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Abstract. In this article, we present a Bayesian geostatistical framework that is particularly suitable for interpolation of hy-

drological data when the available dataset is sparse and includes missing values and short records of data. A key feature of

the proposed framework is that several years of runoff are modeled simultaneously with two Gaussian random fields (GRFs):

One that is common for all years under study and represents the runoff generation due to long-term climatic conditions, and

one that is year specific. The climatic GRF learns how short records of runoff from partially gauged catchments vary relatively5

to longer time series from other catchments, and transfers this information across years. Another property, is that the model

takes the nested structure of catchments into account such that the water balance is preserved for any point in the landscape.

The framework is demonstrated by interpolation of annual and monthly runoff from around 200 catchments in Norway, and

we compare it to Top-Kriging (interpolation method) and simple linear regression (method for exploiting short records). The

results show that if the correlation between neighboring catchments is high, a model that considers several years of runoff10

simultaneously is considerably better at capturing large spatial variability than a model that treats each year of data separately.

1 Introduction

Characteristic values for streamflow are used for various purposes in water resources management. High flow indices or design

flood estimates are needed for flood risk assessments and design of infrastructure and dams, low flow indices are needed for

assessment of environmental flow and assessment of reliability of water supply, while average annual flow is an important15

basis for water resources management and a key for design of water supply systems and allocation of water resources between

stakeholders. Average annual flow is also often used as an predictor for both low flow and high flow indices (Sælthun et al.,

1997).

At locations with measurements, the streamflow indices can be estimated based on the observations. However, streamflow

is only measured at a limited number of locations, and in many applications we need to predict the streamflow indices at20

ungauged locations. This is a central problem in hydrology and known as the Prediction in Ungauged Basins problem (Blöschl

et al., 2013). Often it is of interest to estimate flow indices that represent the long term average behavior in a catchment. If

this is the case, using only a few years of data from the target catchment might lead to biased estimates. The reason is climate
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variability over short time scales combined with sample uncertainty. Often a minimum record length is recommended for

estimation of such flow indices, but a challenge is that a substantial part of the available streamflow gauges in the world have

too short records to provide reliable estimates. These short data series can, however, provide useful information if they are used

together with longer time series from other catchments (Laaha and Blöschl, 2005). Motivated by this, we propose a framework

for runoff interpolation particularly suitable for datasets including data series of this type, more specifically runoff datasets5

including a mix of fully gauged and partially gauged catchments. We suggest a framework for runoff interpolation that unifies

two commonly used statistical approaches for runoff estimation: Geostatistical approaches and approaches for exploiting short

records of data.

Within the geostatistical framework, Gaussian random fields (GRFs) are often used to model hydrological phenomena that

are continuous in space and/or time. The hydrological variable of interest is a GRF if a vector containing a random sample of10

length n from the process follows a Gaussian distribution with mean vector µ and covariance matrix Σ (Cressie, 1993). The

elements in the covariance matrix are typically determined by a covariance function that depends on the pair-wise distances

between the n locations. For most environmental variables it is straight forward to compute these distances. However, for runoff

related variables the measure of distance is ambiguous because the observations are related to nested catchment areas, and not

to point locations in space. Traditionally, this problem has been solved by simply interpreting runoff as a point referenced15

process linked to the catchment centroids or stream outlets (see e.g Merz and Blöschl (2005); Skøien et al. (2003); Adamowski

and Bocci (2001)). The problem with these methods is that they can lead to a violation of basic conservation laws, and several

alternatives approaches are suggested for making an interpolation scheme that takes the nested structure of catchments into

account (Sauquet et al., 2000; Gottschalk, 1993; Skøien et al., 2006). In particular, the Top-Kriging approach suggested by

Skøien et al. (2006) has shown promising results for interpolation of hydrological variables (Viglione et al., 2013). In the20

Top-Kriging approach, information from a sub-catchment is weighted more than information from a nearby non-overlapping

catchment when performing runoff predictions in an ungauged catchment.

The common approach for exploiting short records of runoff data is to find one or several donor catchments with longer

time series of runoff. The donor catchments are typically found based on runoff correlation, catchment similarity, or proximity

in space. By applying e.g linear regression approaches and/or computing the correlation between time series, a relationship25

between the target catchment and the donor catchments is developed. Next, the longer time series from the donor catchment(s)

are used to perform predictions for the target catchments for years/months/days without measurements (see e.g Fiering (1963),

Vogel and Stedinger (1985) or Laaha and Blöschl (2005)). The regression and/or correlation analysis is performed based on

runoff observations that is of the same type as the target flow index, i.e for mean annual runoff, using the mean annual runoff

is a natural choice (McMahon et al., 2013) whereas for low flow indices, low flow observations are used. The predictive30

performance of these methods is highly dependent on the correlation between the runoff observations in the target catchment

and the donor catchment. If the correlation is high and the spatial variability of runoff is high, short records of data from the

target catchment can be extremely valuable. In the remainder of the paper, we will denote high correlation between runoff

observations in an area as hydrological stability.
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In this article we propose two geostatistical Bayesian models that are constructed to fully exploit the statistical pattern stored

in sparse dataset, i.e hydrological datasets with several missing elements and short records of data. Such datasets are common

in hydrology. In our presentation of our two models, we develop a methodology for annual runoff, but we also argue that it is a

flexible framework that can be adapted to other flow indices of interest, e.g monthly runoff. A key feature of the two suggested

models is that they simultaneously model several years of runoff. This is done by using two statistical spatial components or5

GRFs in the hydrological model: The first GRF is common for all years under study and models the long-term spatial variability

of runoff. We denote this the climatic GRF as it represents the long-term spatial average runoff, or the climate in the study

area. The other GRF is year specific and models the annual discrepancy from the climate, and we denote this the annual or

year-specific GRF. If we have a study area for which the spatial variability of runoff is stable over time, the climatic GRF will

capture this tendency. This way, the climatic spatial field learns how short records of runoff vary relatively to longer data series10

from other catchments. If there is no strong climatic trend present in the data, the annual GRF will dominate over the climatic

GRF and short records from the target catchment(s) will have less impact on the results. Thus, our method represents a way

for detecting hydrological stability and uses this to exploit short records and to perform runoff interpolation.

The first model we propose is denoted the areal model and is particularly suitable for mass-conserved hydrological variables.

It ensures that the water-balance is close to preserved for any point in the landscape (with some uncertainty), and defines the15

average runoff in a catchment as the average point runoff integrated over nested catchment areas. This way, the nested structure

of catchments is taken into account and the interpretation of runoff is similar to the one of Top-Kriging. Another benefit of

this model is an accurate and realistic representation of the correlation structure between catchments that are nested. A similar

model has already shown promising results for predictions of annual runoff around Voss in Norway (Roksvåg et al., 2019), but

it is not tested for a larger dataset or for other time-scales. This is done in this article.20

As an alternative to the areal model we also propose a model that defines runoff as a point referenced process for which

distances are measured between catchment centroids. This model does not consider preservation of the water-balance, but on

the other hand it can be used for any environmental variable, and it is computationally faster than the areal model. This is more

similar to what has been done traditionally in hydrology, and we denote this the centroid model. Both the areal model and the

centroid model have the ability to exploit hydrological stability, but have different benefits, drawbacks and hence also area of25

use. These are discussed and highlighted throughout the article.

The main objective of this article is to present and evaluate this new geostatistical framework. In particular our goals are to:

1) Assess the predictive performances of our two new spatial models and compare the results to the predictive performance of

Top-Kriging and/or simple linear regression for predictions in ungauged and/or partially gauged catchments.

2) Assess the added value of including short records.30

3) Demonstrate the approach for a real practical problem by producing a runoff map for mean annual runoff for southern

Norway based on all available data from a 30 year period (1981-2010).

By 1) to 3) we also illustrate the benefits of modeling several years of runoff data simultaneously with a joint climatic GRF

compared to treating each year of data separately with only annual GRFs.
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The rest of the article is structured as follows: In Section 2 we present the dataset we use that consists of annual and monthly

runoff data from catchments in Norway. Then, we briefly introduce relevant statistical background theory and notation in

Section 3.1. Next, the suggested model for annual runoff is presented in Section 3.2.1 - 3.2.6, and extended to monthly runoff

in Section 3.2.7. Evaluation scores and experimental set-up are presented in Section 4, before the results are presented and

discussed in Section 5. Finally, we summarize the major findings in Section 6 and conclude in Section 7.5

2 Study area

The study is carried out by utilizing a dataset from Norway provided by the Norwegian Water Resources and Energy Directorate

(NVE). It consists of daily runoff data from around 450 gauged catchments, many of them nested, from 1970-2018.

