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Abstract 19 

Many studies have shown that downstream flood regimes have been significantly altered by upstream 20 

reservoir operation. Reservoir effects on the downstream flow regime are normally performed by 21 

comparing the pre-dam and post-dam frequencies of certain streamflow indicators, such as floods and 22 

droughts. In this study, a rainfall-reservoir composite index (RRCI) is developed to precisely quantify 23 

reservoir impacts on downstream flood frequency under a framework of a covariate-based nonstationary 24 

flood frequency analysis using the Bayesian inference method. The RRCI is derived from a combination 25 

of both a reservoir index (RI) for measuring the effects of reservoir storage capacity and a rainfall index. 26 

More precisely, the OR-joint exceedance probability (OR-JEP) of certain scheduling-related variables 27 

selected out of five variables that describe the multiday antecedent rainfall input (MARI) is used to 28 

measure the effects of antecedent rainfall on reservoir operation. Then, the RI-dependent or RRCI-29 

dependent distribution parameters and five distributions, the gamma, Weibull, lognormal, Gumbel, and 30 

generalized extreme value, are used to analyze the annual maximum daily flow (AMDF) of the Ankang, 31 

Huangjiagang, and Huangzhuang gauging stations of the Hanjiang River, China. A phenomenon is 32 

observed that although most of the floods that peak downstream of reservoirs have been reduced in 33 

magnitude by upstream reservoirs, some relatively large flood events still have occurred, such as at the 34 

Huangzhuang station in 1983. The results of nonstationary flood frequency analysis show that, in 35 

comparison to the RI, the RRCI that combines both the RI and the OR-JEP resulted a much better 36 



explanation for such phenomena of flood occurrences downstream of reservoirs. A Bayesian inference 37 

of the 100-year return level of the AMDF shows that the optimal RRCI-dependent distribution, 38 

compared to the RI-dependent one, results in relatively smaller estimated values. However, there exist 39 

exceptions due to some low OR-JEP values. In addition, it provides a smaller uncertainty range. This 40 

study highlights the necessity of including antecedent rainfall effects, in addition to the effects of 41 

reservoir storage capacity, on reservoir operation to assess the reservoir effects on downstream flood 42 

frequency. This analysis can provide a more comprehensive approach for downstream flood risk 43 

management under the impacts of reservoirs. 44 

Keywords: nonstationary flood frequency analysis; downstream floods; reservoir; antecedent 45 

rainfall; Bayesian inference; Hanjiang River 46 

1 Introduction 47 

River floods are generated by various complex nonlinear processes involving physical factors 48 

including “hydrological pre-conditions (e.g., soil saturation, snow cover), meteorological conditions 49 

(e.g., amount, intensity, and the spatial and temporal distribution of rainfall), runoff generation 50 

processes, and river routing (e.g., superposition of flood waves in the main river and its tributaries)” 51 

(Wyżga et al., 2016). In general, without reservoirs, the downstream flood extremes of most rain-52 

dominated basins are primarily related to extreme rainfall events in the drainage area. However, with 53 

reservoirs, the downstream flood regimes should be totally different due to upstream flood control 54 



scheduling. In the literature, the significant hydrological alterations caused by reservoirs have been 55 

demonstrated in the many areas of the world. Graf (1999) showed that dams have more significant 56 

effects on streamflow in America than global climate change. Benito and Thorndycraft (2005) reported 57 

various significant changes across the United States in pre- and post-dam hydrologic regimes (e.g., 58 

minimum and maximum flows over different durations). Batalla et al. (2004) demonstrated an evident 59 

reservoir-induced hydrologic alteration in northeastern Spain. Yang et al. (2008) demonstrated the 60 

spatial variability in hydrological regimes alterations caused by the reservoirs in the middle and lower 61 

Yellow River in China. Mei et al. (2015) found that the Three Gorges Dam, the largest dam in the world, 62 

has significantly changed downstream hydrological regimes. In recent years, the cause-effect 63 

mechanisms of downstream flood peak reductions were also investigated by some researchers (Ayalew 64 

et al., 2013; Ayalew et al., 2015; Volpi et al., 2018). For example, Volpi et al. (2018) suggested that for 65 

a single reservoir, the downstream flood peak reduction was primarily dependent on its position along 66 

the river, its spillway, and its storage capacity based on a parsimonious instantaneous unit hydrograph-67 

based model. These studies have revealed that it is crucial to assess the impacts of reservoirs on 68 

downstream flood regimes for the success of downstream flood risk management. 69 

Flood frequency analysis is the most common technique used by hydrologists to gain knowledge 70 

of flood regimes. In conventional or stationary frequency analyses, a basic hypothesis is that hydrologic 71 

time series maintains stationarity, i.e., “free of trends, shifts, or periodicity (cyclicity)” (Salas, 1993). 72 



However, in many cases, observations of changes in flood regimes have demonstrated that this strict 73 

assumption is invalid (Kwon et al., 2008; Milly et al., 2008). Nonstationarity in downstream flood 74 

regimes of dams makes frequency analyses more complicated. Actually, the frequency of downstream 75 

floods of dams is closely related to upstream flood operations. In recent years, there have been many 76 

attempts to link flood generating mechanisms and reservoir operations to the frequency of downstream 77 

floods (Gilroy and Mccuen, 2012; Goel et al., 1997; Lee et al., 2017; Liang et al., 2017; Su and Chen, 78 

2018; Yan et al., 2017). 79 

Previous studies have meaningfully increased the knowledge about reservoir-induced 80 

nonstationarity of downstream hydrological extreme frequencies (Ayalew et al., 2013; López and 81 

Francés, 2013; Liang et al., 2017; Magilligan and Nislow, 2005; Su and Chen, 2018; Wang et al., 2017; 82 

Zhang et al., 2015). There are two main approaches to incorporate reservoir effects into flood frequency 83 

analyses: the hydrological model simulation approach and the nonstationary frequency modeling 84 

approach. In the first approach, the regulated flood time series can be simulated using three model 85 

components: the stochastic rainfall generator, the rainfall-runoff model, and the reservoir flood 86 

operation module, which includes the reservoir storage capacity, the size of release structures, and the 87 

operation rules. The continuous simulation method can explicitly account for the reservoir effects on 88 

floods in the hypothetical case. However, it is difficult to apply this approach to a majority of real cases 89 

