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Reply to Referee #1 

This study describes a modeling framework to account for the role of reservoirs in 
flood frequency analysis. While I think that the topic is generally of interest to the 
readership of this journal, I have a number of comments that should be addressed 
before considering it for publication. 

Response: 

We are truly grateful for your positive comments and helpful suggestions. All your 
comments have been carefully addressed in the revised manuscript. Please see our 
point-by-point responses to your comments below.  

 

-The manuscript needs to be proofread more carefully as there are several typos and 
unclear sentences. I will try point out some of these issues in the comments below, but 
this is not a complete list. 

Response: 

Thanks for your advice. We have carefully proofread the manuscript to correct all 
issues about typos and unclear expressions.  

 

- Line 26: what “previous study”? 

Response: 

This has been deleted in the revised manuscript. 

 

- Lines 46-49: which of the two references is the quote from? 

Response: 

This quote is summarized by Wyżga et al. (2016). In the revision, the other reference 
has been deleted for clarity.  

 

- Line 49: “nature extreme flow” is unclear. 

Response: 

For clarity, we have changed this sentence in the revised manuscript as follows: 

 In general, without reservoirs, the flood extremes downstream of most rain-
dominated basins are mainly related to the extreme rainfall in the drainage area… 

 

- Line 46: “this method makes it suitable” 

Response: 



We can’t find this sentence on Line 46. It may be on Line 75. In the revision, this 
sentence has been rephrased as follows: 

 The continuous simulation method can explicitly account for the reservoir 
effects on flood in the hypothetical case. However, it is difficult to apply this 
approach to the most real cases (Volpi et al., 2018), because the simplifying 
assumptions of this approach are just satisfied in a few of basins with single small 
reservoir. Furthermore, even if the basins meet the simplifying assumptions, the 
detailed information required in this approach are probably unavailable… 

Newly added literature: 

Volpi, E., Di Lazzaro M., Bertola M., Viglione A., and Fiori A., 2018. Reservoir 
Effects on Flood Peak Discharge at the Catchment Scale. Water Resources Research, 
54(11): 9623-9636. https://doi.org/10.1029/2018WR023866 

- Line 77: “the first approach”. Also, please add a reference to support the statement. 

Response: 

Corrected. We have added the reference (please see the above response for “- Line 
46, …”). 

 

- Lines 95-96: unclear why you can’t get the uncertainties in the estimates. Please 
clarify. 

Response: 

Thank you for pointing this out. We realize our statement is imprecise. This statement 
has been rephrased in the revised manuscript.   

 … Another drawback of the ML method is its inconvenience to describe the 
uncertainty of model parameters estimates, because the ML can only get one estimate 
of the model parameters through maximization of the likelihood function.… 
 

- Line 98: “all their cases” 

Corrected. 

 

- Line 104: “for the expression of the distribution” 

Response: 

Corrected. 

 

- Line 106: “in the expression” 

Response: 

Corrected. 



 

- Given that you use a GEV but leave the shape parameter constant (and this is fine), 
please add more 2-parameter distributions (e.g., lognormal, gamma, Weibull, Gumbel) 
which have only two parameters that you can make vary as a function of your 
covariates. 

Response: 

Thank you for this suggestion. In the revision, we have added the four 2-parameter 
distributions (i.e., Lognormal, Gamma, Weibull, Gumbel). The results are 
summarized in Table 7 (newly-added). The results indicate that for the AK and HZ 
station, the nonstationary Weibull distribution with the RRCI-dependent scenario has 
a best performance, while for the HJG station, the nonstationary Gamma distribution 
with the RRCI-dependent scenario is the best model. In the revision, we have added 
Table 1 (newly-added) to summarize the used distributions. And the Table 6 and 
Table 7 are deleted. Detailed analyses of all new results have been included in the 
revised text. In the revised manuscript, all changes to Tables and Figures are listed as 
follows: 

< Table 1> (newly-added) 

<Table 2> (Table 1 in the original manuscript; revised) 

<Table 3> (Table 2 in the original manuscript; revised) 

<Table 5> (Table 4 in the original manuscript; revised) 

<Table 6> (Table 5 in the original manuscript; revised) 

< Table 7> (newly-added) 

< Table 8> (revised) 

<Table 5 in the original manuscript> (deleted) 

<Table 6 in the original manuscript> (deleted) 

<Figure 1> (revised) 

<Figure 2> (revised) 

<Figure 5> (revised) 

<Figure 6> (revised) 

<Figure 7> (newly-added) 

<Figure 8> (Figure 7 in the original manuscript; revised) 

<Figure 9> (Figure 8 in the original manuscript; revised) 

<Figure 9 in the original manuscript > (deleted) 

 

 



- Line 132: “To analyze” 

Response: 

Corrected. 

 

- Line 139: “The Eq. (1)” 

Response: 

Corrected. 

 

- If I get this right, you are assuming that the sediment trapping capability of the 
reservoir is negligible. However, over time the amount of storage decreases. To 
account for the role of sediment in reducing the reservoir capacity over time, I highly 
recommend the use of the Brune curve to account for it. If not Brune curve, please 
account for it in some fashion. 

Response: 

Thank you for this good and insightful suggestion. To address your comment, RI is 
redefined to incorporate the impact of sediment on reducing the reservoir capacity 
over time. In the revision, RI is defined as   
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where LR i  is the loss rate (%) of reservoir capacity in the i-th reservoir, due to the 

sediment deposition. RI is affected by the loss of the reservoir capacity but not too 
much (Figure S2), because the main reservoirs (i.e., Dangjiangkou and Ankang 
reservoirs) have a small loss rate no more than 15% (Table S1 and Figure S1). The 

estimation of LR i  has been presented in Supplementary Information.  

<Table S1> (newly-added) 

<Figure S1> (newly-added) 

<Figure S2> (newly-added) 

Equation 1 is revised. 

Equation S1 is newly-added. 

Equation S2 is newly-added. 

 

- Line 157: “the greater the MRI impact” 

Response: 



Corrected. Note that there is a modification of the name for MRI (revised as MARI) 
in the revised manuscript.  

 

- Line 158: what does “inflexible” mean in this context? 

Response: 

We realize that the word “inflexible” may be inappropriate. Here, what we want to 
express is that the reservoir scheduling will have more constraints from the MARI. 
For example, when MARI with a large volume occurs and its timing is near the end of 
flood season, the reservoir with a operation strategy of increasing flood limit water 
level in stages will probably face a large peak of inflow and a insufficient residual 
capacity due to reservoir impounding. The above explaination will been added in the 
revised manuscript. 
 

- Line 161: “where” 

Response: 

Corrected. 

 

- In terms of predictors, the spatial distribution of rainfall is not really captured. I can 
think of situations in which the same basin-averaged rainfall will have very different 
effects if most of the rainfall occurs far or close to the outlet. How is this addressed 
here? 

Response: 

Thank you for your comments. To capture the spatial distribution of rainfall, for the 
MARI event, the distance (L) between the rainfall station with the maximum rainfall 
and the outlet have been considered. However, the results in Figure 5 (revised) show 
that for HZ station with the drainage area of 142056 km2, there is a weak positive 
linear correlation (Pearson’s r=0.24) between L and AMDF, while for the AK station 
with the drainage area of 38600 km2 and the HJG station 90491 km2, the linear 
correlation between L and AMDF is not significant. In the revised manuscript, this 
variable is considered as candidate to capture the spatial distribution of rainfall, but 
this variable is not selected for the calculation of RRCI, in consideration of both the 
non-significance correlation with AMDF of the study stations and the very complex 
fitting of 5-dimension copula.  

 

- Line 185: “marginals” 

Response: 

Corrected. 

 



- Line 204: “extensively concerned” is unclear. 

Response: 

Revised. 

 

- Line 208: what does “obeys nonstationary distribution” mean? 

Response: 

We have revised this statement as follows: 

Suppose that flood variable  obeys distribution  with the distribution 

parameters  , ,t t t  η . 

 

- What about model selection based on the SBC index? Would you get a more 
parsimonious model? 

Response: 

Thank you for your suggestion. In the revised manuscript, we have added the SBC 
index. And the model selection is based on the SBC criterion. After adding four 2-
parameter distributions (i.e., Lognormal, Gamma, Weibull, Gumbel), the detailed 
results have been summarized in Table 7 (newly-added). 

 

- Line 254: I don’t think this statement is correct, given that you would be able to say 
whether a more complex model should be selected over a more complex one, not if 
the fit is good or bad. 

Response: 

Thank you. This statement has been deleted. In the revised manuscript, the chi-square 
test has been replaced by the SBC criterion. 

 

- Line 266: “, and was completed” 

Response: 

Corrected. 

 

- Line 281: what is the definition of “timing”? 

Response: 

The timing is defined as the end time of MARI. In this study, the timing of MARI is 
equal to the occurrence time of AMDF in the year. In the revision, this definition of 
“timing” has been added. 
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- Line 303: what does “special” mean? 

Response: 

In the revision, this sentence has been deleted. 

 

- Line 314: “was calculated” 

Response: 

Corrected. 

 

- In fitting the copulas, the marginals were treating as stationary. Is this really the case? 
Please test for the presence of nonstationarities in the marginals of the predictors. If 
nonstationary, please account for it. 

Response: 

Thanks. In the revision, the change-points of the variables are tested by the Pettitt test, 
and then, if any, the marginal with the change-point will be addressed by the 
estimation method (Xiong et al., 2015). The results in Table S2 show that there are the 
significant change-points in the mean intensity (I) of the AK and HJG stations and in 
the volume (V) of the HJG station. Results in Table 5 (Table 4 in the original 
manuscript; revised) indicate that the consideration of the nonstationarity in these 
marginals makes little difference.  

< Table S2> (newly-added) 

 

- The role of the Mann-Kendall and Pettitt tests is unclear to me. First of all, the 
results are discussed at a very basic and superficial level. Also, if the response 
variable tends to change with time but because the predictors you have selected 
change over time as well, then whether Y is stationary or not is not very important; 
however, whether the relationship between predictors and predictand doesn’t change 
over time becomes more relevant. Please fix this part.  

Response: 

Thanks. Here, the Mann-Kendall and Pettitt tests are indeed non-essential. We have 
deleted the Mann-Kendall and Pettitt tests in the revised manuscript.  

It might be hard to demonstrate whether the relationship between predictors and 
predictand does not change over time in this study. But this issue can be covered, 
because under the Bayesian framework, the uncertainty of this relationship will be 
reflected in the posteriori distribution of model parameters. 

 

- Lines 362-364: Please apply a correction to account for the fact you are performing 
multiple hypothesis testing 



Response: 

The correction has been made. 

 

- Line 374: “explains” 

Response: 

Revised. 

 

- Line 391: “for every certain multivariate MRI” is unclear. 

Response: 

Deleted. 

 

- Line 402: “It is of interest” 

Response: 

Corrected. 

 

- Line 404: “the remaining capacity of the reservoir” 

Response: 

Corrected. 

 

- Line 409: “due to correspond to” is unclear 

Response: 

Revised.  

 

- Line 423: “related to the construction” 

Response: 

Deleted. 

 

- Line 427: “is weak”; “The comparison” 

Response: 

Deleted. 

 

- Line 428: “indicates” 



Response: 

Corrected. 

 

- Line 429: “in most cases” 

Response: 

Corrected. 

 

- Line 435: “100-year” 

Response: 

Corrected. 

 

- Line 649: “thick blue” what? 

Response: 

We have changed this in the revised manuscript as follows: 

 …the thick blue lines… 

 

- Line 651: “The right panels are” 

Response: 

Corrected. 

 

  



Tables (revised and newly-added) 

Table 1. Summary of the probability density functions, the corresponding moments 

and the used link functions for nonstationary flood frequency analysis.  
Distributions Probability density functions Moments Link functions 
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Table 2. Seven nonstationary scenarios for the formulas of the two distribution 

parameters (i.e., t  and t ). 

Scenario classification Scenario codes 
The formula of distribution parameters 

g1(t) g2(t) 
Stationary (S0) S0   

RI-dependent (S1) 
S11 RI  
S12  RI 
S13 RI RI 

RRCI-dependent (S2) 
S21 RRCI  
S22  RRCI 
S23 RRCI RRCI 

 

 

 

  



Table 3. Information of the five major reservoirs in Hanjiang River basin. 

Reservoirs Longitude Latitude Area (km2) Year Capacity (109 m3) 
Shiquan 108.05 33.04 23400 1974 0.566 
Ankang 108.83 32.54 35700 1992 3.21 

Huanglongtan 110.53 32.68 10688 1978 1.17 
Dangjiangkou 111.51 32.54 95220 1967 34.0 

Yahekou 112.49 33.38 3030 1960 1.32 

 

 

 

  



Table 5. Correlation coefficients between RRCI and AMDF. 