In this paper we use our framework to predict annual and monthly runoff. To make a test dataset for cross-validation, the daily

runoff data were aggregated to monthly and annual runoff for the hydrological years 1996-2005. In Norway the hydrological10

year starts September 1th and ends August 31st. Only catchments with observations every day for the hydrological years

1996-2005 were included in the test data.The years 1996-2005 were chosen because full time series for a large number of

catchments were available for these specific years. This leaves 195 catchments for testing with areas ranging from 7.5 km2 to

18934 km2. The median elevation of the catchments ranges from 85 to 1562 m a.s.l. Figure 1a and Figure 1c summarize the

annual data. We see a large spatial variability of runoff. The annual runoff (for individual years) ranges from 170 mm/year to15

5500 mm/year, whereas the mean annual runoff ranges from 370 mm/year to 4300 mm/year, with the highest values of runoff

in western Norway and more moderate values in east and north.

In western Norway some of the largest values of annual precipitation in Europe are measured. The large values of annual

precipitation in western Norway are mainly caused by the orographic enhancement of frontal precipitation formed around

extratropical cyclones. The orographic enhancement is explained by the steep mountains that create a topographic barrier for20

the western wind belt, which transports moist air across the North Atlantic (Stohl et al., 2008). The maximum precipitation is

observed at distances 30-70 km from the coast (Førland, 1979) and not necessarily at the highest elevations since the air dries

out due to precipitation. The processes explained above, creates the east-west pattern in Figure 1a that is prominent each year

in the dataset. The topography results in a spatial pattern of runoff that is stable over years, and suitable for exploiting short

records of runoff. An example of the spatial stability for annual runoff in Norway is demonstrated in Figure 3b, which shows25

time series of annual runoff from seven catchments in south-western Norway. We see variation from year to year. Nevertheless,

the seven lines are almost parallel, showing that the annual runoff is highly correlated between these catchments. This tendency

is typical for annual runoff for many of the catchments in Norway.

Observed monthly runoff from a winter month dominated by snow accumulation (January), a spring month with snow

melting (April) and a summer month dominated by rain (June) was chosen for an analysis of monthly runoff. On a monthly30

scale, full data series from some extra catchments existed in addition to the 195 catchments in Figure 1a. Data from 216

catchments were available for January, while data from 213 catchments were available for April and June. The monthly runoff

data from Norway are presented in Figure 2, and we see that the monthly runoff is the lowest in January and the highest in June
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(a) Long-term average mean annual runoff. (b) Nested catchments.
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(c) Annual runoff from 1995-2006.

Figure 1. Long-term mean annual runoff (1996-2005) from 195 catchments in Norway (1a) and annual runoff observations from all 195

catchments and years (1c). Many of the catchments are nested, particularly in southern Norway as visualized in Figure 1b. In this figure,

all colored catchments are subcatchments of at least one larger catchment, while the black catchments are not subcatchments of any larger

catchment (but might contain 1-4 smaller catchments). In the visualization in Figure 1a, catchments with large areas are plotted behind

catchments with smaller areas, and this is done throughout the article. The coordinate system used is EUREF89 - UTM33N (EPSG 25833).

See Figure 6 for a closer image of the true annual runoff in southern Norway.
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(c) June

Figure 2. Monthly runoff data (1996-2005) from around 200 catchments in Norway for January, April and June.

for most catchments. The variation in average monthly runoff describes a runoff regime, and in Norway the combination of

snow accumulation, snow melt, and evapotranspiration processes control this regime (Gottschalk et al., 1979). Along the west

coast, the winter weather is typically rainy with temperatures above the freezing point. In these regions the highest monthly

runoff is observed in October - December. The colder areas are found in the interior of the country with winters dominated by

snow. In these regions the highest monthly runoff is observed for the snow melt season (May – June).5

Monthly time series from the 7 selected catchments from Figure 3a are shown in Figure 4. We see that the year to year

variability is higher, and the spatial pattern is less stable on a monthly scale compared to the annual scale (Figure 3b). In

particular for months and locations where the temperature is close to zero degrees, we can expect unstable spatial patterns for

monthly runoff. Monthly runoff data from Norway are thus suitable for evaluating the suggested method’s performance on a

more unstable spatial pattern. In Figure 4 we see that June is the month with the most stable pattern, whereas January has the10

most unstable pattern. However, there is still a climatic trend that can be exploited by a model with the described properties.

As mentioned in the introduction, we also use our suggested interpolation framework to produce a runoff map for mean

annual runoff in southern Norway for 1981-2010. For this purpose, we utilize all available data in this 30 year period, and

there are data from 292 catchments for which only 89 of them have data from the whole period. The available observations for

1981-2010 are visualized later, in Section 5.5 (Figure 15).15

3 Statistical framework for runoff interpolation

In Section 3.2 we present two Bayesian geostatistical models for runoff interpolation particularly suitable for sparse datasets

containing several missing values and short records of runoff data. First, some statistical background is necessary.

6

https://doi.org/10.5194/hess-2019-415
Preprint. Discussion started: 24 September 2019
c© Author(s) 2019. CC BY 4.0 License.



0
1000
2000
3000

mm/year

(a) 7 catchments.

0

1000

2000

3000

4000

5000

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Year

[m
m

/y
ea

r]

Catchment
Austrumdal
Gjedlakleiv
Haugland
Helleland
Ogna
Refsti
Refsvatn

(b) Annual time series.

Figure 3. Time series of annual runoff from 7 selected catchments in Western Norway. The 7 lines are almost parallel indicating that most

of the spatial variability can be explained by climatic conditions.
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Figure 4. Time series of monthly runoff for January, April and June for the 7 catchments in Figure 3a. The time series for January and April

are less parallel than for June or for the annual runoff in Figure 3b, but there is still is a large correlation between the station.

3.1 Statistical methodology

3.1.1 Bayesian statistics and hierarchal modeling

The goal in hydrology is to learn about processes related to hydrological variables like daily rainfall, annual runoff, the 5th

percentile flow and so on. In order to gain knowledge about the different hydrological processes, relevant data are collected.

There are always uncertainties related to the data that must be accounted for in an analysis and that makes a statistical analysis5

appropriate.

Assuming x is a vector consisting of hydrological variables of interest, e.g the monthly rainfall for a specific year, the

observation likelihood π(y|x) expresses how the data y, e.g the observed monthly rainfall from some other years, are connected

to x. In the classical frequentistic approach, the variables x are considered as unknown, but fixed. In the Bayesian approach

however, the variables x are considered to be a quantity whose variation can be described by a probability distribution (see10
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e.g Casella and Berger (1990)). Prior to the analysis, this probability distribution is expressed through what is called a prior

distribution π(x) that is constructed based on expert knowledge about the variable of interest. The goal of the Bayesian analysis

is to update this prior distribution by using data. By using Bayes’ formula, the so-called posterior distribution of x is obtained:

π(x|y) =
π(x)π(y|x)

π(y)
∝ π(x)π(y|x). (1)5

Next, the marginal distribution π(xi|y) for xi ∈ x can be integrated out, and a point prediction of xi can be reported as e.g

the mean, median or the mode of the posterior distribution π(xi|y).

If a complex process is under study, it is sometimes easier to model the process by thinking of things in a hierarchy of

processes or distributions (Banerjee et al., 2004). E.g monthly rainfall x can be thought of as a process that depends on some

parameters θ that express the spatial correlation between the precipitation gauges. Here, both x and θ are stochastic variables10

with prior (and posterior) distributions. A Bayesian model of this type is typically expressed as a three-stage hierarchical model

where the first stage consists of the observation likelihood π(y|x,θ), the second stage is the prior distribution π(x|θ), often

referred to as the latent model or process model, while the third stage is the prior distribution of the model parameters π(θ). As

before, Bayes’ formula can be used to make inference about the variables of interest x, but also about the model parameters θ

given the set of observations y. In this study we use a three-staged hierarchical Bayesian model to model annual and monthly15

runoff.

3.1.2 Gaussian random fields

Gaussian random fields (GRFs) are commonly used to model environmental variables like precipitation, runoff and temperature

or other phenomena that are continuous in space and/or time. In this analysis, the second stage of the Bayesian hierarchical

model consists of GRFs that model the spatial dependency of runoff between catchments. A continuous field {x(u);u ∈ D}20

defined on a spatial domain D ∈R2 is a GRF if for any collection of locations u1, ...,un ∈ D the vector (x(u1), ...,x(un))

follows a multivariate normal distribution (Cressie, 1993), i.e (x(u1), ...,x(un))∼N (µ,Σ) where µ is a vector of expected

values and Σ is the covariance matrix. The covariance matrix Σ defines the dependency structures in the spatial domain, and

element (i, j) is typically constructed from a covariance function C(ui,uj). The dependency structure for a spatial process is

often characterized by two parameters: The marginal variance σ2 and the range ρ. The marginal variance provides information25

about the spatial variability of the process of interest, while the range provides information about how the covariance between

the process at two locations decays with distance. The range is defined as the distance for which the correlation between two

locations in space has dropped to almost 0. If the range and the marginal variance are constant over the spatial domain, we

have a stationary GRF.

In this study, the involved GRFs have their dependency structure defined by a stationary, Matérn covariance function that is30

given by

C(ui,uj) =
σ2

2ν−1Γ(ν)
(κ||uj −ui||)νKν(κ||uj −ui||). (2)
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Here, ||uj −ui|| is the Euclidean distance between two locations ui,uj ∈Rd, Kν is the modified Bessel function of the

second kind and order ν > 0, and σ2 is the marginal variance that controls the spatial variability (Guttorp and Gneiting, 2006).

