
Dear Editor. 
We have now revised the paper according to the new referee comments. We first comment 
the three major criticisms that were raised in this second revision round. Detailed answers to 
the remaining referee comments are found below. 
 
Once again we would like to thank the referees for many good suggestions. They have all 
done a very good job reviewing this paper and their work has certainly contributed to 
improving the manuscript. Hopefully our revisions have made the paper acceptable for 
publication. 
 
Kind regards, 
Thea Roksvåg and co-authors. 
 
 

 
 

Editor comments / Main concerns 

1) One of the referees remains concerned about our claims regarding the areal model and 
writes: 
“However, the main claim remains: That the areal method conserves mass. This remains 
undemonstrated. The authors have claimed it is proven in a companion arXiv article, but arXiv is 
self-administered repository that is not peer-reviewed.” 
 
Again, we have chosen not to demonstrate the mass-conservation properties of the areal 
model by experiments in the revised manuscript. There are several reasons for our choice:   
That the areal method is able to conserve mass is a mathematical property that is given by 
Equation (7) and (11).  It is a direct consequence of the model specification that we explain 
mathematically/theoretically in Section 4.2.2. Hence, from math/theory we think that our 
claims regarding the mass-conserving properties of the model are valid and don’t need 
additional documentation. However, that the mass conserving properties actually have a 
practical importance is another question, and this remains undemonstrated in this particular 
paper. However, we mention it in discussion section where we state that the practical 
differences between the areal and centroid model is low in terms of posterior mean for the 
Norwegian dataset, possibly because of the low percentage of nested catchments. That a 
point referenced model and an areal referenced model often produces similar results is 
shown by other studies as well. We have added two references on this (on page 33, line 1-2) 
as suggested by referee Dr. Jon Olav Skøien: (Farmer, 2016 and Skøien et al., 2014).   
 
That the Norwegian dataset was not suitable for demonstrating  
that the areal model conserves mass, means that we need a new case/dataset to 
demonstrate the mass conserving properties. We think that introducing an additional 



example will make our presentation confusing (and it is already a relatively long paper). In 
practice, it would mean repeating the example from the arXiv article. The arXiv article 
demonstrates the mass-conserving properties of the areal model for a practical example, but 
is at the moment only available on this self-administrated repository, as the Anonymous 
referee states. However, the paper is in review in a statistics journal. It was resubmitted in 
February after the first revision round. Hopefully it will published soon. We think that citing 
the arXiv-article is supported by the HESS guidelines: 
“Informal or so-called "grey" literature may only be referred to if there is no alternative from the 
formal literature. Works cited in a manuscript should be accepted for publication or published 
already. In addition to literature, data and software used should be referenced (citations should 
appear in the body of the article with a corresponding reference in the reference list). These 
references have to be listed alphabetically at the end of the manuscript under the first author's 
name. Works "submitted to", "in preparation", "in review", or only available as preprint should also 
be included in the reference list. Please do not use bold or italic writing for in-text citations or in 
the reference list.” 
 
Finally, we don’t think that discussing the areal vs. centroid model should be the main point 
of this paper. Our discussion on page 32 line 1-8, page 33 and line 1-21 should be sufficient. 
Here benefits and drawbacks of both methods are mentioned, and we don’t hide that the 
centroid model and the areal model perform similarly for our test dataset. Claiming that the 
areal model conserves mass is valid from a mathematically point of view. 
 
2) The second major criticism of the referees was related to the significance of the results. 
This criticism is met by performing a paired Wilcoxon Signed-Rank test on the RMSE/CRPS 
results. See Table 1 in the manuscript, the bottom on page 22, and page 23, line 1-5. 
According to this test, our conclusions remain the same as before, and the results are 
significant. 
 
3) The third major criticism was related to the linear regression results, where we do 
regression based on two data points. The Anonymous referee writes: 
«The result is zero in the denominator. The linear regression used for comparison must use more 
than two data points.” 
 
It is not correct that our results are not mathematically valid: We do a linear regression with 
two parameters (sigma^2 and beta1). We don’t include the intercept (beta0) in the model. 
Two unknown variables and two observed values makes linear regression model with 
uncertainty mathematically feasible. We have clarified this in the revised manuscript 
emphasizing that we have a model without intercept. See page 21, line 18-21.  
 
A model without intercept means that we in practice force beta0 to be zero. For this type of 
model, linear regression does not give a straight line between the two observations. 
 
The results show that regression with two points actually gives good predictions for the 
Norwegian annual data (Table 1, RMSE for PG annual) We think that this is a good 



illustration of the behavior of the Norwegian annual runoff: The spatial pattern of annual 
runoff is very strong over time, and you can actually get quite good results by computing the 
ratio in runoff between to catchments and using this ratio for prediction (see Figure 2b for 
motivation). The linear regression results can contribute to explaining why the areal and 
centroid model work so well for the annual data, and we have kept the results in the paper. 

______________________________________ 
 
Dr. Gregor Laaha 
 
GL: “Please describe and plot only the catchments used in the evaluations, not others that are not 
used. In detail: 
The second sentence (It consists of … 450 catchments … is misleading, as this data set has not 
been used in the study. Please delete.» 
 
Reply: This is fixed by removing/modifying  the lines were we mention 450 catchments. 
 
GL: “p5, L4: “In total 53 of 180 catchments used for cross-validation were nested” – Add: “(30%)” 

as the degree of nestedness is quite important.” 
 
Reply: This is added. We have also added the number of nested catchments for the dataset 
in Figure 5. See page 5, line 10-11 and page 7, line 18. 
 
GL: “P7: There are two data sets mentioned, consisting of 260 and 83 catchments, respectively. 
This is a gain quite confusing. If my guess is right, the 83 have finally be used – so please delete 
the part describing 260, and add the number and ratio of nested catchments instead.» 
 
Reply: We use runoff observations from all 260 catchments. However, we do the cross-
validation predictions for the 83 fully gauged catchments: For these catchments we know 
the true mean annual runoff. The partially gauged catchments are used as observations. We 
have clarified this part on page 7, line 16-18. We have also updated Figure 5 to make it 
clearer which catchments are fully gauged (black borders) and partially gauged (no borders). 
Also see page 22, line 7-13. 
 
GL: “Figure 6 and text: The problem here is that the example gives no valid estimation problem for 
Top-kriging, so it cannot be used for demonstrating the superiority of the areal method. Note that 
Top-kriging is defined to estimate discharges at river sites, and is not defined for disaggregating 
these discharges into sub-catchments. When reformulating this setting into a valid estimation 
problem for Top-kriging, there would be one gauge at the outlet of u1+u2+u3, and a gauge at the 
outlet of the entire catchment u1+u2+u3+u4+u5. As kriging is an exact interpolator, the 
discharges at the gauges are exactly predicted, and the derived flow difference from the 
predictions would be 2500 mm/year. Top-kriging implicitly conserves the water balance without 
requiring additional discharge constraints. 
p17, L12 is therefore not valid for Top-kriging.” 



 
Reply: I don’t think it is correct that Top-Kriging is able to conserve the water balance in this 
example, i.e. I don’t think Top-Kriging is able to predict 2500 mm/year when area A_4 is 
unobserved, and the observed values are 2000 mm/year (A_1), 2000 mm/year (A_3) and 
1000 mm/year (A_2) as in the original Figure 6.  As I understand Top-Kriging, the runoff 
observations are considered as areal referenced when computing the covariance between 
catchments. This influences the model to weight subcatchments more than non-overlapping 
nearby catchments. However, the sum of the Kriging weights (the lambda’s) are still 
restricted to be lower than 1 (this is a consequence of requiring an unbiased estimator). 
Hence, it is not possible to predict larger values than any of the observed values (except for a 
uncertainty sigma, that usually is relatively small). It is also stated in the Top-Kriging paper 
that the mass balance is not necessarily conserved: “In fact, although Top-kriging is based on 
linear aggregation it does not necessarily reproduce the mass-balance of the variable of 
interest (Sauquet et al., 2000).” I suppose reviewer Jon Olav Skøien can correct me here if I 
am wrong. 
 
Furthermore, the purpose of the example is not to propose a valid estimation problem for 
Top-Kriging or demonstrate the superiority of the areal method. The purpose is to 
demonstrate how the areal method works (and state that this is different from Top-Kriging), 
not to claim that one approach is better than the other.  
 
Based on this reviewer comment, and a comment by Dr. Jon Olav Skøien, we think that 
Figure 6 possibly has been a bit confusing and unclear. To clarify, we have made a new, 
simpler figure with 3 catchments instead of 4 catchments. We have also added the direction 
of the river, and the location of the river outlets/gauges.  The new figure text also explains 
which nodes belong to which catchments. Hopefully, this will make the example simpler to 
follow. 
 
In addition, we have added that the Kriging methods require that the sum of lambdas is 1. 
See page 10, line 20-22. 

 
GL: “I guess that the climatic GRF c(u) was updated in the cross-validation at each turn, when one 
catchment / one fold of catchments was left out? Pls. Specify.» 

 
Reply: Yes, you are correct. This is now specified on page 21, line 31-32. 
 
 
GL: P22, Eq. 15: The r² is an unusual, not recommended measure as it is seemingly (or often 
confounded with) the coefficient of determination R², but subtracts any biases and is therefore 
misleading in case of systematic errors. Suggest that you report the coefficient of determination 
(R²) instead.  



 
Fig 15: Please use the coefficient of determination (R²) instead to cover possible biases (see my 
previous comment). 
 
Reply: We use r2 because this score is used in the “Runoff Prediction in Ungauged Basins” 
book by Blöschl et al, 2013. The purpose of including r2 is hence to make it possible to 
compare our results to comparable studies in this book. This was also stated on page 23, line 
10-12. We have used the other evaluation scores (ANE, RMSE and CRPS) to cover possible 
biases. 
 
GL: p32 L4: Please be exact: For data set 1, 70% of catchments are not nested (rather than “more 
than 50%). How is I for data set 2? 
 
Reply: This is added. See page 33, line 4-6.  
47 % of the catchments are not nested for dataset 2.   
_________________________________________ 
Dr. Jon Olav Skøien 
 
JOS: The authors have updated the text with the number of catchments with observations length 
1-3, showing that these are not as rare as one could expect. As an additional possible use case, 
the manuscript could be used as motivation for installing new (maybe temporary) stations, as they 
can improve long-term estimates only a year after installation. 
 
Reply: Yes, this is a good motivation for the framework. It can also be used to decide 
whether a gauging station can be shut down. We have added this on page 36, line 10-13. We 
have also added it to the conclusion, page 36, line 30-31. 
 
JOS: The text on P23 refers to how the methods fail for some catchments, based on the RMSE. 
However, as the runoff values are much higher in the catchments in western Norway, the RMSE 
might not be the best measure for capturing the prediction performance. This could at least be 
mentioned. 
 
Reply: This is now mentioned on page 24, 1-3. 

 
JOS: The authors now refers to lognormal being an option, but not compatible with the linear 
aggregation assumption, what I mentioned in the previous review. I am fine with the authors not 
testing this. However, one should be careful dismissing a method only for violating one of the 
assumptions, when they are most likely already violated to some degree in other ways, probably 
similar to a large number of interpolation use cases found in the literature. The suggested 
framework can handle heteroscedasticity better than TK, as this is already a violation of the 
assumptions behind kriging. However, it is never tested if the assumptions of runoff data is actually 
Gaussian, and I doubt that a test would confirm it. Runoff is truncated at zero, which is the reason 



for the problem with negative estimates. A lognormal transformation could solve this violation, but 
instead create a new. 
 
Reply: This is a good point. Yes, you are correct that the data are not Gaussian. This can be 
seen from the histograms in Figure 1 and Figure 3. However, as you say, when specifying a 
model, there are always choices regarding which assumptions that can/should be included in 
the model or not. In this case: 1) Do we allow the violation of the water-balance or 2) do we 
allow negative values (and the modeling of non-Gaussian data as Gaussian).  We have added 
a bit more discussion around this topic on page 35, line 6-3 and 26-29. 
 
JOS: The difference between the centroid model and the areal model is small for most cases and 
catchments. It can be mentioned that this is somewhat expected, as it has also been shown for 
ordinary kriging vs top-kriging, by e.g. Farmer (2016) and Skøien et al. (2014). 
 
The discussion around transferability of observations from neighbouring catchments and gauging 
density could maybe have a reference to Patil and Stieglitz (2012). 
 
Reply: Thank you for good references. These are added in the discussion. See page 33, line 
1-2, and on page 34, line 17-18. 

 
JOS: It could also be mentioned in the discussion that it would be possible to use Top-kriging on 
residuals in the partially gauged case, which might improve the performances of the method. It is 
fair not to include this in the comparison, as there are different possible ways to implement such a 
procedure, and that is out of scope for this study.  
 
Reply: This is a good suggestion. We did not include this, but we suggest in the discussion 
that the areal/centroid model can be used as a pre-processing step for the partially gauged 
catchments, before doing interpolation with Top-Kriging for ungauged catchments. See page 
36, line 1-6.  
 
JOS: Minor edits: 
 
Reply: These are taken care of. 

_________________________________________ 
 
Anonymous referee 
 
Referee: In the previous version, almost all reviewers expressed concerns about the claims of the 
areal method. The revision and response do much to soften the claims of the areal method. 
However, the main claim remains: That the areal method conserves mass. This remains 
undemonstrated. The authors have claimed it is proven in a companion arXiv article, but arXiv is 
self-administered repository that is not peer-reviewed. This advantage of the areal model, if it is 
important, should be demonstrated in peer-reviewed literature. For more questions, see my 



comments on an earlier version.  
 