Subset of 
rainfall 

variables  

 
AK 

 
HJG 

 
HZ 

 
Pearson Kendall Spearman 

 
Pearson Kendall Spearman 

 
Pearson Kendall Spearman 

-* 
 

-0.37 -0.18 -0.28 -0.55 -0.37 -0.54 
 

-0.53 -0.38 -0.55 
M 

 
-0.27 -0.27 -0.37 -0.67 -0.53 -0.74 

 
-0.45 -0.37 -0.51 

I 
 

-0.26 -0.25 -0.34 -0.74 -0.57 -0.79 
 

-0.54 -0.41 -0.56 
V 

 
-0.32 -0.28 -0.39 -0.63 -0.49 -0.69 

 
-0.57 -0.48 -0.65 

T 
 

-0.11 -0.17 -0.24 -0.68 -0.55 -0.73 
 

-0.48 -0.40 -0.57 
M, I 

 
-0.37 -0.28 -0.38 -0.70 -0.56 -0.77 

 
-0.56 -0.43 -0.58 

M, V 
 

-0.42 -0.29 -0.40 -0.64 -0.50 -0.71 
 

-0.56 -0.45 -0.60 
M, T 

 
-0.37 -0.26 -0.36 -0.69 -0.57 -0.77 

 
-0.64 -0.46 -0.63 

I, V 
 

-0.46 -0.31 -0.42 
 

-0.71 -0.54 -0.76 
 

-0.65 -0.50 -0.67 
I, T 

 
-0.34 -0.22 -0.31 -0.73 -0.60 -0.80 

 
-0.68 -0.50 -0.66 

V, T 
 

-0.43 -0.28 -0.39 -0.68 -0.55 -0.75 
 

-0.69 -0.52 -0.71 
M, I, V 

 
-0.49 -0.31 -0.42 -0.65 -0.53 -0.74 

 
-0.63 -0.47 -0.63 

M, I, T 
 

-0.41 -0.27 -0.37 -0.68 -0.57 -0.78 
 

-0.67 -0.49 -0.66 
M, V, T 

 
-0.50 -0.29 -0.40 -0.65 -0.56 -0.76 

 
-0.67 -0.49 -0.67 

I, V, T 
 

-0.51 -0.31 -0.41 -0.67 -0.58 -0.78 
 

-0.71 -0.53 -0.70 
M, I, V, T 

 
-0.53 -0.31 -0.42   -0.65 -0.57 -0.77   -0.69 -0.52 -0.69 

*The values in the first row are the correlation coefficients between RI and flood series. 

  



Table 6. Results of copula models for scheduling-related rainfall variables. 

Stations 
Scheduling-

related variables 
Pairs Copula type Parameters c Kendall's tau 

Goodness-of-fit test based on the 
empirical copula 

CvM* p-value 

AK M, I, V, T 

14 Clayton 0.16 0.08 

0.169 0.86 

13 Clayton 1.28 0.39 
12 Clayton 1.01 0.33 

24|1 Frank 1.21 0.17 
23|1 Frank -2.24 -0.24 

34|12 Clayton 0.96 0.11 
HJG I, T 24 Clayton 1.37 0.41 0.473 0.425 

HZ I, V, T 
24 Gumbel 1.12 0.11 

0.181 0.82 23 Clayton 1.31 0.40 
34|2 Clayton 0.49 0.20 

* CvM is the statistic of the Cramer-von Mises test; if the p-value of the C-vine copula model is less than the significance level of 0.05, 

the model is considered to be not consistent with the empirical copula. 

  



Table 7. Summary of results of the nonstationary flood distribution models. 

Stations Covariates Distributions 
 The optimal formulas* of distribution parameters 

AIC SBC Selected 
models  

𝜇𝑡 𝜎𝑡 𝜉 

AK 

RI GA 

WEI_S23 

exp(9.24-2.64RI) exp(-0.769+2.9RI) - 1177.2 1185.5 
RI WEI exp(9.36-2.83RI) exp(0.882-3.18RI) - 1176.9 1185.3 
RI LOGNO exp(9.14-3.86RI) exp(-0.716+3.28RI) - 1180.4 1188.8 
RI GU 11875-13093RI exp(8.5) - 1199.6 1205.9 
RI GEV 7685-15252RI exp(8.3) -0.043 1182.3 1190.6 
RRCI GA exp(9.28-1.11RRCI) exp(-0.825+0.689RRCI) - 1165.3 1173.7 
RRCI WEI exp(9.4-1.17RRCI) exp(0.982-0.884RRCI) - 1163.8 1172.2 
RRCI LOGNO exp(9.19-1.33RRCI) exp(-0.749+0.677RRCI) - 1168.0 1176.4 
RRCI GU 12555-7535RRCI exp(8.4) - 1188.0 1194.2 
RRCI GEV 8460-6722RRCI exp(8.2) -0.096 1172.1 1180.5 

HJG 

RI GA 

GA_S21 

exp(9.7-1.62RI) exp(-0.25) - 1139.9 1146.0 
RI WEI exp(9.75-1.56RI) exp(0.27) - 1141.4 1147.5 
RI LOGNO exp(9.47-1.8RI) exp(-0.17) - 1140.9 1147.1 
RI GU 17955-14399RI exp(8.8) - 1189.5 1195.7 
RI GEV 6976-5930RI exp(8.79-1.49RI) 0.43 1149.9 1160.2 
RRCI GA exp(9.99-1.99RRCI) exp(-0.45) - 1112.5 1118.6 
RRCI WEI exp(10.1-1.97RRCI) exp(0.53) - 1113.2 1119.4 
RRCI LOGNO exp(9.75-1.94RRCI) exp(-0.38) - 1113.9 1120.1 
RRCI GU 23067-20871RRCI exp(9.2-1.7RRCI) - 1121.3 1129.6 
RRCI GEV 12113-10683RRCI exp(9.2-2.01RRCI) 0.051 1112.5 1122.8 

HZ 

RI GA 

WEI_S21 

exp(9.85-2.87RI) exp(-0.42) - 1198.3 1204.9 
RI WEI exp(9.94-2.79RI) exp(0.49) - 1198.6 1204.9 
RI LOGNO exp(9.63-2.93RI) exp(-0.33) - 1201.1 1207.4 
RI GU 18661-23706RI exp(8.8) - 1237.5 1243.7 
RI GEV 9605-13545RI exp(9.03-2.56RI) 0.099 1207.8 1218.3 
RRCI GA exp(9.85-1.52RRCI) exp(-0.61) - 1173.1 1179.4 
RRCI WEI exp(9.92-1.42RRCI) exp(0.73) - 1171.2 1177.5 
RRCI LOGNO exp(9.72-1.55RRCI) exp(-0.51) - 1178.7 1185.0 
RRCI GU 19214-14344RRCI exp(8.86-0.881RRCI) - 1189.7 1198.1 
RRCI GEV 12502-9911RRCI exp(8.96-1.37RRCI) -0.068 1176.0 1186.4 

*The model parameters in the optimal formulas are the posterior mean from Bayesian inference. 

  



Table 8. Summary of the rainfall information for the five largest floods after the 

construction (1967) of Danjiangkou reservoir in HZ station. 

Year 
Values (Ranking in 1967-2015) 

AMDF [m3/s] OR_JEP [-] I [mm] V [mm] T [day of the year] 

1983 25600 (1) 0.435 (2) 20.2 (1) 121.4 (19) 281 (2) 

1975 19900 (2) 0.557 (7) 9.6 (18) 163.6 (13) 277 (6) 

1974 18200 (3) 0.506 (4) 12.0 (7) 120.4 (20) 278 (4) 

2005 16800 (4) 0.651 (11) 8.2 (27) 179.7 (10) 278 (4) 

1984 16100 (5) 0.461 (3) 9.9 (15) 256.3 (4) 273 (9) 

 

 

  



Figures (revised and newly-added) 

 

 

Figure 1. Flowchart of nonstationary covariate-based flood frequency analysis 

with a rainfall-reservoir composite index (RRCI).  

  



 

Figure 2. Relationship in the Eq. (2). (a) is the contour plot of RRCI against 

both RI and OR-JEP; (b) is the function curves of RRCI against OR-JEP under the 

different values of RI. 

  



 

Figure 5. Linear correlation between the five MARI variables and AMDF for 

(a) AK station, (b) HJG station and (c) HZ station. 

  



 

Figure 6. Variation of RI and RRCI for (a) AK station, (b) HJG station and (c) 

HZ station. 

  



 

 

 

Figure 7 Comparison of the stationary (S0), the RI-dependent (S1) and the 

RRCI-dependent (S2) scenarios of the same optimal distributions for (a) AK station, 

(b) HJG station and (c) HZ station. The left panels (a1, b1 and c1) are the QQ plots 

for the whole AMDF series in each station. The right panels (a2, b2 and c2) are the 

plots of quantile residuals for the seven largest floods (their values and occurrence 

years have been listed) in each station, and the means of their quantile residuals 

(points) and the corresponding standard errors are indicated by the lines. 

  



 

 

 

Figure 8. Performance of (a) WEI_S23 for AK station, (b) GA_S21 for HJG 

station and (c) WEI_S21 for HZ station. The left panels (a1, b1 and c1) are the centile 

curves plots in each station (the 50th centile curves are indicated by the thick blue 

lines; the light gray-filled areas are between the 5th and 95th centile curves; the dark 

grey-filled areas are between the 25th and 75th centile curves; the filled red points 

indicate the observed series). The right panels (a2, b2 and c2) are the worm plots; a 

reasonable model should have the plotted points within the 95% confidence intervals 

(between the two blue dashed curves). 

 



 

 

 

Figure 9. Statistical inference of the 100-year return levels with the 95% 

uncertainty interval using the optimal RI-dependent and RRCI-dependent 

distributions: (a) WEI_S13 and WEI_S23 for AK station, (b) GA_11 and GA_S21 for 

HJG station, and (c) WEI_S11 and WEI_S21 for HZ station. 

 

  



Supplementary Information 

Estimation of the loss rate (%) of reservoir capacity 

To estimate the variation of LR i  over time, it is assumed that there is the same 

amount of sediment in each year. Then, LR i  is estimated by  
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where 𝑛𝑖 is the number of years which the i-th reservoir has been used,  m
iL  is the 

mean of annual loss of reservoir capacity (m3) for the i-th reservoir, s
iw  is the mean of 

annual inflow sediment mass (kg) for the i-th reservoir,   is the density of the 

deposited sediment (kg/m3) and Tei  is the trap efficiency (%). Based on the Brune 

method (Brune, 1953; Mulu and Dwarakish, 2015), the trap efficiency is estimated 
with reservoir capacity-inflow ratio as follows 
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where m
iI  is the mean of annual inflow volume in the i-th reservoir (m3/day). The data 

in the previous literature (Guo, 1995; Hu, 2009; Liu, 2017) are collected to control the 

estimation errors of m
iL . Please see Table S1.  

Reference: 

Hu, A.Y., 2009. Analysis of sedimentation characteristics of Danjiangkou Reservoir. 
Research in Soil and Water Conservation, 16(5):237-240. (In Chinese) 

Brune, G.M., 1953. Trap Efficiency of Reservoirs. Trans. Am. Geophysical Union, 34 
(3), 407-418. 

Guo, J.M., 1995. Analysis of sedimentation in Ankang Reservoir and its impact on the 
reservoir operation. Northwest Hydropower, 1995(3):9-12. (In Chinese) 

Liu, J.X., 2017. Sedimentation characteristic analysis and desilting scheme 
optimization of Shiquan Reservoir. Pearl River, 38(1): 56-59. (In Chinese) 

Mulu, A., and Dwarakish G. S., 2015. Different Approach for Using Trap Efficiency 
for Estimation of Reservoir Sedimentation. An Overview, Aquatic Procedia, 4, 847-
852. 



 

Table S1. Summary for the calculation of the mean of annual loss of reservoir 

capacity  

Reservoirs 
RCi  m

iI
 

s
iw

 
Tei  m

iL  (109 m3) 

(109 m3) (109 m3) (109 kg) (%) From previous studies From Eq.(S2)* 
Shiquan 0.566 11.73 12.6 88% 0.006 0.008 
Ankang 3.21 19.17 27.1 94% - 0.018 

Huanglongtan 1.17 6.12 8.58 94% 0.007 0.006 
Dangjiangkou 34.0 39.48 59.8 97% 0.044 0.042 

Yahekou 1.32 1.09 - 98% 0.007 - 

* 31400 kg/m    

  



Table S2. Results of the change-point detection for the four MARI variables. 

Variables 
AK HJG HZ 

change-point p-value* change-point p-value change-point p-value 
M 1976 1.037 1989 0.371 1971 1.278 
I 1987 0.031 1985 0.009 1990 0.080 
V 2009 0.746 1984 0.042 1984 0.769 
T 1992 1.180 1984 0.986 1984 1.367 

*Less than 0.05 is considered significant.  

  



Figure S1. Interannual variation of loss rate of reservior capacitity for each 

reservoir in the study area. 

 

  



Figure S2. Impact of reservoir capacity loss on RI for AK, HJG and HZ 

stations. 

 

  



Figure S3. Preliminary analysis of the snowmelt influences on the streamflow 

in the catchment upstream the AK station. (a) is the total number of times for AMDF 

in each month; (b) is the monthly average temperature; (c) is the monthly average 

streamflow; and (d) is the monthly average precipitation. 