The parameter κ is the scale parameter, and it can be shown empirically that the spatial range can be expressed as ρ=
√

8ν/κ,

where ρ is defined as the distance where the covariance between two locations has dropped to 0.1. Using a Matérn GRF is

convenient for computational reasons because it enables us to apply the SPDE approach to spatial modeling from Lindgren5

et al. (2011) which is briefly described in Section 3.3.

3.1.3 Kriging and Top-Kriging

Within the geostatistical framework, Kriging approaches have shown promising results for interpolation of hydrological vari-

ables (see e.g Gottschalk (1993), Sauquet et al. (2000) or Merz and Blöschl (2005)). In Kriging methods, the target variable is

represented as a random field, typically a Gaussian random field x(u) with a known covariance structure given some unknown10

parameters. The process of interest is observed at n locations u1, ...,un, and any unknown parameters can be estimated based

on maximum likelihood procedures. Furthermore, to estimate the value of the variable x̂(u0) at an unobserved location u0 a

weighted average of the observations is used, i.e

x̂(u0) =
n∑

i=1

λix(ui), (3)

where λi are interpolation weights. The interpolation weights are computed by assuming that x̂(u0) is the Best linear unbiased15

estimator (BLUE) of x(u0). That is, we determine x̂(u0) by finding the value that both minimizes mean squared error, and

that gives zero mean expected error (Cressie, 1993).

In order to minimize the mean squared error of the Kriging-predictor in Equation (3), the covariance function (or variogram)

must be evaluated. The covariance function typically depends on the distance between the observations and the target locations,

such that observations collected close to the target location u0 are weighted more than observations further away. For stream-20

flow related variables, the measure of distance is not given as the observed values often are connected to (catchment) areas, and

not to single point locations in space. Catchments are also organized into subcatchments, and this should be taken into account

when computing the Kriging weights. In many hydrological applications, the centroids of the catchments are used to compute

the catchment distances (Merz and Blöschl, 2005; Skøien et al., 2003), but as mentioned in the introduction this can lead to a

violation of basic mass conservation laws.25

The Top-Kriging approach suggested by Skøien et al. (2006) takes the nested structure of catchments into account when

computing the distances and the Kriging-weights. It differs from other Kriging methods by weighting observations from a

subcatchment more than an observation from a nearby non-overlapping catchment. Top-Kriging assumes linear aggregation.

Thus, the method applies to variables that are mass conserved over nested catchments. However, it has been shown that Top-

Kriging also performs well for variables that are not mass conserved, like e.g the specific 100-year flood. Top-kriging is30

currently one of the leading methods for interpolation of hydrological variables (Viglione et al., 2013) and is therefore chosen

as the method to compare our interpolation method with.
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3.1.4 Methods for exploiting short records

The framework we suggest is both a framework for spatial interpolation and a framework for exploiting short records of runoff

data. There are several ways to exploit short records of runoff data for which most of them are based on linear regression meth-

ods, utilizing correlation between catchments to improve the hydrological predictions and/or scale two time series relatively to

each other (Fiering, 1963; Laaha and Blöschl, 2005). In this article, we simply choose simple linear regression as the method5

of comparison.

Assuming annual runoff is observed for year 1, ...,n in the target catchment and that there exist annual runoff data from some

other catchments for year 1, ...,n+m. Simple linear regression is performed by first finding a so-called donor catchment for

the catchment of interest. This can be e.g the closest catchment in space or a catchment with similar catchment characteristics

(elevation, annual precipitation, vegetation). Next, it is assumed that there is a linear relationship between the annual runoff10

in the target catchment and the donor catchment, yi = βxi + εi for i= 1...n, where yi is the the annual runoff in the target

catchment, xi is the annual runoff in the donor catchment, εi is normal distributed measurement error N (0,σ2) with fixed

(but typically unknown) variance σ2, and β is a coefficient that has to be estimated. The linear relationship between the two

catchments is developed by estimating β by minimizing the sum of least squares,
∑n
i=1(yi−βxi)2. The linear relationship

can then be used to estimate the target variables yn+1, ...,yn+m with uncertainty based on xn+1, ...,xn+m.15

3.2 A geostatistical framework for exploiting short records by utilizing long-term spatial averages

In Section 3.2.1 - 3.2.6, we present the suggested Bayesian geostatistical framework. We first develop a framework for annual

runoff, before we in Section 3.2.7 explain how the methodology also can be used for monthly runoff. We start by developing

a three staged hierarchical model consisting of a process model, observation likelihood and prior distribution as described in

Section 3.1.1.20

3.2.1 True annual runoff (process models)

Let the spatial process {qj(u) : u ∈ D} denote the runoff generating process at point location u in the spatial domain D ∈R2.

The true annual runoff generated at a point location u in year j is modeled as

qj(u) = βc + c(u) +βj +xj(u) j = 1, .., r, (4)

π(βc)∼N (0,100002);25

π(βj |σβ)∼N (0,σ2
β)

π(c(u)|ρc,σc)∼GRF(ρc,σc)

π(xj(u)|ρx,σx)∼GRF(ρx,σx)

where βc is an intercept common for all years j = 1, ..r that models the average runoff in Norway over time, while βj is an

intercept that models the annual discrepancy from the long-term average runoff. Likewise is c(u) a spatial effect that models30

the long-term spatial average of runoff, or the spatial variability caused by climatic conditions in Norway, while xj(u) is a year
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specific spatial effect that models the spatial variability due to annual discrepancy from the climate. Both spatial effects are

modeled as Gaussian random fields with zero mean and stationary Matérn covariance functions with ν = 1 given a range and a

marginal variance parameter; c(u) with range parameter ρc and marginal variance σ2
c , and xj(u) with range ρx and marginal

variance σ2
x. Furthermore, the spatial fields xj(u) for j = 1, .., r are assumed to be independent realizations, or replicates, of

the same underlying field to increase the identifiability of the model parameters (Ingebrigtsen et al., 2015). The same applies5

for the year-dependent intercepts βj that are all assigned a Gaussian prior N (0,σ2
β) given the variance parameter σ2

β . The

intercept βc is assigned the weakly informative wide Gaussian prior N (0,100002).

We suggest two alternative models for the true average annual runoff generated inside a catchment A in year j. The first

model is denoted the areal model. For the areal model, the true annual runoff in catchmentA in year j is given by the average

point runoff over a catchment area, i.e10

Qj(A) =
1
|A|

∫

u∈A

qj(u)du, (5)

where |A| is the catchment area and qj(u) is the point runoff from Equation (4). Interpreting annual runoff as an integral of

point runoff ensures that the water-balance is approximately preserved for any point in the landscape (with some uncertainty).

Thus, the areal model is a model particularly suitable for mass-conserved hydrological variables. It also gives a realistic

representation of distances and thus also the correlation (Equation 2) between the catchments under study.15

The second model is denoted the centroid model. For the centroid model, the true average annual runoff in catchment A,

year j is given by

Qj(A) = qj(uA), (6)

where qj(uA) is the point runoff in Equation (4), and uA is the centroid of catchment A. This alternative does not require

preservation of water-balance and can be used for any environmental variable. Distance is measured between catchment cen-20

troids, such that this method is more similar to the traditional Kriging-methods described in Section 3.1.3. By skipping the

integral and not requiring any constraints to be fulfilled, a large reduction in the computational cost is obtained compared to

the areal model.

3.2.2 Observation likelihood

True annual runoff is observed with uncertainty through streamflow data from n catchments which we denote A1, ...,An, and25

we use the following model for the observed runoff yij in catchment Ai in year j

yij =Qj(Ai) + εij ; i= 1, ..n, j = 1, .., r. (7)

π(yij |σy)∼N (Qj(Ai),sijσ2
y).

Here, Qj(Ai) is the true runoff from Equation (5) if we use the areal model, or the true runoff from Equation (6) if we use

the centroid model. The error terms εij are identically, independently distributed as N (0,sijσ2
y) given σ2

y , and we assume that30
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each observation has its own uncertainty by scaling the variance parameter σ2
y with a fixed factor sij that is further specified in

Section 3.2.3.

3.2.3 Prior models

There are 6 model parameters (σy,ρc,σc,ρx,σx,σβ) in the third stage of the suggested hierarchical model for annual runoff.

As we apply the Bayesian framework, these have to be assigned with prior distributions, and we use knowledge based priors5

for most parameters.