(Volpi et al., 2018) because the simplifying assumptions of this approach are only satisfied in a few of 90 



basins with single small reservoirs. Furthermore, even if the basins meet the simplifying assumptions, 91 

the detailed information required in this approach is likely unavailable. Thus, our attention is focused on 92 

the second method, the nonstationary frequency modeling approach. Nonstationary distribution models 93 

have been widely used to deal with the nonstationarity of extreme value series. In nonstationary 94 

distribution models, the distribution parameters are expressed as the functions of covariates to 95 

determine the conditional distributions of extreme value series. According to extreme value theory, the 96 

maxima series can generally be described using the generalized extreme value distribution (GEV). Thus, 97 

previous studies (El Adlouni et al., 2007; Ouarda and El‐Adlouni, 2011) have used the nonstationary 98 

generalized extreme value distribution to describe the nonstationary maxima series. Scarf (1992) 99 

modeled the changes in the location and scale parameters of the GEV over time using the power 100 

function relationship. Coles (2001) introduced several time-dependent structures (e.g., trend, quadratic, 101 

and change-point) into the location, scale, and shape parameters of the GEV. El Adlouni et al. (2007) 102 

provided a general nonstationary GEV model with an improved parameter estimate method. In recent 103 

years, “generalized additive models for location, scale, and shape” (GAMLSS) have been widely used 104 

in nonstationary hydrological frequency analyses (Du et al., 2015; Jiang et al., 2014; López and Francés, 105 

2013; Rigby and Stasinopoulos, 2005; Villarini et al., 2009). GAMLSS provides various candidate 106 

distributions for frequency analysis, such as Weibull, gamma, Gumbel, and lognormal distributions. 107 

However, the GEV has been rarely involved in the candidate distributions of GAMLSS. In terms of a 108 



parameter estimation method for the nonstationary distribution model, the maximum likelihood (ML) 109 

method is the most common parameter estimate method. However, the ML method for a nonstationary 110 

distribution model can lead to very high quantile estimator variances when using numerical techniques 111 

to solve the likelihood function when using a small sample (El Adlouni et al., 2007). El Adlouni et al. 112 

(2007) developed the generalized maximum likelihood (GML) method and demonstrated that the GML 113 

method had better performance than the ML method in all their cases. Ouarda and El‐Adlouni (2011) 114 

introduced the Bayesian nonstationary frequency analysis. The Bayesian inference can obtain multiple 115 

estimates, forming a posterior distribution of model parameters. Thus, the Bayesian method is able to 116 

conveniently describe the uncertainty of flood estimates associated with the uncertainty of model 117 

parameters. 118 

In the nonstationary frequency modeling approach, a dimensionless reservoir index (RI) was 119 

proposed by López and Francés (2013) as an indicator of reservoir effects, and it generally is used as a 120 

covariate for the expression of the distribution parameters (e.g., location parameter) (Jiang et al., 2014; 121 

López and Francés, 2013). Liang et al. (2017) modified the reservoir index by replacing the mean 122 

annual runoff in the expression of the RI with the annual runoff. Therefore, the modified reservoir index 123 

can reflect the impact of reservoirs on downstream flood extremes under various total inflow conditions 124 

each year. However, the precision and accuracy in the quantitative analysis of the reservoir effects on 125 

downstream floods need to be further improved. In fact, the effects of reservoirs may be closely related 126 



not only to the static reservoir storage capacity but also to the dynamic reservoir operations associated 127 

with multiple characteristics, such as the peak, the intensity, and the total volume of the multiday 128 

antecedent rainfall input (MARI), not just annual runoff. 129 

Therefore, the aim of the study is to develop an indicator, referred to as the rainfall-reservoir 130 

composite index (RRIC), that combines the effects of reservoir storage capacity and the MARI on 131 

reservoir operation. This indicator is then used as a covariate to assess the reservoir effects on the 132 

downstream flood frequency. The specific objectives of this study are (1) to develop the RRCI; (2) to 133 

compare the RRCI with the RI using a covariate-based nonstationary flood frequency analysis; and (3) 134 

to obtain the downstream flood estimation and its uncertainty based on the optimal nonstationary 135 

distribution using the Bayesian inference. 136 

2 Methods 137 

To quantify the effects of reservoirs on the frequency of the annual maximum daily flow series 138 

(AMDF) downstream of reservoirs, a three-step framework (Figure 1), termed the covariate-based flood 139 

frequency analysis using the RRIC as a covariate, was established. In this section, the methods of this 140 

framework are introduced. First, a reservoir index (RI) is defined by additionally considering the effects 141 

of reservoir sediment deposition on the storage capacity. Second, the RRCI is developed by combining 142 

the RI and a rainfall index. Next, the C-vine copula model is used to construct and calculate the rainfall 143 

index. Finally, the nonstationary distribution models that utilize the Bayesian estimation are clarified. 144 



<Figure 1> 145 

2.1 Reservoir index (RI) 146 

Intuitively, the larger the reservoir capacity relative to the flow of a downstream gauging station, 147 

the greater the possible effects of the reservoir on the streamflow regime. To quantify reservoir-induced 148 

alterations to the downstream streamflow regime, Batalla et al. (2004) proposed an impounded runoff 149 

index (IRI), which is a ratio of reservoir capacity ( RC ) to (unimpaired) mean annual runoff ( Q ) at the 150 

gauge station, indicated as IRI RC Q . For a single reservoir, the IRI is a good indicator of the extent 151 

to which a reservoir alters streamflow. To analyze the effects of a multi-reservoir system on the 152 

downsream flood frequency, López and Francés (2013) proposed a dimensionless reservoir index. In 153 

this study, we additionally considered the effects of reservoir sediment deposition on the reservoir 154 

capacity. In accordance with López and Francés (2013), the reservoir index (RI) for a downstream 155 

gauging station is defined as 156 
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where N  is the total number of reservoirs upstream of the gauge station; iA  is the total basin area 158 

upstream of the i-th reservoir; TA  is the total basin area upstream of the gauge station; RCi
 is the total 159 

storage capacity of the i-th reservoir; and LR i
 is the loss rate (%) of RCi

 due to the sediment deposition 160 

(Appendix A). Equation (1) indicates that for a reservoir system consisting of small- and middle-sized 161 



reservoirs, the RI for the downstream gauging station is generally less than one. However, for a system 162 

with some large reservoirs, such as multi-year regulating storage reservoirs, the RI of the downstream 163 

gauging station near this system may be close to one or higher. 164 

2.2 Rainfall-reservoir composite index (RRCI) 165 

In addition to the reservoir capacity, the multiday antecedent rainfall input (MARI), which is an 166 

event of continuous multi-day multivariate rainfall that forms the inflow event that will be regulated by 167 

the reservoir system to become the downstream extreme flow, is a key constraint for scheduling the 168 

reservoir system. In this study, to add the antecedent rainfall effects into the new indicator of reservoir 169 

effects, five variables were used to describe the MARI: the maximum M (the maximum daily rainfall in 170 

the MARI); the intensity I (the mean daily rainfall in the MARI); the volume V (the total daily rainfall 171 

in the MARI); the timing T (the end time of MARI during that year); and the distance L (the distance 172 

between the rainfall center and the outlet). The reason that M, I, V, and L were selected is because these 173 

variables will determine the peak, the total volume, and the peak appearance time of an inflow event. 174 