 



Glossary and Notation: 

0 1 0 1, , ,    : parameters of nonstationary model.  

iA : total basin area upstream of the i-th reservoir. 

TA : total basin area upstream of the gauge station. 

AIC: Akaike information criterion. 

AK: Ankang (gauging station). 

AMDF: annual maximum daily flow (series). 

CDF: Cumulative distribution function 

d : dimension of copulas.  

df : freedom degree. 

GA: Gamma distribution 

GEV: Generalized Extreme Value distribution. 

GEV_S23: nonstationary GEV distribution with the S23 scenario. 

GML: generalized maximum likelihood (method). 

GU: Gumbel distribution. 

HJG: Huangjiagang (gauging station). 

HZ: Huang zhuang (gauging station). 

I : intensity, the mean of daily rainfall in MARI. 

IDW: Inverse distance weighting method. 

IRI: impounded runoff index, a ratio of reservoir capacity to mean annual runoff. 

l: maximized likelihood of the model object. 

L : distance, the distance between the rainfall center and the outlet. 

LOGNO: Lognormal distribution. 

LR i : loss rate (%) of total storage capacity of the i-th reservoir due to the sediment 
deposition. 

t : mu parameter of the distribution functions used. 

cM : length of the Markov chain. 

M : maximum, the maximum of daily rainfall in MARI. 

MARI: multiday antecedent rainfall input. 

MCMC: Markov chain Monte Carlo. 

ML: maximum likelihood (method). 

n : number of data points. 



N : total number of reservoirs upstream of the gauge station. 

OR-JEP: OR-joint exceedance probability. 

MARIP : OR-joint exceedance probability. 

iθ : parameter vector of the i-th marginal distribution. 

cθ : copula parameter vector. 

θ : parameter vector of the whole n-dimensional distribution. 

GEV_S23θ : parameters of the GEV_S23 model. 

GEV_S23
ˆ iθ : an estimation for the parameters of the GEV_S23 model. 

Q : mean annual runoff. 

RRCI: rainfall-reservoir composite index. 

RI: reservoir index. 
RC: reservoir capacity. 

RCi : total storage capacity of the i-th reservoir. 

t : sigma parameter of the distribution functions used. 

S0: constant scenario.  

S1: RI-dependent scenarios. 

S2: RRCI-dependent scenarios. 

SBC: Schwarz Bayesian criterion. 

T : timing, the end time of MARI in the year. 

iu : univariate marginal distribution of . 

V : volume, the total of daily rainfall in MARI. 

WEI: Weibull distribution. 

 : shape parameter of the Generalized Extreme Value distribution. 

1 2, ,... dX X X : scheduling-related MARI variables. 
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Reply to Referee #2 

General Comments:  

The manuscript presents downstream flood frequency analysis framework using the 
annual maximum daily flows (AMDF). Joint cumulative probability of multiple 
rainfall variables (maximum, intensity, volume and timing) are considered as 
multiday rainfall input (MRI) and employed in C-vine copula model. Flood frequency 
model is defined by nonstationary generalized extreme value (NGEV) distribution 
model including uncertainty deliberation with Bayesian approach. Rainfall reservoir 
composite index (RRCI) is proposed and used to quantify the reservoir effects as 
covariate for expression of distribution parameters. According to the different metrics, 
the results of the proposed method outperforms typical reservoir index (RI) based 
flood frequency model which only accounts reservoir capacity and mean annual 
runoff. I believe the study is quite interesting for the readership of the journal and 
contributing to better modeling of downstream flood peak mechanism. The model 
results give reasonable outcomes and can be useful for regions where large reservoirs 
are located. The manuscript deserves publication after a major revision considering 
my below comments. 

Response: 
Thank you very much for the good summary and the positive evaluation of the paper. 
All your valuable comments have been carefully addressed in the revision. Please see 
our point to point replay below. 

 

- Language needs some refinements before publication. Also, there are some typos 
and repeated sentences, which make hard to follow and disturb the readability. It 
would be nice to revise the manuscript totally by dividing long sentences and 
eliminating the repeated ones. Same tense should be used (is or was) thought the text. 

Response: 
Thanks for your kind suggestion. We have carefully revised the text to correct all 
issues about typos, unclear long sentences, repeated sentences and different tenses.  

 

- Studies dealing with downstream hydrograph alterations caused by dams are not 
discussed enough in the literature.  

Response: 
In the first paragraph of the modified version, we have added literature review on 
studies dealing with downstream hydrograph alterations caused by dams as follows: 

….In the literature, the significant hydrological alterations caused by 
reservoirs are demonstrated in the many areas of the world. Graf (1999) showed that 
the dams have greater effects on the streamflow than the global climate change in 
America. Benito and Thorndycraft (2005) reported various significant changes of the 



pre- and post-dam hydrologic regimes (e.g., minimum and maximum flows over 
different durations) across the United States. Batalla et al. (2004) demonstrated an 
evident reservoir-induced hydrologic alteration in the North-Eastern Spain. Yang et 
al. (2008) indicated the spatial variability of the hydrological regimes alteration 
caused by the reservoirs in the middle and lower Yellow River, China. Mei et al. 
(2015) found that the Three Gorges Dam, the largest dam in the world, has 
significantly changed the downstream hydrological regimes. In recent years, the 
cause-effect mechanisms of the downstream flood peak reduction were also 
investigated in some literature (Ayalew et al., 2013; 2015; Volpi et al., 2018). For 
example, Volpi et al. (2018) suggested that for a single reservoir, the downstream 
flood peak reduction is mainly dependent on its position along the river, its spillway 
and its storage capacity based on a parsimonious instantaneous unit hydrograph-based 
model. These studies have revealed that it is crucial to assess the impacts of reservoirs 
on downstream flood regimes for the success of downstream flood risk management. 
Newly added literature 

Ayalew, T.B., Krajewski W.F., Mantilla R., 2015. Insights into Expected Changes in 
Regulated Flood Frequencies due to the Spatial Configuration of Flood Retention 
Ponds. Journal of Hydrologic Engineering, 20(10): 04015010. 

Graf, W.L., 1999. Dam nation: A geographic census of American dams and their 
large‐scale hydrologic impacts. Water resources research, 35(4): 1305-1311. 

Mei, X., Dai, Z., Van Gelder, P.H.A.J.M., and Gao, J., 2015. Linking Three Gorges 
Dam and downstream hydrological regimes along the Yangtze River, China. Earth 
and Space Science, 2(4): 94-106. 

Volpi, E., Di Lazzaro M., Bertola M., Viglione A., and Fiori A., 2018. Reservoir 
Effects on Flood Peak Discharge at the Catchment Scale. Water Resources Research, 
54(11): 9623-9636. 

Yang, T., Zhang Q., Chen Y.D., Tao X., Xu C.Y., and Chen X., 2008. A spatial 
assessment of hydrologic alteration caused by dam construction in the middle and 
lower Yellow River, China. Hydrological Processes: An International Journal, 22(18): 
3829-3843. 

 

- As stated in Lines 45-49, there are several factors for the generation of the floods. 
Authors focused on meteorological conditions, but also indicating the importance of 
hydrological conditions such as snow cover. The elevation range of the study area is 
quite wide (13 – 3493 m) and most upstream reservoirs (especially Ankang gauge) 
should be dominated by snowmelt. The response of the basin will be complex 
compared to lower altitude basins. There is not much information about the 
assessment of the snowmelt contribution of the catchments and their effects on 
operational decisions. It is also interesting to see that linear correlations between the 
timing variable of multivariate MRI and AMDF give lowest (almost zero) Pearson r 
for AK gauge in Figure 5. Would snowmelt be a reason for this? If this is the case, 
maybe RRCI is not enough to explain downstream peak floods for the regions where 



reservoirs fed by snowmelt? Temperature data can also be effective to estimate flood 
peaks in such cases. I believe this situation should be clarified.  

Response: 
Thank you for this comment. Although the elevation range of the study area is quite 
wide (13–3493 m), the study area is a rainfall-dominated area and the snowmelt 
contribution is quite limited. This area has a warm temperate semi-humid continental 
monsoon climate. The temperature in the basin is not much different from upstream to 
downstream. The timing of flood is the main rainfall period from June to September 
(Figure S3a, c and d). And the winter is warm as shown in Figure S3b. It is indicated 
that the rainfall is the main contribution for floods. The above information will be 
added in the revised manuscript. 

<Figure S3> (newly-added) 

 

Figure S3. Preliminary analysis of the snowmelt influences on the streamflow in the 

catchment upstream the AK station. (a) is the total number of times for AMDF in each 

month; (b) is the monthly average temperature; (c) is the monthly average streamflow; 

and (d) is the monthly average precipitation. 

The reason why AK gauge has a weak linear correlation between the timing variable 
of multivariate MRI and the annual maximum flood in Figure 5 is probably that there 
is a non-significant effect of the staged operation of the reservoirs on the floods. The 
reservoirs upstream of AK station have a smaller capacity than HJG and HZ stations. 
There may be a random variation of the remaining storage capacity in each staged 
period of the flood season for AK station. Thus, in the long term, the reduction of the 
peaks of AK station tends to be not different in each staged period of the flood season.  



And Figure S3 has been added in Supplementary Information.  

 

- In Data Section, the explanation of reservoir data is based on only their capacities. 
There is not much information how they are operated. For example, for what purposes 
they are operated, or how their reservoir pools are divided (flood control, conservation, 
dead storage etc.)?  

Response: 
Agree. In the revision, more information on the reservoir operation has been added as 
follows: 

… The Danjiangkou Reservoir in central China's Hubei province is the largest 
one in this basin, and was completed by 1967. As a multi-purpose reservoir, it mainly 
aims to supply water and control floods, and is also used for electricity generation and 
irrigation. The reservoir has the total storage capacity of 21.0 billion m3, the dead 
storage capacity of 7.23 billion m3, the effective storage capacity of 10.2 billion m3, 
and the flood control capacity of 7.72 billion m3. After the Danjiangkou Dam 
Extension Project in 2010, the Danjiangkou Reservoir gained an additional capacity 
of 13.0 billion m3 and an extra flood control storage capacity of 3.3 billion m3. 
Besides, this reservoir is operated by the strategy of staged increasing flood limit 
water level in the flood control season (Zhang et al., 2009). 
Newly added literature 

Zhang L., Xu J., Huo, J., Chen J., 2009. Study on Stage Flood Control Water 
Level of Danjiangkou Reservoir. Journal of Yangtze River Scientific Research 
Institute, 26 (3): 13-14. (In Chinese)  

 

- It is not clear why inverse distance weighting (IDW) is selected for areal distribution 
of the rainfall records. The catchments are large and elevation ranges in between 13-
3493 m, so that this method may not be representative especially for mountainous 
regions.  

Response: 
The reason why IDW is selected is that IDW is a handy method. Due to both the data 
limitation (16 sites) and the unstable relationship between rainfall and elevation, it is 
hard for us to demonstrate whether the other methods (e.g., the Kriging methods) will 
be better. In this study, the rainfall records from all national meteorological stations in 
the study area are used. The precision of areal rainfall with the IDW method should be 
able to meet the requirement in the study. In the revision, the error of estimation of 
areal rainfall has been discussed to remind readers in the discussion as follows: 

…The areal-averaged MARI is based on the records of 16 rainfall stations with 
the IDW method; the estimation error of areal-averaged rainfall may be transferred to 
the OR-JEP estimation error; the additional rainfall site data and spatial distribution 
information are needed to reduce the OR-JEP estimation error. Nonetheless, the good 
performance of downstream flood frequency modeling demonstrates the MARI 
samples still remain representative in this study. 
 



- Maybe it would be better to call “downstream flood frequency analysis” rather than 
“flood frequency analysis” throughout the manuscript? 

Response: 
Agree. We have made a revision for this throughout the manuscript. 

 

- Variation of RI and RRCI are quite different for AK gauge station in Figure 6. 
Please state the reason  

Response: 
Thanks. For AK gauging station, there is a quite difference in the variation of RI and 
RRCI. This is because RRCI is dependent on both RI and the OR-joint exceedance 
probability (OR-JEP). As shown in Figure 2 (revised), in spite of a low value of RI, 
the MARI with a high OR-JEP value can get a high RRCI. In fact, the reservoir effect 
on the downstream flood is great under the condition of the fewer constraints (high 
OR-JEP values) from MARI. Thus, it is expected that RRCI can reflect a real 
reservoir effect more than RI. 

 

- Uncertainty of flood estimates are greater in AK stations (Figure 8) compared to the 
others. The reason should be explained.  

Response: 
Thanks for this suggestion. The uncertainty range of AK station is larger than HJG 
and HZ stations. The possible explanation to the larger uncertainty range is that the 
sample size (1993-2015) of the regulated floods at AK station is smaller, and, 
furthermore, the dependent relationship between RRCI and AMDF at AK station is 
weaker. This explanation has been added in the revised manuscript. 