In the observation model for runoff in Equation (7), each observation is allowed to have its own measurement uncertainty

by scaling the variance parameter σ2
y , with a fixed scale sij . This makes sense because the spatial variability of mean annual

runoff in Norway is large, with values ranging from around 400 m/year to 4000 m/years, and heteroscedastic errors can be

assumed. In the specification of the prior standard deviation
√
σ2
ysij , we assume that the measurement uncertainty for runoff10

increases with the magnitude of the observed value yij . Based on this we suggest the following scaling factors:

sij = (0.025 · yij)2, (8)

where yij is the observed runoff in catchment i in year j. For the variance σ2
y , we use the Penalized-complexity prior (PC-prior)

suggested by Simpson et al. (2017). The PC prior is a prior constructed for the precision, i.e the inverse of the variance. The

PC prior for the precision τ of a Gaussian effect N (0, τ−1) has density15

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), τ > 0, λ > 0, (9)

where λ is a parameter that determines the penalty of deviating from a simpler base model. The parameter λ can be specified

through a quantile u and probability α by Prob(σ > u) = α, where u > 0, 0< α < 1 and λ=−ln(α)/u. Here, σ = 1/
√
τ is

the standard deviation of this Gaussian distribution. In our case, we specify the PC-prior for σy as

Prob(σy > 1500 mm) = 0.1. (10)20

Recall that it is scaled with sij in the final uncertainty model such that a prior 95 % credible interval for the standard deviation√
(σ2
ysij) for the observed runoff in catchmentAi year j becomes approximately (0.001,10)% of the observed value yij . This

corresponds well to what we know about the measurement uncertainty for runoff in the study area.

For the spatial ranges ρx and ρc and the marginal variances σ2
x and σ2

c for the Gaussian random fields xj(u) and c(u),

we utilize the joint informative PC-prior suggested in Fuglstad et al. (2015). It is specified by the following probabilities and25

quantiles:

Prob(ρx < 20 km) = 0.1, Prob(σx > 2000
mm
year

) = 0.1,

Prob(ρc < 20 km) = 0.1, Prob(σc > 2000
mm
year

) = 0.1.

The percentages and quantiles are chosen based on knowledge about the spatial variability in the area of interest. It is reasonable

to assume that locations that are less than 20 km apart are correlated when it comes to runoff generation. In Norway the annual30
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runoff varies from around 400 mm/year - 4200 mm/year such that a marginal standard deviation that is below 2000 mm/year

is reasonable. The parameters of the climatic GRF c(u) and the year dependent GRF xj(u) are given the same prior as it is

difficult to identify if the spatial variability mainly comes from climatic processes or from annual variations. We also want the

data to decide which of the two effects that dominates in the study area, and this way detect hydrological stability or instability.

As specified in Section 3.2.1, the year specific intercepts βj for j = 1, .., r are all assigned the same Gaussian priorN (0,σ2
β)5

given the standard deviation parameter σβ . The standard deviation σβ is given the PC-prior from Equation (9) specified by

the wide prior P (σβ > 10 m) = 0.2. With this prior, the prior 95% credible interval is approximately (0.002,40.5) m for the

standard deviation σβ of βj .

3.2.4 Feasible computation of catchment runoff for the areal model

In the areal model in Equation (5), true runoff is modeled as the integral of point runoff over a catchment. To make the areal10

model computationally feasible, the integral is calculated by a finite sum over a discretization of the target catchment. More

specifically, if Li denote the discretization of catchment Ai, the annual runoff in catchment Ai in year j is calculated as

Qj(Ai) =
1
Ni

∑

u∈Li

qj(u), (11)

where Ni is the number of grid nodes in the discretization Li. In the discretization of the catchments it is important that a

subcatchment shares grid nodes with its mother catchment such that the water-balance can be preserved. In our analysis, we15

use a regular grid with 4 km spacing. Many of the Norwegian catchments are overlapping as we showed in Figure 1b, and in

some areas each grid node is utilized in the discretization of as much as five catchments.

3.2.5 Hierarchical geostatistical model with short records

Assuming that we observe runoff at n stream gauges for j = 1, ..r years and that LD contains all grid nodes in the discretization

of the catchments LAi for i= 1, ...,n, the areal model in Section 3.2.1 - 3.2.4 is summarized as the following hierarchical20

geostatistical model:

π(y|x,σy)∼
n∏

i=1

r∏

j=1

(I{Observation yij is available} ·N (Qj(Ai),sijσ2
y)

+ 1 · I{Observation yij is missing}) [Observation likelihood]

π(x|θ) = π (c(u1), ..., c(um)|ρc,σc) ·π(βc)25

·
r∏

j=1

[π (xj(u1), ...,xj(um)|ρx,σx) ·π(βj |σβ)] [Latent Model]

π(σy,θ) = π(ρx,σx) ·π(ρc,σc) ·π(σβ) ·π(σy) [Prior]
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where Qj(Ai) is the true annual runoff given by Equation (5), I(·) is a indicator function that is equal to 1 if its argument is

true, and 0 otherwise allowing for missing data and short records of runoff, y is a vector containing all runoff observations yij

from all catchments i and years j, x is a vector containing all latent variables, i.e the intercepts βc, βj and the GRFs c(u·) and

xj(u·) for all combinations of grid nodes u1, ...,um ∈ LD and years j=1,..,r. Finally, θ = (ρx,σx,ρc,σc,σβ). Together with

σy it contains all model parameters.5

The centroid model is summarized as a hierarchical model similarly, except that the true annual runoff Qj(Ai) is given by

Equation (6) instead of Equation (5). This also means that the grid nodes u1, ...,um in the above hierarchical model must be

replaced by uA1 , ...,uAn
, i.e the locations of the centroids of the n catchments under study.

3.2.6 Two model properties

There are two properties of the suggested interpolation scheme for runoff predictions that should be highlighted. These two10

properties makes the suggested models different from Top-Kriging and geostatistical interpolation methods that are typically

used for hydrological applications.

The first property we highlight is how the model is particularly suitable for exploiting short records of runoff, and this holds

for both the areal model and the centroid model. This property is already briefly addressed in the introduction, and is enabled

because we simultaneously model several years of data with a spatial component c(u) that is common for all years under15

study. The GRF c(u) represents the long-term spatial average of runoff. If most of the spatial variability can be explained by

long-term averages, the marginal variance parameter σ2
c will dominate over the marginal variance parameter σ2

x of the annual

GRF xj(u) (and the other model variances). Thus, a short-record of runoff from an otherwise ungauged catchment will have a

large impact also for the predictions in years without data through c(u).

Figure 3 shows 7 time series of annual runoff from 7 randomly chosen catchments from Western Norway. The 7 lines are20

almost parallel, i.e the correlation between the annual runoff in these catchments is large indicating that the spatial variability

is stable over years. This is captured by c(u). By gathering one or a few observations of annual runoff from an otherwise

ungauged catchment, c(u) is updated and the model learns how the level of annual runoff in this catchment is relatively to

longer time series from nearby catchments, i.e the nearby catchments work as donors. Existing methods that exploit short

records are typically based on linear regression or computing the correlation between the runoff in the target catchment and25

one or several donor catchments, and in order to perform these procedures the short-record must be of length larger than one

(Fiering, 1963; Laaha and Blöschl, 2005). In the method we suggest, it is possible to include a short-record of length one, and

it is already shown for a smaller case study that this often is enough to see a large improvement in the predictability of (annual)

runoff (Roksvåg et al., 2019).

The second property we highlight only holds for the areal model, and is the model’s ability to do more than smoothing:30

Runoff is in Equation (5) defined as an integral of point runoff such that the water-balance is preserved in any point in the

landscape. This also has the beneficial consequence that the suggested model allows us to predict values that are larger than

any of the observed values in the area of interest. As a conceptual example, consider the three catchments in Figure 5, where

each black node represents one areal unit denoted ∆. The observed runoff is 1000 mm/year and 2000 mm/year in the two
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Figure 5. Conceptual figure of a river network. Assume that there are three observations of annual runoff: 1000 mm/year and 2000 mm/year

in the sub-catchments (orange and green), and 2000 mm/year in the surrounding catchment (black). In order to fulfill the water balance, the

predicted mean annual runoff in the remaining area (pink) must be 2500 mm/year with some uncertainty added (assuming each grid node

represents 1 areal unit).

subcatchments, and 2000 mm/year in the surrounding larger catchment (with some uncertainty). In order to preserve the water-

balance, the mean annual runoff x in the remaining area is given by the following equation:

1000mm/year · (4∆) + 2000mm/year · (8∆) +x ·mm/year · (8∆) = 2000mm/year · (20∆) + Uncertainty

If the uncertainty is low, this results in a prediction around x= 2500 mm/year for the remaining part of the catchment.

Most Kriging-methods, involving the centroid model, do a weighting of the observations according to Equation (3) and would5

produce a prediction between 1000 m/year and 2000 m/year (Adamowski and Bocci, 2001; Merz and Blöschl, 2005; Skøien

et al., 2006). The areal model suggested in this article is capable of producing predictions that are larger than any observed

value without using any explanatory variables. However, this property also restricts these models to hydrological variables

that are approximatively mass conserved over nested catchments. This is also one of the reasons for presenting the alternative

centroid model that can be used for any environmental spatial variable.10

3.2.7 Extension to monthly runoff

In Section 3.2.1-3.2.6 we presented two models for annual runoff. However, the model can also be used to model other runoff

signatures. More specifically, Qj(Ai) in Equation (5) can for example represent the true total runoff in January for catchment

Ai, year j, such that the GRF c(u) represents the long-term spatial variability in January. Likewise, the GRF xj(u) represents

the annual spatial discrepancy from the climate in January, and yij is the observed runoff in January for catchment Ai year j.15

In this article, we consider both annual predictions and monthly predictions for three chosen months (January, April and June),

and for simplicity we use the same prior distributions for all time scales.

