
Authors response to the Editor and the Referees for the paper:  
 
Rainfall estimation from a German-wide commercial microwave link network: Optimized          
processing and validation for one year of data 
 
 
Dear Editor and Reviewers, 
 
we appreciate your constructive comments which helped to improve our manuscript. This response             
letter is structured in the following way. We first summarize our general changes which follow the                
recommendations of the reviewers. Then we describe further general changes that we made in the               
analysis.  
 
Regarding the recommendations of the reviewers, we implemented all changes in the way we              
proposed to do in our response to the reviewers, which we submitted to HESSD on 29​th of November.                  
Hence, the parts “Response to the comments of reviewer #N” below are exactly the same as the ones                  
already submitted. Finally, we show a marked-up manuscript version of all changes. 
 
 
In response to the recommended revision by the reviewers we introduced the following general              
changes to our manuscript: 
 

1. Besides the hourly and seasonal quantitative evaluation with scatter density plots and            
respective performance measures, we now also show this quantitative evaluation for daily            
aggregated rainfall sums for each season. (Updated Figure 6 and Section 4.3 Evaluation of              
CML derived rainfall) 
 

2. We introduced six subset criteria and rainfall thresholds for the comparison between            
path-averaged CML-derived and reference rain rates, to increase the comparability of the            
presented results and to evaluate the dataset under different aspects. (Extended Table 2 and              
updated text in Section 4.4 Performance measures for different subset criteria) 
 

3. With these subset criteria we were able to include a comparison with existing CML rainfall               
estimation studies. In addition, using the different subset criteria increases the comparability            
of our analysis with future studies. (New text in Section 4.4 Performance measures for              
different subset criteria) 
 

4. We now provide a quantitative evaluation of the CML-derived rainfall maps. We added a              
pixel-by-pixel comparison of the hourly CML rainfall maps with the reference RADOLAN-RW            
rainfall maps showing scatter density plots and performance measures on a monthly basis.             
We also added monthly link-based scatter density plots to show the difference between the              
map-based (pixe-by-pixel) and link-based (path-averaged along the CMLs) evaluation.         
(Extended Figure 8 and 9 and added new text in Section 4.5 Rainfall maps). We also decided                 
to take the opportunity of this revision and try Kriging as a potential improvement over IDW.                
We tested several different approaches (details have been added to the end of section 4.5               
Rainfall maps) for our complete data set. Performance metrics for the CML rainfall maps              
where equal or marginally better than the ones for IDW. Given that Kriging is computationally               
much more expensive than IDW and also sensitive to the selection of semivariogram             
parameters, we decided to keep IDW for the spatial interpolation of  CML rainfall information. 

 



In addition to the revisions recommended by the reviewers, we changed the following parts in our                
analysis and the respective parts of the manuscript: 
 

1. We increased the CML data availability by improving how we handle data from our data               
archive that stems from CMLs with a so called 1+1 hot-standby system. This led to almost                
400 additional CMLs entering the processing after the removal of erratic behaving CMLs             
(Additional text in Section 2.2 Commercial microwave link data). As a consequence, individual             
results shown in the updated version of the manuscript differ slightly from the first version.  

 
2. We now interpolate data gaps in raw TRSL time series up to five minutes. Furthermore we                

now also consider hours with at least 75% data availability in the analysis. We do this                
because short blackouts, which might stem from very high rainfall along a CML path, did lead                
to a complete neglection of the data of the affected CML in the respective hour in our old                  
analysis. With this interpolation, we were able to increase the temporal data coverage by              
0.5% (Additional text in Section 2.2 Commercial microwave link data). In consequence,            
individual results shown in the updated version of the manuscript differ slightly from the first               
version.  
 

3. We implemented a dynamic coverage map around the CMLs which is now available for each               
time step and applied accordingly. We tested four different ranges from 10 to 50 km and used                 
the 30 km range as a trade off between country-wide coverage and minimizing the uncertainty               
of the spatial interpolation. (Additional text in Section 4.5 Rainfall maps).  
 

4. We corrected a mistake in the data processing for Fig. 7 which shows scatter density plots of                 
seasonal rainfall sums from CMLs and the reference: In our old analysis we accidently              
removed CML-RADOLAN data pairs with false wet and missed wet classification before the             
seasonal aggregation. In the new scatter plots, shown in Fig, 6 i) - l), all available data pairs                  
are included. The now correct plot shows a decreased performance of the CML rainfall              
estimation compared to the incorrect plot in the initial manuscript. This is due to the               
missclassifications (false wet, missed wet) that are now included. (Updated Figure 6 in             
Section 4.3 Evaluation of CML derived rainfall) 
 
 

 
 
 
 
 
 
 
 
  



Response to the comments of reviewer #1: 
  
We thank the reviewer for the valuable comments and the time to carefully examine the manuscript. In                 
the following the comments of the reviewer are in black and our responses are in blue. 
  
General assessment. 
  
The paper underpins the potential of rainfall estimation employing commercial microwave links            
(CMLs) from cellular telecommunication networks by using a full-year of data over entire Germany.              
The size of the dataset in terms of its coverage and number of CMLs is unprecedented. The original                  
1-minute temporal resolution is very high compared to other studies, which typically have 15-minute              
sampling strategies. Good results are obtained against a high-quality gauge-adjusted radar rainfall            
dataset, except for non-liquid precipitation, which was to be expected. Different rain event detection              
and wet antenna attenuation correction algorithms are compared. The evaluation of CML-based            
path-averaged rainfall rates or sums and CML rainfall maps is fairly extensive. The paper is well                
written and clearly contributes to the upscaling of CMLs for rainfall monitoring. I congratulate the               
authors on obtaining such a large dataset, and the work they have done to facilitate this (Chwala et                  
al., 2016). 
  
Despite this positive assessment, I do have a number of more serious comments: 
  
1) A comparison of the quality of CML-based rainfall estimates with those from other studies is                
completely missing. Please have a look at e.g. de Vos et al. (2019), who provide an overview for                  
studies based on Dutch CML data, having a similar climate as many regions in Germany (see Table                 
A1). Naturally, a fair comparison is only possible in case of similar thresholds and metrics, which may                 
complicate some comparisons. It seems that no threshold is applied in your work, i.e. also zero rainfall                 
estimates are incorporated. Please state this explicitly in your manuscript. You may also consider to               
show metrics for other thresholds, e.g. > 1mm. The performance can be highly dependent on the                
chosen threshold. This could facilitate the comparison with other studies. I miss the (relative) bias in                
the mean in e.g Figure 6 and Table 2. 
Response: We agree with the reviewer that a comparison with other studies would add value to this                 
study. We also agree that a fair comparison requires similar thresholds. Differences in the              
CML-network density and potential differences of reference datasets do not allow a purely quantitative              
comparison of the actual values, though. Nevertheless we see the benefit of making our results               
comparable with results of other studies. 
We appreciate the comprehensive overview of CML-rainfall studies in the Netherlands given in de Vos               
et al. (2019) and will base our selection of comparisons on their Table A1. 
Regarding the threshold, we can state that we applied a threshold of >= 0.1 mm/h for specific metrics,                  
but did not made the use of this threshold clear enough throughout manuscript. The threshold only                
impacts the results of the performance metrics which are based on the differentiation between ‘wet’               
and ’dry’ periods. Also, for the density scatter plots we do not show pairs where both CML derived rain                   
rates and the reference are dry. We will explain and highlight the use and implications of the threshold                  
in the ​Methods​ and ​Result​ section.  
Of course, the selection of another threshold can have an impact on the metrics, as low rain                 
intensities are typically more frequent, but harder to detect with CMLs.  
  
We suggest to make the following additions to our current analysis: 

1. We will apply different thresholds: 0 mm, >= 0.1 mm and >= 1.0 mm for calculating the                 
performance metrics of the path-averaged CML rain rates and discuss the results 

2. We will discuss our results of path-averaged rain rates in comparison to the performances              
achieved in the respective studies from the Netherlands 



3. As suggested by the reviewer, we will add the (relative) bias in the appropriate places e.g.                
Figure 6 and Table 2. 

  

2) It would be interesting to see scatter density plots or metrics of daily path-averaged rainfall (e.g. as.                  
Fig. 6). It would also be interesting to see scatter density plots or metrics of hourly and daily                  
interpolated rainfall. This would also help to compare results with those from other studies. 
Response: We agree that both suggestions are valuable for an increased comparability with other              
studies.  
  
We suggest to make the following additions to our current analysis: 

1. We will expand Fig. 6 to a 2x4 matrix, which will show hourly and daily path averaged                 
scatter-density plots for each season and include metrics accordingly. 

2. We will add a similar 2x4 matrix figure to the section ​4.4 Rainfall Maps which will present                 
hourly and daily scatter-density plots derived from interpolated rainfall maps for each season             
and include metrics accordingly. For this figure and the calculation of the metrics we will use                
‘reference >= 0.1’ mm as threshold as it is used in Overeem et al. (2016) and Rios Gaona et                   
al. (2017). 

  
Specific comments. 
1. pp. 1., l. 14-16: This is quite a bold statement. Though results are definitely good, correlation is not                   
perfect and especially the coefficient of variation is rather high (Table2). Although, part of this can be                 
explained by representativeness errors, I think the statement is a bit too strong. 
Response: We agree with the reviewer and will weaken the statement to the expression “good               
agreement”. 
  
2. pp.2, l. 14-18: Add some information on geostationary satellite products. These have typically a               
fairly high temporal resolution of 15 min, but provide rather indirect and therefore less accurate rainfall                
estimates. In addition, you could state that satellite products often have a limited spatial resolution,               
e.g. 0.1 degrees for GPM IMERG. 
Response: We will extend the section about satellite products and will elaborate more on the spatial                
and temporal constraints and the differences between geostationary satellites and satellites in Low             
Earth orbits. 
  
3. pp. 3., l. 21-22: Mention that all these gauges report hourly rainfall and add their spatial density (at                   
least for the German ones), e.g. number of gauges per square kilometer. 
Response: We will add more information on the rain gauges used to adjust the radar product which                 
are automatic rain gauges of the German Weather Service with an hourly resolution and a spatial                
density of 0.003 gauges per square kilometer or one gauge per 325 square kilometers.  
  
4. pp. 3: Some more details on the reference dataset could be mentioned. What kind 
of rain gauge adjustment was performed (bias, spatial and what name)? Were dual-pol based              
algorithms employed, e.g. for clutter removal, attenuation correction, Kdp-Ror Zdr-Zh-R rainfall           
retrieval? Why did you choose this radar rainfall product (perhaps:this is the shortest duration for               
which the radar product has been adjusted with gauges;even better radar products exist using more               
gauge data, but we wanted to show the performance with respect to a (near) real-time radar product).                 
Is the used RADOLAN product really available in real time or is there a slight latency? 
Response: We think we provided the necessary information on the reference data set as well as the                 
literature providing further information. But we can add a very brief statement on the technology               
behind RADOLAN-RW (real-time, hourly, approx 15 minute delay, single-pol national radar composite            
adjusted with a mixture of additive and multiplicative rain gauge adjustment). Furthermore we will              



extend the explanation on why we use this product and relate this explanation to the properties of the                  
RADOLAN-RW. 
  
5. pp. 4, l. 5: Is this Ericsson network sufficient to provide full coverage over Germany, or is this one of                     
the CML types used in the network of this company? 
Response: Indeed, we currently only have access to the CML network of one cellular provider and                
only to one CML type, the Ericsson MINI-LINK Traffic Node system. Therefore, we have limited spatial                
coverage in some regions of Germany, especially the north eastern part. Although, a 20 km buffer                
around the CMLs does not provide complete spatial coverage (in the north eastern part, as shown in                 
Fig. 8), we have a high coverage over the rest of Germany. 
  
6. pp. 4, l. 11: How do you select the sub-link when two are available? Are there any criteria involved? 
Response: We always use the first listed sub-link of a given CML. We will add this information to the                   
manuscript. 
  
7. pp. 4, l. 19-23: Is the availability of radar data 100%? Please mention the availability. Is this                  
availability taken into account, e.g. when comparing the radar-based versus CML-based rainfall            
maps? 
Response: Yes, the availability of the processed reference, RADOLAN-RW along CML path, is 100%.              
When comparing path-integrated rainfall we exclude the pairs where CML derived rainfall is missing.              
For the quantitative comparison of radar and CML-based rainfall maps, which we will introduce in the                
revised version, we will use a coverage map that depends on CML data availability. This assures that                 
we only validate parts of the grid which is within our defined coverage region, maximum 30km from a                  
CML. 
  

8. pp. 6, l. 11: The authors could also add a reference to the overview paper by Messer et al. (2015). 
Response: We will add the reference by Messer et al. (2015). 
  
9. pp. 6, l. 14: “requires repeatedly testing with the complete data set”: Does this imply that part of the                    
methodology has been optimized using the complete data set, i.e. that the evaluation is not entirely                
independent? 
Response: We did not optimize individual steps of the method, except for the optimized threshold for                
May 2018 with the use of the MCC (p. 8, l. 24 ff.). During the development of the CML processing we                     
did, however, also invent approaches that did not work well, when applied to the whole data set.                 
Finding out that a new idea is a dead end, is sped up significantly with the parallelized workflow. We                   
will rephrase the sentence to make this clearer. 
  
10. pp. 7: l. 8-11 & p.8, l. 1-2: Are these checks performed for each month? So that a link may be                      
discarded for one month, but be available for another month? 
Response: These checks were performed for each month individually, yes. We will make this fact               
more clear in the manuscript. 
  
11. pp. 8, l. 23: Can you provide a reference for the 5 percent of the time it is raining? Here you                      
assume that it is equally distributed over Germany. 
Response: We took the 5 percent from Schleiß and Berne (2010) who introduced the rolling standard                
deviation method. For the analyzed period of one year this value is more or less arbitrary because its                  
reasoning is based on rainfall climatology. Of course, we are aware that this climatological threshold               
does not pay justice to the spatial and temporal variability of rainfall, but rather is a robust approach                  
and simple way to provide a first rain event detection. In our study, this climatological approach, which                 



was suggested by the inventors of the method we use, serves as a reference method to show the                  
improvement by the q80 method. 
  
12. pp. 8, l. 23-25: Could sources of error also constitute part of this 5 percent? So, assuming that 5                    
percent of the time it is indeed raining, this percentage would be too low if sources of error resulting in                    
attenuation during dry periods have a similar magnitude. 
Response: Yes, this is possible and is yet another drawback of the climatological (5-percent) method.               
Our proposed q80-method should be a lot more robust against these errors because it takes the                
general noisiness of the TRSL as basis for setting the threshold. Still, this method is not free from                  
errors in the form of misclassifications. But as can be seen in Figure 4, there is a clear improvement                   
over the climatological method. 
  
13. pp. 8, l. 26-29 & pp. 9, l. 4-6: Can you provide somewhat more information on the optimization                   
(e.g. which criteria)? 
Response: Of course, we will include this information in the respective parts of the manuscript. We will                 
explain this in more detail by adding a text similar to e.g. “The optimal thresholds (pp. 7, l. 26ff.) are                    
obtained in the following way: We process each individual CML in May 2018 with a range of possible                  
thresholds for the rolling standard deviation method and calculate the binary measure MCC. We pick               
the threshold with the highest MCC for each individual CML and use it over the whole analysis                 
period.” 
  
14. pp. 8, l. 33: Replace “for of” by “for”. 
Response: We will correct this typo. 
  
15. pp. 9, l. 19: And what determines the decrease after an event? 
Response: Schleiss and Berne (2013) found an exponential decrease after rain events in their data.               
But their WAA scheme does not explicitly model this decay since, as they write, “it is already                 
contained in the values 
of a_i” (a_i is their total path attenuation after removal of the baseline). Hence, the WAA scheme with                  
its exponential increase is only applied when the rain event detection considers the time step as wet,                 
i.e. during a detected rain event. 
  