 

- Discussion section is comparatively short to conclusion part. In general the paper 
describes a usable approach but the main weakness is insufficient discussion of the 
available results. I mean, it is stated that the downstream flood regime should be 
altered by upstream reservoirs and the magnitude of flood peaks are reduced due to 
the storage capacity of them. This is expected in such a reservoir system by analyzing 
long period AMDF values (see Figure 7, observed AMDF). Rather, the author should 
elaborately clarify GEV model results in Discussion part. Main results should be 
given under discussion, and conclusion should briefly summarize them. Considering 
these, I guess these two sections should be totally revised.  

Response: 
Thank you very much for this comment. Discussion and Conclusion have been totally 
revised. Discussion has been put in the Section 4.4 as follows: 



4.4 Discussion 

The long-term variation of the AMDF series (Figure 8) indicates that the 

upstream reservoirs have evidently altered the downstream flood regimes. As an 

example, since the completion of Danjiangkou reservoir in 1967, the flood magnitude 

of HZ station is evidently reduced overall. This is consistent with the results on the 

effects of reservoirs on the hydrological regime of this area in previous literature 

(Cong et al., 2013; GUO et al., 2008; Jiang et al., 2014; Lu et al., 2009). In this study, 

it is found that there is a significant difference between those downstream floods 

affected by the same reservoir system (with the same RI value). In most cases, relative 

small downstream floods were obtained. However, it is of interest to note that there 

still occurred unexpected large downstream floods in few cases, in spite of a large RI 

value. For example, most values of AMDF in HZ station are less 10000 m3/s since 

1967, but the values of AMDF in 1983 and in 1975 are 25600 m3/s and 19900 m3/s, 

respectively. It is highlighted that those unexpected large downstream floods are 

probably related to the MARI effects on reservoir operation. The five largest 

(unexpected) floods since 1967 and the corresponding values of the scheduling-

related MARI variables in the HZ station are shown in Table 8. It is found that the 

largest floods of 1967-2015 occurred in 1983. For this flood event, the MARI is a rare 

event (with the OR-JEP value of 0.435 ranking the second in 1967-2015) due to the 

largest mean intensity ( 20.2 mmI  ) and the second late occurrence ( 281T  ). 

Surprisingly, all the timing values of the MARI for these five unexpected downstream 

floods show the high rankings (2-9th). Those timing values are near the end (about the 

300th day of the year) of the flood control period (July-October) in this area. Actually, 

near the end of the major flood control period, the storage capacity able to use should 

be decreased, because according to the operation rules of Danjiangkou reservoir 

(Zhang et al., 2009), there is a staged increasing flood limit water level in the flood 

control season. One important cause for those unexpected large downstream floods is 

probably that the remaining storage capacity at the end of flood season is not 

sufficient to reduce some late floods. Therefore, in addition to the own storage 

capacity of reservoirs, the MARI effects should be indispensably considered when 

attempting to accurately quantify the reservoir effects on downstream floods.  

With the combination of both RI and OR-JEP, RRCI has a significant 



difference from RI (Figure 6). With a few exceptions, RRCI values are higher than RI 

values. It is indicated that the real reservoir impact may be underestimated by RI in 

most cases. Moreover, RI will also probably overestimate the real reservoir impact in 

few cases, because of no considering some special rainfall events (i.e., the MARI with 

low values of OR-JEP). The results of the covariate-based nonstationary flood 

frequency analysis (Table 7, Figure 7 and Figure 8) demonstrate that compared to the 

RI-dependent scenario, the RRCI-dependent scenario for the optimal nonstationary 

distribution more completely captures the presence of nonstationarity in the 

downstream flood frequency. Therefore, RRCI might be a useful index in accessing 

the reservoir effects on the downstream flood frequency. 

Finally, the estimation errors of OR-JEP should be noted. (1) Only those 

MARI samples which corresponds to the timing of AMDF are included to estimate 

OR-JEP; this means that some extreme MARI samples which corresponds to the non-

maximum flow are not included, resulting in the estimation error for OR-JEP; to 

reduce this error, it might be worth considering the use of the peaks-over-threshold 

sampling method. (2) The areal-averaged MARI is based on the records of 16 rainfall 

stations with the IDW method; the estimation error of areal-averaged rainfall may be 

transferred to the OR-JEP estimation error; the additional rainfall site data and spatial 

distribution information are needed to reduce the OR-JEP estimation error. 

Nonetheless, the good performance of downstream flood frequency modeling 

demonstrates the MARI samples still remain representative in this study. 

5 Conclusions  

Accurately assessing the impact of reservoirs on downstream floods is an 

important issue for flood risk management. In this study, to evaluate the effects of 

reservoirs on downstream flood frequency of Hanjiang River, the rainfall-reservoir 

composite index (RRCI) is derived from the Eq. (2) which takes account of the 

combination of the reservoir index (RI) and the OR-joint exceedance probability (OR-

JEP) of scheduling-related rainfall variables. The main findings are summarized as 

follows: (1) the magnitude of the downstream flood events has been reduced by the 

reservoir system in the study area; however, the long-term variation of the observed 

AMDF series show that despite of the large reservoirs, the unexpected large flood 

events still occurred several times, e.g., at Huangzhuang station in 1983; and one 

important cause for the unexpected large floods of Huangzhuang station may be 



related to the operation strategy of staged increasing flood limit water level for 

Danjiangkou reservoir. (2) According to the results of the covariate-based 

nonstationary flood frequency analysis for each station, compared to the optimal RI-

dependent distribution, the optimal RRCI-dependent distribution more completely 

captures the presence of nonstationarity in the downstream flood frequency. (3) 

Furthermore, in estimating 100-year return level for each station, the optimal RRCI-

dependent distribution provides a lower 100-year return level but there exist 

exceptions, and provides a smaller uncertainty range associated with the uncertainty 

of model parameter.  

Consequently, this study demonstrates the necessity of including the 

antecedent rainfall effects, in addition to the effects of reservoir storage capacity, on 

reservoir operation in assessing the reservoir effects on downstream flood frequency. 

The study might provide a comprehensive approach for the downstream flood risk 

management under the impacts of reservoirs.  

 

- Figure and tables are appropriate. However, I have some doubts about the usefulness 
of Figure 9 to illustrate the reservoir effects on flood risk. It is not combining the 
results of the frequency model. It is not clear for what reason this figure stands for 
especially at the end of the result section. (I suggest removing this figure, as it is a bit 
confusing in terms of central theme of the paper). If authors would like to include it, I 
suggest them to re-organize its location through the manuscript and revise the 
descriptions to make it more clear (in Lines 387-395). 

Response: 
Agree. In order to highlight the central theme of the paper, Figure 9 has been deleted 
in the revised manuscript.  

 

Specific comments:  

-There are too much abbreviation in the manuscript. Maybe a glossary would be 
useful for the readers.  

Response: 
Thanks for this suggestion. In Supplementary Information, we have added a glossary 
for these abbreviations as follows: 

Glossary and Notation: 

0 1 0 1, , ,    : parameters of nonstationary model.  

iA : total basin area upstream of the i-th reservoir. 



TA : total basin area upstream of the gauge station. 

AIC: Akaike information criterion. 

AK: Ankang (gauging station). 

AMDF: annual maximum daily flow (series). 

CDF: Cumulative distribution function 

d : dimension of copulas.  

df : freedom degree. 

GA: Gamma distribution 

GEV: Generalized Extreme Value distribution. 

GEV_S23: nonstationary GEV distribution with the S23 scenario. 

GML: generalized maximum likelihood (method). 

GU: Gumbel distribution. 

HJG: Huangjiagang (gauging station). 

HZ: Huang zhuang (gauging station). 

I : intensity, the mean of daily rainfall in MARI. 

IDW: Inverse distance weighting method. 

IRI: impounded runoff index, a ratio of reservoir capacity to mean annual runoff. 

l: maximized likelihood of the model object. 

L : distance, the distance between the rainfall center and the outlet. 

LOGNO: Lognormal distribution. 

LR i : loss rate (%) of total storage capacity of the i-th reservoir due to the sediment 
deposition. 

t : mu parameter of the distribution functions used. 

cM : length of the Markov chain. 

M : maximum, the maximum of daily rainfall in MARI. 

MARI: multiday antecedent rainfall input. 

MCMC: Markov chain Monte Carlo. 

ML: maximum likelihood (method). 

n : number of data points. 

N : total number of reservoirs upstream of the gauge station. 

OR-JEP: OR-joint exceedance probability. 

MARIP : OR-joint exceedance probability. 

iθ : parameter vector of the i-th marginal distribution. 



cθ : copula parameter vector. 

θ : parameter vector of the whole n-dimensional distribution. 

GEV_S23θ : parameters of the GEV_S23 model. 

GEV_S23
ˆ iθ : an estimation for the parameters of the GEV_S23 model. 

Q : mean annual runoff. 

RRCI: rainfall-reservoir composite index. 

RI: reservoir index. 
RC: reservoir capacity. 

RCi : total storage capacity of the i-th reservoir. 

t : sigma parameter of the distribution functions used. 

S0: constant scenario.  

S1: RI-dependent scenarios. 

S2: RRCI-dependent scenarios. 

SBC: Schwarz Bayesian criterion. 

T : timing, the end time of MARI in the year. 

iu : univariate marginal distribution of . 

V : volume, the total of daily rainfall in MARI. 

WEI: Weibull distribution. 

 : shape parameter of the Generalized Extreme Value distribution. 

1 2, ,... dX X X : scheduling-related MARI variables. 
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Response: 
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- Lines 52-54, requires more up-to-date references.  
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- Lines 76-78, even a small reservoir could be very complex to derive operational 
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on flood in the hypothetical case. However, it is difficult to apply this approach to the 
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approach are just satisfied in a few of basins with single small reservoir. Furthermore, 
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in this approach are probably unavailable. 
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- Line 108, it is a bit vague what do you mean by “more accurate effects of reservoirs?”  

Response: 
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The precision and accuracy in the quantitative analysis of the reservoir effects on 
the downstream floods need to be improved further.  
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- Line 146, please briefly explain “multiday rainfall input”.  
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In addition to the reservoir capacity, multiday antecedent rainfall input (MARI), 
i.e., an event of the continuous multi-day multivariate rainfall forming the inflow 
event which will be regulated to become downstream extreme flow by the reservoir 
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- Line 155, why OR-joint exceedance probability is selected as measure function?  
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We need a rainfall index to measure the effect of the antecedent rainfall on the 
reservoir operation. The OR-joint exceedance probability (OR-JEP) is the probability 

that any one of the given set of values ( 1 2, , ..., dx x x ) for the scheduling-related MARI 

variables will be exceeded. The lower this probability, the greater effects on reservoir 
operation the MARI has, and then, it is expected that the downstream floods possibly 
obtain relative large values. The above explanation has been added in the revised 
manuscript. 
 

- Line 158, what do you mean by “reservoir scheduling is more inflexible”?  

Response: 
We realize that the word “inflexible” may be inappropriate. Here, what we want to 
express is that the reservoir scheduling will have more constraints from the MARI. 
For example, when MARI with a large volume occurs and its timing is near the end of 
flood season, the reservoir with a operation strategy of increasing flood limit water 



level in stages will probably face a large peak of inflow and a insufficient residual 
capacity due to reservoir impounding. The above explaination will been added in the 
revised manuscript. 
 

- Lines 170-172, selected four variables require more explanation.  

Response: 
Agree. The more detailed explanation has been added as follows: 

In this study, to add the antecedent rainfall effects into the new indicator of 

reservoir effects, the five variables are considered to describe MARI, i.e., the 

maximum M (the maximum of daily rainfall in MARI), the intensity I (the mean of 

daily rainfall in MARI), the volume V (the total of daily rainfall in MARI), the timing 

T (the end time of MARI in the year) and the distance L (the distance between the 

rainfall center and the outlet). The reason that M, I, V, and L are selected is that these 

variables will determine the peak, the total volume and the peak appearance time of 

the inflow event. The variable T is utilized to capture the information of the remaining 

storage capacity, due to the staged operation strategies in the flood season for some 

reservoirs. For the operation strategy of increasing flood limit water level in stages, it 

is expected that if the timing of MARI is near the end of flood season, the downstream 

AMDF will be less affected by reservoirs, because of less remaining capacity in this 

period. 
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in the revised text. 
 

-Lines 338-339, please clarify “special rainfall events”  

Response: 
In the revision, this phrase has been deleted. 
 

- Lines 412-413, please mention future studies in Conclusion part, not under 
Discussion.  

Response: 
In the revision, we have followed your suggestion. 
 

- Line 429, it is not clear what do you mean by “some rare multivariate MRI still 
would produce lower values of RRCI than that of RI”. Please revise it.  