The authors have failed to respond to the editor’s and reviewers’ comments on the significance of 
performance differences. In my review, I discussed how tables 1, 2 and 3 show only average 
performance and do not interpret the significance (or some proxy thereof) of the differences across 
methods. The editor raised this as a concern as well. The revision continues to ignore the question 
of significance (whether formal significance or some proxy). Without this information, we evidence 
of differences in performance is weak. 
 
Reply: See the above reply to the Editor, point 1 (areal method) and 2 (significance). 
 
Referee: The authors have done a better job of acknowledging that their proposed method does 
not improve over standard methods in the UG case. They appropriately highlight the marked 
improvement in performance with the introduction of a single observations. This is a very 
interesting finding and worthy of publication. It shows how their method can better leverage sparse 
information. However, in order to strengthen this case, the authors should consider how to 
demonstrate that the increases (though large) are a result of improvements and not 
random selection of years (i.e., an approach to testing significance is needed here as 
well). 
 
Reply: We think that we already have demonstrated that the increases are actual 
improvements and not due to a beneficial selection of years. The reason is that we have 
demonstrated the method for four different datasets: Annual, January, April and June, and 
the method performs as expected for all datasets. 
 
Furthermore, we also test the approach for mean annual runoff on a different dataset than 
in the first experiment and for four different record lengths (PG1, PG3, PG5 and PG10). For 
each of these configurations (PG1, PG3, PG5 and PG10), a new sample of years is drawn 
randomly for each catchment. Hence, in total we have done 8 experiments (PG Annual, PG 
January, PG April, PG June, PG1, PG3, PG5 and PG10) and the results are as expected. This 
supports our claim.  
 
Referee: When considering the PG case, the authors continue to use a regression based on two 
data points. I raised this concern in my previous comments, and the authors did not respond. It is 
wholly inappropriate to build a regression on two data points. The result would just be a straight 
line, from which it would be impossible to conduct any statistical inference (e.g., intervals, 
significance, etc.). (This can be showing by considering the denominator of most of the OLS 
formula, which have n (number of observations; here, 2) – k (number of slopes; here, 1) – 1 (for 
the intercept term). The result is zero in the denominator. The linear regression used for 
comparison must use more than two data points. 
 
Reply: See the above reply to the Editor, point 3. 
 
Referee: Many of the kriging applications in hydrology have shown how average variograms 
(rather than using year-specific variograms) can improve regional performance; this could be 
relevant in that so-called “average” variograms can absorb partial record information. While 
probably beyond the scope of this work at the time, it seems like it should be acknowledged that 
others have proposed different methodologies for incorporating partial records (I’m thinking of the 
entire field of record augmentation, including MOVE methods and the like). 



 
Reply: We have added some more references on record augmentation and MOVE methods. 
See page 11, line 8-10, and page 2, line 33-34. We have also changed the name of subsection 
3.4 (record augmentation techniques in parenthesis). 

_________________________________________ 
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Abstract. In this article, we present a Bayesian geostatistical framework that is particularly suitable for interpolation of hy-

drological data when the available dataset is sparse and includes both long and short records of runoff. A key feature of the

proposed framework is that several years of runoff are modeled simultaneously with two spatial fields: One that is common for

all years under study that represents the runoff generation due to long-term (climatic) conditions, and one that is year specific.

The climatic spatial field captures how short records of runoff from partially gauged catchments vary relative to longer time5

series from other catchments, and transfers this information across years. To make the Bayesian model computationally feasi-

ble and fast, we use integrated nested Laplace approximations (INLA) and the stochastic partial differential equation (SPDE)

approach to spatial modeling.

The geostatistical framework is demonstrated by filling in missing values of annual runoff and by predicting mean annual

runoff for around 200 catchments in Norway. The predictive performance is compared to Top-Kriging (interpolation method)10

and simple linear regression (method for exploiting short records
:::::
record

::::::::::::
augmentation

::::::
method). The results show that if the

runoff is driven by processes that are repeated over time (e.g. orographic precipitation patterns), the value of including short

records is large, and that we for
:
in
::::

the
::::::::
suggested

::::::
model

::
is

:::::
large.

:::
For

:
partially gauged catchments

:::
the

::::::::
suggested

::::::::::
framework

perform better than comparable methods. Further, we
:
,
:::
and

::::
one

::::::
annual

::::::::::
observation

::::
from

:::
the

::::::
target

:::::::::
catchment

:::
can

::::
lead

::
to

::
a

::
50

::
%

::::::::
reduction

:::
in

::::::
RMSE

::::::::
compared

::
to

:::::
when

:::
no

::::::::::
observations

:::
are

::::::::
available

::::
from

:::
the

::::::
target

:::::::::
catchment.

:::
We

::::
also find that short15

records safely can be included in the framework regardless of the spatial characteristics of the underlying climate, and down to

record lengths of one year.

1 Introduction

Characteristic values for streamflow are used for various purposes in water resources management. High flow indices or design

flood estimates are needed for flood risk assessments and design of infrastructure and dams, low flow indices are needed for20

assessment of environmental flow and reliability assessment of water supply, while mean annual flow is an important basis

for water resources management and a key for design of water supply systems and allocation of water resources between

stakeholders. Mean annual flow can also be used as a predictor for low flow and high flow indices (Sælthun et al., 1997;

Engeland and Hisdal, 2009).

1



At locations with measurements, the streamflow indices can be estimated based on observations. However, streamflow is only

measured at a limited number of locations, and in many applications we need to predict the streamflow indices at ungauged

locations. This is a central problem in hydrology and known as the Prediction in Ungauged Basins problem (Blöschl et al.,

2013). Often it is of interest to estimate flow indices that represent the long-term average behavior in a catchment. If this is the

case, using only a few years of data from the target catchment might lead to biased estimates. The reason is climate variability5

over short time scales combined with sample uncertainty. Often a minimum record length is recommended for estimation of

such flow
::::::::
long-term

:
indices, but a substantial part of the available streamflow gauges in the world have too short records to

provide reliable estimates. These short data series can, however, provide useful information if they are used together with

longer time series from other catchments (Laaha and Blöschl, 2005). Motivated by this, we propose a framework for runoff

interpolation particularly suitable for datasets including data series of this type, more specifically runoff datasets including a10

mix of fully gauged catchments (with data available from the whole study period) and partially gauged catchments (with data

available from a subset of the study period). We suggest a framework for runoff interpolation that unifies two commonly used

statistical approaches for runoff estimation: Geostatistical approaches and approaches for exploiting short records of data.

Within the geostatistical framework, Gaussian random fields (GRFs) are often used to model hydrological phenomena that

are continuous in space and/or time. The hydrological variable of interest is a GRF if a vector containing a random sample15

of length n from the process follows a Gaussian distribution with mean vector µ and covariance matrix Σ (Cressie, 1993).

The elements in the covariance matrix are typically determined by a covariance function that depends
:
is

::::::::
specified

:::::
based

:
on

the pairwise distances between the n
::::
target

:
locations. For most environmental variables it is straight forward to compute these

distances. However, for runoff related variables the measure of distance is ambiguous because the observations are related to

catchment areas, some of them nested, and not to point locations in space. Traditionally, this challenge has been solved by20

simply interpreting runoff as a point referenced process linked to the catchment centroids or stream outlets (see e.g. Merz

and Blöschl (2005); Skøien et al. (2003); Adamowski and Bocci (2001)). The problem with these methods is that they can

lead to a violation of basic conservation laws, and several alternatives approaches are suggested for making an interpolation

scheme that takes the nested structure of catchments into account (Sauquet et al., 2000; Gottschalk, 1993; Skøien et al., 2006).

In particular, the Top-Kriging approach suggested by Skøien et al. (2006) has shown promising results for interpolation of25

hydrological variables (Viglione et al., 2013). In the Top-Kriging approach, information from a subcatchment is weighted

more than information from a nearby non-overlapping catchment when performing runoff predictions in
:::
for an ungauged

catchment.

The common approach for exploiting
::
In

:::
the

::::::::
literature,

:::::
there

::::
exist

::::::
several

:::::::::
techniques

::
to

::::::
exploit

:
short records of runoffdata is

:
,
:::
and

::::
these

:::
are

::::::
known

::
as

::::::
record

:::::::::::
augmentation

::::::::::
techniques.

:::
The

::::
first

::::
step

::
in

:
a
::::::
record

:::::::::::
augmentation

::::::::
procedure

::
is
:::::
often to find one30

or several donor catchments with longer time series of runoff. The donor catchments are typically selected based on runoff cor-

relation, catchment similarity, or proximity in space. By applying e.g. linear regression approaches and/or computing the corre-

lation between time series, a relationship between the target catchment and the donor catchments is developed. Next, the longer

time series from the donor catchment(s) are used to perform predictions for the target catchments for years/months/days with-

out measurements (see e.g. Fiering (1963),
:::::::::::
Hirsch (1982),

:::::::::::::::::::::::
Matalas and Jacobs (1964), Vogel and Stedinger (1985) or Laaha35
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and Blöschl (2005)). The regression and/or correlation analysis is performed based on runoff observations that is of the same

type as the target flow index, i.e. for annual runoff, short records of annual runoff are used (McMahon et al., 2013). The

predictive performance of these methods highly depend on the correlation between the runoff in the target catchment and the

donor catchment over time.

In this paper, we suggest a geostatistical Bayesian framework that represents a new way of exploiting short records of data.5

The framework is constructed to exploit long-term spatial patterns stored in sparse datasets, i.e. hydrological datasets with

several missing values. A key feature of the suggested framework is that it simultaneously models several years of runoff. This

is done by using two statistical spatial components or GRFs in the hydrological model: The first GRF is common for all years

under study and models the long-term spatial variability of runoff. We denote this the climatic GRF as it represents the spatial

variability over time, or what we refer to as the climate in the study area. In this context the term climate also includes the10

runoff generation due to catchment characteristics that are static, like elevation and slope. The other GRF is year-specific and

models the annual discrepancy from the climate, and we denote this the annual or year-specific GRF. If we have a study area

for which the spatial variability of runoff is stable over time, the climatic GRF will capture this tendency. Hence, it will also

capture how short records of runoff vary relative to longer data series from other catchments. On the other hand, if there is

::
are

:
no strong long-term trend

:::::
trends

:
present in the data, the year-specific GRF will dominate over the climatic GRF. For this15

scenario, short records from the target catchment(s) will have less impact on the final results. By adjusting the two spatial fields

relative to each other, our method represents a way for detecting long-term trends and uses this to exploit short records in the

runoff interpolation.

The framework we suggest is flexible and can be used for any hydrological variable. However, its benefits are linked to

exploiting long-term spatial trends in the data, and in order to work better than other interpolation methods, the hydrological20

variable of interest should be driven by processes that are repeated over time. For this reason, we develop our methodology for

annual runoff. This is a flow index that often has a prominent spatial pattern over years, for example due to orographic precip-

itation and topography that creates weather divides. To describe study areas and/or variables like this, we hereby introduce the

terms hydrologically spatially stable and hydrological spatial stability. For hydrologically spatially stable areas, the difference

in runoff between two locations for a given year is close to the difference in runoff between these two locations any other25

year. Be aware that a hydrologically spatially stable area can both have large differences in annual runoff between two close

locations, and have large variability in annual runoff over years for a given location. The key property is that the underlying

spatial pattern is preserved over time.

While annual runoff represents a hydrologically spatially stable variable for many countries, the spatial pattern for monthly

runoff is typically less stable. This is due to local weather patterns , and the variability in the seasonality of snow accumulation30

and snow melt. To demonstrate our methodology for a variable with less hydrological spatial stability, we therefore fit the

framework to annual time series of monthly runoff. These predictions allow us to discuss how the approach might work in

different regions.

In the following presentation, we introduce two versions of our framework, i.e. two geostatistical models. The first model

we propose is denoted the areal model and is particularly suitable for mass-conserved hydrological variables. It ensures that the35
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water balance is preserved for the predicted runoff for any point in the landscape, and defines the average runoff in a catchment

as the average point runoff integrated over (nested) catchment areas. This way, the nested structure of catchments is taken into

account, and the interpretation of covariance between two catchments is similar to the one of Top-Kriging. The areal model for

annual runoff is already presented in Roksvåg et al. (2020) where its mass-conserving properties were demonstrated through

an example from Voss in western Norway. The model’s ability to exploit short data records was also indicated in Roksvåg et al.5

(2020), but the property was not tested for a larger dataset or compared to any existing methods. This is a key contribution of

this article.

As an alternative to the areal model, we also propose a model that defines runoff as a point referenced process for which

distances are measured between
:::
the catchment centroids. This model does not consider preservation of the water balance, but

on the other hand it can be used for any point referenced environmental variable, and it is computationally faster than the areal10

model. This model is more similar to models that have been used traditionally in hydrology, and we denote this the centroid

model. Both the areal model and the centroid model have the ability to exploit hydrological spatial stability, but have different

benefits, drawbacks and hence also area of use. These are discussed and highlighted throughout the article.

The main objective of this work is to present and evaluate the new geostatistical framework for exploiting short records and

to compare its performance to Top-Kriging (interpolation method) and simple linear regression (method for exploiting short15

records
:::::
record

:::::::::::
augmentation

:::::::::
technique). In particular our goals are to:

1) Assess the two spatial models’ ability to fill in missing annual observations of runoff for ungauged and partially gauged

catchments.

2) Assess the two spatial models’ ability to predict mean annual runoff for a longer time period for catchments with varying

record lengths.20

Through 1) and 2) we also aim to:

3) Demonstrate the potential added value of including short records in the modeling, compared to not using them or compared

to using traditional methods.

The framework is evaluated by using annual and monthly runoff data from catchments in Norway. This dataset is presented

in the section that follows (Section 2). Next, in Section 3, we briefly introduce relevant statistical background theory and25

notation. In Section 4 the suggested model for annual runoff is presented, before evaluation scores and experimental set-up are

presented in Section 5. Here, we have one experimental set-up for annual predictions (Section 5.1) and one set-up for mean

annual predictions (Section 5.2). In Section 6, the results are presented before they are discussed in Section 7. Finally, we

conclude in Section 8.

