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xxsS1.1 Gaussian error propagation 10 

In our paper, we calculate all uncertainties in derived quantities using Gaussian error propagation.  Gaussian 

error propagation has found widespread application in many scientific disciplines, and for good reason: it is 

relatively straightforward to apply, its data requirements are modest, and its underlying assumptions are 

reasonable approximations for many real-world cases.  Consider, for example, a function of several variables 

𝑧 ൌ 𝑓ሺ𝑤, 𝑥, 𝑦, … ሻ.  The Gaussian error propagation formula approximates the standard error in 𝑧 as a function 15 

of the standard errors of each of the inputs, as follows:  
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where each of the terms includes an estimate of the uncertainty in each input (as expressed by its standard error), 

multiplied by 𝑧's sensitivity to that input, as expressed by the partial derivative of the function 𝑓, evaluated at 

the central estimates for all of the input variables (Kirchner, 2001). 20 

 

Gaussian error propagation assumes that the uncertainties in each of the input variables are uncorrelated with 

one another.  However, and contrary to what is sometimes claimed, it makes no assumption whatsoever 

concerning how those variables are distributed (Gauss, 1823); the term "Gaussian" refers to Carl Friedrich 

Gauss and not to the probability distribution that also bears his name.  Gaussian error propagation also makes no 25 

specific assumption about the form of the function 𝑓, but of course the approximations implied by the 

derivatives will be more exact, the closer 𝑓 is to a linear function of each of the input variables.  In the special 

case where 𝑓 is a linear function of all the input variables (as is the case for the weighted average in Eq. S4, 

below), Eq. (S1) will be exact rather than an approximation.   

 30 

The assumption that the input uncertainties are independent will, particularly in the case of mass balances, often 

lead to somewhat conservative (i.e., somewhat too large) uncertainty estimates for the result z.  For example, if 

we are solving for the mass balance 𝐸𝑇 ൌ 𝑃 െ 𝑄, and our estimates of the input uncertainties are obtained from 

the variability in water-year averages of 𝑃 and 𝑄, Eq. (S1) will overestimate the uncertainty in ET because all 
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else equal, years with higher 𝑃 will also tend to have higher 𝑄, so part of the uncertainties in 𝑃 and 𝑄 will tend 35 

to cancel each other out.  Where the uncertainties in the inputs are correlated, and those correlations can 

themselves be estimated, a more accurate estimate of the uncertainty in z can be obtained using first-order, 

second-moment error propagation, 
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       , ሺS2ሻ 

where the correlation coefficients 𝑟௫௬ (etc.) express the correlations between the uncertainties in the 40 

measurements or estimates of the corresponding variables, which often will differ from the correlations between 

the variables themselves; see Kirchner (2001) for details.  For the analysis presented here, the more complex 

approach of Eq. (S2) would provide little advantage over the simpler approach of Eq. (S1), because the most 

consequential uncertainties are those in the isotope measurements, which are not generally correlated with one 

another. 45 

xxsS1.2 Standard errors of weighted averages 

Weighted averages are widely used in isotope hydrology, and in environmental science more broadly.  The 

formula for calculating the standard error of an unweighted average of 𝑛 measurements 𝑦 is well known: 

SEሺ𝑦തሻ ൌ ඨ
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    , ሺS3ሻ 

where the factor of 𝑛/ሺ𝑛 െ 1ሻ corrects for the underestimation bias in the estimated variance as the degrees of 50 

freedom become small.  (If, for example, one had only one measurement, 𝑦 would equal 𝑦ത, but the variance in 

𝑦 should be undefined, rather than zero.  The factor of 𝑛 െ 1 guarantees this result.) 

 

But what if we instead have a weighted average of the form  

𝑦ത୵୲ୢ ൌ
∑ 𝑤 𝑦

∑ 𝑤
     , ሺS4ሻ 55 

where the individual weights 𝑤 represent the precipitation or streamflow associated with each measurement 𝑦, 

or some other measure of the importance of each 𝑦 as a component of the mean?  Applying Gaussian error 

propagation to Eq. (S4), under the assumption that the uncertainties in the 𝑦 's are independent and identically 

distributed, directly yields 
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     , ሺS5ሻ 60 
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where var୵୲ୢሺ𝑦ሻ is a weighted estimate of the variance (i.e., the squared uncertainty) in each of the 𝑦, and 𝑛ୣ 

is the effective sample size,  

𝑛ୣ ൌ  
ሺ∑ 𝑤ሻଶ
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ଶ    , ሺS6ሻ 

a formula often attributed to Kish (1995).  If all of the weights 𝑤 are the same, 𝑛ୣ will equal n.  The more 

uneven the weights are, the smaller 𝑛ୣ will be in relation to n; in the limiting case that all of the weight is 65 

contained in a single measurement, 𝑛ୣ will equal 1.   

