatial scale L (FSS >255

0.5+po/2) is less than 100 km for all the locations except Darwin. The skilful spatial scale for 90% and 95% quantile thresholds

increases to 150 km. For the 99% quantile threshold, BARRA estimates only exhibit useful skill over spatial scales larger than

around 250 km.

The FSS metric only provides information on how performance varies with increasing spatial scale. It does not account for

timing errors associated with events that might be initiated at different times and/or evolve at different rates. An indication of260

such timing errors may be discerned by assessing how the FSS varies with increasing time accumulations. The results shown

in Figure 5 indicate that FSS improves with increasing time accumulations. For example, at Darwin, BARRA is able to provide

skilful estimates of 50% threshold of hourly rainfalls only at a scale of 200 km; however, at 3h and 6h accumulations, the

corresponding spatial scale reduces to 125 km and 100 km, respectively. The accuracy of the BARRA estimates decreases

with increasing rainfall severity, and even at the longest time accumulations, the spatial scale at which rainfalls above the 99%265

quantiles are skilful extends out to 300 km.

5 Discussion

To understand the performance of BARRA precipitation at sub-daily scales, a range of evaluation methods are employed to

ascertain its spatial and temporal characteristics. Key insights arising from the results are discussed below.

5.1 Performance based on wet day quantiles270

The unconditional evaluation of precipitation frequency in terms of wet day quantiles examines the representativeness of sub-

daily climatology (Fig. 2). The minimum bias across all time accumulations and quantiles in the temperate zone suggests

that BARRA provides unbiased estimates of temperate rainfalls over the observed range of events. In addition, an improved

performance is observed across all regions when temporal accumulations are considered. This includes the arid and tropical

zones where BARRA performs poorly at an hourly scale. A slight negative bias is observed across all locations in most of the275

quantiles. This underestimation is however expected due to the mismatch in spatial scale between point observations and grid

average precipitation Maraun (2013). The point precipitation, in general, is expected to be higher than areal rainfall at 12 km

spatial scale.
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5.2 Spatio-temporal representation of rainfall

A potential displacement of precipitation field in space and time is expected when evaluating high-resolution precipitation280

datasets, especially when performance is assessed at an hourly timescale and at a point (or single grid cell) location (Rossa

et al., 2008). The BARRA estimates exhibit such displacement errors, as evidenced by improved performance at neighbourhood

analysis and FSS analysis. An assessment of hourly temporal patterns shows an improvement when neighbourhood grid cells

are considered (Fig. 3). This suggests that when using precipitation from BARRA, users could benefit from considering spatial

and temporal displacement in the precipitation field, especially during large events. This further suggests an opportunity to285

utilise hourly distribution of rainfall for disaggregating daily totals.

At the catchment scale, the accuracy of the spatial distribution of rainfall is important for flood modelling. The evaluation

of the spatial performance of BARRA against radar data for selected large events showed a mixed result between locations.

BARRA rainfalls for 90% quantile at 3h accumulation achieves the target FSS at a spatial scale of range 100-140 km for all

domains except Darwin (250 km) (Fig. 5). Achieving useful skill only at a large spatial scale can be partly attributed to the290

spatial error in the precipitation fields. The higher quantile thresholds are related to small-scale features which are even more

likely to be subject to spatial error. Therefore, it is difficult to achieve a skilful spatial scale for these more extreme rainfalls.

This has also been pointed out by Roberts and Lean (2008) based on the skill of NWP model outputs at various quantile

thresholds (75, 90, 95 and 99%). The nature of such spatial displacement errors should be considered if BARRA estimates of

precipitation are intended to be used for hydrological modelling.295

This spatial evaluation is conducted at selected locations to take advantage of the availability of high-resolution blended

radar datasets. Across the whole Australian continent there is a dearth of such high-resolution observations of precipitation,

and BARRA could be relied upon to provide estimates of sub-daily precipitation at selected spatial scales in regions where

there is a paucity of gauging data.