Response: 
Thanks. This sentence has been revised in the revised manuscript. 
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Abstract:  19 

Many studies have shown that the downstream flood regimes have been significantly altered by 20 

upstream reservoir operation. Reservoir effects on the downstream flow regime are normally carried out 21 

by comparing the pre-dam and post-dam frequencies of some streamflow indicators such as floods and 22 

droughts. In this paper, a rainfall-reservoir composite index (RRCI) is developed to precisely quantify 23 

reservoir impacts on downstream flood frequency under a framework of the covariate-based 24 

nonstationary flood frequency analysis with Bayesian inference method. The RRCI is derived from the 25 

combination of both a reservoir index (RI) for measuring the effects of reservoir storage capacity and a 26 

rainfall index, i.e., the OR-joint exceedance probability (OR-JEP) of some scheduling-related variables 27 

selected out of the five variables describing multiday antecedent rainfall input (MARI), for measuring 28 

the effects of antecedent rainfall on reservoir operation. Then, with RI-dependent or RRCI-dependent 29 

distribution parameters, five distributions, i.e., Gamma, Weibull, Lognormal, Gumbel and Generalized 30 

Extreme Value, are used to analyze the annual maximum daily flow (AMDF) of Ankang, Huangjiagang 31 

and Huangzhuang gauging stations of Hanjiang River, China. A phenomenon is observed that although 32 

most flood peaks downstream of reservoirs had been reduced in magnitude by the upstream reservoirs, 33 

some relatively large flood events still occurred several times, e.g., at the Huangzhuang station in 1983. 34 

The results of nonstationary flood frequency analysis show that, in comparison to RI, RRCI that 35 

combines both RI and OR-JEP can make a much better explanation for such a phenomenon of the flood 36 



occurrences downstream of reservoirs. Bayesian inference of the 100-year return level of AMDF shows 37 

that the optimal RRCI-dependent distribution, compared to the RI-dependent one, gives relative smaller 38 

estimate values but there exist exceptions due to some low OR-JEP values, and provides a smaller 39 

uncertainty range. This study highlights the necessity of including the antecedent rainfall effects, in 40 

addition to the effects of reservoir storage capacity, on reservoir operation in assessing the reservoir 41 

effects on downstream flood frequency. This analysis might provide a more comprehensive approach 42 

for downstream flood risk management under the impacts of reservoirs. 43 

Keywords: Nonstationary flood frequency analysis; downstream floods; reservoir; antecedent 44 

rainfall; Bayesian inference; Hanjiang River 45 

1 Introduction 46 

River floods are generated by various complex nonlinear processes involving physical factors 47 

including “hydrological pre-conditions (e.g. soil saturation, snow cover), meteorological conditions (e.g. 48 

amount, intensity, and spatial and temporal distribution of rainfall), runoff generation processes as well 49 

as river routing (e.g. superposition of flood waves in the main river and its tributaries)” (Wyżga et al., 50 

2016). In general, without reservoirs, the flood extremes downstream of most rain-dominated basins are 51 

mainly related to the extreme rainfall in the drainage area. However, with reservoirs, the downstream 52 

flood regimes should be totally different due to upstream flood control scheduling. In the literature, the 53 

significant hydrological alterations caused by reservoirs are demonstrated in the many areas of the 54 



world. Graf (1999) showed that the dams have greater effects on the streamflow than the global climate 55 

change in America. Benito and Thorndycraft (2005) reported various significant changes of the pre- and 56 

post-dam hydrologic regimes (e.g., minimum and maximum flows over different durations) across the 57 

United States. Batalla et al. (2004) demonstrated an evident reservoir-induced hydrologic alteration in 58 

the North-Eastern Spain. Yang et al. (2008) indicated the spatial variability of the hydrological regimes 59 

alteration caused by the reservoirs in the middle and lower Yellow River, China. Mei et al. (2015) found 60 

that the Three Gorges Dam, the largest dam in the world, has significantly changed the downstream 61 

hydrological regimes. In recent years, the cause-effect mechanisms of the downstream flood peak 62 

reduction were also investigated in some literature (Ayalew et al., 2013; 2015; Volpi et al., 2018). For 63 

example, Volpi et al. (2018) suggested that for a single reservoir, the downstream flood peak reduction 64 

is mainly dependent on its position along the river, its spillway and its storage capacity based on a 65 

parsimonious instantaneous unit hydrograph-based model. These studies have revealed that it is crucial 66 

to assess the impacts of reservoirs on downstream flood regimes for the success of downstream flood 67 

risk management. 68 

Flood frequency analysis is the most common technique used by hydrologists to gain knowledge 69 

of flood regimes. For conventional or stationary frequency analysis, a basic hypothesis is that 70 

hydrologic time series keeps stationarity, i.e., “free of trends, shifts or periodicity (cyclicity)” (Salas, 71 

1993). However, in many cases, the change of flood regime has demonstrated that this strict assumption 72 



is invalid (Kwon et al., 2008; Milly et al., 2008). Nonstationarity in the flood regime downstream of 73 

dams makes frequency analysis more complicate. Actually, the frequency of floods downstream of 74 

dams is closely related to upstream flood operation. In recent years, there are a lot of attempts linking 75 

flood generating mechanisms and reservoir operation to the frequency of downstream floods (Gilroy 76 

and Mccuen, 2012; Goel et al., 1997; Lee et al., 2017; Liang et al., 2017; Su and Chen, 2018; Yan et al., 77 

2017).  78 

Previous studies have meaningfully increased the knowledge about the reservoir-induced 79 

nonstationarity of downstream hydrological extreme frequency (Ayalew et al., 2013; López and Francés, 80 

2013; Liang et al., 2017; Magilligan and Nislow, 2005; Su and Chen, 2018; Wang et al., 2017; Zhang et 81 

al., 2015). There are two main approaches to incorporate reservoir effects into flood frequency analysis: 82 

the hydrological model simulation approach and the nonstationary frequency modeling approach. In the 83 

first approach, the regulated flood time series can be simulated by using three model components, i.e., 84 

the stochastic rainfall generator, the rainfall-runoff model and the reservoir flood operation module 85 

which includes the reservoir storage capacity, the size of release structures and the operation rules. The 86 

continuous simulation method can explicitly account for the reservoir effects on flood in the 87 

hypothetical case. However, it is difficult to apply this approach to the most real cases (Volpi et al., 88 

2018), because the simplifying assumptions of this approach are just satisfied in a few of basins with 89 

single small reservoir. Furthermore, even if the basins meet the simplifying assumptions, the detailed 90 



information required in this approach are probably unavailable. Thus, our attention is focused on the 91 

second method, the nonstationary frequency modeling approach. Nonstationary distribution models 92 

have been widely used to deal with the nonstationarity of extreme values series. In nonstationary 93 

distribution models, distribution parameters are expressed as the functions of covariates to determine 94 

the conditional distributions of the extreme values series. According to extreme value theory, the 95 

maxima series can generally be described by the Generalized Extreme Value distribution (GEV). Thus, 96 

previous studies (Adlouni et al., 2007; Ouarda and El‐Adlouni, 2011) have used the nonstationary 97 

Generalized Extreme Value distribution to describe nonstationary maxima series. Scarf (1992) modeled 98 

the change in the location and scale parameters of GEV over time through the power function 99 

relationship. Coles (2001) introduced several time-dependent structures (e.g., trend, quadratic and 100 

change-point) into the location, scale and shape parameters of GEV. Adlouni et al. (2007) provided a 101 

general nonstationary GEV model with an improved parameter estimate method. In recent years, 102 

“generalized additive models for location, scale and shape” (GAMLSS) was widely used in 103 

nonstationary hydrological frequency analysis (Du et al., 2015; Jiang et al., 2014; López and Francés, 104 

2013; Rigby and Stasinopoulos, 2005; Villarini et al., 2009). GAMLSS provides various candidate 105 

distributions for frequency analysis, e.g., Weibull, Gamma, Gumbel, and Lognormal distributions. 106 

However, GEV is rarely involved in the candidate distributions of GAMLSS. In terms of the parameter 107 

estimation method for the nonstationary distribution model, the maximum likelihood (ML) method is 108 



the most common parameter estimate method. However, the ML method for the nonstationary 109 

distribution model may diverge when using numerical techniques to solve the likelihood function with 110 

the small sample. Another drawback of the ML method is its inconvenience to describe the uncertainty 111 

of model parameters estimates, because the ML can only get one estimate of the model parameters 112 

through maximization of the likelihood function. Adlouni et al. (2007) developed the generalized 113 

maximum likelihood (GML) method and demonstrated that the GML method has better performance 114 

than the ML method in all their cases. Ouarda and El‐Adlouni (2011) introduced the Bayesian 115 

nonstationary frequency analysis. The Bayesian inference can get multiple estimates, forming a 116 

posterior distribution of model parameters. Thus, the Bayesian method is able to conveniently describe 117 

the uncertainty of flood estimates associated with the uncertainty of model parameters.  118 

In the nonstationary frequency modeling approach, a dimensionless reservoir index (RI), as an 119 

indicator of reservoir effects, was proposed by López and Francés (2013), and it generally is used as 120 

covariate for the expression of the distribution parameters (e.g., location parameter) (Jiang et al., 2014; 121 

López and Francés, 2013). Liang et al. (2017) modified the reservoir index by replacing the mean 122 

annual runoff in the expression of RI with the annual runoff, so that the modified reservoir index can 123 

reflect the impact of reservoirs on downstream flood extremes under different total inflow conditions 124 

each year. However, the precision and accuracy in the quantitative analysis of the reservoir effects on 125 

the downstream floods need to be improved further.. In fact, the effects of reservoirs may be closely 126 



related not only to the static reservoir storage capacity, but also to the dynamic reservoir operation 127 

associated with the multiple characteristics (e.g., the peak, the intensity and the total volume) of the 128 

multiday antecedent rainfall input (MARI), not just annual runoff.  129 

Therefore, the aim of the study is to develop an indicator named the rainfall-reservoir composite 130 

index (RRIC) combining the effects of reservoir storage capacity and MARI on reservoir operation, and 131 

then to utilize this indicator as covariate to assess the reservoir effects on the downstream flood 132 

frequency. The specific objectives of this study are: (1) to develop RRCI; (2) to compare RRCI with RI 133 

through the covariate-based nonstationary flood frequency analysis; and (3) to obtain the downstream 134 

flood estimation and its uncertainty based on the optimal nonstationary distribution with Bayesian 135 

inference.  136 

2 Methods 137 

To quantify the effects of reservoirs on the frequency of the annual maximum daily flow series 138 

(AMDF) downstream of reservoirs, a three-step framework (Figure 1), termed the covariate-based flood 139 

frequency analysis using RRIC as covariate, is established. In this section, the methods in this 140 

framework are introduced. First, a reservoir index (RI) is defined with additionally considering the 141 

effects of reservoir sediment deposition on the storage capacity. Second, RRCI is developed through 142 

combining RI and a rainfall index. And then, the C-vine copula model is used to construct to calculate 143 



the rainfall index. Fourth and last, the nonstationary distribution models with the Bayesian estimation 144 

are clarified.  145 

<Figure 1> 146 

2.1 Reservoir index (RI) 147 

Intuitively, the larger the reservoir capacity relative to the flow of a downstream gauging station, 148 

the greater the effects of reservoir on the streamflow regime are possible. To quantify the reservoir-149 

induced alteration to the downstream streamflow regime, Batalla et al. (2004) proposed the impounded 150 

runoff index (IRI), a ratio of reservoir capacity ( RC ) to (unimpaired) mean annual runoff ( Q ) at the 151 

gauge station, indicated as IRI RC Q . For single reservoir, the IRI is a good indicator of the extent to 152 

which the reservoir alters streamflow. To analyze the effects of multi-reservoir system on the 153 

downsream flood frequency, López and Francés (2013) proposed a dimensionless reservoir index. In 154 

this study, we additionally consider the effects of reservoir sediment deposition on the reservoir 155 

capacity. Following López and Francés (2013),the reservoir index (RI) for a downstream gauging 156 

station is defined as 157 
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where N  is the total number of reservoirs upstream of the gauge station, iA  is the total basin area 159 

upstream of the i-th reservoir, TA  is the total basin area upstream of the gauge station, RCi
 is the total 160 



storage capacity of the i-th reservoir, LR i
 is the loss rate (%) of RCi

 due to the sediment deposition 161 

(Appendix A). The Eq. (1) indicates that for the reservoir system consisting of small and middle sized 162 

reservoirs, RI for the downstream gauging station is generally less than 1, but for the system with some 163 

large reservoirs, e.g., multi-year regulating storage reservoirs, RI of the downstream gauging station 164 

near this system may be close to 1 or higher.  165 

2.2 Rainfall-reservoir composite index (RRCI) 166 

In addition to the reservoir capacity, multiday antecedent rainfall input (MARI), i.e., an event of 167 

the continuous multi-day multivariate rainfall forming the inflow event which will be regulated to 168 

become downstream extreme flow by the reservoir system is a key constraint for the scheduling of the 169 

reservoir system. In this study, to add the antecedent rainfall effects into the new indicator of reservoir 170 

effects, the five variables are considered to describe MARI, i.e., the maximum M (the maximum of 171 

daily rainfall in MARI), the intensity I (the mean of daily rainfall in MARI), the volume V (the total of 172 

daily rainfall in MARI), the timing T (the end time of MARI in the year) and the distance L (the 173 

distance between the rainfall center and the outlet). The reason that M, I, V, and L are selected is that 174 

these variables will determine the peak, the total volume and the peak appearance time of the inflow 175 

event. The variable T is utilized to capture the information of the remaining storage capacity, due to the 176 

staged operation strategies in the flood season for some reservoirs. For the operation strategy of 177 



increasing flood limit water level in stages, it is expected that if the timing of MARI is near the end of 178 

flood season, the downstream AMDF will be less affected by reservoirs, because of less remaining 179 

capacity in this period. Those MARI variables which are selected to construct the new indicator are 180 

referred to as the scheduling-related MARI variables (denoted as 1 2, ,..., dX X X ), hereafter. The 181 

extraction procedure of the MARI is detailed in the section 3.2.  182 

We propose the new index called rainfall-reservoir composite index (RRIC) for more 183 

comprehensively assessing effects of reservoirs on floods by incorporating the effects of MARI, defined 184 

as 185 
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 (2)  186 

where MARIP
 is the OR-joint exceedance probability (OR-JEP), i.e., the probability that any one of the 187 

given set of values ( 1 2, ,..., dx x x ) for the scheduling-related MARI variables will be exceeded. Here, OR-188 