The variable, T, is utilized to capture information regarding the remaining storage capacity, due to 175 

staged operation strategies during flood season used in some reservoirs. For the operation strategy that 176 

consists of increasing the flood limit water level in stages, it is expected that if the timing of the MARI 177 

is near the end of the flood season, the downstream AMDF will be less affected by reservoirs. This is 178 



because of the lesser remaining capacity during this period. The MARI variables that are selected to 179 

construct the new indicator are hereafter referred to as the scheduling-related MARI variables (denoted 180 

as 1 2, ,..., dX X X ). The extraction procedure of the MARI is detailed in section 3.2. 181 

A new index is proposed in this study called the rainfall-reservoir composite index (RRIC) to 182 

more comprehensively assess the effects of reservoirs on floods by incorporating the effects of the 183 

MARI. This index is defined as 184 
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where MARIP
 is the OR-joint exceedance probability (OR-JEP); that is the probability that any one of the 186 

given set of values ( 1 2, ,..., dx x x ) for the scheduling-related MARI variables will be exceeded. Here, the 187 

OR-JEP acts as a rainfall index for measuring the MARI effects. The lower this probability, the greater 188 

effects on reservoir operation the MARI has. Then, it is expected that downstream floods could possibly 189 

obtain relatively large values, and vice versa. Figure 2 illustrates the relationship in Equation (2), which 190 

shows that the RRCI is conditional on both the OR-JEP and the RI. Equation (2) can then be expressed 191 

as 192 
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where  F   is the cumulative distribution function (CDF) that determines the dependence relationship 194 

of the variables. The expectation of the RRCI is as follows: 195 
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In addition, for the OR case, the following is true: 197 
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Equations (3) and (5) indicate that, in addition to the RI, the RRCI is related to the number and the 199 

dependence relationship of the scheduling-related MARI variables. To obtain a reasonable RRCI, the 200 

unrelated MARI variables should not be incorporated. In this study, the number of MARI variables that 201 

were incorporated was no more than four to avoid a “dimension disaster” in modeling their dependence. 202 

To select the scheduling-related MARI variables, a three-step selection procedure was used that 203 

included the following. (1) Selecting four variables from the five MARI variables by testing the 204 

significance of the Pearson correlation between the MARI variables and the AMDF. (2) Calculating the 205 

RRCI for all possible subsets of the four variables using the d-dimensional ( ) copulas. Then 206 

finally (3) identifying the variables by using the highest rank correlation coefficient between the RRCI 207 

and the AMDF. The construction method of the d-dimensional ( ) distribution  1 2, ,..., dF x x x  208 

is described in the following subsection. 209 

<Figure 2> 210 
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2.3 C-vine Copula model 211 

In this subsection, a c-vine Copula model for the construction of the continuous d-dimensional 212 

distribution  1 2, ,..., dF x x x  is clarified. The Sklar’s theorem (Sklar, 1959) showed that for a continuous 213 

d-dimensional distribution, the one-dimensional marginals and dependence structure can be separated, 214 

and the dependence can be represented using a copula formula as follows: 215 

  , (6) 216 

where iu  is the univariate marginal distribution of ;  is the copula function;  is the copula 217 

parameter vector;  is the parameter vector of the i-th marginal distribution; and  218 

is the parameter vector of the entire n-dimensional distribution. Thus, the construction of  219 

can be separated into two steps: first is the modeling of the univariate marginals; and second is the 220 

modeling of the dependence structure. For the first step, the empirical distribution is used as the 221 

univariate marginal distributions, and the change-points of the variables are tested using the Pettitt test 222 

(Pettitt, 1979). Then, if there are any, the marginal and the change-point will be addressed using the 223 

estimation method (Xiong et al., 2015). Then, for the second step, the copula construction for the 224 

dependence modeling is based on the pair-copula construction method, which has been widely used in 225 

previous research (Aas et al., 2009; Xiong et al., 2015). According to Aas et al. (2009), the joint density 226 

function  is written as 227 

     1 2 1 2, ,... , ,..., ,
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  . (7) 228 

The n-dimensional copula density , which can be decomposed into  229 

bivariate copulas, corresponding to a c-vine structure, is given by 230 

 , (8) 231 

where  is the density function of a bivariate pair copula, and  is a parameter vector of 232 

the corresponding bivariate pair copula. Therefore, the marginal conditional distribution is 233 

   (9) 234 

where  is a bivariate copula distribution function. The maximum dimensionality covered in 235 

this study was four. Thus for a four-dimensional copula (of which the decomposition is shown in Figure 236 

3), the general expression of Equation (8) is 237 

  . (10) 238 

<Figure 3> 239 
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2.4 Covariate-based nonstationary frequency analysis using the Bayesian estimation 240 

The covariate-based extreme frequency analysis has been widely used (Villarini et al., 2009; 241 

Ouarda and El‐Adlouni, 2011; López and Francés, 2013; Xiong et al., 2018). According to these 242 

studies, five distributions, gamma (GA), Weibull (WEI), lognormal (LOGNO), Gumbel (GU), and the 243 

generalized extreme value (GEV), were used as candidate distributions in this study. In addition, their 244 

density functions, the corresponding moments, and the used link functions are shown in Table 1. In the 245 

following, the nonstationary distribution models based on Bayesian estimation are developed for a 246 

covariate-based flood frequency analysis. 247 

<Table 1> 248 

Suppose that flood variable, , obeys the distribution  with the distribution 249 

parameters  , ,t t t  η . In this study, only the distribution parameters t  and t  were allowed to be 250 

dependent on covariates because the shape parameter of the GEV is sensitive to the quantile estimation 251 

of rare events. According to the linear additive formulation of the generalized additive models for 252 

location, scale, and shape (GAMLSS) (Rigby and Stasinopoulos, 2005; Villarini et al., 2009), seven 253 

nonstationary scenarios for the formulas of the two distribution parameters, and , were 254 

investigated, as shown in Table 2. The constant scenario (S0) included one scenario (both t  and t  255 

are constants). The RI-dependent scenarios (S1) included three scenarios: S11 ( t  is RI-dependent and 256 

t  is constant), S12 ( t  is constant and t  is RI-dependent), and S13 (both t  and t  are RI-257 

tY  
tY tf y η

t

t t



dependent). In addition, the RRCI-dependent scenarios (S2) including S21, S22, and S23 are similar to 258 