16. pp. 9, l. 25: Do all these Ericsson antennas have the same cover? 
Response: Based on the antennas that are used on Ericsson MINI-LINK Traffic Node CMLs that we                
have already had in our lab, we can say that there are at least two different types of covers. We took                     
the value of 4.7 mm thickness from an 18 GHz antenna cover made from polycarbonate. 
  
17. pp. 9, l. 24: Is this 2.3 dB for one or two antennas? Is this value reasonable compared to the                     
literature? In the wet antenna experiment from Van Leth et al. (2018) a value of 3-5 dB for one                   
antenna was found (although this was not real rainfall). 
Response: 2.3 dB is the maximal WAA for the whole system, i.e. for both antennas. We took the value                   
from Schleiss et al. (2013) who also used a CML for their study. Overeem et al. (2016) and the related                    
studies with the Dutch CML data use a similar value. We, however, cannot say whether or not the real                   
WAA does reach higher values at the CMLs in our data set. But we also do not know if both, one or                      
none of the two antennas get wet during an individual rain event. Generally speaking, there is                
certainly room for improving WAA estimation methods. But in this study we want to apply a simple                 
technique based on existing methods. We will explain our reasoning to choose the 2.3 dB better in the                  
revised manuscript. 
  
18. pp. 10, l. 5: Replace “the on” by “on”. 
Response: We will correct this typo. 



  
19. pp. 11, l. 18: Replace “also is” by “also”. 
Response: We will correct this typo. 
  
20. pp. 13, l. 8 & pp. 18, l. 1: I expect that especially melting snow and ice on the covers gives rise to                        
attenuation. 
Response: Indeed, we will add melting snow and ice on the covers to the causes of additional                 
attenuation.  
  
21. pp. 13, l. 20: I suppose that the reference is used to select rain rates above 5mm/h? 
Response: Yes, the reference is used for selecting rain rates above 5mm/h. We will make this more                 
clear in the revised manuscript. 
  
22. pp. 14 & 15: For clarity I suggest to add that these are path-averages (i.e. not based on maps). 
Response: We will add this in the caption of the figures. 
  
23: pp. 14, l. 14: You could add that e.g. in the southwestern part of Germany this is the case. 
Response: We will add this more precise description to the revised manuscript. 
  
24. pp. 15, l. 7: You could add that an advantage of the applied interpolation method is its robustness                   
and speed. 
Response: We will add both advantages of IDW interpolation technique to the revised manuscript. 
  
25. pp. 18.: You could recommend that studying the quality of rainfall maps for shorter durations, e.g.                 
1 minute, would be an interesting follow-up study, especially for urban water management. 
Response: We will add this to the list of possible future possibilities of this methods and the presented                  
data set. 
  
26. Figures 8 & 9: The tick marks do often not match the transition from one color scale to another. 
Response: We will place the tick marks on the correct position. 
  
27. pp. 16, l. 14-15: I think that algorithms using neighbouring CMLs are much more promising than                 
satellite-based ones provided that the density of the CML network is high enough. 
Response: We agree that in dense CML networks these algorithms work well and will add this to the                  
revised manuscript. 
  
28. pp. 17: You could add as a recommendation to compare methods from different research groups                
on the same dataset, e.g. concerning rain event detection and wet antenna attenuation correction. 
Response: Such a work would be an important step in making the work of different research groups                 
really comparable. We will add this to the ​Conclusion​. 
  
29. pp. 17, Figure 9: You could consider adding a map showing the relative or absolute difference of                  
CML-based rainfall with respect to RADOLAN. 
Response: As we treat each CML only as a single point in the interpolation, a map showing the                  
differences of CML and radar-based rainfall will show differences for almost all parts of the analyzed                
region. Also, since radar is a spatial sensor, the spatial variability in the radar reference is a lot higher                   
than that of the interpolated CML rainfall fields, resulting in noisy difference plots. We will include                
scatter density plots of CML vs. radar-based rainfall maps as described in the response to the general                 
comment 2), which will serve as basis of the comparison of both maps. 
  



30. pp. 17. Are there any plans of merging CML data with RADOLAN? That could be an interesting                  
recommendation. And what do you expect in terms of improved performance and especially for which               
areas (cities, valleys, ...)? 
Response: Yes, at the moment we investigate merging CML data into the RADOLAN-process in a               
BMBF funded project called HoWa-innovativ (​https://www.howa-innovativ.sachsen.de​)​. As the        
reviewer guessed correctly, we expect the largest improvements in cities and valleys, where radar              
observations are hampered by ground clutter, beam-blockage or the vertical profile of reflectivity. We              
will add the potential of merging CML and radar data to the ​Conclusion​. 
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Response to the comments of reviewer #2: 
  
We thank the reviewer for the valuable comments and the time to carefully examine the manuscript. In                 
the following the comments of the reviewer are in black and our responses are in blue. 
  
The authors present an analysis of rainfall estimation using minutely transmitted-minus-received           
signal level (TRSL) measurements from almost 4000 commercial microwave links (CMLs), located            
country-wide in Germany. 
The fact that the authors have access to a very large database of minutely TSL/RSL measurements is                 
unique, as, previous studies that presented a country-wide CMLs-based rainfall monitoring used a             
lower 15-minute sampling rate (and on top of that,some had access to the minimal and the maximal                 
TSL/RSL values rather than the instantaneous values). 
The presented rainfall estimation process follows the general steps established previously, including            
preparation of the data, baseline estimation, rain event detection, wet-antenna attenuation           
compensation, and rain-retrieval. 
The authors compared the CML rain estimation outcome with the radar-based RADOLAN-RW data             
set, which shows, in general, good agreement. 
  
Even though the presented study is very interesting, and can potentially contribute to this field of                
research, there are two main concerns that I feel the authors should address: 
  
1. There are many different steps that the are being done in processing the data that include setting                  
up different thresholds and margins (e.g., assuming that 5% of the time is classified as “rain”, different                 
moving-average window durations, different thresholds and percentile values from which the data is             
omitted, and so on). The problem here,is that there is no discussion regarding the logic behind                
selecting these specific parameters. It is very easy to “find the best parameters and thresholds” once                
you have a data-set used as ground-truth (in this case, the RADOLAN - which is later used for                  
comparison). However, it is imperative to understand the actual process behind selecting these             
specific values, in order for the proposed methodology to be successfully deployed in different              
locations. 
Response: We agree that an understanding of all involved processes is very important and we will                
make the selection of parameters and thresholds clearer in the methodology section and discuss the               
decision where necessary. In detail we are going to address the following thresholds and parameters:  

● p. 7, l. 11: length of filters to remove noisy data: 
We used two different filters to remove noisy/erratic CMLs for each month. For both filters we                
use thresholds which are in a range which is too far away from the average CML to make                  
sense. We will explain the specific use of both filters in the revised manuscript more explicitly:                
With a five-hour moving standard deviation we filter CMLs which either have a very strong               
diurnal cycle or very noisy periods during a month. The other filter uses the moving window                
standard deviation approach by Schleiss et al. (2010) with a window length of one hour and a                 
rain event detection threshold of 0.8. This threshold is conservative, meaning it selects only              
stronger rain events from a typical CML in our data set. When this threshold is exceeded                
more than one third of the time of a month, the respective CML is considered as too noisy and                   
therefore is excluded from further analysis. 

● p. 8, l. 22ff: 5 percent rainfall in Germany 
We took the 5 percent from Schleiß and Berne (2010), for the analyzed period of one year                 
this value is more or less arbitrary because it is climatologic based. Of course, this               
climatological prerequisite cannot be fulfilled on either temporal or spatial scale but rather is a               
robust approach and simple way to provide a first rain event detection. 
(see also responses to comment 11 and 12 from Reviewer #1) 



● p. 8, l. 33ff: 80th quantile and scaling factor 
The 80th quantile reflects the general amount of fluctuation of a CML without being influenced               
by the climatology as the threshold from Schleiß and Berne (2010) which explicitly uses the               
climatology. The scaling factor of q80 was calibrated for May 2018 with the optimal thresholds               
derived as explained at p. 8, l. 30ff. We also checked the derived scaling factor for other                 
months and found them to be similar. 

● p. 9, l. 25: γ and δ used in the WAA scheme from Leijnse et al. (2008) 
γ and δ are parameters of the logarithmic function of Leijnse et al. (2008)’s WAA model. As                 
the WAA model from Schleiss et al. (2013) suppressed most of the small rain events, we                
chose γ and δ in a way that for small rain rates the WAA compensation is smaller, while high                   
rain rates are treated with a correction in the same range as in the WAA model from Schleiss                  
et al. (2013). 

  
2. I find it lacking that no comparison with other established approaches of CML-based rain retrieval is                 
being performed or discussed. Furthermore, the authors did not consider newer approaches for the              
different steps they perform (e.g., the wet-antenna or the baseline retrieval algorithms that are              
selected are based on algorithms published in 2008, 2010, and 2013, while there are many updated                
published newer studies. I am not saying that the decision to use the specific selected algorithms is                 
incorrect, but, it should be explained why these specific algorithms are selected, with respect to other                
approaches that have been presented since. 
Response: We will add a comparison to other CML studies as described in the answer to Reviewer 1.  
Also, we will explain the reasons which led to the selection of the processing steps in more detail in                   
the manuscript e.g. for the WAA we selected a time (Schleiss et al. 2013) and a rain rate (Leijnse et                    
al. 2008) dependent WAA model to compare both of them. The time dependent WAA model               
suppressed small rain rates too much, which is the reason we chose the rain rate dependent WAA                 
model with certain parameters for γ and δ. 
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Response to the comments of reviewer #3: 
  
We thank the reviewer for the valuable comments and the time to carefully examine the manuscript. In                 
the following the comments of the reviewer are in black and our responses are in blue. 
  
The authors present an interesting analysis of rain fall derived from an unique dataset of nearly 4000                 
CMLs measured at a 1-minute scale.The correspondence with RADOLAN-RW is in general good             
during summer and less so during winter. This is corresponds well with other studies and theory, but                 
was able to this on a new larger scale than seen before. The study therefore shows the great potential                   
of CMLs, especially in areas where there might be little other data sources available. 
  
The paper is well constructed in general and will contribute to the further development of CML derived                 
rain rates. There are a few points that I would like to see addressed however: 
  
1. The reference dataset is based on gauge-adjusted hourly radar. While this offers the authors a                
source of data to compare link path derived rain rates with, it does not show the uniqueness of their                   
dataset with a 1-minute resolution. The paper could for example benefit from an additional analysis of                
CMLs compared to rain gauge data with a high temporal resolution available at the DWD Climate                
Data Center. This analysis could be further extended by comparing hourly sums of rain gauge data                
with CML and RADOLAN derived rain rates (even though the RADOLAN data are of course adjusted                
using these same gauge data). While the rain gauges only offer point measurements, compared to               
the line measurements of the CMLs and the volumes of the radar it would give additional insight and                  
offer the authors a chance to show the uniqueness of the dataset. 
  
Response: The goal of this study is to show the general performance of CML derived rainfall against a                  
reference on a countrywide scale. We have chosen a spatial rainfall product (RADOLAN-RW) as              
reference in this study, because it allows us to validate the path-averaged rain rates of the CMLs. For                  
a comparisons to rain gauges we would have to discuss and decide what a suitable maximal distance                 
between CML-path and rain gauge is. Furthermore, with increasing path length, the path-averaged             
CML-derived rain rate estimates will be smoothed out compared to the point observations of the               
gauges. Both factors, the questions of distance between CML-path and rain gauge, as well as the                
effect of path-averaging will be more severe for short temporal aggregations. We have already done               
tests with the 1-minute rain gauge data from the DWD Climate Data Center and found that, even for                  
the rain gauges in the vicinity of CMLs (gauge max. 2 km from CML-path, resulting in 191 CMLs with                   
such a reference) we have to do temporal averaging to make rain rates comparable. We did not yet                  
look on the effect of CML-path length, but it certainly will have an impact. 
  
In conclusion, we agree that it would be interesting to compare the 1-minute CML-derived rainfall               
estimates to 1-minute rain gauge data. But since we can only do that in a meaningful way for a small                    
subset of our data (191 CMLs have a gauge within 2km distance) and since it would introduce further                  
uncertainties, we want to keep the existing analysis of this study homogeneous using only one               
reference dataset. Similarly, we believe it is beyond the scope of this study to compare rain gauge                 
data with RADOLAN. We appreciate the reviewer’s suggestion, though, and think it is worth working               
towards a separate study on the effect of spatio-temporal sampling differences between CML-, radar-              
and gauge data with high temporal resolution. 
  
2. Like the first referee I think the paper might also benefit of analyzing the data at different                  
thresholds, to show clearly how CMLs perform in at different rain intensities. It would also be good to                  
clearly state how the filtering was performed. Is only a threshold applied to the RADOLAN data and                 
how does this affect the CML data? 



Response: We agree with the reviewer that the use of thresholds shows us the performance for                
different rain intensities. It further will increase the comparability to other studies. We will add this to                 
our analysis as described in the response to Reviewer #1 general comment 1. 
  
Finally a few minor comments: 
  
P1, line 5: add a comma -> one year, spans 
Response: We will add the comma. 
  
P2, line 11: this -> these 
Response: We will correct the typo. 
  
P2, line 12: remove the space before the. 
Response: We will correct the typo. 
  
P2, line 15: add a mention of the often limited spatial resolution of satellites 
Response: We will extend the section about satellite products and will elaborate more on the spatial                
and temporal constraints and the differences between geostationary and satellites in Lower Earth             
orbits. 
  
P4, line 13: The CML range is mentioned to be over 30km. In figure 2 there do not seem to be any                      
CMLs beyond 30 km. 
Response: Indeed, this is a mistake, for the analyzed CML data set, there is no CML longer than 30                   
km. We will correct the manuscript accordingly. 
  
P6, fig2: The label on the x-axis should read (km) and not (m) 
Response: We will correct the typo. 
  
P9, line 24: Are all antennas of the same material and construction? 
Response: We currently have access to the CML network of one cellular provider and only to one                 
CML type, the Ericsson MINI-LINK Traffic Node system. Based on the antennas from this network that                
we have already had in our lab, we can say that there are at least two different types of covers. We                     
took the value of 4.7 mm thickness from an 18 GHz antenna cover made from polycarbonate. 
  
P13, line 34: What is the 30km range based on? 
Response: The 30 km range is a compromise. We have several larger gaps in the CML coverage and                  
want to avoid that rainfall fields are generated too far away from the observations. We are aware that                  
for extremely small scale convective events, the spatial decorrelation length for hourly rainfall will be               
smaller. But we also want to keep the spatial coverage of our CML rainfall field as high as possible.                   
The value of 30 km was found to meet this requirement best. Results from van de Beek et al. (2012),                    
who found the range of semi-variograms to be around 30 km for hourly rainfall in the summer months                  
in the Netherlands, support our decision. 
  
P15, line 5; But -> However 
Response: We will correct the typo. 
  
P18, line 10: But -> However 
Response: We will correct the typo. 
  
In general the text could benefit from added commas to improve readability. 
Response: We will revise the manuscript under this perspective and try to increase the readability. 
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Abstract. Rainfall is one of the most important environmental variables. However, it is a challenge to measure it accurately

over space and time. During the last decade commercial microwave links (CMLs),
:
operated by mobile network providers

:
,

have proven to be an additional source of rainfall information to complement traditional rainfall measurements. In this study

we present the processing and evaluation of a German-wide data set of CMLs. This data set was acquired from around 4000

CMLs distributed across Germany with a temporal resolution of one minute. The analyzed period of one year spans from5

September 2017 to August 2018. We compare and adjust existing processing schemes on this large CML data set. For the

crucial step of detecting rain events in the raw attenuation time series, we are able to reduce the amount of miss-classification.