5.3 Performance dependence on spatial location300

The overall performance of BARRA varies with location, and this similar trend was evident across all evaluation methods. Both

the bias analysis of quantiles and the FSS evaluation show that the performance of BARRA gradually improves as we move

from northern to southern regions (Figs. 2 and 5). This variation in performance can partly be attributed to the different rainfall

climate at
::
in these regions. The convective precipitation during summer season is dominant at northern (low) latitudes, whereas

winter (or uniform) non-convective
::::::
frontal rainfall are dominant at southern (high) latitudes. The poorer performance in the305

tropics, where convective precipitation is dominant, reflects the limitations of the parameterisation scheme to describe sub-grid

scale rainfall (Su et al., 2019). This is consistent with the finding of (Ebert et al., 2007) that focuses on general performance of

numerical weather prediction models. The variation in performance of sub-daily BARRA precipitation across spatial location

and different climatologies is consistent with the daily evaluation performed in Acharya et al. (2019).

10



5.4 Performance as a function of temporal resolution310

Availability of hourly rainfall observations (based on both pluviometer and radar products) enable BARRA estimates of hourly

rainfalls to be evaluated. The uneven and sparse distribution of pluviometer gauges across Australia and the limited availability

of radar products is not sufficient for an overall assessment of sub-daily precipitation across the whole of Australia, yet given the

wide range of climatologies considered, the analyses provide a comprehensive evaluation of BARRA. Our unconditional (Fig.

2) and direct comparison (Fig. 5) both illustrate a similar dependency of performance on temporal resolution. The performance315

shows a significant improvement when estimates are accumulated from 1h to 3h. The increased performance for coarser

temporal resolution can also be linked to the smoothing effect of rainfall at larger accumulation times and reduction of inherent

bias.

The trade-off between performance and temporal resolution needs to be considered in combination with the objectives to

which the precipitation estimates are used. However, in general terms the increased performance at 3 h and 6 h accumulation320

suggests that it is better to use these accumulations from BARRA. Given that the performance of BARRA does vary with loca-

tion, it is expected that shorter (3h) accumulations may be appropriate for use in temperate locations and longer accumulations

(6h) in the tropical and arid regions.

6 Conclusions

An accurate representation of spatial and sub-daily temporal characteristics of precipitation fields is important for many hydro-325

meteorological applications. BARRA is a regional reanalysis dataset that provides long-term high-resolution estimates of

atmospheric variables over the Australian continent. In this study, the spatio-temporal characteristics of sub-daily BARRA

precipitation estimates are assessed using various metrics to evaluate its performance at various spatial and temporal scales.

Based on the results, we conclude:

1. Sub-daily precipitation
::::
from

:::::::
BARRA

:
exhibits negative bias at higher quantiles. The magnitude of bias decreases with330

increasing temporal accumulationand is the lowest at daily accumulations
:::::
varies

::::
with

::::
event

:::::::
severity

:::
and

::::::::
temporal

:::::::::::
accumulation.

2. The spatial displacementof rainfall estimates is evident, especially
:::::
There

::
is

:::::
some

::::::::
tendency

:::
for

::::::::
BARRA

:::::::::
reanalysis

::::::::::
precipitation

::
to

::::::
exhibit

::::::
spatial

:::::::::::
displacement,

::::
and

:::
this

::
is

:::::
more

::::::::::
pronounced for rainfall corresponding to higher quantiles.

3. The performance of BARRA varies spatially, and more accurate estimates are provided in southern and eastern Australia

(temperate zone) than in northern Australia (tropical zone)
::::::::::
precipitation

:::::::
depends

::
on

::::::
spatial

:::::::
location

::::
with

:::::
poorer

:::::::::::
performance335

::
in

::::::
tropical

:::::::
relative

::
to

::::::::
temperate

:::::::
regions. These spatial trends in model performance are evident in

:::
are

::::::::
consistent

::::::
across

evaluations undertaken using both gauged point rainfalls and blended radar observations, and are consistent with the

evaluation of BARRA estimates of daily rainfall (Acharya et al., 2019).