2 Study area30

The study is carried out by using a dataset from Norway provided by the Norwegian Water Resources and Energy Directorate

(NVE). It consists of daily
:::::::
originally

::::::::
consisted

::
of

:::::
daily runoff data from around 450 gauged catchments, many of them nested,

from 1970-2018
:::::::::
1981-2010.

:::
To

::::
make

:::
the

::::
data

:::::::
suitable

:::
for

::
an

:::::::
analysis,

::
a
::::
data

:::::::::
preparation

:::::::::
procedure

:::
was

:::::::::
performed

::
to

::::::::
construct

4



::::::
datasets

:::
for

::::
two

::::::::
purposes:

:::
For

::::::::
assessing

:::
the

::::::::::
framework’s

::::::
ability

::
to

::
fill

::
in

:::::::
missing

::::::
annual

:::
data

::::
and

::
for

::::::::
assessing

:::
the

:::::::::::
framework’s

:::::
ability

::
to

::::::
predict

:::::
mean

::::::
annual

:::::
runoff.
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Figure 1. Mean annual runoff (1996-2005) from 180 fully gauged catchments in Norway (1a) and annual runoff observations from all 180

catchments and years (1b). These data are used to evaluate the framework’s ability to fill in missing values for individual years. Many of

the
::
30

::
% involved catchments are nested , particularly

:::
and

::::
most

::
of

::::
these

::
are

::::::
located

:
in southern Norway as visualized in Figure 1c. In this

figure, colored catchments are subcatchments of at least one larger catchment, while the black catchments are not subcatchments of any

larger catchment (but might contain 1 or 2 smaller catchments). In the visualization in Figure 1a, subcatchments are plotted on top of larger

catchments, and this is done throughout the article. The coordinate system used is EUREF89 - UTM33N (EPSG 25833). See Figure 7 for a

closer image of the observed mean annual runoff in southern Norway (1996-2005).

To make a cross-validation dataset for the experiments related to infill of missing annual data, the daily runoff data were

aggregated to annual runoff data for hydrological years that start September 1th and end August 31st. We chose to consider a

study period from 1996-2005: For this period we had the maximum number of fully gauged catchments, i.e. 180 catchments.5

These 180 fully gauged catchments have areas ranging from 13 km2 to 15500 km2 and median elevations from 85 to 1562 m

a.s.l. Among these, none were significantly influenced by human activities in the time period of interest. Regulated catchments

were removed from the analysis
::::::
original

::::::
dataset.

Figure 1a and Figure 1b show two visualizations of the annual data from the 180 Norwegian
:::::
target catchments. We see a

large spatial variability of runoff. The annual runoff (for individual years) ranges from 170 mm/year to 5050 mm/year, whereas10

the mean annual runoff ranges from 350 mm/year to 4230 mm/year, with the highest values of runoff in western Norway and

more moderate values in east and north. In total 53 of the 180 catchments used for the cross-validation were nested with at

least one other catchment
:
,
:::
i.e.

:::
the

::::::
degree

::
of

:::::::::
nestedness

::
is

::
30

:::
%. Most of these are located in southern Norway, and the nested

structure here is shown in Figure 1c. The remaining 127 catchments did not overlap with any other catchment.
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Figure 2. Time series of annual runoff from 7 selected catchments in western Norway. The 7 lines are almost parallel (and almost don’t

::::
barely

:
cross) indicating that most of the spatial variability can be explained by long-term spatial patterns. This represents a good example of

what we mean by hydrological spatial stability.

In
:::
the

:::::::::
Norwegian

::::::
annual

:::
data

::
in
:
Figure 1a we see an east-west pattern of annual runoff. This is mainly caused by orographic

enhancement of frontal precipitation formed around extratropical cyclones. The orographic enhancement is driven by the steep

mountains in western Norway that create a topographic barrier for the western wind belt, which transports moist air across the

North Atlantic (Stohl et al., 2008). Due to the orographic enhancement, the maximum precipitation is observed at distances

30-70 km from the coast (Førland, 1979) and not necessarily at the highest elevations since the air dries out due to precipitation.5

The topography results in a spatial pattern of runoff that is stable over years, which means that there exist long-term spatial

patterns in the data that can be exploited.

Figure 2 shows time series of annual runoff from seven catchments in the south-western part of the country. We see a year

to year variation for all catchments that is quite large. However, the seven time series are almost parallel (and almost never

cross), indicating that the difference in annual runoff between stations is approximately constant over time. Hence, this is a10

good example of what we mean by hydrological spatial stability. The tendency we see in Figure 2 is typical for annual runoff

for
::
the

::::::
annual

::::::
runoff

::
in many of the areas in Norway.

To illustrate the framework’s properties for study areas and/or variables that are driven by more unstable weather patterns

or hydrological processes, we also aggregated the daily runoff data to monthly runoff for the 180 catchments in Figure 1a.

From this we made annual time series of monthly runoff for 1996-2005 for three months: A winter month dominated by snow15

accumulation (January), a spring month with snow melting (April) and a summer month dominated by rain (June). The annual

observations of monthly runoff for the selected months are presented in Figure 3, and we see that January has the lowest

average runoff whereas June has the highest. The variation in average monthly runoff describes a runoff regime, and in Norway

the combination of snow accumulation, snow melt, and evapotranspiration processes control this regime (Gottschalk et al.,

1979). Along the west coast, the winter weather is typically rainy with temperatures above the freezing point. In these regions20

the highest monthly runoff is observed in October - December. The colder areas are found in the interior of the country with

6



winters dominated by snow accumulation. In these regions the highest monthly runoff is observed for the snow melt season

(May – June).

Annual time series of monthly runoff from the 7 selected catchments from Figure 2a are shown in Figure 4. We see that the

the spatial pattern is less stable on a monthly scale compared to the annual scale, particularly for January: The difference in

annual
:::::::
monthly runoff between stations over time is not approximately constant for Januaryas it were for the annual data in5

Figure 2b. Hence, ,
::::
and the runoff in January represents a

:::::
hence

::::::::
represents

::
a
::::
more

:
hydrologically spatially unstable variable in

Norway. For June however, the hydrological spatial stability is higher.

The cross-validation datasets described so far are used to assess the framework’s ability to fill in missing annual observations

for a 10 year period , and to illustrate how the models behave for different hydrological settings. In addition, we also evaluate

the framework’s ability to predict mean annual runoff, which is a key hydrological signature. This is done for a 30 year period,10

from 1981 to 2010. As we consider a longer time period for this assessment, a different subset of the available data is
::::::
original

::::::
dataset

:::
was

:
used: More specifically annual data from 260 catchments located in southern Norway. These are shown in Figure

5. Each of the 260 catchments in Figure 5 have at least one observation of annual runoff between 1981-2010, but only 83

of them are fully gauged in the time period of interest (i.e. have annual observations for all 30 years). Among the partially

gauged catchments, the mean record length is 15,
:

while the median record length is 13. Furthermore, 20 of the involved15

catchments have only
:::
only

:::::
have 1, 2 or 3 annual observations. We

::
As

::::
for

:::
the

:::::::::
previously

::::::::
described

::::::::
datasets,

:::
we

::::::::
removed

:::::::
regulated

::::::::::
catchments

:::
that

:::::
were

::::::::::
significantly

:::::::::
influenced

:::
by

::::::
human

:::::::
activity.

::::
Also

::::
note

:::
that

:::
we

::
in
::::
this

:::::::::
experiment

:
only consider

catchments from southern Norwayin this experiment in order .
::::
This

::
is

::::
done

:
to reduce the computational complexity of fitting 30

years of runoff simultaneously in a cross-validation setting. As for the previous datasets, we removed regulated catchmentsthat

were significantly influenced by human activity20

:::::
When

:::::
using

::
the

::::
data

::
in

::::::
Figure

:
5
::
to
::::::
predict

:::::
mean

::::::
annual

::::::
runoff,

:::
we

::
do

:::::::::
predictions

:::
by

:::::::::::::
cross-validation

:::
for

:::
the

::
83

:::::
fully

::::::
gauged

:::::::::
catchments.

:::::::::
However,

::::
data

::::
from

:::::
both

:::::::
partially

::::::
gauged

::::
and

::::
fully

:::::::
gauged

:::::::::
catchments

::::
are

:::::::
included

::
in

:::
the

::::::::::
observation

:::::::
sample

:::
(see

:::::::
Section

::::
5.2).

:::
For

:::
the

::
83

:::::
fully

::::::
gauged

:::::::::
catchments

::
in
::::::
Figure

::
5,

:::
53

::
%

::
of

:::
the

:::::::::
catchments

:::::
were

:::::
nested

::::
with

::
a
::::
fully

::::::
gauged

::
or

::
a

:::::::
partially

::::::
gauged

:::::::::
catchment.

3 Statistical methodology25

In Section 4 we present two Bayesian geostatistical models for runoff interpolation particularly suitable for sparse datasets

containing several missing values. First, some statistical background is necessary.

3.1 Bayesian statistics and hierarchal modeling

The goal in hydrology is to learn about processes related to hydrological variables like daily rainfall, annual runoff and
::
or the

5th percentile flow. To gain knowledge about the different hydrological processes, relevant data are collected. There are always30

uncertainties related to the data that must be accounted for in an analysis, and which make a statistical analysis appropriate.
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Figure 3. Monthly runoff data (1996-2005) from 180 catchments in Norway for January, April and June. These are used to evaluate the

framework’s ability to fill in missing values for hydrological variables and/or study areas that are driven by more unstable weather patterns.
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Figure 4. Annual series of monthly runoff for January, April and June for the 7 catchments in Figure 2a. The time series for January and

April are less parallel compared to the time series for June and for the annual runoff (Figure 2b). This suggests that the datasets from January

and April represent a more hydrologically spatially unstable setting.

Assuming x is a vector consisting of hydrological variables of interest, e.g. the annual runoff at several locations for a spe-

cific year, the observation likelihood π(y|x) expresses how the data y are connected to the truth x. In the classical frequentist

stastistical approach, the variables in x are considered as unknown, but fixed. In the Bayesian approach however, x is consid-

ered to be a quantity whose variation can be described by a probability distribution (see e.g. Casella and Berger (1990)). Prior

to the analysis, this probability distribution is expressed through what is called a prior distribution π(x). This is constructed5

based on expert knowledge about the variable(s) of interest. The goal of the Bayesian analysis is to update the prior distribution

by using data. Through Bayes’ formula, the so-called posterior distribution of x is obtained:

π(x|y) =
π(x)π(y|x)

π(y)
∝ π(x)π(y|x). (1)

Next, the marginal distribution π(xi|y) for xi ∈ x can be integrated out, and a prediction of xi can be summarized through

e.g. the mean, median or the mode of the posterior distribution π(xi|y).10
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Figure 5. Mean annual runoff for 1981-2010 for 260 catchments in southern Norway where only 83 of them are fully gauged (i.e. have

annual data for each year in the study period). The remaining
::
83

::::
fully

:::::
gauged

:
catchments

::::
have

::::
black

::::::
borders

::
in

::
the

:::::
above

::::
plot.

::
In

:::::::
addition,

::::
there are

:::
data

:::::::
available

::::
from

:::
177

:::::::
so-called partially gauged and

:::::::::
catchments.

:::::
These have at least one annual observation between 1981-2010

:::
and

::
are

::::::
visible

::
as

::::::::
catchments

::::::
without

::::::
borders

::
in

::
the

:::::
above

:::::
figure.

:::::
Among

:::
the

::
83

::::
fully

::::::
gauged

:::::::::
catchments,

::
44

:::::::::
catchments

::
are

:::::
nested

:::
(53

:::
%)

::::
while

::
39

:::::::::
catchments

::::
don’t

::::::
overlap

:::
with

:::
any

::::
other

::::::::
catchment

::
in

:::
the

::::::
dataset. Data from these

::
the

:
catchments

::
in

:::
this

::::
figure

:
are used to evaluate

the framework’s ability to estimate mean annual runoff for ungauged and partially gauged catchments
::::
mean

::::::
annual

::::
runoff.

If a complex process is under study, it is sometimes easier to model it by thinking of its mechanisms in a hierarchy of

underlying processes or distributions (Banerjee et al., 2014). The annual runoff x can e.g. be thought of as a process that

depends on some parameters θ that express the spatial correlation between locations. Here, bothx and θ are stochastic variables

with prior (and posterior) distributions. A Bayesian model of this type is typically expressed as a three-staged hierarchical

model where the first stage consists of the observation likelihood π(y|x,θ), the second stage is the prior distribution π(x|θ),5

often referred to as the latent model or process model, while the third stage is the prior distribution of the model parameters

π(θ). As before, Bayes’ formula can be used to make inference about the variables of interest x, but also about the model

parameters θ given the set of observations y. In this study we use a three-staged hierarchical Bayesian model to model annual

runoff.

3.2 Gaussian random fields10

Gaussian random fields (GRFs) are commonly used to model environmental variables like precipitation, runoff and tempera-

ture or other phenomena that are continuous in space and/or time. In this analysis, the second stage of the Bayesian hierarchical

model consists of GRFs that model the spatial dependency of runoff between catchments. A continuous field {x(u);u ∈ D}
defined on a spatial domain D ∈R2 is a GRF if for any collection of locations u1, ...,un ∈ D the vector (x(u1), ...,x(un))

::::::::::::::::
(x(u1), ...,x(un))T follows a multivariate normal distribution (Cressie, 1993), i.e. (x(u1), ...,x(un))∼N (µ,Σ)

::::::::::::::::::::::::::
(x(u1), ...,x(un))T ∼N (µ,Σ)15

where µ is a vector of expected values and Σ is the covariance matrix. The covariance matrix Σ defines the dependency struc-

ture in the spatial domain, and element (i, j) is typically constructed from a covariance function C(ui,uj). The dependency

structure for a spatial process is often characterized by two parameters: The marginal variance σ2 and the range ρ. The marginal

variance provides information about the spatial variability of the process of interest, while the range gives information about

9



how the covariance between the process at two locations decays with distance. The range is defined as the distance for
:
at
:
which

the correlation between two locations in space has dropped to almost 0. If the range and the marginal variance are constant

over the spatial domain, we have a stationary GRF.