This was achieved by a new approach to determine the threshold
:
, which separates a rolling window standard deviation of the

CMLs signal into wet and dry periods. For the compensation of wet antenna attenuation, we compare a time-dependent model

with a rain-rate-dependent model and show that the rain-rate-dependent method
:::::
model

:
performs better for our data

::
set. As10

precipitation reference, we use RADOLAN-RW, a gridded gauge-adjusted hourly radar product of the German Meteorological

Service (DWD), from which we derive the path-averaged rain rates along each CML path. Our data processing is able to

handle CML data across different landscapes and seasons very well. For hourly, monthly and seasonal rainfall sums we found

high
:
a
:::::
good agreement between CML-derived rainfall and the reference, except for the cold

:::::
winter

:
season with non-liquid

precipitation.
:::
We

::::::
discuss

:::::::::::
performance

::::::::
measures

:::
for

::::::::
different

::::::
subset

::::::
criteria

::::
and

:::::
show,

::::
that

:::::
CML

::::::
derived

:::::::
rainfall

:::::
maps

:::
are15

:::::::::
comparable

:::
to

:::
the

::::::::
reference.

:
This analysis shows that opportunistic sensing with CMLs yields rainfall information with a

quality similar
::::
good

:::::::::
agreement to gauge-adjusted radar data during periods without non-liquid precipitation.
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1 Introduction

Measuring precipitation accurately over space and time is challenging due to its high spatiotemporal variability. It is a crucial

component of the water cycle and knowledge of the spatiotemporal distribution of precipitation is an important quantity in

many applications across meteorology, hydrology, agriculture, and climate research.

Typically, precipitation is measured by rain gauges, ground-based weather radars or spaceborne microwave sensors. Rain5

gauges measure precipitation at the point scale. Errors can be caused for example by wind, solid precipitation or evaporation

losses (Sevruk, 2005). The main disadvantage of rain gauges is their lack of spatial representativeness.

Weather radars overcome this spatial constraint, but are affected by other error sources. They do not directly measure rainfall
:
,

but estimate it from related observed quantities, typically via the Z-R relation,
:

which links the radar reflectivity "Z" to the

rain rate "R". This relation, however, depends on the rain drop size distribution (DSD), resulting in significant uncertainties.10

Dual-polarization weather radars reduce this
::::
these uncertainties, but still struggle with the DSD-dependence of the rain rate

estimation (Berne and Krajewski, 2013). Additional error sources can stem from the measurement high above ground, from

beam blockage or ground clutter effects.

Satellites can observe large parts of the earth, but their spatiotemporal coverage is restricted
:::::
spatial

::::
and

:::::::
temporal

::::::::
coverage

::::
also

:::
has

:::::
limits.

::::::::::::
Geostationary

:::::::
satellites

:::
can

:::::::
provide

:
a
::::
high

::::::::
temporal

:::::::
sampling

::::
rate

::
of

:
a
:::::::
specific

:::
part

::
of

:::
the

:::::
earth

::::
with

:
a
::::::
limited

::::::
spatial15

::::::::
resolution

:::
due

::
to
:::::
their

::::
large

:::::::
distance

::
to

:::
the

:::::
earth.

::::::::
Satellites

::
in

::::
Low

:::::
Earth

:::::
orbits

:::::::
typically

:::::
have

:
a
:::::
much

::::::
higher

:::::
spatial

:::::::::
resolution

:::
but

::::
their

::::::::
revisiting

:::::
times

:::
are

::::::::
constraint

:
by their orbits. Typical revisit times are in the order of hours to days. As a result, even

merged multi-satellite products have a latency of several hours, e.g. the Integrated Multi-satellite Retrievals (IMERG) early

run of the Global Precipitation Measurement Mission (GPM) has a latency of 6 hours
:
,
:::::
while

:
it
::
is

::::::
limited

::
to

::
a

:::::
spatial

:::::::::
resolution

::
of

:::
0.1

:::::::
degrees. The employed retrieval algorithms are highly sophisticated and several calibration and correction stages are20

potential error sources (Maggioni et al., 2016).

Additional rainfall information, for example derived from commercial microwave links (CMLs) maintained by cellular net-

work providers, can be used to compare and complement existing rainfall data sets (Messer et al., 2006). In regions with sparse

observation networks, they might even provide unique rainfall information.

The idea to derive rainfall estimates via the opportunistic usage of attenuation data from CML networks emerged over a25

decade ago independently in Israel (Messer et al., 2006) and the Netherlands (Leijnse et al., 2007). The main research

foci in the first decade of dedicated CML research were the development of processing schemes for the rainfall retrieval

and the reconstruction of rainfall fields. The first challenge for rainfall estimation from CML data is to distinguish be-

tween fluctuations of the raw attenuation data during rainy and dry periods. This was addressed by different approaches

which either compared neighbouring CMLs using the spatial correlation of rainfall (Overeem et al., 2016a) or which fo-30

cused on analyzing the time series of individual CMLs (Chwala et al., 2012; Schleiss and Berne, 2010; Wang et al., 2012)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chwala et al., 2012; Polz et al., 2019; Schleiss and Berne, 2010; Wang et al., 2012). Another challenge is to estimate and cor-

rect the effect of wet antenna attenuation. This effect stems from the attenuation caused by water droplets on the covers of

CML antennas, which leads to rainfall overestimation (Fencl et al., 2019; Leijnse et al., 2008; Schleiss et al., 2013).
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Since many hydrological applications require spatial rainfall information, several approaches have been developed for the gen-

eration of rainfall maps from the path-integrated CML measurements. Kriging was successfully applied to produce countrywide

rainfall maps for the Netherlands (Overeem et al., 2016b), representing CML rainfall estimates as synthetic point observation at

the center of each CML path. More sophisticated methods can account for the path-integrated nature of the CML observations,

using an iterative inverse distance weighting approach (Goldshtein et al., 2009), stochastic reconstruction (Haese et al., 2017)5

or tomographic algorithms (D’Amico et al., 2016; Zinevich et al., 2010).

CML-derived rainfall products were also used to derive combined rainfall products from various sources (Fencl et al., 2017;

Liberman et al., 2014; Trömel et al., 2014). In parallel, first hydrological applications were tested. CML-derived rainfall was

used as model input for hydrologic modelling studies for urban drainage modeling with synthetic (Fencl et al., 2013) and real

world data (Stransky et al., 2018) or on run-off modeling in natural catchments (Brauer et al., 2016; Smiatek et al., 2017).10

With the exception of the research carried out in the Netherlands, where more than two years of data from a country-wide

CML network were analyzed (Overeem et al., 2016b), CML processing methods have only been tested on small data sets. We

advance the state of the art by performing an analysis of rainfall estimates derived from a German-wide network of close to

4000 CMLs. In this study one CML is counted as the link along one path with typically two sub-links, for the communication

in both directions. The temporal resolution of the data set is one minute and the analyzed period is one year from September15

2017 until August 2018. The network covers various landscapes from the North German Plain to the Alps in the south,
:
which

feature individual precipitation regimes.

The objectives of this study are (1) to compare and adjust selected existing CML data processing schemes for the classification

of wet and dry periods and for the compensation of wet antenna attenuation and (2) to validate the derived rainfall
:::
rain

:
rates

with an established rainfall product, namely RADOLAN-RW, both on the country-wide scale of Germany.20

2 Data

2.1 Reference data set

The Radar-Online-Aneichung data set (RADOLAN-RW) of the German Weather Service (DWD) is a radar-based and gauge

adjusted precipitation data set. We use data from the archived real-time product RADOLAN-RW as reference data set through-

out this work (DWD). It is compiled from 16
:
a
::::::::
compiled

:::::
radar

:::::::::
composite

::::
from

:::
17

::::::::::::::
dual-polarization weather radars operated25

by DWD and adjusted by 1100
:::::
more

::::
than

::::
1000

:
rain gauges in Germany and 200 rain gauges from surrounding countries.

::::::::::::::
RADOLAN-RW

::::
does

:::
not

:::
use

:::::::
dual-pol

::::::::::
information,

::::::
though.

::
It
::
is

:::::
based

::
on

:::
the

:::::::::
reflectivity

::::::::::
observations

::
in

:::::::::
horizontal

::::::::::
polarization

::::
from

::::
each

:::::
radar

:::
site,

::::::
which

:::
are

:::::::
available

::
in

::::::::
real-time

:::::
every

:::
five

:::::::
minutes.

::::
This

::::
data

::
is

::::
then

::::
used

::
to

:::::::
compile

:
a
:::::::
national

:::::::::
composite

::
of

:::::::::::
reflectivities,

::::
from

::::::
which

::::
rain

::::
rates

:::
are

:::::::
derived.

::::
For

:::
the

::::::
hourly

::::::
rainfall

:::::::::::
information

::
of

:::
the

::::::::::::::
RADOLAN-RW

::::::::
product,

:::
the

::::::
national

:::::::::
composite

:::
of

::::::::
5-minute

::::
radar

::::
rain

:::::
rates

::
is

::::
then

:::::::::
aggregated

::::
and

:::::::
adjusted

::::
with

:::
the

::::::
hourly

::::
rain

:::::
gauge

::::::::::::
observations.

::
A30

:::::::
weighted

:::::::
mixture

::
of

:::::::
additive

::::
and

:::::::::::
multiplicative

::::::::::
corrections

::
is

::::::
applied.

::::
The

::::
rain

::::::
gauges

::::
used

:::
for

:::
the

:::::::::
adjustment

:::::
have

:
a
::::::
spatial

::::::
density

::
of

::::::::::::
approximately

:::
one

::::::
gauge

:::
per

:::
300

:::::
km2.

The gridded data set
::::::::::::::
RADOLAN-RW

:
has a spatial resolution of 1 km,

:
covering Germany with 900 by 900 grid cells. The
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temporal resolution is one hour and the minimal detection limit of rainfall is
::::::
rainfall

:::::
values

:::
are

:::::
given

::::
with

:
a
:::::::::::
quantization

::
of 0.1

mm
:
.
::::::::::::::
RADOLAN-RW

::
is

:::::::
available

::::
with

::
a
:::
lag

::::
time

::
of

::::::
around

:::
15

:::::::
minutes.

::::::::
Detailed

::::::::::
information

::
on

:::
the

:::::::::::
RADOLAN

:::::::::
processing

:::
and

:::::::
products

::
is

::::::::
availabel

::::
from

:::::
DWD

:
(Bartels et al., 2004; Winterrath et al., 2012).

Kneis and Heistermann (2009) and Meissner et al. (2012) compared RADOLAN-RW products to gauge-based data sets for

small catchments and found differences in daily, area averaged precipitation sums of up to 50 percent, especially for the winter5

season. Nevertheless, no data set with comparable temporal and spatial resolution, as well as extensive quality control is avail-

able.

In order to compare the path integrated rainfall estimates from CMLs and the gridded RADOLAN-RW product, RADOLAN-

RW rainfall
:::
rain

:
rates are resampled along the individual CML paths. For each CML

:
, the weighted average of all intersecting

RADOLAN-RW grid cells is calculated, with the weights being the lengths of the intersecting CML path in each cell. As10

result, one time series of the hourly rain rate is generated from RADOLAN-RW for each CML.
:::
The

::::::::
temporal

:::::::::
availability

:::
of

:::
this

::::::::
reference

::
is

::::
100

::::::
percent

:::
but

:::
we

::::::::
excluded

:::
the

:::::
CML

:::
and

:::::::::::::::
RADOLAN-RW

::::
pairs

::
in

:::
the

::::::::::
evaluation,

:::::
when

:::::
CML

::::
data

::
is

:::
not

::::::::
available.

:::
We

:::::
chose

:::
the

::::::::::::::
RADOLAN-RW

::::::::
product,

:::::::
because

:
it
::::::::
provides

::::
both

::
a

::::
high

::::::::
temporal

:::
and

::::::
spatial

:::::::::
resolution

:::
for

:::::
entire

::::::::
Germany.

::::
This

::::::::
resolution

::
is

:::
the

::::
basis

:::
for

::
a

::::
good

:::::::::
evaluation

::
of

:::
the

::::::::::::
path-averaged

:::
rain

::::
rates

:::::::
derived

::::
from

::::::
CMLs.

::::
The

:::
rain

::::::
gauge

::::::::::
adjustments,

:::::
while

:::
not

:::::::
perfect,

::::::
assures

::::
that

:::
the

::::::::::::::
RADOLAN-RW

::::::
rainfall

::::::::
estimates

::::
have

:::
an

::::::::
increased

::::::::
accuracy

::::::::
compared

::
to

::
a15

::::::::
radar-only

::::
data

::::
sets.

:

2.2 Commercial Microwave Link Data
:::::::::
microwave

::::
link

::::
data

We present data of 3904 CMLs operated by Ericsson in Germany. Their distribution over Germany is shown in Fig. 1. The

CMLs are distributed country-wide over all landscapes in Germany, ranging from the North German Plain to the Alps in the

south. The uneven distribution, with large gaps in the north east can be explained by the fact that we only access one subset of20

all installed CMLs, only
::
the

:
Ericsson MINI-LINK Traffic Node systems operated for one cell phone provider.

CML data is retrieved with a real-time data acquisition system which we operated
::::::
operate in cooperation with Ericsson (Chwala

et al., 2016). Every minute, the current transmitted signal level (TSL) and received signal level (RSL) are requested from more

than 4000 CMLs for both ends of each CML. The data is then immediately sent to and stored at our server. For the analysis

presented in this work, we use
::::
used this 1-minute instantaneous data of TSL and RSL for the period from September 2017 to25

August 2018 for 3904 CMLs. Due to missing, unclear or corrupted metadata we cannot use all CMLs
:::::
could

:::
not

:::
use

:::
all

:::::
CML

:::
data. Furthermore, we only use

:::
used

:
data of one sub-link per CML, i. e. we only use one

:
.
:::::
There

:::
was

:::
no

:::::::
specific

:::::::
criterion

:::
for

:::::::
selecting

:::
the

::::::::
sub-link.

:::
We

::::::
simply

::::
used

:::
the pair of TSL and RSL out of the two that are available for each CML

:::
that

:::::
cames

::::
first

::
in

:::
our

:::::
listing.

The available power resolution is 1 dB for TSL and 0.3 (with occasional jumps of 0.4 dB) for RSL. While the length of the30

CMLs ranges between a few hundred meters to over
:::::
almost

:
30 km,

:
most CMLs have a length of 5 to 10 km. They are operated

with frequencies ranging from 10 to 40 GHz, depending on their length. Figure 2 shows the distributions of path lengths and

frequencies. For shorter CMLs higher frequencies are used.

To derive rainfall from CMLs, we use
::::
used the difference between TSL and RSL, the transmitted minus received signal level
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Figure 1. Map of the distribution of 3904 CMLs over Germany

(TRSL). An example of a TRSL time series is shown in Fig. 3a). To compare the rain rate derived from CMLs with the

reference rain rate, we resample
::::::::
resampled

:
it from a minutely to an hourly resolution after the processing.

In our
:::::
CML data set 2.2 percent are missing time steps due to outages of the data acquisition systems. Additionally 1.2 percent

of the raw data show missing values (Nan) and 0.1 percent show default fill values (e.g. -99.9 or 255.0) of the CML hardware,

which we exclude
:::::::
excluded

:
from the analysis. Furthermore we have to remove 9.9 percent of data , because of inconsistent5

TSL records for CMLs with a so called 1+1 hot standby system, i. e. which have a second backup radio unit installed, which

shares one antenna with the main unit.
:
In
:::::
order

::
to

:::::::
increase

:::
the

::::
data

::::::::::
availability,

::
we

:::::::
linearly

::::::::::
interpolated

::::
gaps

::
in

:::
raw

::::::
TRSL

::::
time

:::::
series

:::::
which

::::
were

:::
up

::
to

:::
five

:::::::
minutes

:::::
long.