4. Performance increases with time aggregation, which is expected due to smoothing in accumulated rainfall time series.

The
:::
Bias

::
in

::::::::
BARRA

::::::::::
precipitation

::::::::
quantiles

::
at

:::::
point

::::
scale

::::
and

::::::
spatial

:::::::::::
displacement

:::::
errors

::
at

::::::
spatial

::::
scale

::::::::
decrease

::::
with340
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::::::::
increasing

::::
time

::::::::::
aggregation

:::
and

:::
the performance is reasonably skilful at most of the locations for temporal accumulations

of 3h and greater.

One of the limitations of this study is that the spatial assessment of BARRA is restricted to a few locations where radar-

based datasets are available and the performance of BARRA across Australia is generalised based on evaluation at those

locations. Currently, the lack of high-quality and high-resolution benchmark datasets limits our ability to fully understand the345

performance of BARRA across the entire continent. However, a more detailed spatial assessment of BARRA would be possible

once such benchmark datasets are available.

A natural interest of the users of BARRA is the potential application of the data in hydro-meteorology. Information on sub-

daily rainfalls across the Australian continent is limited due to sparse gauge measurements, the availability of radar at only few

locations, spatially coarser global reanalysis products, and few satellite products (~25km, going back to only 1998). BARRA350

stands out as one of few available datasets at hourly temporal resolution. In that respect, it serves as a useful dataset for the

applications requiring sub-daily precipitation. Further, it can be used to help characterise rainfall behaviour in regions where

gauges are sparse or non-existent. One of the potential applications of BARRA could be for probabilistic design rainfalls,

that is for those engineering applications
:
is

:::
for

:::::::
deriving

::::::::::
probabilistic

::::::
design

::::::
rainfall

::::::
events

:::
for

::::::::::
engineering

::::::::::
applications,

:
which

utilise information on the relationship between rainfall magnitude and its exceedance probability , either at a point or over an355

area; such .
:::::
Such

:
applications are probabilistic in nature and are less sensitive to event-based errors in temporal and spatial

behaviour
:::::
spatial

::::
and

:::::::
temporal

:::::
errors

:::
of

:::
the

::::::::
individual

::::::
events. For applications in flood modelling, where the spatial and tem-

poral distribution of precipitation is important, a proper account needs to be given to the likely spatio-temporal displacement

errors in the BARRA precipitation.

The ability of BARRA to provide areal rainfall estimates is useful in catchment hydrological applications
::::::
strength

:::
of

:::::::
BARRA360

::::::
dataset

:
is
::::
that

::
it

:::::::
provides

::::::::
estimates

::
of

::::::::
sub-daily

:::::
areal

::::::
rainfall

:::::
which

::::
can

::
be

::::
used

::::::
across

::::::
diverse

:::::::::::
hydrological

::::::::::
applications

::::
that

::::::
require

::::
such

::::::::
estimates. In addition to direct reliance on

::::::::
providing absolute estimates of precipitation, it may be that BARRA

is
:::::::
BARRA

:::::
would

::::
also

::::::
appear

:
well suited to providing information on sub-daily patterns of areal rainfalls that can be scaled

to match more reliable estimates of daily rainfalls
:::::
which

::::
can

::
be

:::::
used

::
as

::
a

:::::
means

:::
of

::::::::::::
disaggregating

:::::
daily

:::::::
rainfalls

::::::::
obtained

::::
from

:::::
more

::::::
reliable

:::::::
sources. The extent to which such estimates might provide a better understanding

:::::::::::
representation

:
of areal365

sub-daily rainfall behaviour than is possible from gauged point rainfalls
::
for

::::::
design

:::
and

:::::::::::
hydrological

:::::::::
modelling warrants further

investigation. Accordingly, future work will be directed towards evaluation and design applications of areal rainfall estimates.

Data availability. BARRA data are available for academic use. Readers are referred to http://www.bom.gov.au/research/projects/reanalysis

for information on available parameters and access.

Author contributions. SCA designed the research and performed the analysis. All co-authors provided ideas and feedback following discus-370

sions. SCA prepared the paper, with contributions from all co-authors.