In this study, the involved GRFs have their dependency structure defined
::::::::
specified by a stationary Matérn covariance function

that is given by5

C(ui,uj) =
σ2

2ν−1Γ(ν)
(κ||uj −ui||)νKν(κ||uj −ui||). (2)

Here, ||uj −ui||:::::::::
||uj −ui|| is the Euclidean distance between two locations ui,uj ∈Rd, Kν is the modified Bessel function

of the second kind and order ν > 0, and σ2 is the marginal variance that controls the spatial variability (Guttorp and Gneiting,

2006). The parameter κ is the scale parameter, and it can be shown empirically that the spatial range can be expressed as

ρ=
√

8ν/κ, where ρ is defined as the distance at which the correlation between two locations has dropped to 0.1. Using10

a Matérn GRF is convenient for computational reasons because it makes it possible to use the SPDE approach to spatial

modeling from Lindgren et al. (2011) which is briefly described in Section 4.3.

3.3 Kriging and Top-Kriging

Within the geostatistical framework, Kriging approaches have shown promising results for interpolation of hydrological vari-

ables (see e.g. Gottschalk (1993), Sauquet et al. (2000) or Merz and Blöschl (2005)). In Kriging methods, the target variable15

is represented as a random field, typically a Gaussian random field x(u) defined through a covariance structure and some

unknown parameters. The process of interest is observed at n locations u1, ...,un::::::::
u1, ...,un, and any unknown parameter

:::::::::
parameters can be estimated based on e.g. maximum likelihood procedures. Furthermore, to estimate the value of the variable

x̂(u0) at an unobserved location u0 :::
u0 a weighted average of the observations is used, i.e.

x̂(u0) =

n∑
i=1

λix(ui), (3)20

where λi are interpolation weights. The interpolation weights are computed by assuming that x̂(u0)
:::::
x̂(u0)

:
is the Best Linear

Unbiased Estimator (BLUE) of x(u0)
:::::
x(u0). That is, we determine x̂(u0)

:::::
x̂(u0)

:
by finding the weights that both minimize

the mean squared error, and that give zero mean expected error (Cressie, 1993).
::::
Mark

::::
that

:::
the

::::::::::
consequence

::
of

:::
the

:::::
latter,

::
is
::::
that

::
the

:::::::
Kriging

:::::::
weights

:::
are

::::::::
restricted

::
to
:::
be

::
1,

:::
i.e.

:::::::::::

∑n
i=1λi = 1

::::
such

::::
that

:::
the

::::::::
predicted

:::::
value

::::
from

::::::::
Equation

:
(3)

:::::
cannot

::
be

::::::
larger

:::
than

::::
any

::
of

:::
the

::::::::
observed

::::::
values.25

In order
::::::
Further,

:
to minimize the mean squared error of the Kriging-predictor in Equation (3), the covariance function (or

variogram) must be estimated and evaluated. The covariance function typically depends on the distance between the obser-

vations and the target locations, such that observations collected
::::::::
measured

:
close to the target location u0 :::

u0 are weighted

more than observations further away. In many hydrological applications, the centroids of the catchments are used to compute

the catchment distances (Merz and Blöschl, 2005; Skøien et al., 2003), but as mentioned in the introduction this can lead to30

a violation of basic mass conservation laws. The reason is that streamflow variables are connected to (catchment) areas, not

10



single point locations. The catchments are also organized into subcatchments, and this should be considered when computing

the Kriging weights.

The Top-Kriging approach suggested by Skøien et al. (2006) is an example of a method that takes the nested structure of

catchments into account. In this method, the streamflow observations are interpreted as areal referenced, and the covariance

is computed based on the pairwise distances between all grid nodes in a discretization of the involved catchments. This way,5

observations from a subcatchment can be weighted more than observations from nearby non-overlapping catchments. Top-

Kriging is currently one of the leading methods for interpolation of hydrological variables (Viglione et al., 2013) and is therefore

chosen as a benchmark when we evaluate our new interpolation approach.

3.4 Methods for exploiting short records
:::::::
(record

::::::::::::
augmentation

::::::::::
techniques)

The framework we suggest is both a framework for spatial interpolation and a framework for exploiting short records of runoff10

data. There are several ways to exploit short records of runoff data for which most
:::::
record

::::::::::::
augmentation.

:::::
There

:::::
exist

::::::
several

:::::::::
approaches

:::
for

:::::
record

::::::::::::
augmentation

::
for

::::::
which

:::::
many of them are based on linear regression methods, using correlation between

catchments to improve the hydrological predictions and /or scale two time series relative to each other (Fiering, 1963; Laaha and Blöschl, 2005)
:::::::::
developing

:
a
:::::
linear

::::::::::
relationship

:::::::
between

:::
the

::::
target

:::::::::
catchment

:::
and

::::
one

::
or

::::::
several

:::::::::
catchments

::::
with

:::::
longer

::::
time

:::::
series

::
of

::::::
runoff

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fiering, 1963; Laaha and Blöschl, 2005; Matalas and Jacobs, 1964).

::::
This

:::
can

::
by

:::::
done

::
by

::::::
MOVE

::::::::
methods,

:::
i.e.

::
by

::::::::
requiring

::::
that

::
the

:::::::
sample

::::
mean

::::
and

::::::
sample

:::::::
variance

::
of

::::::
runoff

::
are

::::::::::
maintained

::::
over15

::::
time

::
for

:::
the

:::::
target

:::::::::
catchment.

::::::::
Another

:::
way

::
to

:::::::
develop

:
a
:::::
linear

::::::::::
relationship

::
is
::
to

:::
use

::::::
simple

:::::
linear

:::::::::
regression

::::::::::::
(Hirsch, 1982). In

this article, we simply choose
:::
use simple linear regression as a benchmark method, in addition to Top-Kriging.

Assume annual runoff is observed for year 1, ...,n in the target catchment and that there exist annual runoff data from some

other catchments for year 1, ...,n+m. Simple linear regression is performed by first finding a so-called donor catchment for

the catchment of interest. This can be e.g. the closest catchment in space or a catchment with similar catchment characteristics20

(elevation, annual precipitation, vegetation). Next, it is assumed that there is a linear relationship between the annual runoff in

the target catchment and the donor catchment, yi = βxi + εi ::::::::::::::::
yi = β0 +β1xi + εi for i= 1...n, where yi is the the annual runoff

in the target catchment, xi is the annual runoff in the donor catchment, εi is normal distributed measurement error N (0,σ2)

with fixed (but typically unknown) variance σ2, and β is a coefficient that has to
::
β0::::

and
:::
β1 :::

are
::::::::::
coefficients

:::
that

:::::
must

:
be

estimated. The linear relationship between the two catchments is developed by estimating β
::
β0:::

and
:::
β1 by minimizing the sum25

of least squares,
∑n
i=1(yi−βxi)2. The

::::::::::::::::::::

∑n
i=1(yi− (β0 +βxi))

2.
:::::

Next,
:::

the
:

linear relationship can next be used to estimate

the target variables
:::::
runoff

::
at
::::

the
:::::
target

:::::::::
catchment yn+1, ...,yn+m based on xn+1, ...,xn+m with corresponding uncertainty

estimates.

4 A geostatistical framework for exploiting long-term averages and short records

In this section we present the suggested Bayesian geostatistical framework for runoff interpolation. We start by developing a30

three staged hierarchical model for annual runoff consisting of a process model, an observation likelihood and prior distribu-

tions as described in Section 3.1. Next, we highlight two model properties that make the suggested framework different from
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most other methods used for interpolation in hydrology (Section 4.2) and explain how the framework is made computationally

feasible (Section 4.3).

4.1 Hierarchical model for annual runoff

4.1.1 True annual runoff (process models)

Let the spatial process {qj(u) : u ∈ D} denote the runoff generating process at a point location u in the spatial domainD ∈R25

::
in

:::
year

::
j. The true annual runoff generated at point location u in year j is modeled as

qj(u) = βc + c(u) +βj +xj(u) j = 1, .., r, (4)

π(βc)∼N (0,(10000 mm/year )2);

π(βj |σβ)∼N (0,σ2
β)

π(c(u)|ρc,σc)∼GRF(ρc,σc)10

π(xj(u)|ρx,σx)∼GRF(ρx,σx)

where βc is an intercept common for all years j = 1, ..r that models the average runoff in the study area over time, while βj is a

year specific intercept that models the annual discrepancy from the long-term average runoff. Likewise is c(u) a spatial effect

that models the long-term spatial variability of runoff that is caused by climatic conditions in the study area, while xj(u) is a

year specific spatial effect that models the spatial variability due to annual discrepancy from the climate. We emphasize that15

in this context, climate is for simplicity used as a collective term that describes both runoff generation caused by long-term

weather-patterns and the runoff generation due to catchment characteristics like e.g. elevation and slope. The two spatial effects

are modeled as Gaussian random fields (GRFs) with zero mean and stationary Matérn covariance functions with ν = 1
:
, given

a range and a marginal variance parameter; c(u) with range parameter ρc and marginal variance σ2
c , and xj(u) with range

::::::::
parameter

:
ρx and marginal variance σ2

x. Furthermore, the spatial fields xj(u) for j = 1, .., r are assumed to be independent20

realizations, or replicates, of the same underlying field to increase the identifiability of the model parameters (Ingebrigtsen

et al., 2015). The same applies for the year-dependent intercepts βj that are all assigned a Gaussian prior N (0,σ2
β) given the

variance parameter σ2
β . The intercept βc is assigned the weakly informative wide Gaussian prior N (0,(10000 mm/year )2).

So far, runoff has been defined for point locations in space. However, runoff observations are linked to catchment areas, and

we need to define the true average annual runoff generated inside a catchment A. We suggest two alternative models: The first25

model is denoted the areal model. For the areal model, the true annual runoff in catchmentA in year j is given by the average

point runoff over the catchment area, i.e.

Qj(A) =
1

|A|

∫
u∈A

qj(u)du, (5)

where |A| is the catchment area and qj(u) is the point runoff from Equation (4). Interpreting annual runoff as an integral

of point runoff ensures that the water balance is approximately preserved for the posterior mean runoff for any point in the30
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landscape. Thus, the areal model is a model for mass-conserved hydrological variables. It also gives a realistic representation

of distances and hence also the correlation between the catchments under study (see Equation (2)).

The second model for the annual runoff generated inside a catchment area is denoted the centroid model. For the centroid

model, the true average annual runoff inside a catchment A in year j is given by

Qj(A) = qj(uA), (6)5

where qj(uA) is the point runoff from Equation (4), and uA is the centroid of catchment A. This alternative does not provide

a preservation of the water balance for the posterior mean predicted runoff and can be used for any point referenced environ-

mental variable. Distances are measured between catchment centroids, such that this method is more similar to the traditional

Kriging-methods described in Section 3.3.

4.1.2 Observation likelihood10

The true annual runoff from Section 4.1.1 is observed with uncertainty through streamflow data from n catchments which we

denote A1, ...,An. We use the following model for the observed runoff yij in catchment Ai in year j

yij =Qj(Ai) + εij ; i= 1, ..n, j = 1, .., r. (7)

π(yij |σy)∼N (Qj(Ai),sijσ2
y).

Here, Qj(Ai) is the true runoff from Equation (5) if we use the areal model, or the true runoff from Equation (6) if we use15

the centroid model. The error terms εij are identically, independently distributed as N (0,sijσ
2
y) given

:::
the

::::::::
parameter

:
σ2
y , and

we assume that each observation has its own uncertainty by scaling the variance parameter σ2
y with a fixed factor sij that is

further specified in Section 4.1.3.

Through the observation likelihood and the areal formulation of annual runoff from Equation (5), the areal model puts

(soft) constraints on the annual runoff over the catchment areas of the gauged catchments. This way the areal model is able to20

influence the model to distribute the observed annual runoff within the catchment areas and not only at certain gauging points

which is what the centroid model does. This represents a
:::::::
potential

:
benefit for the areal model compared to the centroid model

when modeling runoff. However, imposing constraints on areas also lead to an increase in
:::::
comes

::::
with

::
a computational cost.

4.1.3 Prior models

According to the model specification in Section 4.1.1 and 4.1.2, there are 6 model parameters in the suggested hierarchical25

model for annual runoff, i.e. (σy,ρc,σc,ρx,σx,σβ). As we apply the Bayesian framework, these have to be given prior distri-

butions, and we use knowledge based priors for most parameters. Note that since the priors are based on expert opinions about

the study area, they are specific for the Norwegian dataset and should be modified before further use for other countries or

environmental variables.