::::
This

::::::::
increased

:::
the

::::
data

:::::::::
availability

:::
by

:::
0.5

::::::
percent.

:::
On

:::
the

::::
one

:::::
hand,

::::
these

::::
gaps

::::
can

::
be

:::
the

::::::
results

::
of

:::::::
missing

::::
time

::::
steps

::::
and

:::::::
missing

:::::
values

:::
but

:::
we

::::
also

:::::
found

:::::
cases

:::::
where

:::
we

:::::::
suspect

::::
very

::::
high

::::::
rainfall

::
to

:::
be

:::
the

:::::
reason

:::
for

:::::
short

::::::::
blackouts

::
of

:
a
::::::
CML.10

The size of this
:::
the

::::::::
complete CML data set is approximately 100 GB in memory. The data set is operationally continuously

extended by the data acquisition
:::::::::
operational

::::
data

::::::::::
acquisition, allowing also the possibility of near-realtime rainfall estimation.
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Figure 2. Scatterplot of the length against the microwave frequency of 3904 CMLs including the distribution of length and frequency.

Table 1. Adopted confusion matrix

reference

wet dry

C
M

L wet true wet (TP) false wet (FP)

dry missed wet (FN) true dry (TN)

3 Methods

3.1 Performance measures

To evaluate the performance of the CML-derived rain rates against the reference data set, we used several measures which we

calculated on an hourly basis. We defined a confusion matrix according to Tab. 1 where wet and dry refer to hours with and

without rain, respectively. Hours with less than 0.1 mm/h were considered as dry in both data sets. The Matthew’s correlation5

coefficient (MCC) summarizes the four values of the confusion matrix in a single measure (1) and is typically used as measure

of binary classification in machine learning. This measure is accounting for the skewed ratio of wet and dry events. It is high

only if the classifier is performing well on both classes.

MCC=
TP ∗TN−FP ∗FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(1)
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The mean detection error (MDE) (2) is introduced as a further binary measure focusing on the miss-classification of rain

events.

MDE=

FN
n(wet) +

FP
n(dry)

2
(2)

It is calculated as the average of missed wet and false wet rates of the contingency table from Tab. 1.

The linear correlation between CML-derived rainfall and the reference is expressed by the Pearson correlation coefficient5

(PCC). The coefficient of variation (CV) in (3) gives the distribution of CML rainfall around the reference expressed by the

ratio of residual standard deviation and mean reference rainfall,

CV=
std

∑
(RCML −Rreference)

Rreference

(3)

where RCML and Rreference are hourly rain rates of the respective data set. Furthermore
:
, we computed the mean absolute error

(MAE) and the root mean squared error (RMSE) to measure the accuracy of the CML rainfall estimates.
:::
The

:::::::
relative

::::
bias

::
is10

::::
given

:::
as

bias =
(RCML −Rreference)

Rreference
:::::::::::::::::::::::

(4)

:::::
Often,

::
in

:::::::
studies

:::::::::
comparing

:::::
CML

::::::
derived

:::::::
rainfall

:::
and

:::::
radar

:::::
data,

:
a
::::::::
threshold

::
is
:::::

used
::
as

::
a

:::::
lower

::::::::
boundary

:::
for

:::::::
rainfall.

::::
The

::::::::::
performance

:::::::::
measures,

::::::::::
summarized

::
in

::::
Tab.

::
2,

::::
were

::::::::
calculated

:::::
with

:::::::
different

:::::
subset

::::::
criteria

:::
or

:::::::::
thresholds.

::::
This

::::
gives

::::::
insight

:::
on15

:::
how

:::::
CML

:::::::
derived

::::::
rainfall

::::::::
compares

::
to

:::
the

::::::::
reference

::
for

::::::::
different

:::
rain

::::
rates

::::
and

::
on

::::
how

:::
the

::::
large

:::::::
number

::
of

::::
data

:::::
points

:::::::
without

:::
rain

::::::::
influence

:::
the

:::::::::::
performance

::::::::
measures.

:::::::
Another

::::::
reason

:::
for

::::::
listing

:::
the

:::::::::::
performance

::::::::
measures

::::
with

::::::
several

:::::::::
thresholds

::
is

:::
the

::::::::
increased

:::::::::::
comparability

::::
with

:::::
other

::::::
studies

:::
on

:::::
CML

::::::
rainfall

::::::::::
estimation,

:::::
which

:::
do

:::
not

:::::::::
uniformly

:::
use

:::
the

:::::
same

:::::::::
threshold,

:::
see

:::
e.g.

:::::
Table

:::
A1

::
in

::::::::::::::::
de Vos et al. (2019).

:::::::::
Therefore,

:::
we

::::::
defined

::
a

:::::::
selection

::
of

::::::
subset

::::::
criteria

:::
and

:::::::::
thresholds

:::
and

:::::
show

:::::::::::
performance

:::::::
measures

:::
for

::::
data

:::::::
without

:::
any

:::::::::
thresholds

:
(
::::
none

:
),
:::

for
:::
the

::::
data

:::
set

::::
with

:::::
RCML::::

and
:::::::
Rreference::

<
:::
0.1

:::::
mm/h

:::
set

::
to

::
0

:::::
mm/h,

:::
for

::::
two20

::::::::
thresholds

::::::
where

::
at

::::
least

:::::
RCML::

or
:::::::
Rreference:::::

must
::
be

::
>
::
0

:::
and

:::
>=

:::
0.1

:::::
mm/h

::::
and

:::
two

:::::::::
thresholds

::::::
where

:::::::
Rreference::::

must
:::
be

:::
>=

:::
0.1

:::
and

:::
>=

:
1
::::
mm.

:

3.2 From raw signal to rain rate

As CMLs are an opportunistic sensing system rather than part of a dedicated measurement system, data processing has to be

done with care. Most of the CML research groups developed their own methods tailored to their needs and data sets. Overviews25

of these methods are summarized by Chwala and Kunstmann (2019),
::::::::::::::::::::::
Messer and Sendik (2015) and Uijlenhoet et al. (2018).

The size of our data set is a challenge itself. As TRSL can be attenuated by rain or other sources, described in
::::
Sect. 3.2.1 and

only raw RSL
::::
TSL and RSL data is provided, the large size of the data set is of advantage but also a challenge. Developing

and evaluating methods requires repeatedly testing with the complete data set. This requires
:::
was

::::::::::
significantly

:::::
sped

::
up

:::
by

:::
the

7
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Figure 3. Processing steps from the TRSL to rain rate. a)
:::
The TRSL is the difference of TSL - RSL, the raw transmitted and received

signal level of a CML.
:

b)
:::
The RSD (rolling standard deviation) of the TRSL with an exemplary threshold and

::::
shows

:::
the resulting wet and

dry periods,
:
. c)

:::
The

:
Attenuation is the difference between the baseline and the TRSL during wet periodsand .

:
d)

::
The

:
derived rain rate

:
is

resampled to an hourly scale in order to compare it to the reference RADOLAN-RW

:::
use

::
of

:
an automated processing workflow, which we implemented as a parallelized workflow on a HPC system using the

Python packages xarray and dask for data processing and visual exploration. The major challenges which arised
:::::
arose from the

processing of raw TRSL data into rain rates and the selected methods from literature are described in the following sections.

3.2.1 Erratic behavior

Rainfall is not the only source of attenuation of microwave radio along a CML path. Additional attenuation can be caused by5

atmospheric constituents like water vapor or oxygen, but also by refraction, reflection or multi-path propagation of the beam

(Upton et al., 2005). In particular, refraction, reflection and multi-path propagation can lead to strong attenuation in the same

magnitude as from rain. CMLs that exhibit such behavior have to be omitted due to their noisiness.

We excluded erratic CML data which was extremely noisy , showed drifts or jumps ,
::
or

:::::
which

:::::::
showed

::::
drifts

::::
and

:::::
jumps

:
from

our analysis . We omitted individual CMLs in a sanity check when
::
on

:
a
:::::::
monthly

:::::
basis.

:::
To

::::
deal

::::
with

:::
this

:::::
erratic

:::::
data,

::
we

:::::::
applied10

::
the

:::::::::
following

:::::
sanity

::::::
checks:

::::
We

::::::
exclude

:::::::::
individual

:::::
CMLs

::
if
:
1) a

:::
the five hour moving window standard deviation exceeds the

threshold 2
:::
2.0 for more then ten percent of a month, or

:::::
which

:::::::
typically

::
is

:::
the

::::
case

::
for

::::::
CMLs

::::
with

:::::
either

:
a
::::::
strong

::::::
diurnal

:::::
cycle

::
or

::::
very

:::::
noisy

::::::
periods

::::::
during

:
a
:::::::
month,

::
or

::
if 2) a one hour moving window standard deviation exceeds the threshold 0.8 more

than 33 percent of
:::
the

::::
time

::
in a month. This removes data that shows

::::
filter

::
is

:::::
based

:::
on

:::
the

::::::::
approach

:::
for

:::::::
detecting

::::
rain

::::::
events

8



::
in

:::::
TRSL

::::
time

:::::
series

:::::
from

:::::::::::::::::::::
Schleiss and Berne (2010)

:
,
:::::
which

:::
we

::::
also

:::
use

::::
later

:::
on

::
in

:::
our

:::::::::
processing.

::::
For

:::
the

::::
filter,

::
a
:::::
fairly

::::
high

:::::::
threshold

::::
was

:::::
used,

:::::
which

::::::
should

::::
only

::
be

::::::::
exceeded

:::
for

::::::::::
fluctuations

::::::::
stemming

::::
from

::::
real

:::
rain

::::::
events.

::::
The

::::::::
reasoning

::
of

:::
our

:::::
filter

::
is,

:::
that

::
if
:::
the

::::::::
threshold

::
is

::::::::
exceeded

::
to

:::::
often,

::::
here

::
33

:::::::
percent

::
of

:::
the

::::
time

:::
per

::::::
month,

:::
the

:::::
CML

::::
data

:::::
shows

::
an

:
unreasonably high

amount of strong fluctuations.
:::::::::
fluctuation.

::
In

:::::
total,

:::
the

:::
two

:::::
sanity

::::::
checks

::::::::
removed

:::
1.1

::::::
percent

::::
from

:::
our

:::::
CML

::::
data

:::
set.

::::::::
Together

::::
with

::
the

:::::::
missing

::::::
values

:::
that

::::::
remain

::::
after

:::::::::::
interpolating

::::
data

::::
gaps

::
of

::::::::
maximum

::::
five

:::::::
minutes

::
in

:::
the

:::::
TRSL

::::
time

:::::
series,

:::
4.2

:::::::
percent5

::
of

:::
our

::::
data

::
set

:::
are

:::
not

::::::::
available

::
or

:::
not

::::
used

:::
for

::::::::::
processing.

Jumps in data are mainly caused by single default values in the TSL which are described in
::::
Sect.

:
2.2. When we removed

these default values, we are able to remove the jumps. TRSL can drift and fluctuate on daily and yearly scale (Chwala and

Kunstmann, 2019). We could neglect the influence of these drifts in our analysis, because we dynamically derived a baseline

for each rain event, as explained in section
::::
Sect. 3.2.2. We also excluded CMLs having a constant TRSL over a whole month.10

Overall, we have excluded 405 CMLs completely from our country-wide analysis.

3.2.2 Rain event detection and baseline estimation

The TRSL during dry periods can fluctuate over time due to ambient conditions as mentioned in the previous section. Rainfall

produces additional attenuation on top of the dry fluctuation. In order to calculate the attenuation from rainfall, a baseline

level of TRSL during each rain event has to be determined. We derived the baseline from the precedent dry period. During15

the rain event, this baseline was held constant, as no additional information on the evolution of the baseline level is available.

The crucial step for deriving the baseline is to separate the TRSL time series into wet and dry periods, because only then the

correct reference level before a rain event is used. By subtracting the baseline from TRSL, we derived the attenuation caused

by rainfall which is shown in Fig. 3c).

The separation of wet and dry periods is essential, because the errors made in this step will impact the performance of rainfall20

estimation. Missing rain events will result in rainfall underestimation. False detection of rain events will lead to overestimation.

The task of detecting rain events in the TRSL time series is simple for strong rain events, but challenging when the attenuation

from rain is approaching the same order of magnitude as the fluctuation of TRSL data during dry conditions.

There are two essential concepts to detect rain events. One compares the TRSL of a certain CML to neighbouring CMLs

(Overeem et al., 2016a) and the other investigates the time series of each CML separately (Chwala et al., 2012; Schleiss and25

Berne, 2010; Wang et al., 2012). We choose the latter one and use
::::
used a rolling standard deviation (RSD) with a centered

moving window of 60 minutes length as a measure for the fluctuation of TRSL as proposed by Schleiss and Berne (2010).

It is assumed that RSD is high during wet periods and low during dry periods. Therefore, an adequate threshold must
:::
can

:
be

defined, which differentiates the RSD time series in wet and dry periods. An example of an RSD time series and a threshold is

shown in Fig. 3b) where all data points with RSD values above the threshold are considered as wet.30

Schleiss and Berne (2010) proposed the use of a RSD threshold derived from rain fall
:::::
rainfall

:
climatology e.g. from nearby

rain gauges. For our data set we assume
::::::
assumed

:
that it is raining 5 percent of all minutes in Germany,

:::
as

::::::::
proposed

:::
by

::::::::::::::::::::::
Schleiss and Berne (2010)

::
for

::::
their

::::::
CMLs

::
in

::::::
France. Therefore, we use

:::
used

:
the 95 percent quantile of RSD as a threshold,

assuming that the 5 percent of highest fluctuation of the TRSL time series refer to the 5 percent of rainy periods. We call

9



this threshold
::
We

:::::
refer

::
to

:::
this

:::::::::
threshold

::
as

:
the climatologic thresholdand compare .

::::
We

::::::::
compared

:
it to two new definitions

of thresholds.
::
We

:::
are

::::::
aware

:::
that

::::
this

::::::::
threshold

::::
does

:::
not

::::::
reflect

:::
the

:::
real

::::::::::
climatology

::
at
:::::
each

:::::
CMLs

::::::::
location,

::::::::::
nevertheless

::::
this

::::::
method

:::
is

:
a
:::::
rather

::::::
robust

:::
and

::
a

:::::
simple

::::::::
approach

::::::
which

:::::::
provides

:
a
::::
first

::::
rain

::::
event

:::::::::
detection.

For the first new definitionwe derive the optimal thresholds
:
,
:::
we

::::::
derived

:::
the

:::::::
optimal

::::::::
threshold

:
for each CML based on our

reference data for the month of May 2018. The MCC between each CML and its reference is optimized to get the best5

threshold for eachCML in this month. Each CMLs threshold from this month is then used for
::
We

:::::
used

:::
the

:::::
same

::::::::
approach

::
as

::
for

:::
the

:::::::::::
climatologic

::::::::
threshold,

:::
but

:::
for

::::
each

:::::
CML

:::
we

:::::
tested

:
a
:::::
range

::
of

:::::::
possible

:::::::::
thresholds

:::
and

:::::::::
calculated

:::
the

::::::
binary

:::::::
measure

::::
MCC

:::
for

:::::
each.

::::
For

::::
each

:::::
CML

:::
we

::::::
picked

:::
the

::::::::
threshold

:::::
which

::::::::
produced

:::
the

:::::::
highest

:::::
MCC

::
in

::::
May

:::::
2018

::::
and

::::
used

::
it

::::
over the

whole analysis period.