15
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3.3 Inference

In order to make the models computational feasible, some simplifications of the suggested models are necessary. In general,

statistical inference on models including GRFs is slow when the number of target locations is large because of matrix opera-

tions on dense covariance matrices are required. The computational complexity is largest for the areal model, for which each

grid node can be regarded as a new target location. To solve the computational issues, we utilize that a GRF with a Matérn5

covariance function can be expressed as the solution of a specific Stochastic partial differential equation (SPDE) (Lindgren

et al., 2011). This SPDE can be solved by using the finite element method (see e.g Brenner and Scott (2008)), and the result

is a Gaussian Markov random field (GMRF). Working with GMRFs is convenient because GMRFs have precision matrices

(inverse covariance matrices) that typically are sparse with more zero elements, and there exist efficient algorithms to perform

fast matrix operations on such matrices (Rue and Held, 2005). In this work, both GRFs xj(u) and c(u) are approximated by10

GMRFs.

Another challenge with the suggested models, is that we have Bayesian models including a large number of parameters for

which the marginal distribution must be estimated. Traditionally, Bayesian inference is done by using Markov chain Monte

Carlo-methods (MCMC), but inference can be slow when the dimension of the problem is large. These challenges are met

by modeling runoff as a latent Gaussian model (LGM). That is, the latent part of the hierarchical model in 3.2.5 consists of15

only Gaussian distributions. More specifically, the prior distributions for c(u) and xj(u) are modeled as GRFs, and the prior

distributions for βj and βc are Gaussian given the model parameters (see the equations in (4)). This is convenient, because it

allows us to use Integrated Nested Laplace approximations (INLA) to make inference and predictions. INLA can be used for

making Bayesian inference on LGMs and is a fast and approximative alternative to MCMC algorithms. The approach is based

on approximating the marginal distributions by using Laplace or other analytic approximations, and on numerical integration20

schemes. The main computational tool is the sparse matrix calculations described in Rue and Held (2005), such that in order to

work fast, the latent field of the LGM should be a GMRF with a sparse precision matrix. This requirement is fulfilled through

the SPDE approach as already described.

The R-package r-inla was utilized to make inference and predictions for the suggested models. This package provides a

user-friendly interface for applying INLA and the SPDE approach to spatial modeling without requiring that the user has deep25

knowledge about SPDEs. In particular, Moraga et al. (2017) is recommended for a description of how a model with (catchment)

areal data can be implemented in r-inla while the supplementary material in Roksvåg (2016) explains how a climatic GRF

like c(u) can be introduced.

4 Model evaluation

4.1 Experimental set-up for cross-validation30

To assess the predictive performance of our suggested models, we perform predictions of annual runoff, and monthly runoff

for January, April and June for 1996-2005 for the test data described in Section 2. Recall that the test data consist of annual and
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monthly data from around 200 fully gauged catchments located all across Norway. The three following methods are compared:

Top-kriging: Spatial interpolation with Top-Kriging. For Top-Kriging each year (1996-2005) is treated independently from

other years. Short records on an annual (or monthly) scale don’t have an impact on years without data. The default covariance

function (or variogram) in the R package rtop was used as this gave the most accurate results. This is a multiplication of a5

modified exponential and fractal variogram model, the same model as used in (Skøien et al., 2006).

Areal model: Spatial interpolation with the model defined in Section 3 with true annual runoff given by the areal model

in Equation (5). That is, annual runoff is interpreted as the average point runoff over nested catchment areas. All years are

modeled simultaneously (1996-2005) such that short records of data might influence years without data.10

Centroid model: Spatial interpolation with the model defined in Section 3 with true annual runoff given by Equation (6).

That is, annual runoff is interpreted as a process linked to point locations in space (the catchment centroid), and not to catchment

areas. All years are modeled simultaneously (1996-2005) such that short records of data might influence years without data.

The predictive performance of the three methods is evaluated by cross-validation. The around 200 catchments in Norway15

were divided into 20 groups or folds. In turn each group was left out and annual or monthly runoff predictions were performed

for these so-called target catchments by using observations from the catchments in the other groups. That is, we predict runoff

for 1996-2005 for around 10 target catchments at once by using data from the remaining 190 catchments, and repeat the process

for all 20 cross-validation groups. To evaluate and compare the three methods described above, we do the following three tests:

20

1) UG (ungauged): Assess the method’s ability to predict runoff in ungauged catchments (denoted UG). That is, the tar-

get catchments are treated as totally ungauged, and all their observations are left out of the dataset when the annual or monthly

predictions for 1996-2005 are performed.

2) PG (partially gauged): Assess the method’s ability to predict runoff in partially gauged catchments (denoted PG). Each of

the 10 target catchments in the cross-validation group is allowed to have one observation of annual or monthly runoff. That25

is, a short-record of length one from the target catchment is included in the observation likelihood in addition to the full data

series of runoff from catchments in the other cross-validation groups. The short-record is drawn randomly from the ten years

of observations available for each target catchment. We perform annual and monthly predictions for 10 partially gauged target

catchments at once, for all 10 years under study (for which one of them is observed for each catchment), and repeat the process

for all 20 cross-validation groups.30

3) PG-N (partially gauged neighbors): Assess the method’s ability to exploit short records of data from neighboring catch-

ments (denoted PG-N). The target catchments are treated as ungauged, while their three nearest neighboring catchments in

terms of catchment centroid are treated as partially gauged. Nine out of ten of the observations from the neighboring catch-

ments are removed from the observation likelihood. That is, the three neighboring catchments are allowed to have only one

observation of annual (or monthly) runoff. This observation is drawn randomly from the ten years of observations available.35

Full data series from the remaining catchments located further away are available as before. As we have around 10 catch-
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ments in each cross-validation group, it means that they together have around 30 neighbors for which we remove 9 out of 10

observations. Consequently, there is a large reduction of available data in this test.

To make the results comparable, we use the same cross-validation groups for all experiments (UG, PG and PG-N) and meth-

ods (Top-kriging, areal model and centroid model). For the PG-case, we also compare our models to a method for exploiting

short-records from the target catchment. The method we choose for comparison is simple linear regression, and we perform5

linear regression for the PG-case as follows:

Linear regression: The closest catchment in terms of catchment centroid is utilized as a donor catchment and only catchments

outside the target catchment’s cross-validation group can be considered. Two years of observations between 1996 and 2005

are randomly drawn from the target catchment, and data from the donor catchment and target catchment are used to fit a linear

regression model as described in Section 3.1.4. Next, the fitted model is used to predict runoff for the target catchment for10

1996-2005 (where two of the years are observed).

4.2 Evaluation scores

As evaluation scores for the cross-validation we use the Root Mean Squared Error (RMSE) and the Continuous Rank Proba-

bility Score (CRPS). We compute the RMSE for catchment Ai as

RMSEi =

√√√√1
r

r∑

j=1

(yij − ŷij)2,15

where ŷij is the predicted annual runoff or predicted monthly runoff for catchment i year j, and yij is the corresponding

observed value. The posterior mean is used as a point prediction for the areal and the centroid model. The average RMSEi

over all catchments i= 1, ..,n is used as summary score, and we denote it RMSE.

The CRPS is defined as

CRPS(Fij ,yij) =

∞∫

−∞

(Fij(u)− 1{yij ≤ u})2du,20

where Fij is the predictive cumulative distribution and yij is the actual runoff observation (Gneiting and Raftery, 2007). In

this case, Fij is a Gaussian distribution with mean equal to the predicted value and standard deviation equal to the standard

deviation of the prediction. As for the RMSE, we denote the average CRPS over all catchments and years as CRPS, while

CRPSi is the average CRPS in catchment i over r years. Both the CRPS and the RMSE are negatively oriented such that a low

score means an accurate prediction.25

We also want to compare our results with other studies of annual and monthly runoff, more specifically the studies collected

in Blöschl et al. (2013). In Blöschl et al. (2013), the absolute normalized error (ANE) and the squared correlation coefficient

(r2) are used as evaluation scores. ANE is given by

ANE =
|yij − ŷij |

yij
, (12)
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such that the absolute difference between the actual observation yij and corresponding prediction ŷij is normalized with respect

to the magnitude of the observed runoff. An ANE close to zero corresponds to an accurate prediction. We use ANEi to denote

the average ANE in catchment i over r years. The squared correlation coefficient for catchment i is computed as

r2i = (Cor{(yi1, ...,yir),(ŷi1, ..., ŷir)})2, (13)

where Cor(·, ·) denotes the Pearson correlation, and it is taken between the observations yij from catchment i and the corre-5

sponding predictions ŷij for all years j = 1, ..r.