In the observation model for runoff in Equation (7), each observation is allowed to have its own measurement uncertainty30

by scaling the variance parameter σ2
y , with a fixed scale sij . This makes sense because the spatial variability of mean annual
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runoff in Norway is large, with values ranging from around 400 mm/year to 4000 mm/year, and heteroscedastic errors can be

expected (Petersen-Øverleir, 2004). In the specification of the prior standard deviation
√
σ2
ysij , we assume that the measure-

ment uncertainty for runoff increases with the magnitude of the observed value yij . Based on this we suggest the following

scaling factors:

sij = (0.025 · yij)2, (8)5

where yij is the observed runoff in catchment i in year j. The scaling factor is chosen to be close to what the data provider

NVE believes is a realistic standard deviation for the observed values, around 2.5% of the observed runoff. For the variance

parameter σ2
y , we use the penalized complexity prior (PC prior) suggested by Simpson et al. (2017). The PC prior is a prior

constructed for the precision, i.e. the inverse of the variance, and the PC prior for the precision τ of a Gaussian effectN (0, τ−1)

has density10

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), τ > 0, λ > 0, (9)

where λ is a parameter that determines the penalty of deviating from a simpler base model. The parameter λ can be specified

through a quantile u and probability α by Prob(σ > u) = α, where u > 0, 0< α < 1 and λ=−ln(α)/u. Here, σ = 1/
√
τ is

the standard deviation of this Gaussian distribution. In our case, we specify the PC prior for σy as

Prob(σy > 1500 mm/year) = 0.1. (10)15

Recall that σy it is scaled with sij in the final uncertainty model such that a prior 95 % credible interval for the standard

deviation
√

(σ2
ysij) for the observed runoff in catchment Ai year j becomes approximately (0.001,10)% of the observed

value yij . This is a quite strict prior that is chosen in order to influence the posterior observation uncertainty to be as low as

possible. The reason behind this modeling choice , is further described in Section 4.2. However, an observation uncertainty

of 0.001-10 % of the observed value also corresponds quite well to what NVE knows about the measurement uncertainty for20

runoff in the study area. Percentages around 2.5% are as mentioned realistic.

For the spatial ranges ρx and ρc and the marginal variances σ2
x and σ2

c for the Gaussian random fields xj(u) and c(u), we

use the joint informative PC prior suggested in Fuglstad et al. (2019). It is specified through the following probabilities and

quantiles:

Prob(ρx < 20 km) = 0.1, Prob(σx > 2000 mm/year) = 0.1,25

Prob(ρc < 20 km) = 0.1, Prob(σc > 2000 mm/year ) = 0.1.

The percentages and quantiles are chosen based on expert knowledge about the spatial variability in the area of interest. It is

reasonable to assume that locations that are less than 20 km apart are correlated when it comes to runoff generation. In Norway

the annual runoff varies from around 300 mm/year - 6000 mm/year such that a marginal standard deviation that is below 2000

mm/year is reasonable. The parameters of the climatic GRF c(u) and the year dependent GRF xj(u) are given the same prior30

as it is difficult to identify if the spatial variability mainly comes from climatic processes or from annual variations. We also
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want the data to decide which of the two effects that dominates in the study area, and
:
in
:

this way detect hydrological spatial

stability or instability. Recall that hydrological spatial stability here is defined by that there is a
::
the

::::::
phrase

:::::::::::
hydrological

::::::
spatial

::::::
stability

::::
here

::
is

::::
used

::
to

:::::::
describe

::
a
:::::::
variable

::::::
and/or

:
a
:::::

study
::::

area
::::

that
::
is

:::::::::::
characterized

:::
by

:::
an underlying spatial pattern that is

repeated over time.

As specified in Section 4.1.1, the year specific intercepts βj for j = 1, .., r are all assigned the same Gaussian priorN (0,σ2
β)5

given the standard deviation parameter σβ . The standard deviation σβ is given the PC prior from Equation (9) specified by the

wide prior P (σβ > 10 m/year) = 0.2. With this prior, the prior 95% credible interval is approximately (0.002,40.5) m/year

for the standard deviation σβ of βj .

4.1.4 Feasible computation of catchment runoff for the areal model

In the areal model in Equation (5), the true runoff is modeled as the integral of point runoff over a catchment. To make the areal10

model computationally feasible, the integral is calculated by a finite sum over a discretization of the target catchment. More

specifically, if Li denote the discretization of catchment Ai, the annual runoff in catchment Ai in year j is calculated as

Qj(Ai) =
1

Ni

∑
u∈Li

qj(u), (11)

where Ni is the number of grid nodes in the discretization Li. In the discretization of the catchments it is important that

a subcatchment shares grid nodes with its overlapping catchment(s) such that the water balance can be preserved. In our15

analysis, we use a regular grid with 4 km spacing. It is also important that the discretization of the study area is fine enough to

capture the rapid changes of annual runoff in the study area. Otherwise, non-realistic results such as negative runoff can occur.

4.1.5 Full model specification

Assuming that we observe runoff at n stream gauges for j = 1, ..r years and that LD contains all grid nodes in the discretization

of the catchments LAi for i= 1, ...,n, the areal model in Section 4.1.1 - 4.1.4 can be summarized as the following hierarchical20

geostatistical model:

π(y|x,σy)∼
r∏
j=1

n∏
i=1

(I{Observation yij is available} ·N (Qj(Ai),sijσ2
y)

+ 1 · I{Observation yij is missing}) [Observation likelihood]

π(x|θ) = π (c(u1), ..., c(um)|ρc,σc) ·π(βc) (12)25

·
r∏
j=1

[π (xj(u1), ...,xj(um)|ρx,σx) ·π(βj |σβ)] [Latent Model]

π(σy,θ) = π(ρx,σx) ·π(ρc,σc) ·π(σβ) ·π(σy) [Prior]
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where y is a vector containing all runoff observations yij from all catchments i and years j, x is a vector containing all latent

variables, i.e. the intercepts βc, βj and the GRFs c(u·) and xj(u·) for all combinations of grid nodes u1, ...,um ∈ LD and

years j=1,..,r. Furthermore, Qj(Ai) is the true annual runoff that is modeled as a function of the latent field x, while I(·) is

an indicator function that is equal to 1 if its argument is true, and 0 otherwise allowing for missing data and short records of

runoff. Finally, θ = (ρx,σx,ρc,σc,σβ). Together with σy it contains all model parameters.5

The centroid model is summarized as a hierarchical model similarly, except that the true annual runoff Qj(Ai) is given by

Equation (6) instead of Equation (11). This also means that the grid nodes u1, ...,um in the above hierarchical model must be

replaced by uA1
, ...,uAn

, i.e. the locations of the centroids of the n catchments under study.

The purpose of Bayesian inference is to estimate the posterior distributions of the latent variables x and the parameters

θ based on the observations y as described in Section 3.1. In this study, the resulting distributions are used to quantify the10

variable of interest, the catchment runoff Qj(A). By Equation (6) and Equation (11) we see that the catchment runoff is

determined by the point runoff qj(u1), .., qj(um) which is again determined by the latent field x through Equation (4). This

means that in the process of estimating the catchment runoff Qj(A) we always estimate the point runoff qj(u) and the latent

field x first. To clarify this process, consider Figure 10 that is presented later in the article. This shows the posterior mean

runoff qj(u), or π(x|y) implicitly, for all points in the study area. From these point estimates, predictions for the areal model15

Qj(A) are obtained by taking the average of qj(u) over relevant grid nodes according to Equation (11). For the centroid

model, a catchment areal prediction Qj(A) is obtained by simply extracting the value of qj(uA) at the catchment centroid uA

according to Equation (6). From the point referenced predictions in Figure 10 we this way obtain catchment predictions like

the ones presented later in e.g. Figure 7.

From the hierarchical formulation in (12) we also note that the framework takes the time dimension into account through20

multiplying the likelihood for annual runoff for
::::
over different years j = 1, ..r. These years don’t need to be consecutive, which

allows for e.g. combining old measurements from closed stations with more recent data. Different years of data are connected

through the constant climatic component (c(u) +βc). Apart from this, there is no temporal dependency in the model that

assumes correlation over time, and routing is not taken into account. This makes sense for our suggested application, as there

is no prominent time dependency for annual runoff in Norway (see e.g. Figure 2b). Routing effects can typically be neglected25

for time-aggregated runoff variables for longer time scales. For shorter time scales for which routing has an impact, other

spatio-temporal models should be considered, for example the one in Skøien and Blöschl (2007).

4.2 Two model properties and contributions

In this section we highlight and describe two of the model properties that make the suggested framework different from Top-

Kriging and geostatistical interpolation methods that are typically used for hydrological applications.30

4.2.1 Exploiting short records

The first property we highlight is how the model is particularly suitable for exploiting short records of runoff, and this holds

for both the areal model and the centroid model. This property is already briefly addressed in the introduction, and is enabled
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Figure 6. Conceptual figure of a river network, for which the involved catchments are discretized by 5 locations
:::
grid

:::::
nodes

:::::::
u1, ..,u5,

u1, ..,u5 that
:::
and each represents

:::
grid

:::
node

:::::::
represent

:
one areal unit.

::::::::
Catchment

:::
A1::::::

contains
::
all

::::
grid

::::
nodes

::::::::
u1, ..,u5,

::::::::
Catchment

:::
A2 ::::::

consists

:
of
::::

grid
::::
nodes

:::
u1:::

and
:::
u2,

::::
while

:::::::::
Catchment

::
A3:::::::

consists
:
of
::::

grid
::::
nodes

::::::
u3,u4:::

and
:::
u5.

:::::
Hence,

:::
this

::
is

:
a
::::::
system

::
of

:::::
nested

::::::::
catchments

:::::
where

:::
A1

:::::
covers

::
A2::::

and
:::
A3. Assume that there are three observations of annual runoff : 1000 mm/year

::
at

::
the

:::::
outlet

::
of

::::::::
catchment

:::
A1 and

::::::::
catchment

:::
A2:

:::::::
Q(A1)=2000 mm/year in the subcatchments (orange and green

::::
Q(A2), and 2000

:::::
=1000 mm/yearin the surrounding catchment (black).

::::::::
Catchment

:::
A3 :

is
::::::::
ungauged.

:
In order to fulfill water balance constraints

:
of

:::
the

::::
areal

:::::
model

::::
from

:::::::
Equation (11),

::::::
imposed

::
by

:
the

:::::::
likelihood

::
in

::::::
Equation

:
(7)

:
,
::
the

:
predicted mean annual runoff in the remaining area (yellow)

::::::::
catchment

::
A3:

must be close to
:::::
around

:
2500 mm/year if the

::
we

::::::
assume

:
a
:::
low

:
observation uncertaintyis low.

because we simultaneously model several years of data with a spatial component c(u) that is common for all years under study.

The GRF c(u) represents the long-term spatial variability of runoff. If most of the spatial variability can be explained by long-

term patterns, the marginal variance parameter σ2
c will dominate over the marginal variance parameter σ2

x of the annual GRF

xj(u) (and the other model variances), i.e. σc� σx. Thus, a short-record of runoff from an otherwise ungauged catchment

will have a large impact also for predictions in years without data through c(u). On the other hand, if most of the annual runoff5

is explained by year specific effects, xj(u) will dominate over c(u) and short records will not have a large impact on the final

model. Hence, it is safe to include short records in the model regardless of the weather-patterns in the study area.

Existing methods for exploiting short records are typically based on linear regression or computing the correlation between

the runoff in the target catchment and one or several donor catchments, and in order to perform these procedures the short-

record must be of length larger than one (Fiering, 1963; Laaha and Blöschl, 2005). In the method we suggest, it is possible to10

include a short-record of length one, and it is already shown for a smaller case study that this often is enough to see a large

improvement in the predictability of (annual) runoff for certain climates (Roksvåg et al., 2020).

4.2.2 The water balance constraints of the areal model

The second property we highlight only holds for the areal model, and is related to its mas-conserving
:::::::::::::
mass-conserving

:
proper-

ties and its ability to do more than smoothing: Runoff is in Equation (11) defined as an weighted sum of point runoff. Through15
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:::::::
Equation

:
(11)

::
and

:
the likelihood defined in Equation (7)and Equation , a (soft) constraint is put on the predicted annual runoff

for the catchments for which we have observations. This also has the beneficial consequence that the suggested model allows

us to predict values that are larger than any of the observed values in the area of interest. As a conceptual example, consider

the river network in Figure 6, where each black node represents one areal unit. The observed runoff is 1000 mm/year
::
in

:::
the

:::::::::::
subcatchment

:
and 2000 mm/year in the two subcatchments, and 2000 mm/year in the surrounding larger catchment. That5

means that the constraints imposed by the observation likelihood
:::
and

::::::::
Equation (11) are the following:

1000 mm/year = (q(uu1)/1 + uncertainty2000 mm /year= (q(uu2)+q(u3))/2 + uncertainty

2000 mm /year = (q(uu1) + q(uu2) + q(uu3) + q(uu4) + q(uu5))/5 + uncertainty. (13)

As described in Section 4.1.3 we impose
:::
use a quite strict prior on the uncertainty for the observations. This is done to try

to force the above uncertainty to be low. Assuming the uncertainty is approximately zero and solving the above system of10

equations, we get that
::
the

::::::::
predicted

:::::
value

::
in

:::
the

::::::::
ungauged

:::::::::
catchment

:::
A3::

is
:::::
given

::
by

:

QQ̂(A43) =
q(u4) + q(u5)

2

q(u3) + q(u4) + q(u5)

3
+ uncertainty

::::::::::::::::::::::::::::::

= 2500 mm/year + uncertainty.

Hence, as long as the uncertainty is low, the predicted runoff in the unobserved areaA4 :::
A3 in Figure 6 is close to 2500 mm/year

which is larger than any of the observed values. This example illustrates how the areal model is able to go beyond smoothing

without using any explanatory variables, which makes it different from most Kriging methods. Most Kriging methods do a15

weighting of the observations according to Equation (3) . For
::::
where

:::
the

::::
sum

::
of

:::
the

:::::::::::
interpolation

:::::::
weights

:::
are

::::::::
restricted

::
to

::
be

::
1

::
in

::::
order

::
to
:::::::
achieve

::
an

::::::::
unbiased

::::::::
estimator,

:::
i.e.