The second new definition to derive a threshold is based on the quantiles of the RSD, similarly to the initially proposed method10

by Schleiss and Berne (2010)
::::::::::
climatologic

:::::::
threshold

::::::::
describe

:::::
above. However, we propose to not focus on the fraction of rainy

periods for finding the optimal threshold, since a rainfall climatology is likely not valid for individual years and not easily

transferable to different locations. We take
:::
took

:
the 80th quantile

::
of

:::
the

:::::
RSD

::
of

::::
each

::::::
CML,

:::::
which

::::
can

::
be

::::::::::
interpreted as a

measure of the strength of the TRSL fluctuation during dry periodsfor of each CML and multiply ,
::::
and

:::::::::
multiplied it by a

:::::::
constant factor to derive an

:::
the individual threshold. The 80th quantile is different to

::
can

:::
be

:::::::
assumed

::
to

:::
be

::::
more

::::::
robust

::::::
against15

::::::::::::::
missclassification

::::
than

:
the climatologic threshold, as

:::::::
because this quantile represents the general notion of each TRSL time

series to fluctuate,
:
rather than the percentage of time in which it is raining. We chose the 80th quantile, since it is very unlikely

that it is raining
::::
more

::::
than

:
20 percent of the time in a month or more in Germany.

To find the right factor
:
,
:
we selected the month of May 2018 and fitted a linear regression between the optimal threshold for

each CML and the 80th quantile. The optimal threshold was derived beforehand with a MCC optimization from the reference.20

We
::::
then used this factor throughout the year as

::
for

:::
all

::::
other

:::::::
months

::
in

:::
our

::::::::
analysis.

:::::::::
Additional,

:
we found it to be similar for

all months of the analyzed period.

3.2.3 Wet antenna attenuation

Wet antenna attenuation is the attenuation caused by water on the cover of a CML antenna. With this additional attenuation,

the derived rain rate overestimates the true rain rate (Schleiss et al., 2013; Zinevich et al., 2010). The estimation of WAA is25

complex, as it is influenced by partially unknown factors, e.g. the material of the antenna cover. van Leth et al. (2018) found

differences in WAA magnitude and temporal dynamics due to different sizes and shapes of the water droplets on hydrophobic

and normal antenna cover materials. Another unknown factor for the determination of WAA is the information whether both,

one or none of the antennas of a CML is wetted during a rain event. To correct for WAA, several parametric correction schemes

have been developed in the past. For the present data set, we compared two of the schemes available from literature.30

Schleiss et al. (2013) measured the magnitude and dynamics of WAA with one CML in Switzerland and derived a time-

dependent WAA model. In this model, WAA increases at the beginning of a rain event to a defined maximum in a defined

amount of time. From the end of the rain event on, WAA decreases again, as the wetted antenna dries
:
is

::::::
drying

:::
off. We ran

this scheme with the proposed 2.3 dB of maximal WAA and a value of 15 for
:::
for

::::
both

:::::::
antennas

::::::::
together.

::::
This

::
is

::::
also

::::::
similar

10



::
to

:::
the

:::::
WAA

::::::::
correction

:::::
value

:::
of

::::
2.15

:::
dB,

::::::
which

:::::::::::::::::::
Overeem et al. (2016b)

::::::
derived

::::
over

::
a

::::::
12-day

::::::
period

::
in

::::
their

::::
data

:::
set.

::::
For τ ,

which determines the increase rate with time .
::
we

:::::
chose

:::
15

:::::::
minutes.

::::
The

:::::::
decrease

::
of

::::::
WAA

::::
after

:
a
::::
rain

:::::
event

::
is

:::
not

::::::::
explicitly

::::::::
modelled,

:::::::
because

:::
this

::::::
WAA

::::::
scheme

::
is

::::
only

:::::::
applied

:::
for

::::
time

:::::
steps,

:::::
which

:::
are

::::::::::
considered

:::
wet

:::::
from

:::
the

:::
rain

:::::
event

:::::::::
detection,

:::::
which

:::
has

::
to

::
be

:::::::
carried

:::
out

::
in

:
a
:::::::
previous

:::::
step.

Leijnse et al. (2008) proposed a physical approach where the WAA depends on the microwave frequency, the antenna cover5

properties (thickness and refractive index) and the rain rate. A homogeneous water film is assumed on the antenna, with its

thickness having a power law dependence on the rain rate. Higher rain rates cause a thicker water film and hence higher WAA.

A factor γ scales the thickness of the water film on the cover and a factor δ determines the non-linearity of the relation between

rain rate and water film thickness. We adjusted the thickness of the antenna cover to 4.1 mm which we measured from an

:::
one antenna provided by Ericsson. We

::
are

::::::
aware

::
of

:::
the

::::
fact,

:::
that

:::::::
antenna

::::::
covers

::::
have

::::::::
different

::::::::::
thicknesses.

:::
But

:::::
since

:::
we

:::
do10

:::
not

::::
have

:::
this

::::::::::
information

:::
for

::::
the

:::::
actual

::::::::
antennas

:::
that

:::
are

:::::
used

::
by

:::
the

::::::
CMLs

::
of

::::
our

::::
data,

:::
we

:::
use

::::
this

::::::
values,

::
as

:::
the

::::
best

::::
one

::::::::
available.

:::
We further adjusted γ to 1.47E-5 and δ to 0.36 in such a way, that the increase of WAA with rain rates is less steep for

small rain rates compared to the originally proposed parameters. The original set of parameters suppressed small rain events

too much , because the WAA compensation attributed all attenuation
::
in

:::
the

:::::
TRSL to WAA. For strong rain events (>10 mm/h),

the maximum WAA that is reached with our set of parameters is in the same range as the 2.3 dB used as maximum in the15

approach of Schleiss et al. (2013).

3.2.4 Derivation of rain rates

The estimation technique of rainfall from the WAA-corrected attenuation is based on the well known relation between specific

path attenuation k in dB/km and rain rate R in mm/h

k = aRb (5)20

with a and b being constants depending the on the frequency and polarization of the microwave radiation (Atlas and Ulbrich,

1977). In the currently most commonly used CML frequency range between 15 GHz and 40 GHz, the constants only show a

low dependence on the rain drop size distribution. Using the k-R relation, rain rates can be derived from the path integrated

attenuation measurements that CMLs provide as shown in Fig. 3 d). We use
::::
used values for a and b according to (ITU-R, 2005)

::::::::::::
ITU-R (2005) which show good agreement with calculations from disdrometer data in southern Germany (Chwala and Kunst-25

mann, 2019, Fig. 3).

4 Results and Discussion

4.1 Comparison of rain event detection schemes

The separation of wet and dry periods has a crucial impact on the accuracy of the rainfall estimation. We compare
::::::::
compared

:
an

approach from Schleiss and Berne (2010) to three modifications on their success in classifying wet and dry events as explained30

in
::::
Sect. 3.2.2.
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Figure 4.
::::
Mean

:::::::
detection

::::
error

::::::
(MDE)

:::
and

::::::::
Matthews

::::::::
correlation

::::::::
coefficient

::::::
(MCC)

::
for

:::::
three

:::
rain

::::
event

::::::::
detection

::::::
schemes

:::
for

:::
the

:::::
whole

::::::
analysis

:::::
period.

The climatologic approach by Schleiss and Berne (2010) worked well for CMLs with moderate noise and when the fraction

of times with rainfall over the analyzed periods corresponds
:::
did

:::::::::
correspond

:
to the climatological value. The median MDE was

0.33 and the median MCC of 0.43. The distribution of MDE and MCC values from all CMLs of this climatologic threshold

were compared with the performance of
::
the two extensions, displayed in Fig. 4.

5

When we optimized the threshold for each CML for May 2018 and then applied these thresholds for the whole period, the

performance increased with a median MDE of 0.32 and median MCC of 0.46. The better performance of MDE and MCC

values highlights the importance of a specific threshold for each individual CML,
:
accounting for their individual notion to

fluctuate. The range of MDE and MCC values is wider than with the climatologic threshold, though. The wider range of MDE

and MCC values, however, indicates that there is also a need for adjusting the individual thresholds over the course of the year.10

The 80th quantile-based method has
:::
had the lowest median MDE with 0.27 and highest median MCC with 0.47. Therefore it

miss-classifies
::::::::::::
miss-classified the least wet and dry periods compared to the other methods.

The threshold-based
::::::::
threshold,

::::::
which

::
is

:::::
based

:
on the 80th quantile,

:
is independent from climatology and depends on the

individual notion of a CML to fluctuate. Although the factor used to scale the threshold was derived from comparison to the

reference data set as described in
::::
Sect. 3.2.2, it was stable over all seasons and for CMLs in different regions of Germany.15

Validating the scaling factor with other CML data sets could be a promising method for data scarce regions, as no external

information is needed.

For single months, the MDE was below 0.20 as shown in Tab. 2, which still leaves room for an improvement of this rain

event detection method. Enhancements could be achieved by adding information of nearby CMLs, if available. Also data from
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geostationary satellite could be used. Schip et al. (2017) found improvements of the rain event detection when using rainfall

information from Meteosat Second Generation (MSG) satellite, which carries the Spinning Enhanced Visible and InfraRed

Imager (SEVIRI) instrument.

All further processing, presented in the next sections, uses the method based on the 80th quantile.

Mean detection error (MDE) and Matthews correlation coefficient (MCC) for three rain event detection schemes for the5

whole analysis period.

4.2 Performance of wet antenna attenuation schemes

Two WAA schemes are tested and adopted for the present CML data set. Both are compared to uncorrected CML data and the

reference in Fig. 5. Without a correction scheme, the CML-derived rainfall overestimated the reference rainfall by a factor of

two when considering mean hourly rain rates, as displayed in Fig. 5a). The correction by Schleiss and Berne (2010) produced10

comparable mean hourly rain rates with regard to the reference data set. Despite its apparent usefulness to compensate for

WAA, this scheme worked well only for stronger rain events. The mean detection error is higher than for the uncorrected data

set, because small rain events are suppressed completely throughout the year. The discrepancy can also be a result of the link

:::
path

:
length of 7.6 km in our data set which is four times the length of the CML Schleiss et al. (2013) used. This might have an

impact, since shorter CMLs have a higher likeliness that both antennas get wet. Furthermore, the type of antenna and antenna15

cover impacts the wetting during rain, as discussed in section
::::
Sect.

:
3.2.3.

With the method of Leijnse et al. (2008) the overestimation of the rain rate was also compensated well. It incorporates physical

antenna characteristics and, what is more important, depends on the rain rate. The higher the rain rate, the higher the WAA

compensation. This leads to less suppression of small events. The MDE is close to the uncorrected data sets and the PCC is

also is higher, as displayed in 5b) and c). Therefore, this scheme is used for the evaluation of the CML-derived rain rates in the20

following section
::::::
sections.

Both methods are parameterized, neglecting known and unknown interactions between WAA and external factors like tem-

perature, humidity, radiation and wind. Current research aims to close this knowledge gap, but the feasibility for large scale

networks like the one presented in this study is going to be a challenge as only TSL and RSL are available. A possible solution

is a WAA model based on the reflectivity of the antenna proposed by Moroder et al. (2019), which would have to be measured25

by future CML hardware. Another approach could be extending the analysis with meteorological model reanalysis products

to be able to better understand WAA behavior in relation to meteorologic parameters like wind, air temperature, humidity and

solar radiation.

WAA compensation schemes compared on their influence on the a) mean hourly rain rate, b) the correlation between the

derived rain rates and the reference and c) the mean detection error between the derived rain rates and the reference.30

4.3 Evaluation of CML derived rainfall

Rainfall
:::::::::::
Path-averaged

::::::
rainfall

:
information obtained from almost 4000 CMLs is evaluated against a reference data set, RADOLAN-

RW. Hourly rain ratesalong the CML paths are used to generate
::
In

:::
Fig.

::
6

::
we

:::::
show

::::::
scatter

::::::
density

::::
plots

:::
of

:::
path

::::::::
averaged

::::::
hourly

13
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Figure 5.
::::
WAA

:::::::::::
compensation

:::::::
schemes

:::::::
compared

::
on

::::
their

:::::::
influence

:::
on

::
the

::
a)
:::::
mean

:::::
hourly

:::
rain

::::
rate,

::
b)

::
the

:::::::::
correlation

::::::
between

:::
the

::::::
derived

:::
rain

::::
rates

:::
and

::
the

:::::::
reference

::::
and

:
c)
:::
the

::::
mean

:::::::
detection

::::
error

:::::::
between

::
the

::::::
derived

::::
rain

:::
rates

:::
and

:::
the

::::::::
reference.

:::
rain

:::::
rates,

::::
daily

:::::::
rainfall

::::
sums

::::
and

:::::::
seasonal

::::
sums

:::
of

::::
each

:::::
CML

::::
with

:::
the

::::::::
respective

:::::::::::
performance

::::::::
measures.

:::::::::::
Furthermore,

:
scatter

density plots shown
:
of

:::::::
hourly,

:::::::::::
path-averaged

::::
rain

:::::
rates

:::
and

::::
rain

::::
rates

:::::
from

::::::::::
interpolated

::::::
rainfall

:::::
maps

:::
are

:::::::::
compared

::
for

:::::
each

:::::
month

:
in Fig. 6 and to calculate performance measures shown in Tab. 2. When divided into seasons in Fig. 6, an occurrence of

CML overestimation in the winter
:
8
:::
and

::::
Fig.

::
9.

::::::::
Looking

::
at

:::
the

:::::::::
differences

:::::::
between

:::
the

:::::::
seasons

::
in

::
6,

::
it

::
is

:::::::
evident,

:::
that

::::::
CMLs

::
are

::::::
prone

::
to

:::::::
produce

::::::::
significant

:::::::
rainfall

::::::::::::
overestimation

::::::
during

:::
the

::::
cold season (DJF)becomes apparent. This can be attributed5

to precipitation events with melting snow, occurring mainly from November to March. Melting snow can potentially cause as

much as four times higher attenuation than a comparable amount of liquid precipitation (Paulson and Al-Mreri, 2011). Snowand

ice ,
:::
ice

::::
and

::::
their

::::
melt

:::::
water on the covers of the antennas can also cause additional attenuation. This decrease of performance

is also reflected in Tab. 2, where, on a monthly basis,
::
A

:::::::
decrease

::
of

:::
the

:::::::
seasonal

:::::::::::
performance

::::::::
measures

::::
also

::::::
reflects

:::
this

::::::
effect,

::
as the lowest values for PCC and highest for CV, MAE, RMSEand MDE were ,

:::::
BIAS

::::
and

::::
MDE

:::
are

:
found for DJF. For the other10

14
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Figure 6.
::::::

Seasonal
:::::
scatter

::::::
density

::::
plots

::
of

::::::::::
CML-derived

::::::
rainfall

:::
and

:::::::::::
path-averaged

:::::::::::::
RADOLAN-RW

:::
data

:::
for

:::::
hourly,

::
a)
::

-
::
d),

:::::
daily,

::
e)

:
-
::
h)

:::
and

:::::::
seasonal,

:
i)
:
-
::
l)

:::::::::
aggregations

::::
with

::::::::
respective

:::::::::
performance

::::::
metrics

::::::::
calculated

::::
from

::
all

:::::::
available

:::
data

:::::
pairs.

seasons, CML rainfall and the referencehave good correspondence on an hourly basis.
:::
The

::::::
largest

::::::::::::
overestimation

:::::
occurs

::
at
::::
low

:::
rain

::::
rates

::
of
:::
the

:::::::::
reference.

::
At

::::::
higher

::::::::
reference

:::
rain

:::::
rates,

:::::
which

:::::
most

:::::
likely

:::
are

::::
those

:::::::::
stemming

::::
from

:::::
liquid

:::::::::::
precipitation,

:::::
there

:
is
:::
far

::::
less

:::::::::::::
overestimation. In spring (MAM) and fall (SON), overestimation by CML rainfall is still visible,

:
but less frequent.