 

The remaining issue is how to estimate the weighted variance.  Intuition suggests that it must be a weighted 

average of the squared deviations of the individual 𝑦 from 𝑦ത୵୲ୢ,  

var୵୲ୢሺ𝑦ሻ ൌ
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    , ሺS7ሻ 70 

and that is nearly correct.  However, as the weights 𝑤 become more and more uneven, 𝑦ത୵୲ୢ will come closer 

and closer to the points that carry most of the weight, leading to a downward bias in var୵୲ୢሺ𝑦ሻ; in the limiting 

case that all of the weight is contained in a single measurement, 𝑦ത୵୲ୢ will exactly equal that measurement and 

Eq. (S7) will return a weighted variance of zero.  One can eliminate this bias using a degree-of-freedom 

correction similar to Eq. (S3), but with 𝑛ୣ instead of n (see Galassi et al., 2016): 75 
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Combining Eqs. (S8) and (S5) yields the standard error of the weighted average 𝑦ത୵୲ୢ: 
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We have used Eq. (S9) to estimate the uncertainties in the weighted-average isotopic compositions of the end-

members and mixtures, because Monte Carlo benchmark tests have shown that it accurately estimates the root-80 

mean-square error in weighted averages across widely varying conditions (Kirchner, 2006).  

 

Readers should be aware, however, that many statistical software packages will calculate a different weighted 

standard error, which is based on different assumptions and yields very different behavior.  Specifically, the 

weighted standard error that is calculated by many software packages assumes that the weights 𝑤 are equal to 85 

the inverse of the variances of the individual measurements 𝑦, and thus that the points with greater weight are 

more precisely known than the ones with less weight.  (A slightly different starting point, namely that each of 

the 𝑦 is itself an average of 𝑤 individual measurements with equal variance, leads to the same assumption).  

Under those assumptions (which usually do not apply to the typical weighted averages used in hydrology, and in 

environmental science more generally), using inverse-variance weights 𝑤 in Eq. (S4) yields a maximum 90 

likelihood estimate of  𝑦ത୵୲ୢ, with a standard error of  
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Readers will notice that Eq. (S10) has the same form as Eq. (S9), but with 𝑛 in place of 𝑛ୣ.  This difference is 

crucial.  As the weights 𝑤 become more uneven, uncertainty estimates derived from Eq. (S9) will increase, as 

they should, because with fewer points exerting significant influence on the average, the uncertainty in the 95 

average must grow.  But under exactly the same conditions, uncertainty estimates derived from Eq. (S10) will 

become smaller, not larger.  In the limiting case of a single 𝑦 that carries all the weight in the data set, with the 

other points having no weight at all, Eq. (S10) will return a standard error of zero, whereas Eq. (S9) will return a 

standard error of infinity. 

 100 

Weighted averages that are commonly encountered in environmental science (such as volume-weighted means 

in precipitation or streamflow) are consistent with the assumptions underlying Eq. (S9) but not Eq. (S10).  

Monte Carlo benchmark tests show that uncertainties in these averages will be underestimated by Eq. (S10), 

potentially by large factors, but will be correctly estimated by Eq. (S9) (Kirchner, 2006).  Thus it is important 

for environmental scientists to determine – using benchmark tests if necessary – which standard error 105 

calculations their software is actually performing. 

xxsS2.1  Uncertainty in end-member mixing fractions 

Applying Gaussian error propagation to the end-member mixing formula (Eq. 11) yields 
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and writing out the partial derivatives gives (see also Genereux, 1998) 110 
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One can also re-cast Eq. (S12) in a slightly simpler form by dividing both sides by 𝑓 ౩←౩, yielding 
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where 𝑓 ౩←౭ ൌ 1 െ 𝑓 ౩←౩.  Error propagation equations of the form of (S13) have the advantage that one can 

readily assess whether each of the contributing uncertainties is large or small.  For example, the uncertainty in 115 

𝛿̅୕
౩ is "large" (in the sense that it leads to a large percentage uncertainty in 𝑓 ౩←౩) if it is large compared to 

𝛿̅୕
౩ െ 𝛿̅౭.  Appropriate substitution of variables will yield analogous error propagation formulas for the other 

end-member mixing fractions (𝑓 ౩←౭, 𝑓 ౭←౩, 𝑓 ౭←౭, 𝑓 ←౩ , and 𝑓 ←౭).   
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xxsS2.2  Uncertainty in end-member splitting proportions 

One can estimate the uncertainty in the fraction of summer precipitation becoming summer streamflow, 𝜂౩→୕౩, 120 

by applying Gaussian error propagation to Eq. (22): 
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Writing out the partial derivatives and simplifying terms, in particular by substituting 𝜂౩→୕౩ itself for 