4.3 Mean annual runoff map for southern Norway

In addition to assessing the predictive performance of the suggested framework, we demonstrate our method on a real practical

problem by constructing a map of mean annual runoff for southern Norway. For this purpose, all available data from 1981-2010

are used, i.e data from 292 catchments for which only 89 of them are fully gauged in this 30 year period. The data are used to10

estimate the mean annual runoff for around 1500 catchments, and to decrease the computational complexity of modeling 30

years of annual runoff simultaneously, we use the centroid model to do the calculations.

As the true underlying runoff field is unknown, the quality of the resulting runoff map cannot be quantified directly. However,

we can compare our runoff map to alternative runoff maps, and for this purpose we also fit an alternative centroid model for

which we omit the climatic GRF c(u) in Equation (4). For this model, true annual runoff qj(u) at location u in year j is given15

by

qj(u) = βc +βj +xj(u); j = 1, ...r, (14)

where the true annual runoff in catchment A is given by qj(uA) where uA is the catchment centroid as before (Equation

(6)). We denote the above model "the simpler centroid model". The simpler centroid model treats each year of runoff more

independently as it only has year specific effects. By comparing it to the full centroid model from Section 3.2, we can study20

the effect of modeling several years of runoff simultaneously.

5 Results

The models introduced in Section 3 (Top-Kriging, areal model, centroid model and linear regression) are fitted to the data

described in Section 2. In Section 5.1 to 5.3 we present the results from the cross-validation and compare the method’s perfor-

mances for the three settings (UG, PG and PG-N) described in Section 4.1. In Section 5.4 we briefly compare the results with25

other studies of annual and monthly runoff, before we present the map for mean annual runoff for southern Norway in Section

5.5.

5.1 Predictions in ungauged catchments (UG)

For the ungauged case (UG), the target catchments are treated as totally ungauged for the ten study years 1996-2005, and

annual and monthly predictions were performed by cross-validation. In Figure 7 the resulting average predicted annual runoff30
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Table 1. Predictive performance for predictions in ungauged catchments (UG).

RMSE [mm] CRPS [mm] Coverage 95 %

Model TK Areal Centr. TK Areal Centr. TK Areal Centr.

Annual 319 363 360 234 266 263 0.93 0.93 0.91

January 36 38 37 24 25 24 0.92 0.92 0.87

April 38 39 38 24 25 25 0.92 0.88 0.83

June 82 87 94 56 60 66 0.90 0.92 0.81

Table 2. Predictive performance for predictions in partially gauged catchments (PG). Here, we also include results for linear regression (LR).

RMSE [mm] CRPS [mm] Coverage 95 %

Model TK Areal Centr. LR TK Areal Centr. LR TK Areal Centr. LR

Annual 302 184 203 177 209 118 133 256 0.94 0.95 0.93 0.96

January 34 31 32 86 21 20 21 145 0.90 0.90 0.87 0.94

April 36 31 31 46 22 19 20 83 0.86 0.86 0.83 0.98

June 79 55 64 87 51 35 44 180 0.90 0.90 0.81 0.96

Table 3. Predictive performance for predictions for ungauged catchments with partially gauged neighboring catchments (PG-N).

RMSE [mm] CRPS [mm] Coverage 95 %

Model TK Areal Centr. TK Areal Centr. TK Areal Centr.

Annual 418 405 366 292 288 265 0.95 0.95 0.93

January 49 47 57 31 30 29 0.93 0.93 0.85

April 47 44 48 30 28 28 0.94 0.91 0.94

June 102 100 102 68 66 65 0.91 0.92 0.93

in southern Norway is presented for Top-Kriging, the areal model and the centroid model. The three methods give similar

results for the posterior mean and are all able to reproduce the true spatial pattern of annual runoff in Figure 6. The RMSE

plots in Figure 7 also show that the three methods typically fails for the same catchments. Similar trends were seen for northern

Norway and for monthly predictions.

Considering the posterior standard deviation in Figure 7, we notice that Top-Kriging and the areal model provide a similar5

quantification of the predictive uncertainty, with the areal model tending to give a slightly larger uncertainty. Top-Kriging and

the areal model take the nestedness of catchments into account by implementing runoff data as areal referenced observations,

providing a predictive standard deviation of runoff that depends on the size of the target catchment: Figure 7 shows that smaller

catchments typically have a larger predictive uncertainty, which is reasonable. This is not the case for the centroid model. For

this model, runoff observations are point referenced and weighted independently of catchment size. Consequently, the predic-10

tive uncertainty only depends on how the centroids of the observed catchments are distributed in space, and decreases in areas
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where there are clusters of data. The predictive uncertainty provided by Top-Kriging and the areal method is thus more intuitive

and realistic considering the process we are studying. The latter is also supported by the coverage percentages presented in

Table 1. The coverage percentages show the amount of the actual observations that were captured by the corresponding 95 %

prediction intervals, and these are slightly closer to 0.95 for Top-Kriging and the areal model compared to the centroid model.

Table 1 also presents the summary scores for the predictive performance for runoff predictions in ungauged catchments5

for all methods. In terms of RMSE and CRPS, Top-Kriging is a slightly better interpolation method than our two suggested

methods. However, the boxplots in Figure 8 illustrate the distribution of RMSEi for all catchments and years, and we see that

the difference between Top-Kriging and the two other methods is quite low from a practical point of view. On a monthly scale

the differences in RMSEi are almost negligible.

5.2 Predictions in partially gauged catchments (PG)10

For the partially gauged (PG) case, each target catchment is allowed to have a short-record of length one for Top-Kriging, the

areal and centroid model, and length two for linear regression. Before we present the results from the cross-validation for PG,

we consider the posterior estimates of the range parameters (ρx and ρc) and the marginal variance parameters (σx and σc) of

the year-specific GRF xj(u) and the climatic GRF c(u) for our four time-scales. The parameter estimates are presented in

Table 4 for annual and monthly predictions, for the areal and the centroid model. The parameters in this table are important, as15

they indicate how much of the spatial variability that lies in the climatic GRF relatively to the annual GRF. In particular, if σc

dominates over σx, it suggests hydrological stability and we can expect short records to have a large impact on the predictive

performance for the target catchment.

The estimates in Table 4 show that the hydrological stability is largest for April, June and for annual data. Particularly

for June and for the annual data, for which the posterior mode for σc is more than twice as large as the posterior mode for20

σx for both the areal and the centroid model. The latter reflects a strong climatic trend where c(u) dominates over xj(u). For

January, the spatial variability is less stable from one year to another, with posterior modes of σc and σx that are both around 80

mm/month for the areal model, and with σx approximately twice as large as σc for the centroid model. Consequently, for annual

predictions and for monthly predictions for June, short records should have a large impact on the predictive performance, while

for January and April, year specific-effects explain a larger part of the spatial variability, and the gain of including short records25

is expected to be lower.

The conclusions drawn for the parameter values, are confirmed by comparing the RMSE and CRPS for the areal and the

centroid model in Table 2, to the RMSE and CRPS obtained for the ungauged case in Table 1. For all time-scales, the RMSE

and CRPS for our two models are reduced in Table 2 compared to Table 1, although the reduction in the RMSE and CRPS is

low for January and April as expected from the parameters. For annual predictions the RMSE and CRPS are reduced by more30

than 50% when a short-record of length one from the target catchment is included in the observation likelihood. The reduction

for June is also remarkable (around 40 %). The results holds for both the areal and centroid model, but the areal method seems

to be somewhat better than the centroid model in terms of exploiting short records of data from the target catchment. This is
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Figure 6. Mean annual observations (1996-2005) for southern Norway.
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Figure 7. Average posterior mean (upper), average posterior standard deviation (middle) and average RMSE for each catchment (lower) for

annual predictions in southern Norway for the three interpolation methods (Top-Kriging, Areal and centroid) when the target catchments are

treated as ungauged (UG). The methods give similar results for other time scales and for northern Norway.
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Figure 8. Distribution of RMSEi for predictions for all catchments and years (1996-2005) when the target catchments are treated as ungauged

(UG) in the cross-validation.
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Figure 9. Distribution of RMSEi for predictions for all catchments and years (1996-2005) when the target catchments are treated as partially

gauged (PG), i.e a short-record from the target catchment is included in the observation likelihood in the cross-validation.
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Figure 10. Distribution of RMSEi for predictions for all catchments and years (1996-2005) when the target catchments are treated as

ungauged and the three nearest neighboring catchments are treated as partially gauged (PG-N) in the cross-validation.
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Table 4. The posterior mode of the range parameters ρc and ρx and the marginal standard deviations σc and σx of the climatic and the annual

GRFs c(u) and xj(u) for the areal model (upper) and centroid model (lower). The posterior standard deviations of the parameters are shown

in parenthesis as a measure of the uncertainty. The mode and standard deviations vary slightly depending on which experiment and group

in the cross-validation we consider, and the values given here are the mean over all folds and experiments (UG, PG and PG-N). The spatial

effect that dominates (annual or climatic) is marked in bold.