::::::::

∑n
i=1λi:::

=1
:
.
::::
This

:::::
means

::::
that

:::
for the conceptual example, such methods would

produce a prediction between 1000 m/year and 2000 m/year (Adamowski and Bocci, 2001; Merz and Blöschl, 2005; Skøien

et al., 2006).

The full areal model is of course
::::::
slightly

:
more complicated than the simple example above, as prior distributions, covariance20

calculations and spatial ranges must be taken into account. However the simple example illustrates the general idea of how the

observation likelihood interprets the areal observations. That the full areal model actually works in practice
:
is
::::
able

::
to

::::::::
conserve

::::
mass

::
in

::::::::
practice,

::
is

:::::::::::
demonstrated

:
for a real case example , is demonstrated for predictions of annual runoff around Voss in

Norway (Roksvåg et al., 2020)
::::
from

::::::
Norway

:::
in

:::::::::::::::::
Roksvåg et al. (2020).

The constraints in Equation (13) can also be used to explain
::::
also

::::
show

:
how the areal model considers water balance

::::::
ensures25

::::::::
consistent

:::::::::
predictions

::::
over

::::::
nested

:::::::::
catchments: As the predicted runoff in the main catchmentA1 can be expressed as a weighted

sum of the predicted runoff in all its subcatchments depending on catchment areas, i.e. asQ(A1) = 1
5Q(A2) + 2

5Q(A3) + 2
5Q(A4)

::::::::::::::::::::::::
Q̂(A1) = 2

5 Q̂(A2) + 3
5 Q̂(A3),

the water balance can not be violated for the predicted runoff for any of the catchments in Figure 6. This means that the

equations in (13) correspond to water balance constraints, and the areal model should only be used for variables that are

approximately mass-conserved over nested catchments.30
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4.3 Inference

In order to make the framework described in Section 4 computationally feasible, some simplifications of the suggested models

are necessary. In general, statistical inference on models including GRFs is slow when the number of target locations is large

because matrix operations on dense covariance matrices are required. The computational complexity is particularly large for

the areal model, because each grid node in the discretization of the catchments can be regarded as a new target location, and5

because it includes soft constraints. To solve the computational issues for the centroid and areal model, we utilize that a GRF

with a Matérn covariance function can be expressed as the solution of a specific Stochastic partial differential equation (SPDE)

(Lindgren et al., 2011). This SPDE can be solved by using the finite element method (see e.g. Brenner and Scott (2008)), and

the result is a Gaussian Markov random field (GMRF). Working with GMRFs is convenient because GMRFs have precision

matrices (inverse covariance matrices) that typically are sparse with more zero elements, and efficient algorithms are available10

for sparse matrix operations (see e.g Rue and Held (2005)). In this work, both GRFs xj(u) and c(u) are approximated by

GMRFs.

Another challenge with the suggested models, is that we suggest Bayesian models that include a large number of parameters

for which the marginal distributions must be estimated. Traditionally, Bayesian inference is done by using Markov chain Monte

Carlo-methods (MCMC), but inference can be slow when the dimension of the problem is large (Gamerman and Lopes, 2006).15

These challenges are met by modeling runoff as a latent Gaussian model (LGM). That is, the latent part x of the hierarchical

model in 4.1.5 consists of only Gaussian distributions. More specifically, the prior distributions for c(u) and xj(u) are modeled

as GRFs, and the prior distributions for βj and βc are Gaussian given the model parameters (see the equations in (4)). This is

convenient, because it allows us to use integrated nested Laplace approximations (INLA) to make inference and predictions.

INLA is a tool for making Bayesian inference for LGMs (Rue et al., 2009) and represents a fast and approximate alternative20

to MCMC algoithms. The INLA approach is based on approximating the marginal distributions by using Laplace or other

analytic approximations, and on numerical integration schemes. The main computational tool is the sparse matrix calculations

described in Rue and Held (2005), such that in order to work fast, the latent field of the LGM should be a GMRF with a sparse

precision matrix. This requirement is fulfilled through the SPDE approach as already outlined.

INLA in general provides approximations of very high accuracy for most models (Rue et al., 2009; Martino et al., 2011;25

Eidsvik et al., 2012; Huang et al., 2017), but has faced problems for some (more extreme) models with binomial or Poisson data

(Fong et al., 2009; Ferkingstad and Rue, 2015). For Gaussian likelihoods however, INLA is exact up to numerical integration

error. As we use Gaussian likelihoods in this work, we can thus expect INLA to give reliable approximations. The SPDE

approach also provides accurate approximations (Lindgren et al., 2011; Huang et al., 2017), but it is important that the mesh

involved in the finite element method computations is sufficiently dense relative to the spatial variability and range in the study30

area.

Because of the high computational speed and accuracy, the INLA and SPDE framework has become quite common to use

within different fields of science. See for example Khan and Warner (2018); Opitz et al. (2018); Yuan et al. (2017); Guillot

et al. (2014); Ingebrigtsen et al. (2014); Bakka et al. (2018). We refer to the R-package r-inla for a user-friendly interface
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for applying INLA and the SPDE approach to spatial modeling. In particular, Moraga et al. (2017) is recommended for a

description of how a model with (catchment) areal data can be implemented in r-inla. Furthermore, we have made code

for the centroid model available on http://www.github.com/tjroksva/runoffinterpolation (doi: 10.5281/zenodo.3630348) with

example data from the catchments in Figure 1a.

5 Model evaluation5

The main objectives of this article are to (1) evaluate the new framework’s ability to fill in missing annual runoff observations

and to (2) predict mean annual runoff for catchments with varying record lengths. By this we also want to (3) demonstrate the

potential added value of including short runoff records in the modeling compared to not using them. In this section we present

the experimental set-up and the evaluation criteria used to address our research questions.

5.1 Experimental set-up for infill of missing annual observations (1996-2005)10

To assess the framework’s ability to fill in missing values of annual runoff, we do interpolation of runoff for the 10 hydrological

years 1996-2005 for the 180 fully gauged catchments shown in Figure 1a. This is done both for series of annual runoff, and for

the annual series of monthly runoff for January, April and June described in Section 2.

The annual time series of monthly runoff are included in the analysis in order to demonstrate the framework’s properties for

hydrological variables or areas that are driven by more unstable hydrological processes. For the annual series of monthly runoff,15

the models from Section 3
:
4
:
are specified as before: Considering predictions for January,Qj(Ai) in Equation (5) represents the

true runoff in January for catchment Ai, year j, such that the GRF c(u) represents the long-term spatial variability in January.

Likewise, the GRF xj(u) represents the annual discrepancy from the climate in January, and yij is the observed runoff in

January for catchment Ai year j. The models for June and April are specified similarly, and for simplicity we use the same

prior distributions for all experiments.20

In our assessment of the framework’s predictive performance for infill of missing annual observations, the three following

methods are compared:

Top-Kriging: Spatial interpolation with Top-Kriging. For Top-Kriging each year (1996-2005) is interpolated independently

from other years. Short records on an annual (or monthly) scale don’t have an impact on years without data. The default covari-25

ance function (or variogram) in the R package rtop was fitted as this gave the most accurate results. This is a multiplication

of a modified exponential and fractal variogram model, the same model as used in Skøien et al. (2006).

Areal model: Spatial interpolation with the model defined in Section 3
:
4
:
with true annual runoff given by the areal model

from Equation (11). That is, the annual runoff in a catchment is interpreted as the average point runoff over the catchment area.30

All years are modeled simultaneously (1996-2005) such that short records of data can influence years without data.

Centroid model: Spatial interpolation with the model defined in Section 3
:
4 with true annual runoff given by the centroid

model from Equation (6). That is, annual runoff is interpreted as a process linked to point locations in space (the catchment

centroid
:::::::
centroids), and not to catchment areas. All years are modeled simultaneously (1996-2005) such that short records of35

20

http://www.github.com/tjroksva/runoffinterpolation


data can influence years without data.

The predictive performance of the three methods is evaluated by cross-validation: The 180 catchments in Norway were

divided into 20 groups or folds, each containing 9 catchments. In turn each group was left out, and annual or monthly runoff

predictions were performed for these so-called target catchments by using observations from the catchments in the other5

groups. That is, we predict runoff for 1996-2005 for 9 target catchments at once by using data from the remaining 171 fully

gauged catchments, and repeat the process for all 20 cross-validation groups
::::
folds. To evaluate and compare the three methods

described above, we do the following two tests:

1) UG (ungauged): Assess the methods’ ability to fill in missing values for ungauged catchments (denoted UG). That is, the

target catchments are treated as totally ungauged, and all their observations are left out of the dataset when the predictions for10

1996-2005 are performed.

2) PG (partially gauged): Assess the methods’ ability to fill in missing values for partially gauged catchments (denoted PG).

Each of the 9 target catchments in the cross-validation group is allowed to have one annual observation of runoff. That is, a

short-record of length one from the target catchment is included in the observation likelihood in addition to the full data series

of runoff from the catchments in the other cross-validation groups
::::
folds. The short-record is drawn randomly from the ten years15

of observations available for each target catchment. We perform predictions for 9 partially gauged target catchments at once,

for all 10 study years (for which one of them is observed for each catchment), and repeat the process for all 20 cross-validation

groups
::::
folds.

To make the results comparable, we use the same cross-validation groups for both experiments (UG and PG) and methods20

(Top-Kriging, areal model and centroid model), and remove the same set of annual observations for PG across methods. For

the PG-case, we also compare our models to a method for exploiting short-records from the target catchment. The method we

choose for comparison is simple linear regression, and we perform linear regression for the PG-case as follows:

Linear regression: The closest catchment in terms of catchment centroid is used as a donor catchment and only catchments

outside the target catchment’s cross-validation group can be considered. Two annual observations between 1996 and 2005 are25

randomly drawn from the target catchment, and data from the donor catchment and target catchment are used to fit a linear

regression model as described in Section 3.4
::
on

:::
the

::::
form

:::::::::::::
yi = β1xi + εi. Next, the fitted model is

:::::
model

::
is

::::
fitted

::
as
:::::::::

described

::
in

::::::
Section

::::
3.4,

:::
and

:
used to predict runoff for the target catchment for 1996-2005 (where two of the years are observed). We

include
:::
The

::::::
reason

:::
for

:::::
using a short record of length two instead of one, as

::
is

:::
that at least two observations are required to fit a

linear regression model with two parameters (β
:::::::::
uncertainty.

::::
Also

:::::
mark

:::
that

:::
we

::::
have

:::::::
omitted

:::
the

:::::::
intercept

:::
β0::

in
:::
the

:::::::::
regression30

::::::
model,

:::::
such

:::
that

:::
we

::::
only

::::
have

::::
two

::::::::
unknown

:::::::
variables

:::
(β1:and σ2)with uncertainty.

5.2 Experimental set-up for predictions of mean annual runoff (1981-2010)

To assess the framework’s ability to estimate mean annual runoff, we use annual data from 1981-2010 from the 260 catchments

in Figure 5. Recall that these catchments have at least one observation of mean annual runoff between 1981 and 2010, but only
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83 of them are fully gauged. This was different from the experiments described in Section 5.1, where all the test catchments

were fully gauged before the cross-validation was performed.

For this experiment, we again compare the performances of Top-Kriging, the areal and the centroid model. The areal model

and the centroid model are fitted for several years of annual runoff simultaneously, as before. As a predictor for the mean

annual runoff, we use the posterior distribution of the climatic part of the model. This is given by c(uA) +βc for the centroid5

model, where uA is the centroid of the catchment A of interest. For the areal model it is given by the average c(ui) +βc over

the grid nodes ui in the discretization of the target catchment.
:::
Note

::::
that

:::
the

:::::::
climatic

:::
part

::
of
:::
the

::::::
model

::::
must

:::
be

::::::::::
re-estimated

:::
for

::::
each

:::::::::
experiment

::
or

::::::::::::::
cross-validation

::::
fold.

In order to interpolate mean annual runoff by using Top-Kriging, we have to compute the mean annual runoff based on the

annual observations for all catchments before running the analysis. For catchments with less than 30 annual observations we10

use the average of the 1-29 available observations as an approximation for the mean annual runoff for 1981-2010. Next, the

mean annual runoff is interpolated by using Top-Kriging where the uncertainty of the observations is specified as a function

of record length. This is the suggested approach from Skøien et al. (2006) for including short records in the Top-Kriging

framework. We set the observation variance for a catchment with record length m to σ̂2/m, where σ̂ is the average empirical

standard deviation for the observed annual runoff taken over the 83 fully gauged catchments in our dataset, in this case σ̂ = 33615

mm/year. For the Top-Kriging experiments, we fit the same covariance model as in Section 5.1.

The areal and centroid model and Top-Kriging are again evaluated by cross-validation. The 83 fully gauged catchments
::::
from

:::::
Figure

::
5 were divided into 4 folds containing 20, 20, 20 and 23 catchments respectively, and in turn observations from each

fold were removed and predicted. This was done for varying record lengths for the target catchments, more specifically when

0, 1, 3, 5 or 10 randomly drawn annual observations from the target catchments were included in the likelihood. We denote20

these settings UG, PG1, PG3, PG5 and PG10. Note that data from
:::::
while

:::
we

::::
only

:::
are

:::
able

::
to
::::::
assess

:::
the

::::::::
predictive

:::::::::::
performance

::
for

:::
the

:::
83

::::
fully

:::::::
gauged

:::::::::
catchments

::
in

::::::
Figure

::
5,

::::
data

::::
from

:::
the

:::::::::
remaining

:
177 partially gauged catchments are available for all

experiments, in
:
in

::::::
Figure

:
5
:::
are

:::::
used

::
in

::
the

::::::::::
observation

:::::::
sample.

::::
This

::
is

::
in addition to the data from the fully gauged catchments

from the other folds.