JEP acts as the rainfall index of measuring the MARI effects. The lower this probability, the greater 189 

effects on reservoir operation the MARI has, and then, it is expected that the downstream floods 190 

possibly obtain relative large values, and vice versa. Figure 2 illustrates the relationship in the Eq. (2), 191 

which shows that RRCI is conditional on both OR-JEP and RI. The Eq. (2) can be expressed as  192 
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where  F   is the cumulative distribution function (CDF), determining the dependence relationship of 194 

the variables. The expectation of RRCI is as follow  195 
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In addition, for the OR case, we have 197 
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The Eq. (3) and Eq. (5) indicate that in addition to RI, RRCI is related to the number and the 199 

dependence relationship of the scheduling-related MARI variables. To give a reasonable RRCI, the 200 

unrelated MARI variables should not be incorporated. In this study, the number of MARI variables to 201 

be incorporated is no more than four to avoid "dimension disaster" in modeling their dependence. To 202 

select the scheduling-related MARI variables, the three-step selection procedure includes (1) selecting 203 

four variables from the five MARI variables through testing the significance of the Pearson correlation 204 

between the MARI variables and AMDF, (2) calculating RRCI for all the possible subsets of the four 205 

variables through the d-dimensional ( ) copulas, and (3) identifying the variables through the 206 

highest rank correlation coefficient between RRCI and AMDF. The construction method of d-207 

dimensional ( ) distribution  1 2, ,..., dF x x x  is described in the following subsection. 208 

<Figure 2> 209 
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2.3 C-vine Copula model 210 

In this subsection, a c-vine Copula model for the construction of continuous d-dimensional 211 

distribution  1 2, ,..., dF x x x  is clarified. The Sklar’s theorem (Sklar, 1959) showed that for a continuous 212 

d-dimensional distribution, one-dimensional marginals and dependence structure can be separated, and 213 

the dependence can be represented by a copula formula as follows 214 

   (6) 215 

where iu  is the univariate marginal distribution of ;  is the copula function.  is the copula 216 

parameter vector;  is the parameter vector of the i-th marginal distribution.  is the 217 

parameter vector of the whole n-dimensional distribution. Thus, the construction of  can 218 

be separated into two steps: first is the modeling of the univariate marginals; second is the modeling of 219 

the dependence structure. For the first step, we use the empirical distribution as univariate marginal 220 

distributions and the change-points of the variables are tested by the Pettitt test (Pettitt, 1979), and then, 221 

if any, the marginal with the change-point will be addressed by the estimation method (Xiong et al., 222 

2015). Then, for the second step, the copula construction for the dependence modeling is based on the 223 

pair-copula construction method which has been widely used in the previous research (Aas et al., 2009; 224 

Xiong et al., 2015). According to Aas et al. (2009), the joint density function  is written 225 

as 226 

     1 2 1 2, ,... , ,..., ,
id d c i X i iF x x x C u u u u F x θ θ θ

iX  C  cθ

iθ  1 2= , , ,...,c dθ θ θ θ θ

 1 2, ,... dF x x x

 1 2, ,..., df x x x



   (7) 227 

and the n-dimensional copula density , which can be decomposed into  228 

bivariate copulas, corresponding to a c-vine structure, is given by 229 

  (8) 230 

where  is the density function of a bivariate pair copula and  is a parameter vector of 231 

the corresponding bivariate pair copula. And the marginal conditional distribution is 232 

   (9) 233 

where  is a bivariate copula distribution function. The maximum dimensionality covered in 234 

this study is four. Thus for the four-dimensional copula (of which the decomposition is shown in Figure 235 

3), the general expression of Eq. (8) is 236 

   (10) 237 
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2.4 Covariate-based nonstationary frequency analysis with Bayesian estimation  239 

The covariate-based extreme frequency analysis has been widely used (Villarini et al., 2009; 240 

Ouarda and El‐Adlouni, 2011; López and Francés, 2013; Xiong et al., 2018). Following these studies, 241 

five distributions, i.e., Gamma (GA), Weibull (WEI), Lognormal (LOGNO), Gumbel (GU) and 242 

Generalized Extreme Value (GEV), are used as candidate distributions in this study. And their density 243 

functions, the corresponding moments and the used link functions are shown in Table 1. In the 244 

following, the nonstationary distribution models based on Bayesian estimation are developed for 245 

covariate-based flood frequency analysis.  246 

<Table 1> 247 

Suppose that flood variable  obeys distribution  with the distribution parameters 248 

 , ,t t t  η . In this study, only distribution parameters t  and t  are allowed to be dependent on 249 

covariates, with considering that the shape parameter  of GEV is sensitive to quantile estimation of 250 

rare events. According to the linear additive formulation of Generalized Additive Models for Location, 251 

Scale, and Shape (GAMLSS) (Rigby and Stasinopoulos, 2005; Villarini et al., 2009), seven 252 

nonstationary scenarios for the formulas of the two distribution parameters  and  are investigated, as 253 

shown in Table 2. The constant scenario (S0) includes one scenario (both t  and t  are constants). The 254 

RI-dependent scenarios (S1) include three scenarios, i.e., S11 ( t  is RI-dependent and t  is constant), 255 

tY  
tY tf y ηt



S12 ( t  is constant and t  is RI-dependent) and S13 (both t  and t  are RI-dependent). And the 256 

RRCI-dependent scenarios (S2) include S21, S22 and S23 as similar as S11, S12 and S13, respectively.  257 

<Table 2> 258 

In the following, Bayesian inference is introduced. Take GEV_S23 (representing the 259 

nonstationary GEV distribution with the S23 scenario) model as an example, the model parameter 260 

vector  GEV_S23 0 1 0 1, , , ,    θ  is to be estimate. We use the Bayesian method to estimate GEV_S23θ . 261 

Let the prior probability distribution be  GEV_S23 θ  and observations  have the likelihood 262 

 GEV_S23l θD , then the posterior probability distribution  GEV_S23p θ D  can be calculated with Bayes' 263 

theorem, as follow 264 

 
   

   
   

GEV_S23 GEV_S23
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l d
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


 

Ω

θ θ
θ θ θ

θ θ θ

D
D D

D
  (11) 265 

where the integral is the normalizing constant and  is the whole parameter space. The obvious 266 

difference between the Bayesian method and the frequentist method is that the Bayesian method 267 

considers the parameters GEV_S23θ  to be random variables, and the desired distribution of the random 268 

variables can be obtained by a Markov chain which can constructed by using various Markov chain 269 

Monte Carlo (MCMC) algorithms (Reis Jr and Stedinger, 2005; Ribatet et al., 2007) to process Eq. (11). 270 

And in this study, we use the Metropolis-Hastings algorithm (Chib and Greenberg, 1995; Viglione et al., 271 

2013), which can be done by aid of the R package “MHadaptive” (Chivers, 2012). We use a beta 272 

D

Ω



distribution function with the parameters , which is suggested by Martins and Stedinger 273 

(2000); Martins and Stedinger (2001), as the prior distribution on the shape parameter  . For the other 274 

model parameters 0 1 0 1, , ,    , the prior distributions are set to non-informative (flat) priors. There are 275 

two advantage of the Bayesian method. First, as noted by Adlouni et al. (2007), this method allows the 276 

addition of the other information, e.g., historical and regional information, through defining the prior 277 

distribution. Second, the Bayesian method can provide an explicit way to account for the uncertainty of 278 

parameters estimates. In nonstationary case, in the t-year, the 95% credible interval for the estimation of 279 

the flood quantile corresponding to a given probability  can be obtained from a set of stable 280 

parameters estimations GEV_S23
ˆ ( 1,2,..., )i

ci Mθ  in which  is the length of the Markov chain. 281 

The procedure of model selection can identify which of the five distributions is optimal, which 282 

of the seven nonstationary scenarios is optimal. If all the distribution parameters are identified as 283 

constants (S0), this process will be the stationary frequency analysis. To select the optimal model, the 284 

Schwarz Bayesian criterion (SBC) (Schwarz, 1978) for each fitted model object is calculated by 285 

    SBC 2ln ln dfl n     (12) 286 

where  ln l  is the maximized log-likelihood of the model object, df  is the freedom degree and n  is the 287 

number of data points. SBC has a larger penalty on the over-fitting phenomenon than Akaike 288 

information criterion (AIC) (Akaike, 1974). The model object with the lower SBC is preferred. The 289 

worm plot and the QQ plot are employed to check whether the model can well represent the data. 290 
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3 Study area and data 291 

3.1 Study area 292 

Hanjiang River (Figure 4), with the coordinates of 30°30′-34°30′ N, 106°00′-114°00′ E and a 293 

catchment area of 159000 km
2
, is the largest tributary of the Yangtze River, China. This area has a 294 

warm temperate, semi-humid, continental monsoon climate. The temperature in the basin is not much 295 

different from upstream to downstream. Although the elevation range of the study area is quite wide 296 

(13–3493 m), the study area is a rainfall-dominated area and the snowmelt contribution is quite limited. 297 

Take Ankang gauging station as an example. The timing of AMDF is mainly during the major rainfall 298 

period from June to September (Figure S3a, c and d). And the winter is warm with the mean 299 

temperature values of more than 2 ℃ as shown in Figure S3b. Since 1960, many reservoirs have been 300 

completed in Hanjiang basin. The information of the five major reservoirs has been shown in Table 3, 301 

including the longitude, latitude, control area, time for completion and capability. The Danjiangkou 302 

Reservoir in central China's Hubei province is the largest one in this basin, and was completed by 1967. 303 

As a multi-purpose reservoir, it mainly aims to supply water and control floods, and is also used for 304 

electricity generation and irrigation. The reservoir has the total storage capacity of 21.0 billion m
3
, the 305 

dead storage capacity of 7.23 billion m
3
, the effective storage capacity of 10.2 billion m

3
, and the flood 306 

control capacity of 7.72 billion m
3
. After the Danjiangkou Dam Extension Project in 2010, the 307 



Danjiangkou Reservoir gained an additional capacity of 13.0 billion m
3
 and an extra flood control 308 

storage capacity of 3.3 billion m
3
. Besides, this reservoir is operated by the strategy of staged increasing 309 

flood limit water level in the flood control season (Zhang et al., 2009).  310 

<Figure 4> 311 

<Table 3> 312 

3.2 Data 313 

The assessment analysis of reservoir effects on flood frequency utilizes the streamflow data, the 314 

reservoir data, and the rainfall data. The annual maximum daily flood series (AMDF) is extracted from 315 

the daily streamflow records of the three gauges in Hanjiang River basin, namely Ankang (AK) station 316 

with a drainage area of 38600 km
2
, Huangjiagang (HJG) station with a drainage area of 90491 km

2
 and 317 

Huangzhuang (HZ) station with a drainage area of 142056 km
2
. The streamflow and reservoir data are 318 

provided by the Hydrology Bureau of the Changjiang Water Resources Commission, China 319 

(http://www.cjh.com.cn/en/index.html). The annual series of the maximum ( ), the intensity ( ), 320 

volume ( ), the timing ( ) and the distance (L) are extracted from the daily streamflow data to 321 

describe the MARI. Note that the timing of MARI is equal to the occurrence time of AMDF in the year, 322 

MARI is an areal-averaged event, and any two consecutive days of areal rainfall values in MARI 323 

require more than 0.2 mm. Daily areal rainfall is calculated using the inverse distance weighting (IDW) 324 
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method, based on the rainfall records of 16 stations (shown in Figure 4). These rainfall data are 325 

downloaded from the National Climate Center of the China Meteorological Administration (source: 326 

http://www.cma.gov.cn/). For AK and HZ gauging stations, all records are available from 1956 to 2015, 327 

while the records of HJG gauging station are available from 1956 to 2013.  328 

4 Results and discussion 329 

4.1 Identification of reservoir effects 330 

In order to confirm the impact of reservoirs on annual maximum daily flow (AMDF) in the 331 

study area, the mean and standard deviation of AMDF before and after the construction of the two large 332 

reservoirs, i.e., the Danjiangkou reservoir (1967) upstream of HJG and HZ stations and the Ankang 333 

reservoir (1992) upstream of AK, HJG and HZ stations, are compared. According to the Table 4, the 334 

mean and standard deviation of AMDF in AK, HJG and HZ stations has been significantly reduced. 335 