This can be explained by the factthat, ,
::::
that in the Central German Upland and the Alps, snowfall can occur from October

to April. Best agreement between CML-derived rainfall and RADOLAN-RW is found for summer (JJA) months. September5

2017 and May 2018 perform best when looking at the monthly results, with higher PCC and lower CV values. Most likely,

this is related to higher rain rates in those two month compared to the summer months JJA, which were exceptionally dry over

Central Europe in 2018. The higher rain rates in September 2017 and May 2018 simplify the detection of rain events in the

TRSL time series, and hence increase the overall performance. When compared over the whole analysis period, CML rainfall

showed a notable overestimation for rain rates below 5 mm/h compared to the reference (not shown)10

:::
The

::::::::
temporal

::::::::::
aggregation

::
to

:::::
daily

::::::
rainfall

:::::
sums

::::
and

:::
the

::::::::
respective

:::::::::::
performance

::::::::
measures

:::
are

::::::
shown

::
in
::::::

6e)-h).
::::

The
:::::::
general

::::::
relation

:::::::
between

:::::
CML

:::::::
derived

::::::
rainfall

::::
and

:::
the

::::::::
reference

::
is

::::::
similar

::
on

::::
both

::::
the

:::::
hourly

::::
and

::::
daily

:::::
scale.

::::
The

:::::
BIAS

::
is
::::::::
identical

15



::
for

:::
the

:::::
daily

::::::::::
aggregation.

::::
The

::::::
RMSE

:::
and

:::::
MAE

:::
are

::::::
higher due to the presence of non-liquid precipitation, but further showed

a good agreement for rain rates above 5 mm/h.
:::::
higher

::::
rain

:::::
sums.

:::
The

:::::::::::::
overestimation

:::::
during

:::
the

::::::
winter

:::::
month

::
is
::::::::::
unchanged.

The
::::::::::
accumulated rainfall sums of all

::::::::
individual CMLs are compared against the reference rainfall sums

:::::::::::
accumulation for each

season in Fig ??. An
::
6i)

:
-
:::
l).

:::
The

:
overestimation of the CML derived rainfall sums

::
in

::::
DJF,

::::
and

:::::
partly

:::::
SON

:::
and

::::::
MAM,

:
can

again be attributed to the presence of non-liquid precipitationand to the overestimation of hourly rain rates shown in Fig. 6.5

:
. This overestimation is larger for higher rainfall sums. This could stem from

::
be

:::
the

:::::
result

::
of

:
more extensive snowfall in the

mountainous parts of Germany,
:
which are also the areas with highest precipitation year round. Rainfall sums close to zero can

be the result from the quality control that we apply. The periods which are removed from
:::
have

:::::::
applied.

:::::::
Periods

::::
with

:::::::
missing

:::
data

::
in
:

CML time series are consequently not counted in the reference rainfall data set. Therefore, the rainfall sums in Fig. 6

are not representative for the rainfall sum over Germany for the shown period. The PCC for the four seasons shown in Fig. ??10

range from 0.67 in DJF to 0.84
::::
6i)-l)

:::::
range

:::::
from

::::
0.42

::
in

:::::
MAM

::
to

::::
0.57

:
in JJA.

Seasonal scatter density plots between hourly CML-derived rainfall and RADOLAN-RW as reference.

4.4
:::::::::::

Performance
::::::::
measures

:::
for

::::::::
different

::::::
subset

:::::::
criteria

Seasonal scatter density plot of rainfall sums for each CMLs location derived from CML data and RADOLAN-RW as reference.

:::
Tab.

::
2
:::::
gives

::
an

::::::::
overview

::
of

:::::::
monthly

:::::::::::
performance

::::::::
measures

::
for

::::::::
different

::::::
subsets

::
of

::::::::::::
CML-derived

:::
and

::::::::::::
path-averaged

::::::::
reference15

::::::
rainfall.

:::
In

:::
the

::::::::
following,

:::
we

::::
will

::::::
discuss

:::
the

::::::
effects

:::
of

:::
the

:::::::
different

::::::
subset

::::::
criteria

:::
and

:::::
then

:::::::
compare

:::
our

::::::
results

::
to

::::::::
previous

::::
CML

:::::::
rainfall

::::::::
estimation

:::::::
studies.

:::
For

::
all

::::::
subset

::::::
criteria,

::::
best

:::::::::::
performance

::::::::
measures

:::
are

:::::
found

:::::
during

::::
late

::::::
spring,

:::::::
summer

:::
and

:::::
early

:::
fall.

:::::::
Highest

::::
PCC

::::::
values

:::
are

::::::
reached

:::::
when

:::
all

::::
data

:::::
pairs,

::::::::
including

:::
true

::::
dry

::::::
events,

:::
are

::::
used

::
to

::::::::
calculate

:::
the

::::::::
measures.

:::::
When

:::::
very

::::
light

:::
rain

:::
(<

:::
0.1

::::::
mm/h)

:
is
:::
set

::
to

::::
zero

::
on

:::
an

::::::
hourly

:::::
basis,

::
the

:::::::::::
performance

::::::::
measures

::::
stay

::::
very

::::::
similar,

::::
with

:::
the

::::::::
exception

:::
of

:::
CV

:::
and

::::::
BIAS,

:::::
which

:::::
show20

:
a
:::::
slight

:::::::
increase

::
in

:::::::::::
performance.

::::
This

::::::
means

::::
that,

::::
even

:::::
when

::::
very

:::::
small

:::
rain

::::
rates

::
<
:::
0.1

::::
mm

:::
are

::::::::
produced,

::::
they

:::
do

:::
not

::::::
change

::::::
rainfall

::::
sums

:::
too

::::::
much.

:::::
When

:::::
either

:::::
RCML::

or
:::::::
Rreference:::::

have
::
to

::::::
exceed

::
0

:::::
mm/h,

:::
the

:::::::::::
performance

::::::::
measures

:::
are

:::::
worse

::::
than

:::::
with

::
all

:::::
data,

:::::::
because

::
all

::
0

:::::
mm/h

::::
pairs

:::
are

::::::::
removed.

::::::
When

:::
the

::::
same

::::::
subset

::::::
criteria

::
is

:::
set

::
to

:::
0.1

::::::
mm/h,

:
a
:::::
good

:::::::::
agreement

::
in

:::
the

:::::
range

::
of

::::
very

:::::
small

::::
rain

::::
rates

:::::
below

:::
0.1

:::::
mm/h

:::::::
between

:::::
both

:::
data

::::::::
becomes

::::::::
apparent,

:::::::
because

::
the

:::::::::::
performance

:::::::
measure

:::
get

:::::
worse

:::::::
without

:::::
them.

:
25

::
To

::::::::
examine

:::
the

:::::::::::
performance

::
of

:::
the

:::::
CML

:::::::
derived

:::::::
rainfall

::::::
during

:::
rain

::::::
events

::::::::
detected

::
in

:::
the

:::::::::
reference,

::::
two

:::::::::
thresholds

:::
are

:::::::
selected,

:::::
where

:::
the

::::::::
reference

:::::
must

::
be

:::::
above

:::
0.1

:::
and

::
1
::::::
mm/h,

::::::::::
respectively.

::::
With

::::
this

:::::::::
thresholds,

::
all

:::::
false

:::
wet

::::::::::::
classifications

:::
are

:::::::
removed

::::::
before

:::
the

:::::::::
calculation

::
of

:::
the

::::::::
measures.

::::
The

::::
PCC

::::
with

::::
this

::::::::
thresholds

::
is
::::
still

::::
high

:::
for

:::
the

:::::::::
non-winter

:::::::
months.

:::
The

::::
CV

:
is
::::::::
reduced,

:::::
while

:::::
MAE

:::
and

::::::
RMSE

::::
are

:::::
higher

::::
due

::
to

::::::
higher

:::::
mean

:::
rain

:::::
rates.

::::
The

::::::
biggest

::::::::::
differences

:::
can

:::
be

:::::::
observed

:::
in

:::
the

::::
bias,

:::::
where

:::
the

::::::::
influence

::
of

::::
false

::::
wet

::::::::
detection

:::
and

:::
the

::::::::::::
overestimation

::
of

::::::
CMLs

::::
over

:::
0.1

:::
and

::
1
:::::
mm/h

::::::
reduce

:::
the

::::
bias.

:
30

:::::
When

:::::::::
discussing

:::::
these

::::::::
measures

::
in

:::::::
relation

::
to

::::::::
previous

::::::
studies

::
on

:::::
CML

:::::::
rainfall

:::::::::
estimation,

::::
the

:::::::
selection

:::
of

:::
the

:::::::::
thresholds

:
is
:::

of
::::
great

::::::::::
importance

::::
due

::
to

::::
their

::::::
strong

::::::
impact

:::
on

:::
the

:::::::::::
performance

::::::::
measures.

:::::::::::::::::
de Vos et al. (2019)

::::::
showed

::
a
::::::::
collection

:::
of

:::::::::::
CML-studies

::
in

:::::
Table

:::
A1.

:::::
Their

::::
own

::::
data

::
set

:::::::
consists

:::
of

::::
1451

::::::
CMLs

:::
for

:::
the

:::::::
summer

::
of

::::
2016

::
in

:::
the

::::::::::
Netherlands

::::
and

::
is

::
at

:::
the

::::
same

::::
time

:::
the

:::::
most

::::::::::
comparable

::
to

:::
the

::::
data

::
set

:::::::::
presented

::::
here,

::::::::::
considering

::::
size,

::::::::
temporal

::::::::::
aggregation

:::
and

:::::::
selected

:::::::::
threshold.
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Table 2. Performance
::::::
Monthly

:::::::::
performance

:
measures between

:::
path

::::::::
averaged, hourly CML-derived rainfall and RADOLAN-RW as reference

::
for

:::::
subset

::::::
criteria

:::
and

:::::::
thresholds.

subset criteria

(mm)

2017 2017 2018 2018

mean Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

PCC

(-)

none .76 0.62 .70
:::
0.78

:
.46

:::
0.73

:
.37

:::
0.46

:
.44

:::
0.36

:
.29

:::
0.43

:
.45

:::
0.27

:
.70

:::
0.45

:
.80

:::
0.74

:
.74

:::
0.85

:
.73

:::
0.81

:
.75

:::
0.79

: :::
0.81

:

light rain to 0 3.90 0.62 4.38
:::
0.78 5.78

:::
0.73 9.20

:::
0.46 6.80

:::
0.36 16.08

:::
0.43 6.39

:::
0.27 5.36

:::
0.45 4.29

:::
0.74 5.58

:::
0.85 6.45

:::
0.81 5.65

:::
0.79

:::
0.81

:

cml or ref > 0 .07 0.58 .08
:::
0.74

:
.11

:::
0.68

:
.16

:::
0.38

:
.16

:::
0.28

:
.05

:::
0.35

:
.07

:::
0.20

:
.05

:::
0.37

:
.06

:::
0.71

:
.06

:::
0.83

:
.05

:::
0.80

:
.05

:::
0.78

: :::
0.79

:

cml or ref >= 0.1 .32 0.54 .32
:::
0.70

:
.53

:::
0.64

:
.94

:::
0.34

:
.81

:::
0.23

:
.40

:::
0.31

:
.38

:::
0.13

:
.29

:::
0.32

:
.34

:::
0.68

:
.35

:::
0.81

:
.31

:::
0.78

:
.29

:::
0.76

: :::
0.77

:

ref >= 0.1 .19 0.58 .18
:::
0.73

:
.26

:::
0.71

:
.28

:::
0.38

:
.25

:::
0.28

:
.36

:::
0.35

:
.30

:::
0.22

:
.21

:::
0.39

:
.18

:::
0.73

:
.20

:::
0.82

:
.22

:::
0.79

:
.17

:::
0.80

: :::
0.80

:

ref >= 1 0.51
:::
0.65

: :::
0.64

: :::
0.32

: :::
0.17

: :::
0.27

: :::
0.12

: :::
027

:::
0.67

: :::
0.75

: :::
0.73

: :::
0.73

: :::
0.74

:

CV

(-)

none 7.01
:::
3.80

: :::
4.40

: :::
6.09

: :::
11.4

: :::
7.62

: :::
18.5

: :::
6.82

: :::
5.20

: :::
3.98

: :::
5.17

: :::
5.88

: :::
5.33

:

light rain to 0 7.19
:::
3.88

: :::
4.51

: :::
6.23

: ::::
11.64

: :::
7.75

: ::::
18.28

: :::
7.06

: :::
5.33

: :::
4.03

: :::
5.23

: :::
5.96

: :::
5.40

:

cml or ref > 0 3.03
:::
1.73

: :::
2.00

: :::
2.96

: :::
5.59

: :::
3.85

: :::
6.82

: :::
3.09

: :::
2.19

: :::
1.60

: :::
2.04

: :::
2.36

: :::
2.10

:

cml or ref >= 0.1 2.42
:::
1.40

: :::
1.64

: :::
2.51

: :::
4.78

: :::
3.35

: :::
5.19

: :::
2.53

: :::
1.67

: :::
1.18

: :::
1.50

: :::
1.71

: :::
1.54

:

ref >= 0.1 1.69
:::
1.05

: :::
1.06

: :::
1.92

: :::
3.61

: :::
2.67

: :::
3.25

: :::
1.90

: :::
1.11

: :::
0.88

: :::
1.01

: :::
0.96

: :::
0.92

:

ref >= 1 1.11
:::
0.73

: :::
0.69

: :::
1.24

: :::
2.27

: :::
1.73

: :::
2.18

: :::
1.14

: :::
0.70

: :::
0.63

: :::
0.72

: :::
0.67

: :::
0.65

:

MAE

(mm/h)

none 0.08
:::
0.08

: :::
0.08

: :::
0.11

: :::
0.17

: :::
0.17

: :::
0.05

: :::
0.07

: :::
0.05

: :::
0.06

: :::
0.06

: :::
0.05

: :::
0.05

:

light rain to 0 0.08
:::
0.08

: :::
0.07

: :::
0.11

: :::
0.17

: :::
0.16

: :::
0.05

: :::
0.07

: :::
0.05

: :::
0.05

: :::
0.05

: :::
0.05

: :::
0.05

:

cml or ref > 0 0.41
:::
0.38

: :::
0.36

: :::
0.46

: :::
0.71

: :::
0.64

: :::
0.37

: :::
0.35

: :::
0.30

: :::
0.34

: :::
0.36

: :::
0.33

: :::
0.33

:

cml or ref >= 0.1 0.64
:::
0.58

: :::
0.53

: :::
0.64

: :::
0.97

: :::
0.86

: :::
0.66

: :::
0.53

: :::
0.49

: :::
0.61

: :::
0.64

: :::
0.60

: :::
0.58

:

ref >= 0.1 0.72
:::
0.64

: :::
0.57

: :::
0.70

: :::
1.02

: :::
0.91

: :::
0.68

: :::
0.55

: :::
0.54

: :::
0.73

: :::
0.83

: :::
0.74

: :::
0.69

:

ref >= 1 1.40
:::
1.16

: :::
1.05

: :::
1.40

: :::
2.02

: :::
1.73

: :::
1.73

: :::
1.25

: :::
1.09

: :::
1.30

: :::
1.51

: :::
1.39

: :::
1.22

:

RMSE

(mm/h)

none 0.48
:::
0.34

: :::
0.33

: :::
0.56

: :::
1.08

: :::
0.94

: :::
0.46

: :::
0.41

: :::
0.29

: :::
0.36

: :::
0.35

: :::
0.32

: :::
0.30

:

light rain to 0 0.48
:::
0.35

: :::
0.33

: :::
0.56

: :::
1.08

: :::
0.94

: :::
0.46

: :::
0.41

: :::
0.29

: :::
0.34

: :::
0.35

: :::
0.32

: :::
0.30

:

cml or ref > 0 1.06
:::
0.75

: :::
0.71

: :::
1.16

: :::
2.18

: :::
1.84

: :::
1.25

: :::
0.90

: :::
0.68

: :::
0.84

: :::
0.89

: :::
0.78

: :::
0.75

:

cml or ref >= 0.1 1.34
:::
0.94

: :::
0.87

: :::
1.38

: :::
2.58

: :::
2.14

: :::
1.70

: :::
1.12

: :::
0.90

: :::
1.14

: :::
1.22

: :::
1.08

: :::
1.02

:

ref >= 0.1 1.45
:::
1.01

: :::
0.90

: :::
1.47

: :::
2.66

: :::
2.22

: :::
1.68

: :::
1.15

: :::
0.96

: :::
1.33

: :::
1.52

: :::
1.31

: :::
1.18

:

ref >= 1 2.33
:::
1.59

: :::
1.43

: :::
2.36

: :::
4.02

: :::
3.33

: :::
3.48

: :::
1.97

: :::
1.61

: :::
1.99

: :::
2.32

: :::
2.04

: :::
1.78

:

BIAS

(%)

none 30
::
20

::
34

::
11

::
79

::
39

::
67

:
7
: ::

21
:
0
: ::

10
::
30

::
35

light rain to 0 29
::
20

::
34

::
11

::
80

::
40

::
67

:
7
: ::

20
::
-2

:
8
: ::

27
::
32

cml or ref > 0 30
::
20

::
34

::
11

::
79

::
39

::
67

:
7
: ::

21
:
0
: ::

10
::
30

::
35

cml or ref >= 0.1 29
::
20

::
33

::
11

::
80

::
40

::
67

:
7
: ::

20
::
-2

:
8
: ::

27
::
32

ref >= 0.1 -4
::
-1

::
-1

:::
-15

::
36

::
14

::
-6

:::
-20

:::
-10

:::
-16

:::
-15

:::
-13

::
-3

ref >= 1 -9
::
-4

::
-9

:::
-24

::
22

:
2
: :::

-16
:::
-21

:::
-12

:::
-15

:::
-17

:::
-13

::
-5

MDE none 0.23
:::
0.20

: :::
0.19

: :::
0.24

: :::
0.27

: :::
0.23

: :::
0.35

: :::
0.29

: :::
0.22

: :::
0.19

: :::
0.19

: :::
0.22

: :::
0.17

:
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::::
Their

:::::::::::
performance

::::::::
measures

:::
are

:
a
::
r2
::
of

:::::
0.27,

:
a
::::
CV

::
of

::::
3.43

:::
and

::
a
:::::
BIAS

::
of

::
23

:::
%

::
at

::
an

::::::
hourly

::::::::
resolution

::::
with

:::
the

::::::::
threshold

::::
cml

::
or

::
ref

:::
>0

:
.
:::::
While

:::
in

:::
the

::::::::
presented

::::
data

::
set

:::
the

:::::::
squared

:::::
PCC

:::::
(0.30)

::
is

::::::
higher

:::
and

:::
the

:::
CV

::
is
::::::
lower,

::
it

:::
has

:
a
::::::
higher

::::
bias

::::
than

:::
the

:::
data

:::
of

::::::::::::::::
de Vos et al. (2019).

:::::
Even

::::
with

:::::
many

:::::::::
similarities

:::::
there

:::
still

:::
are

::::::::::
differences

:::
e.g.

::
in
:::
the

::::::::
sampling

::::::::
strategy,

:::::
which

::::::
inhibit

:
a
::::
true

:::::::::
quantitative

::::::::::
comparison

:::
of

:::
the

::::::::
measures.

:::::::
Another

::::::
similar

:::::
study

::::
was

::::::
carried

:::
out

:::
by

::::::::::::::::::::
Rios Gaona et al. (2015),

::::
who

:::::
gave

:
a
::
r2

::
of

:::::
0.36,

:
a
:::
CV

:::
of

:::
1.2

:::
and

:
a
::::::

BIAS
::
of

::::
-14.3

:::
%

:::
for

::::
1514

::::::
CMLs

::
in

:::
the

::::::::::
Netherlands

:::
for

::
12

:::::::
selected

:::::
rainy

::::::::
(summer)

:::::
days.

::::
The5

:::::::
measures

:::
are

:::
in

:::
the

::::
same

::::::
range,

::::::::
especially

:::::
when

::::
only

::::::::::
considering

:::::::
summer

::::::
month

:::
for

:::
the

::::
used

::::::::
threshold

::
of

:::
cml

:::
or

::
ref

::::
>=

:::
0.1

::::
from

::::
Tab.

::
2.

::::::
Again,

::
the

::::::::
sampling

:::::::
strategy,

:::
the

:::::::
explicit

:::::::
selection

::
of

::::::
twelve

::::
days

::::
and

::
the

::::::::::
differences

::
in

:::
the

::::
CML

:::::::
network

::::
and

:::
the

::::
radar

:::::::
product,

:::::
limit

:::
the

::::::::::::
comparability.

::
In

:::::
order

::
to

:::
get

::::
true

::::::::::::
comparability,

:::
one

::::::
should

:::::
either

::::
use

:::
the

::::
same

::::
data

:::
set

::
to

::::::::
compare

:::::::
different

:::::::::
processing

:::::::::
approaches

:::
or

::
the

:::::
same

:::::::::
processing

::::::::
approach

::
to

:::::::
compare

::::::::
different

::::
data

::::
sets.

4.5 Rainfall maps10

Interpolated rainfall maps of CML-derived rainfall compared to RADOLAN-RW are shown in Fig. 7
:
,
:::
Fig.

::
8 and Fig. ??. The

::
9.

:::
The

:::::::::
respective

:::::
CML

:
maps have been derived using inverse distance weighting , representing each CML ’s rainfall value

:::::
(IDW)

::::
with

::::
the

::::::::::::::
RADOLAN-RW

::::
grid

::
as

:::::
target

::::
grid

::::
and

::
on

:::
an

::::::
hourly

:::::
basis.

:::::
Each

:::::
CML

::::::
rainfall

:::::
value

::
is

::::::::::
represented

:
as one

synthetic point
:::::::::
observation

:
at the center of the CML path. Interpolation is limited to regions which are at maximum

:::::
CMLs

::::
path.

:::
For

:::::
each

::::
pixel

::
of

:::
the

::::::::::
interpolated

:::::::
rainfall

::::
field

:::
the

::::::
nearest

:::
12

::::::::
synthetic

::::
CML

::::::::::
observation

::::::
points

:::
are

:::::
taken

:::
into

::::::::
account.15

:::::::
Weights

:::::::
decrease

::::
with

:::
the

:::::::
distance

::
d

::
in

:::
km,

:::::::::
according

::
to

::::
d−2.

:::::
After

:::
the

:::::::::::
interpolation,

:::
we

:::::::
masked

:::
out

::::
grid

::::
cells

::::::
further

:::::
away

:::
than

:
30 kilometers from the next CML away. Figure 7 shows a case of a

::
km

:::::
from

:
a
:::::
CML

:::::
path,

:::
for

::::
each

::::::::
individual

::::
time

:::::
step.

::::::
Hence,

:::::
hourly

:::::::
rainfall

::::
maps

:::::::
derived

::::
from

::::::
CMLs

:::
are

::::
only

::::::::
produced

::
for

:::::
areas

::::
with

::::
data

::::::::
coverage.

:::
We

::::::
applied

:::
the

:::::
same

:::::
mask

::
to

::
the

::::::::
reference

::::
data

:::
set

::
on

:::
an

:::::
hourly

:::::
basis

::
to

:::::::
increase

:::
the

:::::::::::
comparability

:::::::
between

::::
both

::::
data

::::
sets.

:::
For

:::
the

:::::::::
aggregated

:::::::
rainfall

:::::
maps,

::
we

::::::::
summed

::
up

::::
the

::::::::::
interpolated,

:::::::::::
individually

:::::::
masked,

::::::
hourly

::::::
rainfall

::::::
fields.

::
As

::
an

::::::::
example,

::::
Fig.

::
7

:::::
shows

:
48 hour rainfall20

sum.
:::::
hours

::
of

:::::::::::
accumulated

::::::
rainfall

::
in
:::::
May

:::::
2018. The general distribution of CML-derived rainfall reproduces the pattern of

the reference very well
:::
and

:::
the

::::::
rainfall

:::::
sums

::
of

::::
both

::::
data

::::
sets

:::
are

::::::
similar. Individual features of the RADOLAN-RW rainfall

field are, however, missed due to the limited coverage by CMLs in certain regions.

Monthly CML derived rainfall fields also
:
A
:::::::::
qualitative

::::::::::
comparison

::
of

:::::::
monthly

::::::::::
aggregation

::
of

:::
the

::::::
hourly

::::::
rainfall

::::
maps

::
is

::::::
shown

::
in

:::
Fig.

::
8
:::
and

::::
Fig.

::
9.
::::
The

::::::::::::
CML-derived

::::::
rainfall

:::::
fields resemble the general patterns of

::
the

:
RADOLAN-RW rainfall fields, as25

shown in Fig. ??. .
:
Summer months show a better agreement than winter months. This is a direct result of the decreased per-

formance of CML-derived rain rates during the cold
:::::
winter

:
season, explained in section 4.3and clearly visible in Fig. ??.

::::
Sect.

:::
4.3. Strong overestimation is also visible

:::
year

::::::
round for a few individual CMLs, for which the filtering of erratic behavior was

not always successful.

:
A
::::::::::
quantitative

::::::::::
comparison

::
of

:::
the

::::::::::::
CML-derived

::::::
rainfall

::::
maps

:::
to

::
the

::::::::
reference

::
is
::::::
shown

::
in

:::
the

::::
third

::::::
column

:::
of

:::
Fig.

::
8

:::
and

::::
Fig.

::
9.30

:::
For

::::
these

::::::
scatter

::::::
density

:::::
plots

::
we

:::::
used

::
all

::::::
hourly

::::
pixel

::::::
values

::
of

:::
the

::::::::
respective

::::::
month

:::::
within

:::
the

:::
30

:::
km

:::::::
coverage

::::::
mask.

::::::
During

::
the

::::::
winter

::::::
month,

::::::
CMLs

::::
show

::::::
strong

::::::::::::
overestimation.

::::
This

::
is

:
a
:::::
direct

:::::
result

::
of

:::::::::
non-liquid

:::::::::::
precipitation

::
as

::::::::
described

::
in

::::
Sect.

::::
4.3.

::::
From

:::::
May

::
to

::::::
August

:::::
2018

:::
the

::::::::
reference

:::::
shows

::::
very

::::
high

::::
rain

:::::::::
intensities

:::::::
between

::
50

::::
and

:::
100

::::::
mm/h,

::::::
which

:::
are

:::
not

::::::::
produced

::
by

:::
the

:::::
CML

::::::
rainfall

:::::
maps.

::::
This

::::
can

::
be

::::::::
attributed

::
to

::::::
several

:::::::
reasons.

:::::
First,

::::::::::::
CML-derived

::::::
rainfall,

::::::
which

:::::
serves

::
as

:::::
basis

:::
for

:::
the

18



Figure 7.
:::::::::
Accumulated

::::::
rainfall

:::
for

:
a
:::

48
::::
hour

:::::::
showcase

:::::
from

::::::::
12.05.2018

::::
until

:::::::::
14.05.2018

:::
for

::
a)

:::::::::::::
RADOLAN-RW

:::
and

::
b)

:::::::::::
CML-derived

::::::
rainfall.

::::::::::
CML-derived

::::::
rainfall

::
is

:::::::::
interpolated

::::
using

::
a
:::::
simple

::::::
inverse

::::::
distance

::::::::
weighting

:::::::::::
interpolation.

:
A
::::::::

coverage
::::
mask

::
is

::
30

:::
km

::::::
around

:::::
CMLs

:
is
::::
used.

:::::::::::
interpolation,

::
is

::::::::::::
path-averaged,

::::
with

::
a

::::::
typical

::::
path

:::::
length

::
in

:::
the

:::::
range

:::
of

::::
3-15

:::
km.

::::
This

:::::::
means,

:::
that

:::
the

:::::::
rainfall

::::::::
estimation

:::
of

:
a
:::::
single

:::::
CML

:::::::::
represents

::
an

:::::::
average

::
of

:::::::
several

::::::::::::::
RADOLAN-RW

::::
grid

::::
cells

:::::
which

:::::::::
smoothes

:::
out

:::
the

::::::::
extremes.

:::::::
Second,

::::
due

::
to

::
the

::::::::::::
interpolation,

::::::
rainfall

:::::::
maxima

::
in

:::
the

:::::
CML

::::::
rainfall

:::::
maps

:::
can

::::
only

:::::
occur

::
at

:::
the

::::::::
synthetic

::::::::::
observation

:::::
points

::
at

:::
the

::::::
center

::
of

::::
each

:::::
CML.

:::::
Third,

:::::::
rainfall

:
is
::::
only

::::::::
observed

:::::
along

:::
the

:::::
CMLs

::::
path

::::
and

::::
even

::::
with

:::::
almost

:::::
4000

:::::
CMLs

::::::
across

::::::::
Germany,

:::
the

::::::
spatial

:::::::
variation

::
of

::::::
rainfall

::::::
cannot

:::
be

::::
fully

::::::::
resolved.

::
In

::::::::
particular

::
in

::::::::
summer,

::::
small

:::::::::
convective

:::::::
rainfall

:::::
events

:::::
might

:::
not

::::::::
intersect

::::
with5

::::
CML

:::::
paths

:::
and

::::::
hence

:::::
cannot

::::::
appear

::
in

:::
the

::::::::::::
CML-derived

::::
IDW

::::::::::
interpolated

::::::
rainfall

::::::
fields.

::::::::::
Considering

::::
this,

:::
the

:::::
effect

::
of

::::::::
different

::::::::
coverage

::::::
ranges

::::::
around

:::
the

::::::
CMLs

:::
has

::
to

:::
be

:::::
taken

::::
into

:::::::
account.

:::
For

:::
the

:::::
map

:::::
based

:::::::::
comparison

::
in
::::
Fig.

::
8

:::
and

::::
Fig.

:
9
:::
we

:::::
tested

::::::
several

::::::::
distances

:::::
from

::
10

::
to

:::
50

:::
km.

::::
For

:::
the

::::::::
presented

::::::
results

::
we

:::::::
choose

::
30

:::
km

::
as

::
a

::::
trade

:::
off

:::::::
between

::::::::::
minimizing

:::
the

:::::::::
uncertainty

::
of

:::
the

::::::
spatial

:::::::::::
interpolation

:::
and

:::
the

::::
goal

::
to

:::::
reach

:::::::
country

::::
wide

::::::::
coverage

::::
with

:::
the

:::::::
produced

:::::::
rainfall

:::::
maps.

:::::::::::::::::::::
van de Beek et al. (2012)

:::::
found

::
an

::::::::
averaged

:::::
range

::
of

::::::
around

:::
30

:::
km

:::
for

::::::::
summery

::::::::::::::
semi-variograms

::
of10

::
30

:::::
years

::
of

::::::
hourly

:::
rain

:::::
gauge

::::
data

::
in

:::
the

:::::::::::
Netherlands,

:::::
which

::::
can

::
be

::::
used

::
to

::::::::::::
justify/enforce

::::
our

::::::
choice.

::::
With

::
a

::
10

:::
km

::::::::
coverage

:::::
range,

:::
the

::::::::::
performance

::::::::
measures

:::
are

:::::
better

::::
than

:::
the

::::
ones

:::
for

::
30

::::
km,

:::::
which

:::
are

::::::
shown

::
in

:::
Fig.

::
8

:::
and

::::
Fig.

::
9.

:::::::
Monthly

::::
PCC

::::::
values

::::
show

:::
an

:::::::
increase

::
of

::::::
around

::::
0.05

:::
and

:::
the

::::
bias

::
is

:::::::
reduced

::
by

::
3
::
to

:
5
:::::::

percent.
::::::::::::
Nevertheless,

::::
with

:
a
::::::::
coverage

::
of

:::
10

:::
km

::::::
around

:::
the

::::::
CMLs,

:::::::
coverage

::::
gaps

:::::::
emerge

:::
not

::::
only

::
in

:::
the

:::::::::::
north-eastern

:::
part

::
of
:::::::::
Germany,

:::
but

:::
also

::
in
:::
the

:::::
south

::::::
eastern

::::
part.