S11, S12, and S13, respectively. 259 

<Table 2> 260 

In the following, the Bayesian inference is introduced. The GEV_S23 (representing the 261 

nonstationary GEV distribution with the S23 scenario) model was used as an example, and the model 262 

parameter vector  GEV_S23 0 1 0 1, , , ,    θ  was used as the estimate. The Bayesian method was used 263 

to estimate GEV_S23θ . Let the prior probability distribution be  GEV_S23 θ , and the observations, , have 264 

the likelihood  GEV_S23l θD . Then the posterior probability distribution  GEV_S23p θ D  can be 265 

calculated using Bayes' theorem as follows: 266 
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where the integral is the normalizing constant, and  is the entire parameter space. The obvious 268 

difference between the Bayesian method and the frequentist method is that the Bayesian method 269 

considers the parameters GEV_S23θ  to be random variables. In addition, the desired distribution of the 270 

random variables can be obtained using a Markov chain that can be constructed using various Markov 271 

chain Monte Carlo (MCMC) algorithms (Reis Jr and Stedinger, 2005; Ribatet et al., 2007) to process 272 

Equation (11). In addition, in this study, the Metropolis-Hastings algorithm was used (Chib and 273 

Greenberg, 1995; Viglione et al., 2013), which was done with the aid of the R package “MHadaptive” 274 

D

Ω



(Chivers, 2012). A beta distribution function was used with the parameters , which were 275 

suggested by Martins and Stedinger (2000) and Martins and Stedinger (2001) as the prior distribution 276 

on the shape parameter  . For the other model parameters, 0 1 0 1, , ,    , the prior distributions were set 277 

to non-informative (flat) priors. There are two advantages of the Bayesian method. First, as noted by El 278 

Adlouni et al. (2007), this method allows the addition of other information, such as historical and 279 

regional information, by defining the prior distribution. Second, the Bayesian method can provide an 280 

explicit way to account for the uncertainty of parameters estimates. In the nonstationary case in the t-281 

year, the 95% credible interval for the estimation of the flood quantile corresponding to a given 282 

probability, , can be obtained from a set of stable parameters estimations, GEV_S23
ˆ ( 1,2,..., )i

ci Mθ , in 283 

which  is the length of the Markov chain. 284 

The procedure of model selection can identify which of the five distributions is optimal, and 285 

which of the seven nonstationary scenarios is optimal. If all the distribution parameters are identified as 286 

constants (S0), this process will be a stationary frequency analysis. To select the optimal model, the 287 

Schwarz Bayesian criterion (SBC) (Schwarz, 1978) for each fitted model object is calculated by the 288 

following: 289 

    SBC 2ln ln dfl n    , (12) 290 

where  ln l  is the maximized log-likelihood of the model object; df  is the freedom degree; and n  is 291 

the number of data points. SBC has a larger penalty on the over-fitting phenomenon than the Akaike 292 

6 and 9u v 

p

cM



information criterion (AIC) (Akaike, 1974). The model object with the lower SBC is preferred. The 293 

worm plot and the QQ plot were employed to check whether the model represented the data well. 294 

3 Study area and data 295 

3.1 Study area 296 

Hanjiang River (Figure 4), with the coordinates of 30°30′34°30′ N, 106°00′114°297 

00′ E and a catchment area of 159,000 km2, is the largest tributary of the Yangtze River, China. This 298 

area has a warm temperate, semi-humid, continental monsoon climate. The temperature in the basin is 299 

not much different from upstream to downstream. Although the elevation range of the study area is 300 

quite wide (13–3493 m), the study area is a rainfall-dominated area, and the snowmelt contribution is 301 

quite limited. The Ankang gauging station was used as an example. The timing of the AMDF is 302 

primarily during the major rainfall period from June to September (Figure S3a, c, and d). In addition, 303 

the winter is warm, with mean temperature values of more than 2°C, as shown in Figure S3b. Since 304 

1960, many reservoirs have been completed in the Hanjiang basin. Information of the five major 305 

reservoirs is shown in Table 3, including the longitude, latitude, control area, time for completion, and 306 

capability. The Danjiangkou Reservoir in central China's Hubei province is the largest one in this basin 307 

and was completed by 1967. As a multi-purpose reservoir, it primarily aims to supply water and control 308 

floods, and it is also used for electricity generation and irrigation. The reservoir has a total storage 309 



capacity of 21.0 billion m3, a dead storage capacity of 7.23 billion m3, an effective storage capacity of 310 

10.2 billion m3, and a flood control capacity of 7.72 billion m3. After the Danjiangkou Dam Extension 311 

Project in 2010, the Danjiangkou Reservoir gained an additional capacity of 13.0 billion m3 and an extra 312 

flood control storage capacity of 3.3 billion m3. In addition, this reservoir is operated using the strategy 313 

of staged increases in the flood limit water level during the flood control season (Zhang et al., 2009). 314 

<Figure 4> 315 

<Table 3> 316 

3.2 Data 317 

The assessment analysis of reservoir effects on flood frequency utilized streamflow data, 318 

reservoir data, and rainfall data. The annual maximum daily flood series (AMDF) was extracted from 319 

the daily streamflow records of the three gauges in the Hanjiang River basin; namely the Ankang (AK) 320 

station with a drainage area of 38,600 km2, the Huangjiagang (HJG) station with a drainage area of 321 

90,491 km2, and the Huangzhuang (HZ) station with a drainage area of 142,056 km2. The streamflow 322 

and reservoir data were provided by the Hydrology Bureau of the Changjiang Water Resources 323 

Commission, China (http://www.cjh.com.cn/en/index.html). The annual series of the maximum ( ), 324 

the intensity ( ), volume ( ), the timing ( ), and the distance (L) were extracted from the daily 325 

streamflow data to describe the MARI. Note that the timing of the MARI is equal to the occurrence time 326 
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of the AMDF during the year. The MARI is a real-averaged event, and any two consecutive days of 327 

areal rainfall values in the MARI required more than 0.2 mm. Daily areal rainfall was calculated using 328 

the inverse distance weighting (IDW) method based on rainfall records from 16 stations (shown in 329 

Figure 4). These rainfall data were downloaded from the National Climate Center of the China 330 

Meteorological Administration (source: http://www.cma.gov.cn/). For the AK and HZ gauging stations, 331 

all the records were available from 1956 to 2015, while the HJG gauging station only had records 332 

available from 1956 to 2013. 333 

4 Results and discussion 334 

4.1 Identification of reservoir effects 335 

To confirm the impact of reservoirs on the annual maximum daily flow (AMDF) in the study 336 

area, the mean and standard deviation of the AMDF before and after the construction of the two large 337 

reservoirs, the Danjiangkou reservoir (1967) upstream of the HJG and HZ stations and the Ankang 338 

reservoir (1992) upstream of the AK, HJG, and HZ stations, were compared. According to Table 4, the 339 

mean and standard deviation of the AMDF of the AK, HJG, and HZ stations were significantly reduced. 340 