Taking the HJG station as an example, the mean of AMDF (1992-2013) is 4139 m
3
/s, which is only 336 

0.28 time of 14951 m
3
/s (1956-1966) and the standard deviation is 4074 m

3
/s, about 0.52 time of 7896 337 

m
3
/s (1956-1966).  338 

<Table 4> 339 

Figure 5 presents the linear correlation between the five MARI variables (i.e., the maximum, M; 340 

the intensity, I; volume, V; the timing, T; and the distance L) and AMDF. It is found that for M, I, V and 341 

T , except for T in AK station, the Pearson correlation coefficients between those four variables and 342 

AMDF range from 0.27 to 0.71 (p-value>0.05), indicating that those four variables are significantly 343 



related to AMDF. However, there is a Pearson correlation coefficient of no more than 0.24 between L 344 

and AMDF for each stations, indicating that the location of rainfall may not be significantly related to 345 

AMDF of the outlet. Thus, L is excluded for the calculation of RRCI. The further analysis for the 346 

reservoir effects on downstream AMDF is performed in the following sections.  347 

<Figure 5> 348 

4.2 Results for rainfall-reservoir composite index (RRCI) 349 

To obtain the annual values of RRCI, RI is estimated firstly. RI is affected by the loss of the 350 

reservoir capacity but not too much (Figure S2), because the main reservoirs (i.e., Dangjiangkou and 351 

Ankang reservoirs) have a small loss rate no more than 15% (Table S1 and Figure S1).  352 

The C-vine copula model is applied to calculate OR-JEP of the scheduling-related MARI 353 

variables. In the modeling of the univariate marginal, the marginals of the intensity (I) of AK and HJG 354 

stations and the volume (V) of the HJG station are revised to deal with their significant change-points 355 

(Table S2). To identify the scheduling-related variables from M, I, V, and T, RRCI for all the possible 356 

subsets of M, I, V, and T is calculated and compared. The Pearson, Kendall, and Spearman correlation 357 

coefficients between RRCI and AMDF are listed in Table 5.Note that the whole decomposition 358 

structure of the C-vine copula for each RRCI of the same station is determined by the ordering of the 359 

variables of each subset (shown in the cells of the first column of Table 5). Figure 3 is an example for 360 

the decomposition structure of the 4-dimensional copula. As shown in the first row of Table 5, there is a 361 



negative correlation between AMDF and RI for each station. The values of the Pearson correlation 362 

coefficients between AMDF and RI for AK, HJG and HZ stations are -0.37, -0.55 and -0.53, 363 

respectively, demonstrating that there is a significant relation between the reservoirs storage capacity 364 

and the reduction of AMDF. For each station, except for RRCI of one-dimensional case, the values of 365 

the Pearson, Kendall, and Spearman correlation coefficients between RRCI and AMDF are higher than 366 

between RI and AMDF. According to the highest Kendall correlation, the scheduling-related variables 367 

for the AK station are M, I, V and T; those for the HJG station are I and T; and those for the HZ station 368 

are I, V and T.  369 

<Table 5> 370 

Table 6 is the results of copula modeling of the scheduling-related variables, by aid of the R 371 

package “VineCopula” (https://CRAN.R-project.org/package=VineCopula). Note that for each bivariate 372 

pair in the third column of Table 6, three one-parameter bivariate Archimedean copula families (i.e., the 373 

Gumbel, Frank, and Clayton copulas) (Nelsen, 2006), are used to select from. As shown in Table 6, the 374 

results of the Cramer-von Mises test (Genest et al., 2009) show that all the C-vine copula models pass 375 

the test at the significant level of 0.05, indicating these models are effective for simulating the joint 376 

distribution of the scheduling-related variables for three stations. Finally, the variation of RI and RRCI 377 

over time is displayed in Figure 6. It is found that for each station, after reservoir construction, in most 378 



cases, the annual values of RRCI are larger (close to 1) than those of RI. On the other hand, in few cases, 379 

e.g., in 1983 at HZ and HJG stations, the RRCI values are lower than the RI values.  380 

<Figure 6> 381 

<Table 6> 382 

4.3 Flood frequency analysis 383 

In this section, nonstationary flood frequency analysis using RRCI or RI as covariate is 384 

performed to investigate how reservoirs affect the downstream flood frequency. The summary of results 385 

of fitting the nonstationary models to the flood data is shown in Table 7. Based on SBC, the lowest 386 

values indicate that the best models for AK, HJG and HZ stations are the nonstationary WEI 387 

distribution with S23, the nonstationary GA distribution with S21, and the nonstationary WEI 388 

distribution with S21, hereafter referred to as WEI_S23, GA_S21, WEI_S21, respectively. Note that for 389 

any one of the five distributions (i.e., GA, WEI, LOGNO, GU and GEV), the RRCI-dependent scenario 390 

has a lower SBC value than the RI-dependent scenario for each gauging station. Furthermore, for the 391 

RI-dependent and RRCI-dependent scenarios, taking the HZ station as an example, the optimal 392 

formulas of two distribution parameters t  and t  are given as follows: 393 

(1) WEI_S11 394 
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(2) WEI_S21 396 
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
 (14) 397 

It is found that in the Eq. (13) and Eq. (14), there are the negative estimates of -2.79 and -1.42 for 1 , 398 

respectively, revealing the decreasing degree of the frequency and magnitude of downstream floods due 399 

to the reservoir effects.  400 

Figure 7 compares the stationary scenario (S0), the RI-dependent scenario (S1), and the RRCI-401 

dependent scenario (S2) of the same optimal distributions in explaining all the flood values and the 402 

several largest flood values for each station. The QQ plots (Figure 7a1, b1 and c1) show that overall, the 403 

RRCI-dependent scenario captures more adequately the whole empirical quantiles (particularly the 404 

smallest and largest empirical quantiles) than two other scenarios for each station. Furthermore, as 405 

shown in Figure 7a2, b2 and c2, for the seven largest floods (observed) of each station, the RRCI-406 

dependent scenario produces lower quantile residuals than two other scenarios. 407 

<Table 7> 408 

<Figure 7> 409 

 Figure 8 presents the performance of the best models, i.e., WEI_S23 for AK station, GA_S21 410 

for HJG station and WEI_S21 for HZ station. The points in the worm plots of Figure 8 are within the 95% 411 

confidence intervals indicating that the selected models are reasonable. And according to the centile 412 



curves plots of Figure 8, the AMFD series is well fitted by the best models. Undoubtedly, with the 413 

incorporation of the effects of MARI, the RRCI-dependent scenario well captures the presence of 414 

nonstationarity in the downstream flood frequency. Take the case of HZ station (Figure 8c1). After the 415 

construction of Danjiangkou Reservoir (1967), due to reservoir operation, most values of AMDF had 416 

been reduced in magnitude by this reservoir. However, some relatively large flood events still occurred 417 

several times, e.g., 25600 m
3
/s in 1983 and 19900 m

3
/s in 1975. Obviously, this phenomenon of flood 418 

occurrences is well explained by RRCI.  419 

<Figure 8>420 

The 100-year return levels with the 95% credible interval from WEI_S23 and WEI_S13 for AK 421 

station, GA_S21 and GA_S11 for HJG station, and WEI_S21 and WEI_S11 for HZ station are 422 

presented in Figure 9. For each station, compared to the optimal RI-dependent distribution, the optimal 423 

RRCI-dependent distribution provides a lower 100-year return level but there exist exceptions, and 424 

provides a smaller uncertainty range. Besides, after the construction of the main reservoir, the 425 

uncertainty range of AK station is larger than HJG and HZ stations. The possible explanation to the 426 

larger uncertainty range is that the sample size (1993-2015) of the regulated floods at AK station is 427 

smaller, and, furthermore, the dependent relationship between RRCI and AMDF at AK station is 428 

weaker.  429 

<Figure 9> 430 



4.4 Discussion 431 

The long-term variation of the AMDF series (Figure 8) indicates that the upstream reservoirs 432 

have evidently altered the downstream flood regimes. As an example, since the completion of 433 

Danjiangkou reservoir in 1967, the flood magnitude of HZ station is evidently reduced overall. This is 434 

consistent with the results on the effects of reservoirs on the hydrological regime of this area in previous 435 

literature (Cong et al., 2013; GUO et al., 2008; Jiang et al., 2014; Lu et al., 2009). In this study, it is 436 

found that there is a significant difference between those downstream floods affected by the same 437 

reservoir system (with the same RI value). In most cases, relative small downstream floods were 438 

obtained. However, it is of interest to note that there still occurred unexpected large downstream floods 439 

in few cases, in spite of a large RI value. For example, most values of AMDF in HZ station are less 440 

10000 m
3
/s since 1967, but the values of AMDF in 1983 and in 1975 are 25600 m

3
/s and 19900 m

3
/s, 441 

respectively. It is highlighted that those unexpected large downstream floods are probably related to the 442 

MARI effects on reservoir operation. The five largest (unexpected) floods since 1967 and the 443 

corresponding values of the scheduling-related MARI variables in the HZ station are shown in Table 8. 444 

It is found that the largest floods of 1967-2015 occurred in 1983. For this flood event, the MARI is a 445 

rare event (with the OR-JEP value of 0.435 ranking the second in 1967-2015) due to the largest mean 446 

intensity ( 20.2 mmI  ) and the second late occurrence ( 281T  ). Surprisingly, all the timing values of 447 

the MARI for these five unexpected downstream floods show the high rankings (2-9th). Those timing 448 



values are near the end (about the 300th day of the year) of the flood control period (July-October) in 449 

this area. Actually, near the end of the major flood control period, the storage capacity able to use 450 

should be decreased, because according to the operation rules of Danjiangkou reservoir (Zhang et al., 451 

2009), there is a staged increasing flood limit water level in the flood control season. One important 452 

cause for those unexpected large downstream floods is probably that the remaining storage capacity at 453 

the end of flood season is not sufficient to reduce some late floods. Therefore, in addition to the own 454 

storage capacity of reservoirs, the MARI effects should be indispensably considered when attempting to 455 

accurately quantify the reservoir effects on downstream floods.  456 

<Table 8> 457 

With the combination of both RI and OR-JEP, RRCI has a significant difference from RI 458 

(Figure 6). With a few exceptions, RRCI values are higher than RI values. It is indicated that the real 459 

reservoir impact may be underestimated by RI in most cases. Moreover, RI will also probably 460 

overestimate the real reservoir impact in few cases, because of no considering some special rainfall 461 

events (i.e., the MARI with low values of OR-JEP). The results of the covariate-based nonstationary 462 

flood frequency analysis (Table 7, Figure 7 and Figure 8) demonstrate that compared to the RI-463 

dependent scenario, the RRCI-dependent scenario for the optimal nonstationary distribution more 464 

completely captures the presence of nonstationarity in the downstream flood frequency. Therefore, 465 

RRCI might be a useful index in accessing the reservoir effects on the downstream flood frequency. 466 



Finally, the estimation errors of OR-JEP should be noted. (1) Only those MARI samples which 467 

corresponds to the timing of AMDF are included to estimate OR-JEP; this means that some extreme 468 

MARI samples which corresponds to the non-maximum flow are not included, resulting in the 469 

estimation error for OR-JEP; to reduce this error, it might be worth considering the use of the peaks-470 

over-threshold sampling method. (2) The areal-averaged MARI is based on the records of 16 rainfall 471 

stations with the IDW method; the estimation error of areal-averaged rainfall may be transferred to the 472 

OR-JEP estimation error; the additional rainfall site data and spatial distribution information are needed 473 

to reduce the OR-JEP estimation error. Nonetheless, the good performance of downstream flood 474 

frequency modeling demonstrates the MARI samples still remain representative in this study. 475 

5 Conclusions  476 

Accurately assessing the impact of reservoirs on downstream floods is an important issue for 477 

flood risk management. In this study, to evaluate the effects of reservoirs on downstream flood 478 

frequency of Hanjiang River, the rainfall-reservoir composite index (RRCI) is derived from the Eq. (2) 479 

which takes account of the combination of the reservoir index (RI) and the OR-joint exceedance 480 

probability (OR-JEP) of scheduling-related rainfall variables. The main findings are summarized as 481 

follows: (1) the magnitude of the downstream flood events has been reduced by the reservoir system in 482 

the study area; however, the long-term variation of the observed AMDF series show that despite of the 483 

large reservoirs, the unexpected large flood events still occurred several times, e.g., at Huangzhuang 484 



station in 1983; and one important cause for the unexpected large floods of Huangzhuang station may 485 

be related to the operation strategy of staged increasing flood limit water level for Danjiangkou 486 

reservoir. (2) According to the results of the covariate-based nonstationary flood frequency analysis for 487 

each station, compared to the optimal RI-dependent distribution, the optimal RRCI-dependent 488 

distribution more completely captures the presence of nonstationarity in the downstream flood 489 

frequency. (3) Furthermore, in estimating 100-year return level for each station, the optimal RRCI-490 

dependent distribution provides a lower 100-year return level but there exist exceptions, and provides a 491 

smaller uncertainty range associated with the uncertainty of model parameter.  492 