5.3 Evaluation scores25

To evaluate the predictions we use the root mean squared error (RMSE) and the continuous rank probability score (CRPS).

Having m pairs of observations and predictions, the RMSE is computed as

RMSE =

√√√√ 1

m

m∑
j=1

(y∗j − ŷ∗j )2,

where y∗j is the observed value and ŷ∗j is the corresponding predicted value. In our analysis, the posterior mean is used as a the

predicted value for the areal and centroid model.30
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The CRPS is defined as

CRPS(F,y∗) =

∞∫
−∞

(F (s)− 1{y∗ ≤ s})2ds,

where F () is the predictive cumulative distribution and y∗ is the actual observation (Gneiting and Raftery, 2007). For the

methods we test (areal, centroid, Top-Kriging and linear regression), F () is a Gaussian distribution with mean equal to the

predicted value and standard deviation equal to the standard deviation of the prediction.5

For the experiments related to infill of individual years, the CRPS and RMSE are first computed for each of the 180 catch-

ments in the dataset based on 10 pairs of predictions and observations. The average RMSE and CRPS over all catchments are

used as a summary scores. For the experiments related to predictions of mean annual runoff, there is only one (mean annual)

prediction for each catchment, and the RMSE and CRPS over all catchments are reported. Both the CRPS and the RMSE are

negatively oriented such that low scores mean better predictions.10

::
To

:::
be

::::
able

::
to

:::::::
compare

:::
the

::::::
RMSE

::::
and

:::::
CRPS

::::::
across

:::::::
methods

:::
we

::::
use

:
a
::::::
paired

::::::::
Wilcoxon

:::::::::::
Signed-Rank

::::
Test

:::::::::::::
(Siegel, 1956).

::::
This

:
is
::

a
:::::::::::::
non-parametric

:::
test

::::
that

::::
does

:::
not

:::::::
require

::::::
normal

:::::::::
distributed

::::
data.

::::
The

::::
null

:::::::::
hypothesis

::
of

:::
the

::::
test

::
is

:::
that

:::
the

:::::::
median

::::::::
difference

:::::::
between

:::::
pairs

::
of

::::
data

:::
(in

:::
this

::::
case

:::::
pairs

::
of

::::::
RMSE

::
or

::::::
CRPS

::::::
values)

:::::::
follows

:
a
:::::::::
symmetric

::::::::::
distribution

::::::
around

:::::
zero.

:::
The

:::::::::
alternative

:::::::::
hypothesis

::
is

::::
that

:::
the

::::::::
difference

:::::::
between

:::
the

::::
data

:::::
pairs

::::
does

:::
not

::::::
follow

:
a
:::::::::
symmetric

::::::::::
distribution

::::::
around

:::::
zero.

:
If
:::
the

::::
null

:::::::::
hypothesis

::
is

:::::::
rejected,

::
it

:::::::
indicates

::::
that

:::
one

::
of

:::
the

:::::::
methods

:::::
gives

:
a
:::::::::::
significantly

::::::
smaller

::::::
RMSE

::
or

:::::
CRPS

::::
than

:::::::
another15

:::::::
method.

:

In addition to the RMSE and the CRPS, we report the 95 % coverage of the experiments. The 95 % coverage is computed

by calculating the amount of the actually observed runoff values that are within the corresponding 95 % posterior prediction

intervals. Here, we make posterior prediction intervals for Top-Kriging and linear regression by assuming that the predictions

are Gaussian. A 95 % coverage close to 0.95 is optimal and indicates that the model provides an accurate representation of the20

underlying uncertainty.

We also want to compare our mean annual runoff results with other studies of mean annual runoff, more specifically the

studies collected in Blöschl et al. (2013). In Blöschl et al. (2013), the absolute normalized error (ANE) and the squared

correlation coefficient (r2) are used as evaluation scores. The ANE is computed as

ANE =
|ŷ∗− y∗|

y∗
, (14)25

where y∗ and ŷ∗ are the observed and predicted value as before. The ANE normalize
::::::
divides the absolute difference between

the actual observation y∗ and corresponding prediction ŷ∗ with respect to the magnitude of the observed runoff
::
by

:::
the

::::::::
observed

:::::
runoff,

::::
and

::
is

:::::::
therefore

:::::
scale

::::::::::
independent. An ANE close to zero corresponds to an accurate prediction.

Finally, the squared correlation coefficient between m pairs of observations and predictions is computed as

r2 = (Cor{(y1, ...,ym),(ŷ∗1 , ..., ŷ
∗
m)})2, (15)30

where Cor(·, ·) denotes the Pearson correlation. An r2 close to 1 indicates
:
a high correlation between the predicted and observed

values.
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6 Results

6.1 Predictions for individual years (1996-2005)

We now present the results related to the framework’s ability to predict runoff for individual, missing years for the annual time

series of annual and monthly runoff for a 10 year period (1996-2005). First, we present the results for the ungauged catchments

(UG), before we proceed to the partially gauged catchments (PG) that have short records of length one.5

6.1.1 Infill for ungauged catchments (UG)

For the ungauged case (UG), the target catchments are treated as totally ungauged for the ten study years 1996-2005, and

missing values are predicted both for annual and monthly runoff. In Figure 7 the resulting average predicted annual runoff in

southern Norway is presented for Top-Kriging, the areal model and the centroid model. The three methods give similar results

for the posterior mean, and all are able to reproduce the true spatial pattern of annual runoff. The
:::::::::::
Furthermore,

::
the

:
RMSE plots10

in Figure 7 also show that the three methods
::::::
succeed

::::
and fail for many of the same catchments, often for

:
.
:::::
Here,

:::
we

::::::
should

::::
keep

::
in

:::::
mind

:::
that

:::
the

::::::
RMSE

::
is

::::
scale

:::::::::
dependent

::::
and

:::::
might

:::
not

::::
give

:::
the

::::
best

:::::::::
impression

::
of

:::
the

:::::::
relative

::::::::::
performance

::::::
across

:::
the

::::
study

:::::
area.

::::::::
However,

::
we

::::
note

::::
that

:::::
many

::
of

::
the

::::::::::
catchments

::::
with

::::
high

::::::
RMSE

:::::
values

::::::::
typically

::
are

:
small catchments located in the

western part of Norway.
::::::
western

::::::::
Norway.

:::
We

:::
will

:::::
come

:::::
back

::
to

::::
these

::::::::::
catchments

::
in

:::::::
Section

::::
6.1.2

::
to

:::
see

::::
how

:::
the

::::::::::
predictions

:::
here

:::::
were

:::::::
affected

:::::
when

::::::::
including

:
a
::::
short

:::::::
record.15

Table 1. Predictive performance for predictions of missing annual values in ungauged catchments (UG) and partially gauged catchments

(PG) for the areal model, centroid model, Top-Kriging (TK) and simple linear regression (LR). The best performance in each row is marked

in bold. The RMSE and CRPS were compared across methods by using a one sided paired Wilcoxon Signed-Rank Test for assessing the

significance of the results. Results that were significantly better than other results are marked with stars.

RMSE [mm/year] CRPS [mm/year] Coverage 95 %

Case Dataset Areal Centr. TK LR Areal Centr. TK LR Areal Centr. TK LR

UG Annual 337 343 310 * - 242 249 225* - 0.92 0.91 0.94 -

UG January 39 37 36 * - 26 25 24* - 0.92 0.89 0.93 -

UG April 38 38 37 - 25 25 24 - 0.89 0.85 0.93 -

UG June 87 96 82 * - 59 67 56 * - 0.91 0.84 0.91 -

PG Annual 171 ** 184 ** 290 178 ** 105** 113 ** 201 240 0.95 0.94 0.95 0.96

PG January 30** 30** 33 61 19** 20** 21 88 0.91 0.89 0.91 0.95

PG April 31** 33 ** 35 50 20 ** 21 ** 22 94 0.86 0.84 0.94 0.96

PG June 55 ** 63 ** 78 95 35 ** 42 ** 50 136 0.90 0.84 0.93 0.96

* The RMSE/CRPS is significantly lower than the RMSE/CRPS of the areal and the centroid model on a 5 % significance level.

** The RMSE/CRPS is significantly lower than the RMSE/CRPS of Top-Kriging on a 5 % significance level.
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Figure 7. Average posterior mean for Qj(A), average posterior standard deviation for Qj(A) and average RMSE for each catchment for

predictions of missing annual observations in southern Norway for j = 1, ..10 for the areal model (A,left), the centroid model (C, middle)

and Top-Kriging (TK, right) when the target catchments are treated as ungauged (UG). The observed mean annual runoff is also included as

a reference (first plot).

Considering the posterior standard deviation in Figure 7, we notice that Top-Kriging and the areal model provide a similar

quantification of the predictive uncertainty. Top-Kriging and the areal model take the nestedness of catchments into account by

interpreting the runoff data as areal referenced, providing a predictive standard deviation of runoff that varies with the size of

the target catchment: Figure 7 shows that smaller catchments typically have a larger predictive uncertainty, which is reasonable.
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Figure 8. Distribution of RMSE [mm/year] for infill of missing values for all catchments and years (1996-2005) when the target catchments

are treated as ungauged (UG) in the cross-validation for the areal, centroid and Top-Kriging (TK) method.
::
The

:::::
lower

:::
and

:::::
upper

:::::::
quartiles

::::::::
correspond

::
to

::
the

::::
first

:::
and

:::
third

:::::::
quartiles

:::
(the

::::
25th

:::
and

::::
75th

:::::::::
percentiles),

:::
and

::
the

:::::::
whiskers

:::::
extend

::::
from

:::
the

:::::::
quartiles

::
no

:::::
further

::::
than

:::
1.5·

::::
IQR,

::::
where

::::
IQR

::
is

::
the

:::::::
distance

::::::
between

:::
the

:::
first

:::
and

::::
third

::::::
quartile.

:::
The

:::::
same

:::::
applies

:::
for

::
all

:::::::
boxplots

:::::::
presented

::
in

:::
this

:::::
paper.
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Figure 9. Distribution of RMSE [mm/year] for infill of missing values for all catchments and years (1996-2005) for the areal model, centroid

model and for Top-Kriging (TK) when the target catchments are treated as partially gauged (PG), i.e. a short-record of length one from the

target catchment is included in the observation likelihood in the cross-validation. Results for linear regression (LR) are also included here.

For the centroid model, runoff observations are point referenced and weighted independently of catchment size. Consequently,

the predictive uncertainty only depends on how the centroids of the observed catchments are distributed in space, and decreases

in areas where there are clusters of data. The predictive uncertainties provided by Top-Kriging and the areal method are thus

more intuitive and realistic considering the process we are studying. The latter is also reflected in the coverage percentages

presented in Table 1. The coverages show the amount of the actual observations that were captured by the corresponding 95 %5

prediction intervals, and these are slightly closer to 0.95 for Top-Kriging and the areal model compared to the centroid model.

Table 1 also presents the summary scores for the predictive performance for infill of missing values for ungauged catchments

for all methods. According to the RMSE and CRPS, Top-Kriging is a better interpolation method than our two suggested

methods for ungauged catchments. However, the boxplots in Figure 8 illustrate the distribution of RMSE for all catchments,

and we see that
::
on

:
a
:::::::
monthly

:::::
scale, the difference between Top-Kriging and the two other methods is quite low from a practical10

point of view. On a monthly scale the differences in RMSE
:::
For

::::::
January

::::
and

::::
April

:::
the

::::::::::
differences are almost negligible.
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Figure 10. From left to right: The climatic part of the model (common for all years), the annual (year dependent) part of the model and the

full model qj(u) for annual runoff in 1997 and 1998. Note that the scales of the middle plots only cover 25 % of the scale of the other plots.

We see that most of the spatial variability for
:
of

:
annual runoff for 1996 and 1997

::
and

::::
1998

:
can be explained by climatic effects, and that the

climatic range ρc is
:::::::::
considerably

:
smaller than the year specific range ρx. The results above are produced by the centroid model, and plots

similar to these are behind all results presented for the areal and centroid model in this article.

6.1.2 Infill for partially gauged catchments (PG)

For the partially gauged (PG) case, each target catchment is allowed to have a short-record of length one for Top-Kriging,

the areal and centroid model, and length two for linear regression. Before we comment the results from the cross-validation

in Table 1 and Figure 9, we consider the posterior estimates of the range parameters (ρx and ρc) and the marginal variance

parameters (σx and σc) of the year-specific GRF xj(u) and the climatic GRF c(u) for our four datasets. These are shown in5

Table 2 and indicate how much of the spatial variability that is captured by the climatic GRF relative to the annual GRF. In

particular, if σc dominates over σx, it suggests hydrological spatial stability.

The estimates in Table 2 show that the hydrological spatial stability is largest for June and for annual runoff, as expected

from the time series in Figure 2b and Figure 4. Here, the posterior mode for σc is more than twice as large as the posterior

mode for σx for both the areal and the centroid model. Furthermore, we see in Table 2 that the climatic range ρc is only around10

12 % of the annual range ρx. In Figure 10 we have illustrated the spatial pattern these parameters give for annual predictions
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Table 2. The posterior mode of the range parameters ρc and ρx and the marginal standard deviations σc and σx of the climatic and the

annual GRFs c(u) and xj(u) for the areal model (upper) and centroid model (lower). The posterior standard deviations of the parameters

are shown in parenthesis as a measure of the uncertainty. The mode and standard deviations vary between the experiments and groups in

the cross-validation, and the values given here are the mean over all folds and experiments (UG and PG). The spatial effect that dominates

(annual or climatic) is marked in bold.