12



Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors gratefully acknowledge the financial support provided by Seqwater and the Bureau of Meteorology to

partially fund SCA’s PhD scholarship. We would like to thank Susan Rennie, Kevin Cheong, and Alan Seed (Bureau of Meteorology)

for their advice on the use of the radar rainfall products, as retrieved from the Rainfields Archiving System provided by the Bureau of375

Meteorology. Also, Dörte Jakob and Peter Steinle (Bureau of Meteorology) contributed valuable discussions on general methodology and

early results.
:::
The

::::::
authors

:::::
would

:::
like

::
to

::::
thank

:::::
Micha

::::::
Werner

:::
and

:::
two

:::::::::
anonymous

:::::::
reviewers

:::
for

::::
their

:::::::::
constructive

:::::::
feedback

:::::
during

::
the

::::::
review

:::::
process

:::::
which

:::::
helped

:::::::
improve

:::
the

::::::::
manuscript.

13



References

Acharya, S. C., Nathan, R., Wang, Q. J., Su, C.-H., and Eizenberg, N.: An evaluation of daily precipitation from a regional atmospheric380

reanalysis over Australia, Hydrology and Earth System Sciences, 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, 2019.

Chiaravalloti, F., Brocca, L., Procopio, A., Massari, C., and Gabriele, S.: Assessment of GPM and SM2RAIN-ASCAT rainfall products over

complex terrain in southern Italy, Atmospheric Research, 206, 64–74, https://doi.org/10.1016/j.atmosres.2018.02.019, 2018.

Chumchean, S., Sharma, A., and Seed, A.: An integrated approach to error correction for real-time radar-rainfall estimation, Journal of

Atmospheric and Oceanic Technology, 23, 67–79, https://doi.org/10.1175/JTECH1832.1, 2006.385

Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C.: Convection-permitting models: a step-change in rainfall forecasting,

Meteorological Applications, 23, 165–181, https://doi.org/10.1002/met.1538, 2016.

Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N.: A new dynamical core for the

Met Office’s global and regional modelling of the atmosphere, Quarterly Journal of the Royal Meteorological Society, 131, 1759–1782,

https://doi.org/10.1256/qj.04.101, 2005.390

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer,

P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haim-

berger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz,

B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:

Configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137, 553–597,395

https://doi.org/10.1002/qj.828, 2011.

Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework, Meteorological Applications, 15,

51–64, https://doi.org/10.1002/met.25, 2008.

Ebert, E. E.: Neighborhood Verification: A Strategy for Rewarding Close Forecasts, Weather and Forecasting, 24, 1498–1510,

https://doi.org/10.1175/2009WAF2222251.1, 2009.400

Ebert, E. E., Janowiak, J. E., and Kidd, C.: Comparison of near-real-time precipitation estimates from satellite observations and numerical

models, Bulletin of the American Meteorological Society, 88, 47–64, https://doi.org/10.1175/BAMS-88-1-47, 2007.

Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B., and Ebert, E. E.: Intercomparison of Spatial Forecast Verification Methods, Weather

and Forecasting, 24, 1416–1430, https://doi.org/10.1175/2009WAF2222269.1, 2009.

Golding, B., Roberts, N., Leoncini, G., Mylne, K., and Swinbank, R.: MOGREPS-UK Convection-Permitting Ensemble Products for Surface405

Water Flood Forecasting: Rationale and First Results, Journal of Hydrometeorology, 17, 1383–1406, https://doi.org/10.1175/JHM-D-15-

0083.1, 2016.

Gregory, D. and Rowntree, P. R.: A Mass Flux Convection Scheme with Representation of Cloud Ensemble Char-

acteristics and Stability-Dependent Closure, Monthly Weather Review, 118, 1483–1506, https://doi.org/10.1175/1520-

0493(1990)118<1483:AMFCSW>2.0.CO;2, 1990.410

Hasan, M. M., Sharma, A., Johnson, F., Mariethoz, G., and Seed, A.: Merging radar and in situ rainfall measurements: An assessment of

different combination algorithms, Water Resources Research, 52, 8384–8398, https://doi.org/10.1002/2015WR018441, 2016.

Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E., Sorooshian, S., Tan, T., and Xie, P.: NASA

Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), Algorithm Theoretical Basis Docu-

14

https://doi.org/10.5194/hess-23-3387-2019
https://doi.org/10.1016/j.atmosres.2018.02.019
https://doi.org/10.1175/JTECH1832.1
https://doi.org/10.1002/met.1538
https://doi.org/10.1256/qj.04.101
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/met.25
https://doi.org/10.1175/2009WAF2222251.1
https://doi.org/10.1175/BAMS-88-1-47
https://doi.org/10.1175/2009WAF2222269.1
https://doi.org/10.1175/JHM-D-15-0083.1
https://doi.org/10.1175/JHM-D-15-0083.1
https://doi.org/10.1175/JHM-D-15-0083.1
https://doi.org/10.1175/1520-0493(1990)118%3C1483:AMFCSW%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1990)118%3C1483:AMFCSW%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1990)118%3C1483:AMFCSW%3E2.0.CO;2
https://doi.org/10.1002/2015WR018441


ment (ATBD), pp. 1–31, https://doi.org/https://pmm.nasa.gov/resources/documents/gpm-integrated-multi-satellite-retrievals-gpm-imerg-415

algorithm-theoretical-basis-, 2018.

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM

Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales, Journal

of Hydrometeorology, 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.

Jakob, D., Su, C.-H., Eizenberg, N., Kociuba, G., Steinle, P., Fox-Hughes, P., and Bettio, L.: An atmospheric high-resolution regional420

reanalysis for Australia, The Bulletin of the Australian Meteorological and Oceanographic Society, 30, 16–23, 2017.

Jermey, P. M. and Renshaw, R. J.: Precipitation representation over a two-year period in regional reanalysis, Quarterly Journal of the Royal

Meteorological Society, 142, 1300–1310, https://doi.org/10.1002/qj.2733, 2016.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and

Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, Journal of the Meteorological Society of Japan.425

Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.

Kucera, P. A., Ebert, E. E., Turk, F. J., Levizzani, V., Kirschbaum, D., Tapiador, F. J., Loew, A., and Borsche, M.: Precipitation from space:

Advancing earth system science, Bulletin of the American Meteorological Society, 94, 365–375, https://doi.org/10.1175/BAMS-D-11-

00171.1, 2013.

Maraun, D.: Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue, Journal of Climate, 26, 2137–2143,430

https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.

Michaelides, S., Levizzani, V., Anagnostou, E., Bauer, P., Kasparis, T., and Lane, J. E.: Precipitation: Measurement, remote sensing, clima-

tology and modeling, Atmospheric Research, 94, 512–533, https://doi.org/10.1016/j.atmosres.2009.08.017, 2009.

Mittermaier, M., Roberts, N., and Thompson, S. A.: A long-term assessment of precipitation forecast skill using the Fractions Skill Score,

Meteorological Applications, 20, 176–186, https://doi.org/10.1002/met.296, 2013.435

Parker, W. S.: Reanalyses and Observations: What’s the Difference?, Bulletin of the American Meteorological Society, 97, 1565–1572,

https://doi.org/10.1175/BAMS-D-14-00226.1, 2016.

Paschalis, A., Fatichi, S., Molnar, P., Rimkus, S., and Burlando, P.: On the effects of small scale space–time variability of rainfall on basin

flood response, Journal of Hydrology, 514, 313–327, https://doi.org/10.1016/j.jhydrol.2014.04.014, 2014.

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrology and Earth440

System Sciences, 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.

Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective

Events, Monthly Weather Review, 136, 78–97, https://doi.org/10.1175/2007MWR2123.1, 2008.

Rossa, A., Nurmi, P., and Ebert, E.: Overview of methods for the verification of quantitative precipitation forecasts, in: Precipita-

tion: Advances in Measurement, Estimation and Prediction, January, pp. 419–452, Springer Berlin Heidelberg, Berlin, Heidelberg,445

https://doi.org/10.1007/978-3-540-77655-0_16, 2008.

Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine,

R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H. Y., Juang, H. M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D.,

Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang,

B., Schemm, J. K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C. Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L.,450

Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP climate forecast system reanalysis, Bulletin of the American Meteorological

Society, 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.