Consequently, this study demonstrates the necessity of including the antecedent rainfall effects, 493 

in addition to the effects of reservoir storage capacity, on reservoir operation in assessing the reservoir 494 

effects on downstream flood frequency. The study might provide a comprehensive approach for the 495 

downstream flood risk management under the impacts of reservoirs.  496 
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Tables 637 

Table 1. Summary of the probability density functions, the corresponding moments and the used 638 

link functions for nonstationary flood frequency analysis.  639 
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Table 2. Seven nonstationary scenarios for the formulas of the two distribution parameters (i.e., 643 

t  and t ). 644 

 645 

Scenario classification Scenario codes 
The formula of distribution parameters 

g1(t) g2(t) 

Stationary (S0) S0   

RI-dependent (S1) 

S11 RI  

S12  RI 

S13 RI RI 

RRCI-dependent (S2) 

S21 RRCI  

S22  RRCI 

S23 RRCI RRCI 

 646 

  647 



Table 3. Information of the five major reservoirs in Hanjiang River basin. 648 

Reservoirs Longitude Latitude Area (km2) Year Capacity (109 m3) 

Shiquan 108.05 33.04 23400 1974 0.566 

Ankang 108.83 32.54 35700 1992 3.21 

Huanglongtan 110.53 32.68 10688 1978 1.17 

Dangjiangkou 111.51 32.54 95220 1967 34.0 

Yahekou 112.49 33.38 3030 1960 1.32 

 649 

 650 

  651 



Table 4. Change in the mean and standard deviation of AMDF after the construction of the two 652 

large reservoirs (i.e., Danjiangkou reservoir completed by 1967, and Ankang reservoir built by 1992). 653 

Stations 
  Mean (m3/s)    Standard deviation (m3/s) 

  1956-1966 1967-1991 1992-2015 
 

1956-1966 1967-1991 1992-2015 

AK 
 

9451 10468 6506   4341 4623 4454 

HJG 
 

14951 7524 4139 
 

7896 5482 4074 

HZ   16603 10120 5958   8833 5420 4721 

 654 

 655 

 656 

 657 

 658 

 659 
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Table 5. Correlation coefficients between RRCI and AMDF. 661 

Subset of 

rainfall 

variables  

 
AK 

 
HJG 

 
HZ 

 
Pearson Kendall Spearman 

 
Pearson Kendall Spearman 

 
Pearson Kendall Spearman 

-* 
 

-0.37 -0.18 -0.28 

 

-0.55 -0.37 -0.54 
 

-0.53 -0.38 -0.55 

M 
 

-0.27 -0.27 -0.37 

 

-0.67 -0.53 -0.74 
 

-0.45 -0.37 -0.51 

I 
 

-0.26 -0.25 -0.34 

 
-0.74 -0.57 -0.79 

 
-0.54 -0.41 -0.56 

V 
 

-0.32 -0.28 -0.39 

 

-0.63 -0.49 -0.69 
 

-0.57 -0.48 -0.65 

T 
 

-0.11 -0.17 -0.24 

 

-0.68 -0.55 -0.73 
 

-0.48 -0.40 -0.57 

M, I 
 

-0.37 -0.28 -0.38 

 

-0.70 -0.56 -0.77 
 

-0.56 -0.43 -0.58 

M, V 
 

-0.42 -0.29 -0.40 

 

-0.64 -0.50 -0.71 
 

-0.56 -0.45 -0.60 

M, T 
 

-0.37 -0.26 -0.36 

 

-0.69 -0.57 -0.77 
 

-0.64 -0.46 -0.63 

I, V 
 

-0.46 -0.31 -0.42 

 

-0.71 -0.54 -0.76 
 

-0.65 -0.50 -0.67 

I, T 
 

-0.34 -0.22 -0.31 

 

-0.73 -0.60 -0.80 
 

-0.68 -0.50 -0.66 

V, T 
 

-0.43 -0.28 -0.39 

 

-0.68 -0.55 -0.75 
 

-0.69 -0.52 -0.71 

M, I, V 
 

-0.49 -0.31 -0.42 

 

-0.65 -0.53 -0.74 
 

-0.63 -0.47 -0.63 

M, I, T 
 

-0.41 -0.27 -0.37 

 

-0.68 -0.57 -0.78 
 

-0.67 -0.49 -0.66 

M, V, T 
 

-0.50 -0.29 -0.40 

 

-0.65 -0.56 -0.76 
 

-0.67 -0.49 -0.67 

I, V, T 
 

-0.51 -0.31 -0.41 

 

-0.67 -0.58 -0.78 
 

-0.71 -0.53 -0.70 

M, I, V, T 
 

-0.53 -0.31 -0.42   -0.65 -0.57 -0.77   -0.69 -0.52 -0.69 

*The values in the first row are the correlation coefficients between RI and flood series 662 
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Table 6. Results of copula models for scheduling-related rainfall variables. 664 

Stations 
Scheduling-related 

variables 
Pairs Copula type Parameters c Kendall's tau 

Goodness-of-fit test based on the empirical 

copula 

CvM* p-value 

AK M, I, V, T 

14 Clayton 0.16 0.08 

0.169 0.860 

13 Clayton 1.28 0.39 

12 Clayton 1.01 0.33 

24|1 Frank 1.21 0.17 

23|1 Frank -2.24 -0.24 

34|12 Clayton 0.96 0.11 

HJG I, T 24 Clayton 1.37 0.41 0.473 0.425 

HZ I, V, T 

24 Gumbel 1.12 0.11 

0.181 0.820 23 Clayton 1.31 0.40 

34|2 Clayton 0.49 0.20 

* CvM is the statistic of the Cramer-von Mises test; if the p-value of the C-vine copula model is less than the significance level of 0.05, the model is considered to be 665 

not consistent with the empirical copula. 666 

 667 
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Table 7. Summary of results of the nonstationary flood distribution models. 670 

Stations Covariates Distributions 
 The optimal formulas* of distribution parameters 

AIC SBC 
Selected models     

AK 

RI GA 

WEI_S23 

exp(9.24-2.64RI) exp(-0.769+2.9RI) - 1177.2 1185.5 

RI WEI exp(9.36-2.83RI) exp(0.882-3.18RI) - 1176.9 1185.3 

RI LOGNO exp(9.14-3.86RI) exp(-0.716+3.28RI) - 1180.4 1188.8 

RI GU 11875-13093RI exp(8.5) - 1199.6 1205.9 

RI GEV 7685-15252RI exp(8.3) -0.043 1182.3 1190.6 

RRCI GA exp(9.28-1.11RRCI) exp(-0.825+0.689RRCI) - 1165.3 1173.7 

RRCI WEI exp(9.4-1.17RRCI) exp(0.982-0.884RRCI) - 1163.8 1172.2 

RRCI LOGNO exp(9.19-1.33RRCI) exp(-0.749+0.677RRCI) - 1168.0 1176.4 

RRCI GU 12555-7535RRCI exp(8.4) - 1188.0 1194.2 

RRCI GEV 8460-6722RRCI exp(8.2) -0.096 1172.1 1180.5 

HJG 

RI GA 

GA_S21 

exp(9.7-1.62RI) exp(-0.25) - 1139.9 1146.0 

RI WEI exp(9.75-1.56RI) exp(0.27) - 1141.4 1147.5 

RI LOGNO exp(9.47-1.8RI) exp(-0.17) - 1140.9 1147.1 

RI GU 17955-14399RI exp(8.8) - 1189.5 1195.7 

RI GEV 6976-5930RI exp(8.79-1.49RI) 0.43 1149.9 1160.2 

RRCI GA exp(9.99-1.99RRCI) exp(-0.45) - 1112.5 1118.6 

RRCI WEI exp(10.1-1.97RRCI) exp(0.53) - 1113.2 1119.4 

RRCI LOGNO exp(9.75-1.94RRCI) exp(-0.38) - 1113.9 1120.1 

RRCI GU 23067-20871RRCI exp(9.2-1.7RRCI) - 1121.3 1129.6 

RRCI GEV 12113-10683RRCI exp(9.2-2.01RRCI) 0.051 1112.5 1122.8 

HZ 

RI GA 

WEI_S21 

exp(9.85-2.87RI) exp(-0.42) - 1198.3 1204.9 

RI WEI exp(9.94-2.79RI) exp(0.49) - 1198.6 1204.9 

RI LOGNO exp(9.63-2.93RI) exp(-0.33) - 1201.1 1207.4 

RI GU 18661-23706RI exp(8.8) - 1237.5 1243.7 

RI GEV 9605-13545RI exp(9.03-2.56RI) 0.099 1207.8 1218.3 

RRCI GA exp(9.85-1.52RRCI) exp(-0.61) - 1173.1 1179.4 

RRCI WEI exp(9.92-1.42RRCI) exp(0.73) - 1171.2 1177.5 

RRCI LOGNO exp(9.72-1.55RRCI) exp(-0.51) - 1178.7 1185.0 

RRCI GU 19214-14344RRCI exp(8.86-0.881RRCI) - 1189.7 1198.1 

RRCI GEV 12502-9911RRCI exp(8.96-1.37RRCI) -0.068 1176.0 1186.4 

*The model parameters in the optimal formulas are the posterior mean from Bayesian inference. 671 
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Table 8. Summary of the rainfall information for the five largest floods after the construction 674 

(1967) of Danjiangkou reservoir in HZ station. 675 

Year 
Values (Ranking in 1967-2015) 

AMDF [m3/s] OR_JEP [-] I [mm] V [mm] T [day of the year] 

1983 25600 (1) 0.435 (2) 20.2 (1) 121.4 (19) 281 (2) 

1975 19900 (2) 0.557 (7) 9.6 (18) 163.6 (13) 277 (6) 

1974 18200 (3) 0.506 (4) 12.0 (7) 120.4 (20) 278 (4) 

2005 16800 (4) 0.651 (11) 8.2 (27) 179.7 (10) 278 (4) 

1984 16100 (5) 0.461 (3) 9.9 (15) 256.3 (4) 273 (9) 
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Figures 679 

 680 

Figure 1. Flowchart of nonstationary covariate-based flood frequency analysis with a rainfall-681 

reservoir composite index (RRCI).  682 

  683 



 684 

Figure 2. Relationship in the Eq. (2). (a) is the contour plot of RRCI against both RI and OR-JEP; 685 

(b) is the function curves of RRCI against OR-JEP under the different values of RI. 686 
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 688 

Figure 3. Decomposition of a C-vine copula with four variables and 3 trees (denoted by T1, T2 689 

and T3). 690 

 691 
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 693 

Figure 4. Geographic location of the reservoirs, gauging stations and rainfall stations in 694 

Hanjiang River. 695 
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 697 

Figure 5. Linear correlation between the five MARI variables and AMDF for (a) AK station, (b) 698 

HJG station and (c) HZ station. 699 
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 701 

Figure 6. Variation of RI and RRCI for (a) AK station, (b) HJG station and (c) HZ station. 702 
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 704 

 705 

 706 

Figure 7. Comparison of the stationary (S0), the RI-dependent (S1) and the RRCI-dependent (S2) 707 

scenarios of the same optimal distributions for (a) AK station, (b) HJG station and (c) HZ station. The 708 

left panels (a1, b1 and c1) are the QQ plots for the whole AMDF series in each station. The right panels 709 

(a2, b2 and c2) are the plots of quantile residuals for the seven largest floods (their values and 710 



occurrence years have been listed) in each station, and the means of their quantile residuals (points) and 711 

the corresponding standard errors are indicated by the lines.  712 



 713 

 714 

 715 

 716 

Figure 8. Performance of (a) WEI_S23 for AK station, (b) GA_S21 for HJG station and (c) 717 

WEI_S21 for HZ station. The left panels (a1, b1 and c1) are the centile curves plots in each station (the 718 

50th centile curves are indicated by the thick blue lines; the light gray-filled areas are between the 5th 719 

and 95th centile curves; the dark grey-filled areas are between the 25th and 75th centile curves; the 720 



filled red points indicate the observed series). The right panels (a2, b2 and c2) are the worm plots; a 721 

reasonable model should have the plotted points within the 95% confidence intervals (between the two 722 

blue dashed curves). 723 

 724 

  725 



 726 

 727 

Figure 9. Statistical inference of the 100-year return levels with the 95% uncertainty interval 728 

using the optimal RI-dependent and RRCI-dependent distributions: (a) WEI_S13 and WEI_S23 for AK 729 

station, (b) GA_11 and GA_S21 for HJG station, and (c) WEI_S11 and WEI_S21 for HZ station. 730 

 731 