By using the HJG station as an example, the mean of the AMDF (19922013) is 4139 m3/s, which is 341 

only 0.28 times 14,951 m3/s (19561966), and the standard deviation is 4074 m3/s, approximately 0.52 342 

times 7896 m3/s (19561966). 343 

<Table 4> 344 



Figure 5 presents the linear correlation between the five MARI variables (i.e., the maximum, M; 345 

the intensity, I; volume, V; the timing, T; and the distance L) and the AMDF. It was found that for M, I, 346 

V, and T, except for T in the AK station, the Pearson correlation coefficients between these four 347 

variables and the AMDF range from 0.27 to 0.71 (p-value<0.05), indicating that these four variables are 348 

significantly related to the AMDF. However, there is a Pearson correlation coefficient of no more than 349 

0.24 between L and the AMDF for each of the stations. Thus, L was excluded from the calculation of 350 

the RRCI. A further analysis of the reservoir effects on the downstream AMDF will be performed in the 351 

following sections. 352 

<Figure 5> 353 

4.2 Results for the rainfall-reservoir composite index (RRCI) 354 

To obtain the annual values of the RRCI, the RI was estimated first. The RI was affected by the 355 

loss of the reservoir capacity, but not to a great extent (Figure S2). This happened because the main 356 

reservoirs (Dangjiangkou and Ankang reservoirs) had a small loss rate of no more than 15% (Table S1 357 

and Figure S1). 358 

The C-vine copula model was applied to calculate the OR-JEP of the scheduling-related MARI 359 

variables. In the modeling of the univariate marginal, the marginals of the intensity (I) of the AK and 360 

the HJG stations and the volume (V) of the HJG station were revised to deal with their significant 361 

change-points (Table S2). To identify the scheduling-related variables from M, I, V, and T, the RRCI for 362 



all the possible subsets of M, I, V, and T was calculated and compared. The Pearson, Kendall, and 363 

Spearman correlation coefficients between the RRCI and the AMDF are listed in Table 5. Note that the 364 

entire decomposition structure of the C-vine copula for each RRCI of the same station was determined 365 

by the ordering of the variables of each subset (shown in the cells of the first column in Table 5). Figure 366 

3 shows an example for the decomposition structure of the 4-dimensional copula. As shown in the first 367 

row in Table 5, there is a negative correlation between the AMDF and the RI for each station. The 368 

values of the Pearson correlation coefficients between the AMDF and the RI for the AK, HJG, and HZ 369 

stations are -0.37, -0.55, and -0.53, respectively, demonstrating that there is a significant relation 370 

between the reservoir storage capacity and the reduction in the AMDF. For each station, with the 371 

exception of the RRCI of one-dimensional case, the values of the Pearson, Kendall, and Spearman 372 

correlation coefficients between the RRCI and the AMDF are higher than between the RI and the 373 

AMDF. According to the highest Kendall correlation, the scheduling-related variables for the AK 374 

station were M, I, V and T. Those for the HJG station were I and T, and those for the HZ station were I, 375 

V, and T. 376 

<Table 5> 377 

Table 6 shows the results of the copula modeling of the scheduling-related variables using the 378 

aid of the R package “VineCopula” (https://CRAN.R-project.org/package=VineCopula). Note that for 379 

each bivariate pair in the third column in Table 6, three one-parameter bivariate Archimedean copula 380 



families (i.e., the Gumbel, Frank, and Clayton copulas) (Nelsen, 2006) were used to select from. As 381 

shown in Table 6, the results of the Cramer-von Mises test (Genest et al., 2009) shows that all the C-382 

vine copula models passed the test at a significance level of 0.05. This result indicated that these models 383 

were effective for simulating the joint distribution of the scheduling-related variables for the three 384 

stations. Finally, the variation in the RI and the RRCI over time is displayed in Figure 6. It can be seen 385 

that for each station, after reservoir construction, in most cases, the annual values of the RRCI are larger 386 

(close to 1) than those of the RI. In contrast, in few cases, such as in 1983 at the HZ and HJG stations, 387 

the RRCI values were lower than the RI values. 388 

<Figure 6> 389 

<Table 6> 390 

4.3 Flood frequency analysis 391 

A nonstationary flood frequency analysis using the RRCI or the RI as the covariate was 392 

performed to investigate how the reservoirs affected the downstream flood frequency. A summary of 393 

results of fitting the nonstationary models to the flood data is shown in Table 7. Based on the SBC, the 394 

lowest values indicate that the best models for the AK, HJG, and HZ stations are the nonstationary WEI 395 

distribution with S23, the nonstationary GA distribution with S21, and the nonstationary WEI 396 

distribution with S21, respectively, hereafter referred to as WEI_S23, GA_S21, and WEI_S21, 397 



respectively. Note that for any one of the five distributions (GA, WEI, LOGNO, GU, and GEV), the 398 

RRCI-dependent scenario had a lower SBC value than the RI-dependent scenario for each gauging 399 

station. Furthermore, for the RI-dependent and RRCI-dependent scenarios, using the HZ station as an 400 

example, the optimal formulas of the two distribution parameters, t  and t , are given as follows: 401 

(1) WEI_S11 402 

 

 

 

exp 9.94 2.79RI

exp 0.49

t

t





 


 (13) 403 

(2) WEI_S21 404 

 

 

 

exp 9.92 1.42RRCI

exp 0.73
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. (14) 405 

It was found that in Equations (13) and (14), there were negative estimates of -2.79 and -1.42 for 1 , 406 

respectively, revealing the decreasing degree of the frequency and magnitude of downstream floods due 407 

to the reservoir effects. 408 

Figure 7 compares the stationary scenario (S0), the RI-dependent scenario (S1), and the RRCI-409 

dependent scenario (S2) of the same optimal distributions that explain all the flood values and the 410 

several largest flood values for each station. The QQ plots (Figure 7a1c1) show that overall, the RRCI-411 

dependent scenario more adequately captured the entire empirical quantiles (particularly the smallest 412 

and largest empirical quantiles) than the two other scenarios for each station. Furthermore, as shown in 413 