15

https://doi.org/https://pmm.nasa.gov/resources/documents/gpm-integrated-multi-satellite-retrievals-gpm-imerg-algorithm-theoretical-basis-
https://doi.org/https://pmm.nasa.gov/resources/documents/gpm-integrated-multi-satellite-retrievals-gpm-imerg-algorithm-theoretical-basis-
https://doi.org/https://pmm.nasa.gov/resources/documents/gpm-integrated-multi-satellite-retrievals-gpm-imerg-algorithm-theoretical-basis-
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1002/qj.2733
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1175/BAMS-D-11-00171.1
https://doi.org/10.1175/BAMS-D-11-00171.1
https://doi.org/10.1175/BAMS-D-11-00171.1
https://doi.org/10.1175/JCLI-D-12-00821.1
https://doi.org/10.1016/j.atmosres.2009.08.017
https://doi.org/10.1002/met.296
https://doi.org/10.1175/BAMS-D-14-00226.1
https://doi.org/10.1016/j.jhydrol.2014.04.014
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1007/978-3-540-77655-0_16
https://doi.org/10.1175/2010BAMS3001.1


Seo, D.-J., Seed, A., and Delrieu, G.: Radar and multisensor rainfall estimation for hydrologic applications, Geophysical Monograph Series,

191, 79–104, https://doi.org/10.1029/2010GM000952, 2010.

Sinclair, S. and Pegram, G.: Combining radar and rain gauge rainfall estimates using conditional merging, Atmospheric Science Letters, 6,455

19–22, https://doi.org/10.1002/asl.85, 2005.

Skok, G. and Roberts, N.: Estimating the displacement in precipitation forecasts using the Fractions Skill Score, Quarterly Journal of the

Royal Meteorological Society, 144, 414–425, https://doi.org/10.1002/qj.3212, 2018.

Su, C.-H., Eizenberg, N., Steinle, P., Jakob, D., Fox-Hughes, P., White, C. J., Rennie, S., Franklin, C., Dharssi, I., and Zhu, H.: BARRA

v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, Geoscientific Model Development, 12,460

2049–2068, https://doi.org/10.5194/gmd-12-2049-2019, 2019.

Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., Levizzani, V., and De Roo, A.: Validation of Satellite-Based Precipitation Products over

Sparsely Gauged African River Basins, Journal of Hydrometeorology, 13, 1760–1783, https://doi.org/10.1175/JHM-D-12-032.1, 2012.

Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D.,

Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S.,465

Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale,

P. L., Wilkinson, J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES

Global Land 6.0/6.1 configurations, Geoscientific Model Development, 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017.

Wilson, D. R. and Ballard, S. P.: A microphysically based precipitation scheme for the UK meteorological office unified model, Quarterly

Journal of the Royal Meteorological Society, 125, 1607–1636, https://doi.org/10.1002/qj.49712555707, 1999.470

16

https://doi.org/10.1029/2010GM000952
https://doi.org/10.1002/asl.85
https://doi.org/10.1002/qj.3212
https://doi.org/10.5194/gmd-12-2049-2019
https://doi.org/10.1175/JHM-D-12-032.1
https://doi.org/10.5194/gmd-10-1487-2017
https://doi.org/10.1002/qj.49712555707


Figure 1. Study area with locations of pluviometer gauges (points) and the radar data (box surrounding city centres). The locations of radar

datasets are Darwin, Brisbane, Sydney and Melbourne regions. The climatic classification is adapted from Peel et al. (2007).
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Figure 3. Boxplots showing the distribution of minimum error score across stations in each neighbourhood grid size. The box represents

25-75th quantile values, horizontal line in the box represents median, and whiskers represent 5-95th quantiles.
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Figure 4. Hourly precipitation rates corresponding to quantiles for BARRA and blended radar data at four different locations.
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Figure 5. Mean FSS as a function of neighbourhood distance for rainfall above quantile thresholds (indicated by colours) at various locations

(rows) and accumulations (columns). The dashed horizontal lines indicate the target or uniform (FSStarget or FSSuniform) skill for each

threshold as specified by Roberts and Lean (2008)
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