:::::
Vice

:::::
versa,

::::
with

:
a
::
50

:::
km

::::::::
coverage

:::::
range,

:::
the

:::::::
country

::::
wide

::::::::
coverage

::
is

:::::
almost

::::::
given,

:::::
while

::
the

:::::::::::
performance

::::::::
measures

:::
are

:::::
worse

::::::::
compared

::
to

:::
3015

:::
km

:::::
(PCC

:::::
shows

:
a
::::::::
decrease

:::::::
between

::::
0.03

:::
and

::::::
0.05).

:::::::
Overall,

:::
the

::::::::
difference

::
of

:::
the

:::::::::::
performance

::::::::
measures

::
of

:::
the

:::
10

:::
and

:::
50

:::
km

:::::::
coverage

:::::
mask

::
is

::::::
limited

::
in

::::
most

::::
parts

:::
of

:::::::
Germany

:::
by

:::
the

::::
high

::::::
density

::
of

::::::
CMLs,

::::::
which

::::::
already

::::
lead

::
to

::
an

::::::
almost

:::
full

::::::::
coverage

::::
with

::
the

:::
10

::::
km

:::::
mask.

:

::
In

:::::
order

::
to

::::::::
highlight

:::
the

::::::::::
differences

:::::::
between

::
a
:::::::::
map-based

::::
and

:::::::::
link-based

::::::::::
comparison

::::
Fig.

::
8

:::
and

::::
Fig.

::
9
::::
also

:::::
show

::::::
hourly

::::::::
link-based

::::::
scatter

::::::
density

:::::
plots

::
for

::::
each

::::::
month.

::::
The

:::::::::
differences

::
in

:::
the

::::::::::::
performances

:::::::
measures

:::
for

:::
the

:::::
warm

::::::
months

:::::::
support

:::
the20
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Figure 8.
::::::
Monthly

::::::::::
aggregations

::
of

:::::
hourly

::::::
rainfall

::::
maps

::::
from

::::::
CMLs

:::::::
compared

::
to
:::::::::::::
RADOLAN-RW

::::
from

::::::::
September

:::::
2017

::::
until

:::::::
February

::::
2018.

:::
For

::::
each

:::::
month

:::
two

:::::
scatter

::::::
density

::::
plots

:::
are

:::::
shown,

:::
one

:::
for

:::::::::::
pixel-by-pixel

:::::::::
comparison

::
of

::
the

::::::
hourly

::::
maps

:::::::::
(map-based

::::::::::
comparison),

:::
and

:::
one

::
for

:::
the

:::::::::
comparison

::
of

::
the

:::::::::::
path-averaged

::::::
rainfall

::::
along

:::
the

:::::::
individual

:::::
CMLs

:::::::::
(link-based

::::::::::
comparison).
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Figure 9.
:::::::
Monthly

:::::::::
aggregations

::
of

:::::
hourly

::::::
rainfall

::::
maps

::::
from

:::::
CMLs

::::::::
compared

:
to
:::::::::::::
RADOLAN-RW

::::
from

:::::
March

::::
until

::::::
August

::::
2018.

:::
For

::::
each

:::::
month

:::
two

:::::
scatter

::::::
density

::::
plots

::
are

::::::
shown,

:::
one

:::
for

::::::::::
pixel-by-pixel

:::::::::
comparison

::
of

:::
the

:::::
hourly

::::
maps

:::::::::
(map-based

::::::::::
comparison),

:::
and

:::
one

:::
for

:::
the

::::::::
comparison

::
of
:::
the

:::::::::::
path-averaged

:::::
rainfall

:::::
along

::
the

::::::::
individual

:::::
CMLs

:::::::::
(link-based

::::::::::
comparison).

21



::::::::
qualitative

::::::::::
impression,

:::
that

:::
the

:::::::::
map-based

::::::::::
comparison

:::::::
perform

:::::
worse.

::::
The

:::::::::::
interpolation

:
is
:::::
prone

::
to

::::::::
introduce

::
an

::::::::::::::
underestimation

::
for

:::::
areas

::::::
which

:::
are

::::
more

::::::
distant

::
to
::::

the
:::::
CML

:::::::::::
observations.

::::::
During

:::
the

::::::
winter

:::::::
months,

:::
this

::::::::::::::
underestimation

:::::::::::
compensates

:::
the

::::::::::::
overestimation

::
of

:::
the

:::::::::
individual

::::::
CMLs

:::::
which

::
is
::::

due
::
to

::::
wet

:::::
snow

:::
and

:::
ice

:::::::
covered

::::::::
antennas.

:::::::
Hence,

:::::::
because

:::
the

:::
two

::::::
errors

:::::::::
compensate

:::::
each

::::
other

:::
by

::::::
chance,

::::
this

::::::
results

::
in

::::::
slightly

:::::
better

::::::::::
map-based

::::::::::
performance

::::::::
measures

:::::::::
compared

::
to

:::
the

:::::::::
link-based

:::::::
measures

::::
for

:::
the

::::::
winter

:::::::
months.

:::::::::::
Nevertheless,

:::::::
rainfall

:::::::::
estimation

::::
with

::::::
CMLs

::::
for

::::::
months

:::::
with

:::::::::
non-liquid

:::::::::::
precipitation

::
is5

::::::::::
considerably

:::::
worse

::::
than

:::
for

:::::::
summer

:::::::
months

::
in

::
all

::::::
spatial

:::
and

::::::::
temporal

:::::::::::
aggregations.

:

The derivation of spatial information from the estimated path-averaged rain rates could be improved by applying more so-

phisticated techniques as described in 1. But, the
::::
Sect.

::
1.
::::

We
::::
have

:::::::
already

::::::
carried

:::
out

:::::::
several

::::::::::
experiments

:::::
using

::::::::
Kriging,

::
to

:::
test

::::
one

::
of

:::::
these

::::::::
potential

::::::::::::
improvements

::::
over

:::::
IDW.

::::
We

::::::::
followed

:::
the

::::::::
approach

:::
of

:::::::::::::::::::
Overeem et al. (2016b)

:::
and

::::::::
adjusted

::
the

:::::::::::::
semivariogram

::::::::::
parameters

::
on

::
a
:::::::
monthly

:::::
basis

::::::
based

::
on

:::
the

::::::
values

:::::
from

:::::::::::::::::::::
van de Beek et al. (2012).

::::
We

::::
also

::::
tried

:::::
fixed10

::::::::::::
semivariogram

:::::::::
parameters

::::
and

:::::::::
parameters

::::::::
estimated

:::::
from

::
the

:::::::::
individual

:::::
CML

::::::
rainfall

::::::::
estimates

:::
for

::::
each

:::::
hour.

::
In

::::::::::
conclusion,

:::
we,

::::::::
however,

::::
only

:::::
found

:::::::
marginal

:::
or

::
no

::::::::::::
improvements

::
of

:::
the

:::::::::::
performance

::::::
metrics

::
of

:::
the

:::::
CML

:::::::
rainfall

:::::
maps.

:::::::::
Combined

::::
with

::
the

:::::::::
drawback

::
of

:::::::
Kriging

:::
that

:::
the

::::::::
required

::::::::::
computation

::::
time

::
is
:::::::::::
significantly

::::::::
increased

:::::::::::::
(approximately

::
10

::
to
::::
100

:::::
times

::::::
slower

:::
than

:::::
IDW,

:::::::::
depending

::::
e.g.

::
on

:::
the

:::::::
number

::
of

::::::::::
neighboring

::::::
points

::::
used

::
by

::
a
::::::
moving

::::::::
krigging

::::::::
window),

:::
we

::::
thus

::::::
decided

::
to
:::::
keep

::::
using

:::
the

::::::
simple,

:::
yet

::::::
robust

:::
and

:::
fast

:::::
IDW

:::::::::::
interpolation.

:::::::::::
Furthermore,

:
it
::
is

::::::::
important

::
to

::::
note

:::
that

:::
the errors in rain rate estimation15

for each CML contribute most to the uncertainty of CML-derived rainfall maps (Rios Gaona et al., 2015). Hence, within the

scope of this work, we focus
::::::
focused on improving the rainfall estimation at the individual CMLs. Therefore, we exclusively

apply the simple inverse distance weighting interpolation and present the rainfall maps as an illustration of the potential of

CMLs for countrywide rainfall estimation.

Taking into account that we compare to a reference data set derived from 17 C-band weather radars combined with more than20

1000 rain gauges, the similarity with the CML-derived maps, which solely stem from the opportunistic usage of attenuation

data, is remarkable.

Accumulated rainfall for a 48 hour showcase from 12.05.2018 until 14.05.2018 for a) RADOLAN-RW and b) CML-derived

rainfall. CML-derived rainfall is interpolated using a simple inverse distance weighting interpolation.

Monthly rainfall sums for RADOLAN-RW and CML derived rainfall from September 2017 until August 2018. CML derived25

rainfall is interpolated using a simple inverse distance weighting interpolation.

5 Conclusions

German wide rainfall estimates derived from CML data compared well with RADOLAN-RW, a hourly gridded gauge-adjusted

radar product of the DWD. The methods used to process the CML data showed promising results over longer periods
:::
one

::::
year

and several thousand CMLs across all landscapes in Germany, except for the winter season.30

We presented the data processing of almost 4000 CMLs with a temporal resolution of one minute from September 2017 until

August 2018. A CML data set of this size needs an automated processing workflow, which we developed
::
We

:::::::::
developed

::
a

:::::::::
parallelized

::::::::::
processing

::::
work

:::::
flow,

:::::
which

::::::
could

::::::
handle

:::
the

::::
size

::
of

:::
this

:::::
large

::::
data

:::
set. This workflow enabled us to test

:::
and
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:::::::
compare different processing methods over a large spatiotemporal scale.

A crucial processing step is the rain event detection from the TRSL, the raw attenuation data recorded for each CML. We use

::::
used a scheme from (Schleiss and Berne, 2010) which uses the 60 minute rolling standard deviation RSD and a threshold.

We derive
::::::
derived this threshold from a fixed multiple of the 80th quantile of the RSD distribution of each TRSL. Compared

to the original , static threshold derived from a
::::::::
threshold

:::::
using

:::
the

::::
95th

::::::::
quantile,

:::::
which

::
is

:::::
based

:::
on

::::::
rainfall

:
climatology, the5

80th quantile reflects the general notion to fluctuate of each CMLindividually
:
’s
::::::
TRSL

::
to

:::::::
fluctuate. We were able to reduce the

amount of miss-classification of wet and dry events, reaching a yearly mean MDE of 0.27with the summer months averaging

:
,
::::
with

::
an

:::::::
average

:::
of

:::
the

:::::
MDE

:::
for

:::::::
summer

:::::::
months

:
below 0.20. Potential approaches for further decreasing the amount of

miss-classifications could be the use of additional data sets. For example, cloud cover information from geostationary satellites

could be employed to reduce false wet classification, simply by
::
by,

:::
as

:
a
::::
first

:::::
simple

:::::::::
approach, defining periods without clouds10

as dry.
::::::
Another

::::::::::
opportunity

::::::
would

::
be,

:::
to

::::::::::
additionally

:::::::::
implement

:::::::::
algorithms

::::::::
exploiting

::::::::::
information

::
of

:::::::::::
neighboring

::::::
CMLs.

For the compensation of WAA,
:::
the

:::::::::
attenuation

::::::
caused

:::
by

:::::
water

:::::::
droplets

:::
on

:::
the

:::::
cover

::
of

:::::
CML

:::::::::
antennas, we compared and

adjusted two approaches from literature. In order to evaluate WAA compensation approaches,
:

we used the reference data set.

We were able to reduce the overestimation by WAA
::::::
caused

::
by

::::::
WAA,

:
while maintaining the detection of small rain events,

using an adjustment of the approach introduced by Leijnse et al. (2008). A WAA compensation
::::
The

:::::::::::
compensation

:::
of

:::::
WAA15

without an evaluation with a reference data set is not feasible with the CML data set we use.

Compared to the reference data set RADOLAN-RW, the CML-derived rainfall compared
:::::::
performs

:
well for periods with only

liquid precipitation. For winter months, the performance of CML-derived rainfall is limited. Melting snow and snowy or icy

antenna covers can cause additional attenuation resulting in overestimation of precipitation,
:
while dry snow cannot be measured

with the used
:
at

:::
the

::::::::::
frequencies

::::
and

:::
the

:::::
TRSL

::::::::::::
quantizations

:::
the CMLs in our data set

::
use. We found high correlations for20

hourly, monthly and seasonal rainfall sums between CML-derived rainfall and the reference.
::
To

:::::::
increase

:::
the

::::::::::::
comparability

::
of

:::
our

:::::::
analysis

::::
with

:::::::
existing

:::
and

::::::
future

::::::
studies

:::
on

::::
CML

:::::::
rainfall

:::::::::
estimation

:::
we

::::::::
calculated

:::
all

:::::::::::
performance

::::::
metrics

:::
for

::::::::
different

:::::
subset

:::::::
criteria,

:::
e.g.

::::::::
requiring

:::
that

:::::
either

:::::
CML

::
or

::::::::
reference

:::::::
rainfall

:
is
::::::
larger

::::
than

:
0
::::
mm.

:

Qualitatively, we showed rainfall maps from RADOLAN-RW and CML-derived rainfall for a 48 hour showcase and all month

of the analyzed period. A simple
:::
We

:::::
found

:::
the

:::::::::::
performance

::::::::
measures

:::
of

:::
this

:::::
study

:::
to

::
be

::
in
::::::::::

accordance
::::
with

:::::::
similar

:::::
CML25

::::::
studies,

:::::::
although

:::
the

::::::::::::
comparability

::
is

::::::
limited

:::
due

::
to

:::::::::
differences

::
of

:::
the

:::::
CML

:::
and

::::::::
reference

::::
data

::::
sets.

:::::::::::
CML-derived

::::::
rainfall

:::::
maps

::::::::
calculated

::::
with

:
a
:::::::
simple,

:::
yet

:::::
robust

:
inverse distance weighting approach

::::::::::
interpolation

:
showed the plausibility of CML-derived

rainfall maps
::::::
CMLs

::
as

::
an

::::::::::
stand-alone

::::::
rainfall

:::::::::::
measurement

::::::
system.

With the analysis presented in this study, the need for reference data sets in the processing routine of CML data is reduced, so

that the opportunistic sensing of country-wide rainfall with CMLs is at a point, where it should be transferable to (reference)30

data scarce regions. Especially in Africa, where water availability and management are critical, this task should be challenged

as Doumounia et al. (2014) did already. But,
:::
The

::::
high

::::::::
temporal

:::::::::
resolution

::
of

:::
the

:::::::::
presented

::::
data

:::
set

:::
can

:::
be

::::
used

::
in

::::::
future

::::::
studies,

::::
e.g.

:::
for

:::::
urban

:::::
water

:::::::::::
management.

:::
In

:::::::
addition,

:
CML derived rainfall can also complement other rainfall data setsin

:
,
:::
e.g.

::
to

::::::::
improve

:::
the

::::
radar

::::
data

::::::::::
adjustment

::
in

::::::::::
RADOLAN

:::
in regions with high density of measurement networks and thus,

23



substantially contribute to improved
:::::
CML

::::::
density

::::
and

::::::
regions,

::::
like

::::::::
mountain

::::::
ranges,

::::::
where

::::
radar

::::
data

::
is
:::::
often

::::::::::::
compromised.

:::::
Thus,

:::::
CMLs

:::
can

:::::::::
contribute

:::::::::::
substantially

::
to

:::::::
improve

:::
the spatiotemporal estimations of rainfall.
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