Figure 7a2c2, for the seven largest floods (observed) of each station, the RRCI-dependent scenario 414 

produced lower quantile residuals than the two other scenarios. 415 

<Table 7> 416 

<Figure 7> 417 

 Figure 8 shows the performance of the best models: WEI_S23 for the AK station, GA_S21 for 418 

the HJG station, and WEI_S21 for the HZ station. The points in the worm plots in Figure 8 are within 419 

the 95% confidence interval, indicating that the selected models are reasonable. In addition, according 420 

to the centile curves plots in Figure 8, the AMFD series is well fitted by the best models. Undoubtedly, 421 

with the incorporation of the effects of the MARI, the RRCI-dependent scenario well captured the 422 

presence of nonstationarity in the downstream flood frequency. The case of the HZ station was used for 423 

the analysis (Figure 8c1). After the construction of the Danjiangkou Reservoir (1967), due to reservoir 424 

operation, most of the values of the AMDF had been reduced in magnitude by this reservoir. However, 425 

some relatively large flood events still occurred several times, such as 25,600 m3/s in 1983 and 19,900 426 

m3/s in 1975. Obviously, this phenomenon of flood occurrences was well explained by the RRCI. 427 

<Figure 8>428 

The 100-year return levels at a 95% credible interval from WEI_S23 and WEI_S13 for the AK 429 

station, GA_S21 and GA_S11 for the HJG station, and WEI_S21 and WEI_S11 for the HZ station are 430 

presented in Figure 9. For each station, compared to the optimal RI-dependent distribution, the optimal 431 



RRCI-dependent distribution provided a lower 100-year return level. However, there existed exceptions. 432 

In addition, after the construction of the main reservoir, the uncertainty range of the AK station was 433 

larger than that of the HJG and HZ stations. A possible explanation for the larger uncertainty range was 434 

that the sample size (19932015) of the regulated floods at the AK station was smaller. Furthermore, 435 

the dependent relationship between the RRCI and the AMDF at the AK station was weaker. 436 

<Figure 9> 437 

4.4 Discussion 438 

The long-term variation in the AMDF series (Figure 8) indicates that the upstream reservoirs 439 

had evidently altered the downstream flood regimes. As an example, since the completion of the 440 

Danjiangkou reservoir in 1967, the flood magnitude of the HZ station was evidently reduced overall. 441 

This is consistent with the results of the effects of reservoirs on the hydrological regime in this area 442 

found in previous studies (Cong et al., 2013; GUO et al., 2008; Jiang et al., 2014; Lu et al., 2009). In 443 

this study, it was found that there was a significant difference between downstream floods affected by 444 

the same reservoir system (with the same RI value). In most cases, relatively small downstream floods 445 

were obtained. However, it is of interest to note that there still occurred unexpected large downstream 446 

floods in a few cases, in spite of a large RI value. For example, most values of the AMDF in the HZ 447 

station have been less 10,000 m3/s since 1967, but the values of the AMDF in 1983 and in 1975 were 448 



25,600 m3/s and 19,900 m3/s, respectively. These unexpected large downstream floods were probably 449 

related to the MARI effects on reservoir operation. The five largest (unexpected) floods since 1967 and 450 

the corresponding values of the scheduling-related MARI variables in the HZ station are shown in Table 451 

8. It was found that the largest floods from 1967 to 2015 occurred in 1983. For this flood event, the 452 

MARI was a rare event (with an OR-JEP value of 0.435 ranking the second in 19672015) due to the 453 

largest mean intensity ( 20.2 mmI  ) and the second latest occurrence ( 281T  ). Surprisingly, all the 454 

timing values of the MARI for these five unexpected downstream floods showed high rankings (29th). 455 

These timing values were near the end (approximately the 300th day of the year) of the flood control 456 

period (JulyOctober) in this area. Actually, near the end of the major flood control period, the storage 457 

capacity should be decreased. This is because according to the operation rules of the Danjiangkou 458 

reservoir (Zhang et al., 2009), there is a staged increasing flood limit water level during the flood 459 

control season. One important cause for those unexpected large downstream floods was probably that 460 

the remaining storage capacity at the end of flood season was not sufficient to reduce some late floods. 461 

Therefore, in addition to the storage capacity of reservoirs, the MARI effects should be indispensably 462 

considered when attempting to accurately quantify the effects of the reservoir on downstream floods. 463 

<Table 8> 464 

With the combination of both the RI and the OR-JEP, the RRCI had a significant difference 465 

from RI (Figure 6). With a few exceptions, the RRCI values were higher than the RI values. This 466 



indicates that the real reservoir impact may be underestimated by the RI in most cases. Moreover, the RI 467 

will also probably overestimate the real reservoir impact in a few cases because of not considering 468 

special rainfall events (i.e., the MARI with low values of the OR-JEP). The results of the covariate-469 

based nonstationary flood frequency analysis (Table 7 and Figures 7 and 8) demonstrate that, compared 470 

to the RI-dependent scenario, the RRCI-dependent scenario for the optimal nonstationary distribution 471 

more completely captured the presence of nonstationarity in the downstream flood frequency. Therefore, 472 

the RRCI might be a useful index for accessing the reservoir effects on downstream flood frequency. 473 

Finally, the estimation errors of the OR-JEP should be noted. (1) Only those MARI samples that 474 

corresponded to the timing of the AMDF were included to estimate the OR-JEP. This means that some 475 

extreme MARI samples that corresponded to the non-maximum flow were not included, resulting in an 476 

estimation error for the OR-JEP. To reduce this error, it might be worth considering the use of the 477 

peaks-over-threshold sampling method. (2) The areal-averaged MARI was based on the records from 16 478 

rainfall stations using the IDW method. The estimation error of the areal-averaged rainfall can be 479 

transferred to the OR-JEP estimation error. Additional rainfall site data and spatial distribution 480 

information were needed to reduce the OR-JEP estimation error. Nonetheless, the good performance of 481 

the downstream flood frequency model results demonstrated that the MARI samples still remained 482 

representative in this study. 483 



5 Conclusions 484 

Accurately assessing the impact of reservoirs on downstream floods is an important issue for 485 

flood risk management. In this study, to evaluate the effects of reservoirs on the downstream flood 486 

frequency of the Hanjiang River, the rainfall-reservoir composite index (RRCI) was derived from 487 

Equation (2), which considers the combination of the reservoir index (RI) and the OR-joint exceedance 488 

probability (OR-JEP) of scheduling-related rainfall variables. The main findings are summarized as 489 

follows: (1) The magnitude of the downstream flood events has been reduced by the reservoir system in 490 

the study area. However, the long-term variation in the observed AMDF series showed that despite the 491 

large reservoirs, unexpected large flood events still occurred several times, such as at the Huangzhuang 492 

station in 1983. One important cause of the unexpected large floods at the Huangzhuang station may 493 

have been related to the operation strategy of staged increases in the flood limit water level of the 494 

Danjiangkou reservoir. (2) According to the results of the covariate-based nonstationary flood 495 

frequency analysis for each station, compared to the optimal RI-dependent distribution, the optimal 496 