ொ౩

౩
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 , gives the result 
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Dividing both sides by 𝜂౩→୕౩ yields the error propagation formula in an even simpler ratio form,  
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If one has already evaluated the uncertainty in 𝑓 ౩←౩, the uncertainty in the end-member splitting proportion 

𝜂౩→୕౩ can be even more straightforwardly expressed as 
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Appropriate substitution of variables will yield analogous error propagation formulas for the other end-member 

splitting proportions (𝜂౩→୕౭ , 𝜂౩→୕, 𝜂౭→୕౩, 𝜂౭→୕౭, and 𝜂౭→୕).  Because 𝜂౩→ ൌ 1 െ 𝜂౩→୕, the 

uncertainty in  𝜂౩→ will equal the uncertainty in 𝜂౩→୕; likewise the uncertainty in  𝜂౭→ will equal the 

uncertainty in 𝜂౭→୕.  

xxsS2.3  Uncertainty in seasonal origins of evapotranspiration 135 

One can estimate the uncertainty in the fraction of ET originating from summer precipitation, 𝑓←౩, by 

applying Gaussian error propagation to Eq. 18: 
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Writing out the partial derivatives gives the result 
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where 𝐸𝑇 ൌ 𝑃ୱ  𝑃୵ െ  𝑄 and  𝑓 ←౩ ൌ ൫𝛿̅୕ െ 𝛿̅౭൯/൫𝛿̅౩ െ 𝛿̅౭൯.  Equation (S19) can be simplified somewhat 

to yield 
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𝑄 𝑓 ←౩

𝐸𝑇

SE൫𝛿̅౩൯

𝛿̅౩ െ 𝛿̅౭

ቇ
ଶ

 ቆ
𝑄 𝑓 ←౭

𝐸𝑇
SE൫𝛿̅౭൯

𝛿̅౭ െ 𝛿̅౩

ቇ
ଶ

 ቆ
𝑄

𝐸𝑇
SE൫𝛿̅୕ ൯

𝛿̅౩ െ 𝛿̅౭

ቇ
ଶ

 ൭
 𝑓←౭

𝐸𝑇
SEሺ𝑃ୱሻ൱

ଶ

 ൭െ
 𝑓←౩

𝐸𝑇
SEሺ𝑃୵ሻ൱

ଶ

 ൭
 𝑓←౩ െ  𝑓 ←౩

𝐸𝑇
SEሺ𝑄ሻ൱

ଶ

   , ሺS20ሻ 

where  𝑓 ←౭ ൌ 1 െ  𝑓 ←౩ ൌ ൫𝛿̅୕ െ 𝛿̅౩൯/൫𝛿̅౭ െ 𝛿̅౩൯ and  𝑓←౭ ൌ 1 െ  𝑓←౩.  Appropriate substitution of 

variables will yield a similar error propagation formula for  𝑓←౭ .   145 

xxsS2.4  Uncertainty in inferred isotopic composition of evapotranspiration 

One can estimate the uncertainty in the isotopic composition of ET, 𝛿̅, by applying Gaussian error propagation 

to Eq. 21: 

SE൫𝛿̅൯ ൌ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

ቌ
𝜕𝛿̅

𝜕𝛿̅౩

SE൫𝛿̅౩൯ቍ

ଶ

 ቌ
𝜕𝛿̅

𝜕𝛿̅౭

SE൫𝛿̅౭൯ቍ

ଶ

 ቌ
𝜕𝛿̅

𝜕𝛿̅୕ SE൫𝛿̅୕ ൯ቍ

ଶ

 ൭
𝜕𝛿̅

𝜕𝑃ୱ
SEሺ𝑃ୱሻ൱

ଶ

 ൭
𝜕𝛿̅

𝜕𝑃୵
SEሺ𝑃୵ሻ൱

ଶ

 ൭
𝜕𝛿̅

𝜕𝑄
SEሺ𝑄ሻ൱

ଶ
   . ሺS21ሻ 

Writing out the partial derivatives and simplifying terms gives the result 150 
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SE൫𝛿̅൯ ൌ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

ለ⃓
ቆ

𝑃ୱ

𝐸𝑇
SE൫𝛿̅౩൯ቇ

ଶ

 ቆ
𝑃୵

𝐸𝑇
SE൫𝛿̅౭൯ቇ

ଶ

 ቆ
െ𝑄
𝐸𝑇

SE൫𝛿̅୕ ൯ቇ
ଶ

 ቌ
𝛿̅౩ െ 𝛿̅

𝐸𝑇
SEሺ𝑃ୱሻቍ

ଶ

 ቌ
𝛿̅౭ െ 𝛿̅

𝐸𝑇
SEሺ𝑃୵ሻቍ

ଶ

 ቌ
𝛿̅ െ 𝛿̅୕

𝐸𝑇
SEሺ𝑄ሻቍ

ଶ   . ሺS22ሻ 
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