Areal model ρc [km] ρx [km] σc [mm] σx [mm]

Annual 49 (6) 513 (74) 902 (53) 270 (24)

January 17 (4) 285 (32) 80 (8) 87 (4)

April 63 (9) 222 (40) 74 (5) 48 (3)

June 35 (3) 182 (25) 198 (10) 79 (4)

Centr. model ρc [km] ρx [km] σc [mm] σx [mm]

Annual 86 (11) 811 (115) 697 (50) 271 (27)

January 57 (12) 495 (66) 49 (4) 94 (9)

April 124 (18) 429 (70) 67 (6) 52 (5)

June 64 (8) 364 (53) 147 (10) 72 (6)

again related to the parameter estimates in Table 4, where we see that σc dominates more over σx in the areal model than in

the centroid model.

While our suggested methods model several years of data simultaneously, Top-kriging treats each year of data independently.

A reduction in RMSE and CRPS is only seen for the specific year with extra data. Thus, we only obtain a small reduction in

the RMSE and CRPS for the partially gauged case (Table 2) compared to the ungauged case (Table 1) for Top-Kriging. The5

evaluation scores in Table 2 and the boxplots in Figure 9 clearly show that our two suggested methods outperform Top-Kriging

for the partially gauged case for annual predictions and monthly predictions in June, which were the two time-scales with most

hydrological stability. For January and April the three models are more similar.

For the PG case, we also compare the areal and the centroid model to simple linear regression. According to Table 2 and

Figure 9 linear regression performs quite well on an annual scale, which is the time-scale with most hydrological stability10

(according to σc and σx). Linear regression actually has the lowest RMSE of all four methods for annual predictions. However,

recall that a short-record of length 2 from the target catchment is needed in order to use this method, while our areal model

performs approximately equally well with a short-record of length 1 (and observations from other neighboring catchments).

Table 2 also indicates that linear regression gives more unstable uncertainty estimates with a large CRPS for both annual and

monthly predictions. This can be explained by the fact that the variance of the measurement uncertainty σ2 is estimated based15

on only two pairs of observations, i.e two observations from one donor catchment and one target catchment. For monthly

predictions, linear regression is outperformed by the three other methods in terms of RMSE and CRPS (Table 2). We conclude

that linear regression requires a quite high correlation between the target catchment and the donor catchment in order to

produce better predictions than the geostatistical methods. Even for June which is a month with large hydrological stability,

linear regression is outperformed.20
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Figure 11. Actual annual observations compared to the predictions for the ungauged case (UG, left) and the partially gauged case (PG, right)

for the areal model. The straight line represents a perfect correspondence between prediction and actual observation.
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Figure 12. Actual observations from April compared to the predictions for April for the ungauged case (UG, left) and the partially gauged

case (PG, right) for the areal model. The straight line represents a perfect correspondence between prediction and actual observation.

To illustrate the possible gain of including short records of data from the target catchment, we include some scatter plots that

compare the predicted values produced by the areal model to the actual observations of runoff (Figure 11 and Figure 12). For

the annual predictions in Figure 11, we see a large improvement in the predictions for the partially gauged case (PG) compared

to the ungauged case (UG): While UG has some problems with predicting large values of runoff, the predictions for PG are

considerably more concentrated around the straight line that indicates a perfect fit. There are similar results for June, whereas5

the difference between the ungauged and partially gauged case is not that prominent for April (see Figure 12) and January.

In Figure 7 we saw that all three interpolation methods were able to reproduce the true spatial pattern of annual runoff

when performing predictions in ungauged catchments (UG). However, all three methods had trouble identifying some of the

catchments. These are typically wet catchment surrounded by dry catchments, or dry catchment surrounded by wet catchments.

Such catchments are difficult to predict for pure interpolation methods like the ones described in this article. Figure 13 shows10

the impact of including a short-record of length one for these problematic catchments. It compares the annual predictions from

the ungauged case (UG) to the annual predictions from the partially gauged case (PG) for the areal model: We see a large
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Figure 13. Average posterior mean (upper), average posterior standard deviation (middle) and RMSEi (lower) for annual predictions per-

formed by the areal model for the ungauged case (left) and the partially gauged case (right).
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reduction in the RMSE, and a (realistic) reduction of the posterior standard deviation. There are similar findings for predictions

in June. Figure 7 and 13 illustrate how a short-record of length one or larger can lead to a considerable reduction in the RMSE

if the spatial pattern is stable over years, and the importance of having a model that can exploit this property.

5.3 Exploiting short records of data from neighbors (PG-N)

Next, we assess the method’s ability to exploit short records of data from nearby catchments (PG-N), i.e the targets catchment5

are treated as ungauged, while three of the closest neighboring catchments are allowed to have only one observation of monthly

or annual runoff. Table 3 and the boxplots in Figure 10 summarize the results from the cross-validation. For annual predictions,

the centroid model gives the most accurate results with the lowest RMSE and CRPS. The centroid model outperforms the areal

model here, possibly because the centroid model provides the largest spatial range (ρc=86 km for the centroid model compared

to ρc=49 km for the areal model). Thus, observations from nearby catchments have a larger impact on the target catchment for10

the centroid model than for the areal model for this case study.

On a monthly scale, the three methods perform approximately equally good. One possible explanation is that the spatial range

is not large enough for June, which is the month with most hydrological stability, for the target catchments to be considerably

affected by short records of data from neighbors. The annual predictions for the areal model are also only slightly better than

the predictions provided by Top-Kriging. However, recall that for the ungauged case (UG) Top-Kriging outperformed the15

centroid and the areal method for all time scales (Table 1), while for the PG-N case the differences between the three methods

are almost reduced to zero (Table 3). The centroid model and the areal model are even better than Top-Kriging on an annual

scale in Table 3. The results from UG and PG-N in Table 1 and 3, indicate that exploiting long-term spatial averages in the

interpolation scheme as in our methods, can be just as important as finding a process-based way of determining the Kriging

weights which is the idea behind Top-Kriging.20

5.4 Comparison with other studies

We now compare our results to other comparable studies. In the chapter about annual runoff by McMahon et al. (2013) in

Blöschl et al. (2013), 34 studies of predictions of mean annual runoff from around the world are compared in terms of the

absolute normalized error (ANE) from Equation (12) and the squared correlation coefficient r2 from Equation (13). In regions

like Norway for which the potential evapotranspiration is less than 40 % of the mean annual precipitation, a median ANE25

around 0.25 is a typical result (Figure 5.27 in McMahon et al. (2013)). The ANE obtained for annual predictions produced by

our suggested areal model is thus similar to the ANE obtained by other comparable studies, with median ANE around 0.25 as

shown in Figure 14a. The median ANE is as low as 0.10 for the PG case for annual predictions.

Furthermore, McMahon et al. (2013) report an r2 between 0.60 and 0.99 for studies based on cross-validation with ∼150

involved catchments, or for methods based on spatial proximity like our suggested models (Figure 5.25 and Figure 5.26 in30

McMahon et al. (2013)). The r2 for our areal model is presented in Figure 14b, and we see that it is between 0.75-0.90 for the

UG and PG case for annual predictions, i.e within the range of values obtained by other comparable studies.
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Figure 14. Absolute normalized error (ANEi) and squared correlation coefficient (r2i ) for all catchments for the areal model. Cross-validation

is performed on 200 Norwegian catchments as described in Section 4 for the three cases UG (ungauged catchments), PG (partially gauged

catchments) and PG-N (partially gauged neighboring catchments).

In Blöschl et al. (2013) there is also a comparative study of seasonal runoff, but here the ANE and r2 are reported for seasonal

runoff as a whole, not for individual months like in this article. However, we include ANE and r2 for monthly predictions in

Figure 14 for completeness.

5.5 Mean annual runoff map for southern Norway

Finally, we demonstrate our framework for a real practical case by presenting two mean annual runoff maps for southern5

Norway: One that is constructed by the full centroid model, and one that is constructed by a simpler centroid model from

Equation (14) for which the climatic GRF c(u) is omitted. The resulting maps are shown in Figure 15. We see that the runoff

field produced by the simpler centroid model is smoother than the runoff map provided by the full centroid model. Thus, the

full model seems to be better at capturing rapid spatial variations. This is in particular visible in the western parts of Norway
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(a) Mean annual observations (1981-2010). (b) Posterior mean for full centroid model.

(c) Posterior mean for simpler centroid model. (d) Difference (full model - simpler model).

Figure 15. Average posterior mean annual runoff for all catchments in southern Norway (1981-2010) computed based on data from 292

catchments for which only 89 of them are fully gauged in the time period of interest.

close to the coast where there are several small catchments with large values of mean annual runoff. Some of these catchments

deviate from their closest neighbors and don’t fit into the underlying statistical model, but the full centroid model is able to

account for this if a short-record is available here. As we can see, this holds both for catchments that are wetter or dryer than

its surroundings. In the eastern parts of Norway (located in the rain shadow), the difference between the full centroid model

and the simpler model is smaller, as we can see in Figure 15d. The weather conditions are more stable in space with a larger5

spatial range. Performing runoff predictions here are in general easier, and similar results for the two models indicate that

short-records of runoff have less impact on the predictive performance in these areas.
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6 Discussion

In this article we have presented two geostatistical Bayesian models particularly suitable for hydrological datasets that include

missing values and short records of data. The models provide a framework for simultaneously modeling several years of runoff,

and consist of one year specific GRF, and one climatic GRF that is common for all years under study. The climatic GRF detects

hydrological stability and captures the long-term spatial variability in the area of interest. This information is used across years5

and allows the model to fully exploit data from partially gauged catchments.