RRCI-dependent distribution more completely captured the presence of nonstationarity in the 497 

downstream flood frequency. (3) Furthermore, in estimating the 100-year return level for each station, 498 

the optimal RRCI-dependent distribution provided a lower 100-year return level, but there existed 499 

exceptions. In addition, it provided a smaller uncertainty range associated with the uncertainty of the 500 

model parameter. 501 



Consequently, this study demonstrated the necessity of including the antecedent rainfall effects, 502 

in addition to the effects of reservoir storage capacity, on reservoir operation to assess the reservoir 503 

effects on downstream flood frequency. This study provides a comprehensive approach for downstream 504 

flood risk management under the impacts of reservoirs. 505 
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Tables 640 

Table 1: Summary of the probability density functions, the corresponding moments, and the 641 

used link functions for nonstationary flood frequency analysis  642 

Distributions Probability density functions Moments Link functions 
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Table 2: Seven nonstationary scenarios for the formulas of the two distribution parameters (i.e., 646 

t  and t ) 647 

 648 

Scenario classification Scenario codes 

The formula of distribution parameters 

g1(t) g2(t) 

Stationary (S0) S0   

RI-dependent (S1) 

S11 RI  

S12  RI 

S13 RI RI 

RRCI-dependent (S2) 

S21 RRCI  

S22  RRCI 

S23 RRCI RRCI 

 649 

  650 



Table 3: Information of the five major reservoirs in the Hanjiang River basin. 651 

Reservoirs Longitude Latitude Area (km2) Year Capacity (109 m3) 

Shiquan 108.05 33.04 23,400 1974 0.566 

Ankang 108.83 32.54 35,700 1992 3.21 

Huanglongtan 110.53 32.68 10,688 1978 1.17 

Dangjiangkou 111.51 32.54 95,220 1967 34.0 

Yahekou 112.49 33.38 3030 1960 1.32 

 652 

 653 

  654 



Table 4: Change in the mean and standard deviation of the AMDF after the construction of the 655 

two large reservoirs (Danjiangkou reservoir completed by 1967, and the Ankang reservoir built by 656 

1992). 657 

Stations 

  Mean (m3/s)    Standard deviation (m3/s) 

  19561966 19671991 19922015 

 

19561966 19671991 19922015 

AK 

 

9451 10,468 6506   4341 4623 4454 

HJG 
 

14,951 7524 4139 
 

7896 5482 4074 

HZ   16,603 10,120 5958   8833 5420 4721 

 658 

 659 

 660 

 661 

 662 

 663 

  664 



Table 5: Correlation coefficients between the RRCI and the AMDF. 665 

Subset of 

rainfall 

variables  

 

AK 

 

HJG 

 

HZ 

 

Pearson Kendall Spearman 

 

Pearson Kendall Spearman 

 

Pearson Kendall Spearman 

-* 
 

-0.37 -0.18 -0.28 

 

-0.55 -0.37 -0.54 
 

-0.53 -0.38 -0.55 

M 

 

-0.27 -0.27 -0.37 

 

-0.67 -0.53 -0.74 

 

-0.45 -0.37 -0.51 

I 

 

-0.26 -0.25 -0.34 

 

-0.74 -0.57 -0.79 

 

-0.54 -0.41 -0.56 

V 

 

-0.32 -0.28 -0.39 

 

-0.63 -0.49 -0.69 

 

-0.57 -0.48 -0.65 

T 
 

-0.11 -0.17 -0.24 

 

-0.68 -0.55 -0.73 
 

-0.48 -0.40 -0.57 

M, I 

 

-0.37 -0.28 -0.38 

 

-0.70 -0.56 -0.77 

 

-0.56 -0.43 -0.58 

M, V 

 

-0.42 -0.29 -0.40 

 

-0.64 -0.50 -0.71 

 

-0.56 -0.45 -0.60 

M, T 

 

-0.37 -0.26 -0.36 

 

-0.69 -0.57 -0.77 

 

-0.64 -0.46 -0.63 

I, V 
 

-0.46 -0.31 -0.42 

 

-0.71 -0.54 -0.76 

 

-0.65 -0.50 -0.67 

I, T 

 

-0.34 -0.22 -0.31 

 

-0.73 -0.60 -0.80 

 

-0.68 -0.50 -0.66 

V, T 

 

-0.43 -0.28 -0.39 

 

-0.68 -0.55 -0.75 

 

-0.69 -0.52 -0.71 

M, I, V 

 

-0.49 -0.31 -0.42 

 

-0.65 -0.53 -0.74 

 

-0.63 -0.47 -0.63 

M, I, T 

 

-0.41 -0.27 -0.37 

 

-0.68 -0.57 -0.78 

 

-0.67 -0.49 -0.66 

M, V, T 

 

-0.50 -0.29 -0.40 

 

-0.65 -0.56 -0.76 

 

-0.67 -0.49 -0.67 

I, V, T 

 

-0.51 -0.31 -0.41 

 

-0.67 -0.58 -0.78 

 
-0.71 -0.53 -0.70 

M, I, V, T 

 
-0.53 -0.31 -0.42   -0.65 -0.57 -0.77   -0.69 -0.52 -0.69 

*The values in the first row are the correlation coefficients between RI and flood series 666 

  667 



Table 6: Results of the copula models for scheduling-related rainfall variables 668 

Stations 

Scheduling-related 

variables 

Pairs Copula type Parameters c Kendall's tau 

Goodness-of-fit test based on the empirical 

copula 

CvM* p-value 

AK M, I, V, T 

14 Clayton 0.16 0.08 

0.169 0.860 

13 Clayton 1.28 0.39 

12 Clayton 1.01 0.33 

24|1 Frank 1.21 0.17 

23|1 Frank -2.24 -0.24 

34|12 Clayton 0.96 0.11 

HJG I, T 24 Clayton 1.37 0.41 0.473 0.425 

HZ I, V, T 

24 Gumbel 1.12 0.11 

0.181 0.820 23 Clayton 1.31 0.40 

34|2 Clayton 0.49 0.20 

* CvM is the statistic of the Cramer-von Mises test. If the p-value of the C-vine copula model is less than the significance level of 0.05, the model is considered to be 669 

not consistent with the empirical copula. 670 

 671 

  672 



Table 7: Summary of the results of the nonstationary flood distribution models 673 