One of our goals was to assess the predictive performance of our suggested framework, and compare this to the predictive

performance of Top-Kriging. To quantify the predictive performance, we predicted monthly and annual runoff for around 200

catchments in Norway by cross-validation. The results confirmed that when the spatial variability is high, but stable over years,

there is much predictive power to gain from utilizing a model with a climatic spatial field. For the Norwegian dataset, our two10

suggested models clearly outperformed Top-Kriging when the target catchments were treated as partially gauged (PG) with

one observation from the target catchment included in the likelihood (while 10 years of runoff were predicted). A reduction

in RMSE of around 50 % was found for annual runoff predictions in partially gauged catchments compared to predictions

in totally ungauged catchments. One of our aims was also to assess the value of including short records of runoff, and by

this we have shown that it can be large. Furthermore, there is also valuable information stored in short records of data from15

neighboring catchments (PG-N), but here the differences between Top-Kriging and our two suggested methods were smaller.

When the target catchments were treated as ungauged (UG) and the neighboring catchments were fully gauged, Top-Kriging

provided the best predictions. This indicates that Top-Kriging is the best method for pure interpolation of stream flow related

variables. However, the results from the other experiments show that exploiting hydrological stability and long-term trends (as

in our models) can be just as important as determining the Kriging weights in a process-based manner (as in Top-Kriging) if20

the dataset available is sparse.

Compared to simple linear regression with the closest catchment applied as donor catchment, our suggested methods were

better at exploiting short-records from the target catchment in terms of RMSE and CRPS, except when the spatial pattern was

particularly stable over years (annual predictions in Norway). For annual predictions linear regression performed slightly better

than our (areal) model. However, our (areal) model provides a more realistic distribution of the measurement uncertainty, it can25

be applied for short-records of length 1 (linear regression requires length larger than 1), and represents an objective framework

where we avoid the challenge of choosing a suitable donor catchment.

In addition to assessing the predictive performance of the suggested framework, our aim was to illustrate the benefits of

including a climatic trend in the model for a real practical problem by constructing a runoff map for southern Norway. We

constructed one map with our suggested framework, and one map based on a simpler model that only included annual GRFs30

that treat each year of data more independently. The resulting maps showed that the model that included a climatic GRF was

better at capturing rapid changes of annual runoff than the simpler spatial model.

In order to compare our method to other studies, we computed the absolute normalized error (ANE) and the squared cor-

relation coefficient r2. The results showed that our methodology gave an ANE and r2 within the range of values obtained
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by other experiments. Furthermore, the resulting ANE and r2 can also be used to better understand how our methodology

works in practice. If we compare the results when performing predictions for ungauged catchments (UG) and the results when

performing predictions in partially gauged catchments (PG), we see that the difference between UG and PG in terms of r2 in

Figure 14b is almost negligible, while the difference in terms of ANE in Figure 14a is large. Recall that r2 is a measure of

correlation between the predictions and the actual observations, while ANE is a measure of deviance between the predictions5

and the observations. For the UG and PG case, we use the same set of observations in the likelihood for cross-validation,

except for one extra observation from the target catchment for PG compared to UG. The strength of our suggested framework

is that including an extra observation from the target catchment typically increases or reduces the level of predicted runoff in

the target catchment relatively to its neighbors due to the climatic GRF. The correlation between the target catchment and the

neighboring catchments remains approximately unchanged. That is, including a short record from the target catchment does10

not have a large impact on r2, or the correlation between the target catchment and its neighbors, but it often has a large impact

on scores like RMSE or ANE because the level of annual or monthly runoff is changed. This way, the climatic component

provides a methodology for calibration for the target catchment when a short-record is available.

In Section 5.2 we saw that it was a clear relationship between the marginal variances of the two spatial fields, and the

decrease in RMSE when a short record of length 1 was included in the likelihood. This represents another appealing property15

of the suggested model: Hydrological stability can be indicated directly from the parameters. ´If the marginal variance of the

climatic GRF σc dominates over the marginal variance of the year specific GRF σx, this suggests that the spatial variability is

stable and that short records of runoff have a large impact on the resulting predictions. This can be valuable information for

decision-makers when deciding whether or not new observations should be gathered from an ungauged catchment, e.g when

planning a building project or the construction of a power station. However, to exactly quantify the expected gain of gathering20

a new stream-flow observation from an ungauged catchment, all model variances (σ2
x, σ2

c , σ2
β , σ2

y) and ranges (ρx, ρc) must

be taken into account, as well as the distances between the donor catchments and the target catchment. Computing this gain is

outside the scope of this article, but an interesting topic for further research.

In this study, we proposed one model that ensures approximate mass conservation of runoff over nested catchments (areal

model), and one model for variables that are not mass conserved (centroid model). Both models provided accurate predictions25

of annual runoff, but the areal model gave a better interpretation of the predictive uncertainty and was also somewhat better in

terms of exploiting short-records of runoff from the target catchment for the Norwegian dataset. As the areal model provides a

more correct distribution of uncertainty over nested catchments, it might outperform the centroid model also for variables that

are not mass-conserved. Top-Kriging performs well for such variables although it is a method that original was constructed

for mass-conserved variables (Skøien et al., 2006). There are also reasons to believe that the areal model will outperform the30

centroid model in areas with less data: In areas with few stream-flow observations, a more physical interpretation of runoff is

probably more important. Here the areal model has some benefits as it constrains runoff over nested catchments, and is able to

produce higher predicted values than any of the observations in the dataset. However, the centroid model is still useful, first and

foremost due to its computational benefits. It can also easily be used for interpolation of other environmental variables such as

precipitation or temperature.35
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Like all methods, our suggested interpolation schemes have some shortcomings. For the pure interpolation case with fully

gauged neighbor stations (UG), we saw that Top-Kriging performed better than our two methods. It is difficult to point out

why Top-Kriging performs better, and we did not find a pattern for which catchments Top-Kriging performed best (mean

elevation, location and the magnitude of the observations were investigated). One contributing reason for the difference in

predictive performance can be explained by the choice of covariance function: Our methods are restricted to applying the5

Matérn covariance function for computational reasons, while a multiplication of a modified exponential and fractal variogram

model was used for Top-Kriging. Utilizing a Gaussian covariance function in the Top-Kriging method was tried, but gave

poorer results. The Gaussian covariance function typically produced a spatial field that was too smooth, and this can be a

problem for the Matérn covariance function too.

In this article, we proposed two models for runoff that are Gaussian. That is, there is nothing in the model that prevents it10

from predicting negative runoff. The negative values appear for both the areal and the centroid model due to the uncertainty

given by σy , but this is also a problem for the Top-Kriging technique. Another source for negative values is that the climatic

GRF can be negative in some areas. This is a fully valid result because the annual GRF and the other model components still

ensure positive predictions for most catchments and years. However, it can become a problem if we are unlucky and the year

specific GRF lacks information from some of the partially gauged catchments for a particular year, such that the annual GRF15

doesn’t make up for the negative climatic GRF in these areas.

In the areal model, negative values also appear as a consequence of requiring preservation of water-balance. Earlier, we

described how the areal model is able to predict values that are larger than any of the observations, but it could also go the other

way around and provide small or negative predictions. The latter happens particularly if there are inconsistent or poor data over

nested catchments. Also note that it is important that the discretization of the study area is fine enough to capture rapid changes20

in runoff over nested catchments to avoid unphysical results for the areal model. In our study, some negative values were

produced for the annual and monthly predictions as we can see in Figure 11 and Figure 12. However, this is not common and

happened for only 1.2 % of the predictions presented in this paper. Unphysical results also appear for Top-Kriging and other

interpolation methods, either in terms of violating the water-balance or in terms of negative values. These model weaknesses

should be remarked, but are hard to fully avoid.25

7 Conclusions

We have presented a new geostatisitcal framework for estimating flow indices by modeling several years of annual or monthly

runoff data simultaneously by utilizing one (climatic) GRF that is common for all years under study, and one (annual) GRF

that is year specific. By this, we obtain a framework that is particularly suitable for runoff interpolation when the available data

originate from a mixture of gauged and partially gauged catchments, and that can be used to estimate runoff at ungauged and30

partially gauged locations. The results from the case study of annual and monthly runoff in Norway showed that our modeling

framework is well suited for exploiting the information stored in short records of runoff data, and for some catchments in the

dataset the reduction in RMSE for annual predictions was as large as 50 % when a short record of length 1 was available. This
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illustrates the importance of having a model that is able to transfer information across years, which is our method’s main benefit

compared to e.g Top-Kriging. By constructing a runoff map for annual runoff in southern Norway we also demonstrated that a

model with the described properties is considerably better at capturing rapid changes of runoff than a similar model that treats

each year of runoff data independently.
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