Stations Covariates Distributions 

 The optimal formulas* of distribution parameters 

AIC SBC 

Selected models     

AK 

RI GA 

WEI_S23 

exp(9.24-2.64RI) exp(-0.769+2.9RI) - 1177.2 1185.5 

RI WEI exp(9.36-2.83RI) exp(0.882-3.18RI) - 1176.9 1185.3 

RI LOGNO exp(9.14-3.86RI) exp(-0.716+3.28RI) - 1180.4 1188.8 

RI GU 11875-13093RI exp(8.5) - 1199.6 1205.9 

RI GEV 7685-15252RI exp(8.3) -0.043 1182.3 1190.6 

RRCI GA exp(9.28-1.11RRCI) exp(-0.825+0.689RRCI) - 1165.3 1173.7 

RRCI WEI exp(9.4-1.17RRCI) exp(0.982-0.884RRCI) - 1163.8 1172.2 

RRCI LOGNO exp(9.19-1.33RRCI) exp(-0.749+0.677RRCI) - 1168.0 1176.4 

RRCI GU 12555-7535RRCI exp(8.4) - 1188.0 1194.2 

RRCI GEV 8460-6722RRCI exp(8.2) -0.096 1172.1 1180.5 

HJG 

RI GA 

GA_S21 

exp(9.7-1.62RI) exp(-0.25) - 1139.9 1146.0 

RI WEI exp(9.75-1.56RI) exp(0.27) - 1141.4 1147.5 

RI LOGNO exp(9.47-1.8RI) exp(-0.17) - 1140.9 1147.1 

RI GU 17955-14399RI exp(8.8) - 1189.5 1195.7 

RI GEV 6976-5930RI exp(8.79-1.49RI) 0.43 1149.9 1160.2 

RRCI GA exp(9.99-1.99RRCI) exp(-0.45) - 1112.5 1118.6 

RRCI WEI exp(10.1-1.97RRCI) exp(0.53) - 1113.2 1119.4 

RRCI LOGNO exp(9.75-1.94RRCI) exp(-0.38) - 1113.9 1120.1 

RRCI GU 23067-20871RRCI exp(9.2-1.7RRCI) - 1121.3 1129.6 

RRCI GEV 12113-10683RRCI exp(9.2-2.01RRCI) 0.051 1112.5 1122.8 

HZ 

RI GA 

WEI_S21 

exp(9.85-2.87RI) exp(-0.42) - 1198.3 1204.9 

RI WEI exp(9.94-2.79RI) exp(0.49) - 1198.6 1204.9 

RI LOGNO exp(9.63-2.93RI) exp(-0.33) - 1201.1 1207.4 

RI GU 18661-23706RI exp(8.8) - 1237.5 1243.7 

RI GEV 9605-13545RI exp(9.03-2.56RI) 0.099 1207.8 1218.3 

RRCI GA exp(9.85-1.52RRCI) exp(-0.61) - 1173.1 1179.4 

RRCI WEI exp(9.92-1.42RRCI) exp(0.73) - 1171.2 1177.5 

RRCI LOGNO exp(9.72-1.55RRCI) exp(-0.51) - 1178.7 1185.0 

RRCI GU 19214-14344RRCI exp(8.86-0.881RRCI) - 1189.7 1198.1 



RRCI GEV 12502-9911RRCI exp(8.96-1.37RRCI) -0.068 1176.0 1186.4 

*The model parameters in the optimal formulas are the posterior mean from the Bayesian inference. 674 

  675 



Table 8: Summary of the rainfall information for the five largest floods after the construction 676 

(1967) of the Danjiangkou reservoir in the HZ station 677 

Year 

Values (Ranking in 1967-2015) 

AMDF [m3/s] OR_JEP [-] I [mm] V [mm] T [day of the year] 

1983 25,600 (1) 0.435 (2) 20.2 (1) 121.4 (19) 281 (2) 

1975 19,900 (2) 0.557 (7) 9.6 (18) 163.6 (13) 277 (6) 

1974 18,200 (3) 0.506 (4) 12.0 (7) 120.4 (20) 278 (4) 

2005 16,800 (4) 0.651 (11) 8.2 (27) 179.7 (10) 278 (4) 

1984 16,100 (5) 0.461 (3) 9.9 (15) 256.3 (4) 273 (9) 

 678 
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Figures 680 

 681 

Figure 1: Flowchart of the nonstationary covariate-based flood frequency analysis using the 682 

rainfall-reservoir composite index (RRCI) 683 

  684 



 685 

Figure 2: Relationship in Equation (2). (a) The contour plot of the RRCI against both the RI and 686 

the OR-JEP; and (b) is the function curves of the RRCI against the OR-JEP under different values of RI 687 

  688 



 689 

Figure 3: Decomposition of a C-vine copula using four variables and three trees (denoted by T1, 690 

T2, and T3) 691 

 692 

  693 



 694 

Figure 4: Geographic location of the reservoirs, gauging stations, and rainfall stations along the 695 

Hanjiang River. 696 

  697 



 698 

Figure 5: Linear correlation between the five MARI variables and the AMDF for (a) the AK 699 

station, (b) the HJG station, and (c) the HZ station 700 

  701 



 702 

Figure 6: Variation of the RI and the RRCI for (a) the AK station, (b) the HJG station, and (c) 703 

the HZ station 704 

  705 



 706 

 707 

 708 

Figure 7: Comparison of the stationary (S0), the RI-dependent (S1), and the RRCI-dependent 709 

(S2) scenarios of the same optimal distributions for (a) the AK station, (b) the HJG station, and (c) the 710 

HZ station. The left panels (a1, b1, and c1) are the QQ plots for the entire AMDF series in each station. 711 



The right panels (a2, b2, and c2) are the plots of the quantile residuals for the seven largest floods (their 712 

values and occurrence years have been listed) in each station, and the means of their quantile residuals 713 

(points) and the corresponding standard errors are indicated by the lines  714 



 715 

 716 

 717 

 718 

Figure 8: Performance of (a) WEI_S23 for the AK station, (b) GA_S21 for the HJG station, and 719 

(c) WEI_S21 for the HZ station. The left panels (a1, b1, and c1) are the centile curves plots in each 720 

station (the 50th centile curves are indicated by the thick blue lines; the light gray-filled areas are 721 



between the 5th and 95th centile curves; the dark grey-filled areas are between the 25th and 75th centile 722 

curves; and the filled red points indicate the observed series). The right panels (a2, b2, and c2) are the 723 

worm plots. A reasonable model should have the plotted points within the 95% confidence intervals 724 

(between the two blue dashed curves) 725 

 726 
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 728 

 729 

Figure 9: Statistical inference of the 100-year return levels with a 95% uncertainty interval using 730 

the optimal RI-dependent and the RRCI-dependent distributions: (a) WEI_S13 and WEI_S23 for the 731 

AK station, (b) GA_11 and GA_S21 for the HJG station, and (c) WEI_S11 and WEI_S21 for the HZ 732 

station. In nonstationary case, the 95% credible interval in the t-year is calculated by a set of the (99th) 733 

percentile estimations which are obtained by the flood distribution functions determined by the values 734 

of both covariate in that year and posterior parameter samples. 735 