Areal model ρc [km] ρx [km] σc [mm/year] σx [mm/year]

Annual 58 (7) 476 (65) 880 (56) 267 (23)

January 31 (7) 247 (22) 72 (6) 83 (4)

April 77 (14) 239 (32) 75 (6) 48 (3)

June 43 (5) 153 (22) 181 (9) 75 (3)

Centr. model ρc [km] ρx [km] σc [mm/year] σx [mm/year]

Annual 89 (12) 659 (77) 750 (57) 263 (22)

January 82 (15) 369 (44) 60 (6) 88 (7)

April 118 (19) 375 (51) 66 (4) 52 (5)

June 69 (9) 335 (47) 161 (12) 71 (6)

in 1997 and 1998 for the whole study area. We see that the annual runoff for 1996 and 1997 have the same spatial pattern, and

that this spatial pattern mostly originates from c(u), i.e. climatic conditions including catchment characteristics. The trend we

see in Figure 10 can also be seen for the remaining eight years in the dataset (1996,1999-2005), as well as for June. A spatial

pattern like this, with σc� σx and ρc < ρx, suggests that the information gain from neighboring catchments further away is

low for an ungauged catchment, and that the potential information stored in short records is high.5

For January however the situation is different: The posterior mode of σx is larger than the posterior mode of σc for both the

areal and the centroid model. The parameters show that for January, year specific-effects
::::::::::
year-specific

::::::
effects explain a larger

part of the spatial variability. This can be due to a more unstable hydrological setting with runoff driven by snow accumulation

and snow melt. For April, we have that σc > σx, but σc is less dominant than for June and for the annual data.

In the areal and centroid model, the inclusion of a short record changes the climatic spatial field
::::
c(u), and hence the results10

:::::::::
predictions

:
can be considerably changed for the target catchment if the climatic effect is strong. The parameter values thus

suggest that the gain of including short records is lower for April and January compared to the other two datasets. This is

confirmed by comparing the RMSE and CRPS for the areal and the centroid model for the partially gauged case (PG), to the

RMSE and CRPS obtained for the ungauged case (UG) in Table 1. For all datasets, the RMSE and CRPS for our two models

are reduced for PG compared to UG, but the reduction is lower for January and April than for June and the annual data. For15

annual predictions
:::
the

::::::
annual

:::::::::
predictions,

:
the RMSE and CRPS are reduced by more than 50% when a short-record of length

one from the target catchment is included in the observation likelihood. The reduction for June is also remarkable (around

35-40 %), while the reduction for January and April is moderate (around 13-20 %). The results hold for both the areal and

centroid model, but the areal model seems to be somewhat better than the centroid model in terms of exploiting short records
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(a) Annual predictions.
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(b) Predictions for April

Figure 11. All observations for 1996-2005 compared to the corresponding predictions for the ungauged case (UG, left) and the partially

gauged case (PG, right) for annual predictions (Figure 11a) and for April (Figure 11b). The predictions are performed by the areal model.

The straight line represents a perfect correspondence between prediction and actual observation.

of data from the target catchment. This is again related to the parameter estimates in Table 2, where we see that σc dominates

more over σx in the areal model than in the centroid model.

Considering the results for Top-Kriging in Table 1, we only obtain a small reduction in the RMSE and CRPS for the partially

gauged case (PG) compared to the ungauged case (UG). This is because Top-Kriging treats each year of data independently

when considering infill of missing annual data. A reduction in RMSE and CRPS is only seen for the specific year with extra5

data. This is different from our framework where several years of data are modeled simultaneously. The evaluation scores in

Table 1 and the boxplots in Figure 9 clearly show that our two suggested methods outperform Top-Kriging for the partially

gauged case for annual predictions and monthly predictions in June, which were the two time-scales with most hydrological

spatial stability (σc� σx). For January and April the three models are more similar in predictive performance.

For the PG case, we also compare the areal and the centroid model to simple linear regression. According to Table 1 and10

Figure 9 linear regression performs quite well for the annual data, which represent the most hydrologically spatially stable

dataset. Linear regression actually provides the second lowest RMSE of all four methods for annual predictions. However,

recall that a short-record of length two from the target catchment is needed to use this method, while our areal model performs

slightly better with a short-record of length one (and observations from other neighboring catchments). For January, April and

June, linear regression is outperformed by the three other methods in terms of RMSE and CRPS (Table 1).15
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Figure 12. Average posterior mean Qj(A) (upper), average posterior standard deviation (middle) and RMSE (lower) for for j = 1, ..10 for

predictions of missing annual observations for the areal model for the ungauged case (UG, left) and the partially gauged case (PG, right).

To illustrate the possible gain of including (very) short records of data from the target catchment, we present four scatter plots

that compare the predicted values produced by the areal model to the actual observations of runoff (Figure 11). For the annual

predictions in Figure 11a, the predictions for PG are considerably more concentrated around the straight line that indicates

a perfect fit, than the predictions for UG. There are similar results for June, whereas the difference between the ungauged

and partially gauged case is not that prominent for April (see Figure 11b) and January. Furthermore, the April scatter plots5

demonstrate that (very) short records don’t lead to a poorer predictive performance, even if April is a month driven by more

unstable hydrological patterns. The predictions are simply not substantially affected by the new data points that are included

in the likelihood, as we can see in Figure 11b. In our model, the risk of including very short records is low because climatic

effects c(u) are adjusted relative to year specific effects xj(u) by statistical inference. This way short records can safely be

included in the modeling regardless of the underlying weather patterns and the degree of hydrological spatial stability.10

In Figure 7 we saw that all three interpolation methods were able to reproduce the true spatial pattern of annual runoff when

filling in missing annual values for ungauged catchments (UG). However, all three methods had trouble predicting the runoff

in
::::::::
produced

::::
high

::::::
RMSE

::::::
values

:::
for some of the catchments. These were typically small catchments located on the western
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Figure 13. RMSE and CRPS as a function of record length (0, 1, 3, 5 and 10) for predictions of mean annual runoff for 1981-2010 for 83

fully gauged catchments in southern Norway.

coast of Norway. Figure 12 shows the impact of including a short-record of length one for these problematic catchments. It

compares the annual predictions from the ungauged case (UG) to the annual predictions from the partially gauged case (PG) for

the areal model. We see a large reduction in the RMSE for many of the catchments, and a (realistic) reduction of the posterior

standard deviation. We also see that a few of the catchments obtain a decrease in predictive performance when short records

are included, but the overall tendency is clear: The gain of including short records for annual predictions in Norway is high,5

and the suggested framework is able to exploit this property.

6.2 Predictions of mean annual runoff (1981-2010)

So far, we have presented an evaluation of the framework’s ability to fill in missing annual observations of runoff for a 10

year period (1996-2005). We now present the evaluation of the framework’s ability to predict mean annual runoff for a 30 year

period as a whole (1981-2010), as described in Section 5.2.10

Figure 13 shows the RMSE and CRPS for the predictions of mean annual runoff for Top-Kriging, the areal and the centroid

model as a function of record length (0, 1, 3, 5 and 10). The record length is the number of annual runoff observations available

from the target catchment in the cross-validation. We find that Top-Kriging again performs best for the ungauged case (short

record length 0), while the centroid model performs slightly better than the areal model for ungauged target catchments.

Furthermore, the RMSE and CRPS decrease with increasing record length for all three methods. However, Figure 13 shows15

that our areal and centroid models outperform Top-Kriging for record lengths larger than 0: The overall difference between our

framework and Top-Kriging is around 30-60 mm/year in terms of RMSE, which is a considerable difference when the RMSE

values are around 100-200 mm/year.

Furthermore, we notice the large increase in predictive performance when including a (very) short record of length one (PG1

in Figure 13). The reduction in RMSE and CRPS is 45-50 % from the UG to the PG1 case for the areal and centroid model.20
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These results are thus comparable to the results we obtained for the experiments related to infill of missing annual values

(Section 6.1).

To be able to compare our findings with other studies, we also included plots of the the absolute normalized error (ANE) and

the squared correlation coefficient (r2) for the experiments. These can be found in Figure 14 and 15, and are referred to in the

discussion (Section 7.2). Also according to these scale independent evaluation criteria the overall results are that for ungauged5

catchments Top-Kriging performs best, while when there are short records available, our framework performs better.
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Figure 14. Absolute normalized error (ANE) for the areal model (A), centroid model (C) and Top-Kriging (TK) for predictions of mean

annual runoff in ungauged catchments (UG, left) and in partially gauged catchments with short records of length one and five (PG1, middle
:
)

and
:::::
length

:::
five

:
(PG5 right).
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Figure 15. The squared correlation coefficient (r2) for predictions of mean annual runoff for catchments in Norway with record length 0, 1,

3, 5 and 10.
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7 Discussion

In this article we have presented a geostatistical framework particularly suitable for hydrological datasets that include short

records of data. Here, we highlight four points for discussion: 1) the difference in performance across methods and study areas,

2) comparing the findings with other studies, 3) shortcomings of the suggested framework and 4) suggested areas of use.

7.1 Difference in performance across methods and study areas5

In our work, we evaluated two versions of our suggested framework by predicting annual runoff and mean annual runoff

for Norway. The results showed that our areal referenced method and our point (or centroid) referenced method gave very

similar results in terms of posterior mean (see e.g. Figure 7 and Figure 13). We did not find a trend describing when one of

the methods performed better than the other. In prior to the analysis, we would expect the areal model to perform better than

the centroid model for ungauged, nested catchments since the areal model takes the water balance and the nested structure10

of catchments into account. However, these properties did not have a notable impact on the predicted posterior mean runoff

for this particular dataset. One of the reasons can be that more than 50% of the catchments in
::::
This

::
is

:::
not

::
an

::::::::::::
extraordinary

::::
result

:::
as

::::::
similar

::::::
results

::::
have

:::::
been

:::::::
obtained

:::
by

::::
other

:::::::
studies

:::
that

:::::
have

::::::::
compared

:::::::::::
Top-Kriging

:::::
(areal

:::::::::
referenced

:::::::::
approach)

::
to

:::::::
ordinary

::::::
Kriging

::::::
(point

:::::::::
referenced

:::::::::
approach):

:::
The

:::::
point

:::::::::
referenced

:::::::::
approaches

:::::
often

:::::::
perform

:::::::
similarly

:::
as

::
the

:::::
areal

:::::::::
referenced

:::::::::
approaches

:::::::::::::::::::::::::::::
(Farmer, 2016; Skøien et al., 2014).

:
15

:
A
::::::::

possible
:::::::::
explanation

:::
for

:::
the

:::::::
similar

::::::::::
performance

:::
of

:::
the

:::::::
centroid

:::
and

:::::
areal

:::::
model

::
in
::::

this
:::::
study,

::
is
::::
that the study area are

not nested, and that the degree of nestedness in general is low (see Figure 1c).
::::::::
proportion

:::
of

:::::
nested

::::::::::
catchments

::
in

:::
our

:::::::
datasets

:::
was

::::::::
relatively

::::
low:

:::::
Only

::
30

:::
%

::
of

:::
the

:::::::::
catchments

:::
in

:::::
Figure

::
1
::::
were

:::::::
nested,

:::::
while

:::
the

:::::::::
percentage

::
of

::::::
nested

:::::::::
catchments

::::
was

:::
53

::
%

::::::
among

:::
the

::::
fully

:::::::
gauged

:::::::::
catchments

:::
in

::::::
Figure

::
5.

:::::::::::
Furthermore,

::::
most

:::
of

:::
the

::::::
nested

:::::::::
catchments

:::::
only

::::
have

::::
one

::::::::::
overlapping

:::::::::
catchment. The water balance constraints of the areal model might be more important for datasets where there are many

:
a20

:::::
higher

:::::::::
percentage

::
of

:
nested catchments in an area with high spatial variability. One example is shown in Roksvåg et al. (2020).

It is also possible that the water balance constraints of the areal model have some drawbacks. One example is if there is poor

data quality for a subcatchment in the dataset. Then , we impose an inaccurate, but relatively strict constraint on the runoff

in this catchment’s drainage area. This will have an impact on the predictions for all overlapping catchments, and how the

predicted runoff is distributed here. In this sense, the areal model is less flexible than the centroid model and requires better25

data quality.

The water balance constraints of the areal model also makes it computationally more expensive than the two other models.

Top-Kriging used around 1 minute for the interpolation of mean annual runoff presented in Section 6.2 for one cross-validation

fold. The centroid model used around 30-40 minutes for the interpolation, but provided results for both mean annual runoff

and runoff for 30 individual years at the same time. It’s run time is thus similar to the one
::
run

::::
time

:
of Top-Kriging per year.30

The areal model on the other hand, used around 6-7 hours on the same computational server. Hence, from a practical point of

view, the centroid model might be the most convenient version of our suggested framework for many applications. However,

note that if the posterior uncertainty is important, the areal model gives a more realistic representation of uncertainty than the
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centroid model (see Figure 7). The centroid model also treats small and large catchments equally, which can be problematic

for some applications and study areas.

When considering predictions for ungauged catchments, the results showed that Top-Kriging provided better results than

our two suggested models. Figure 7 showed that the three methods failed
:::
and

::::::::
succeeded

:
for many of the same catchments,

but that our models in general failed slightly more than Top-Kriging on average. We also see an indication that our models5

fail more than Top-Kriging for ungauged catchments that are located further away from other catchments. See for example the

catchment that is located south-east in Figure 7. For
::::::::
ungauged

:
catchments located far away from other catchments (relative

to the spatial range), the predicted value will go towards the intercept βc for our two Bayesian models. For Top-Kriging, the

predicted value will always be a weighted sum of the observations from the neighboring catchments. This can explain the

difference in performance here. Apart from this, we don’t find a pattern for which catchments Top-Kriging performs better10

(mean elevation, location and the magnitude of the observed value were investigated).

While Top-Kriging performed best for ungauged catchments, our framework outperformed Top-Kriging when there were

some available data from the target catchment. This was the case both when predicting mean annual runoff, and runoff for

individual years. The results showed that the potential gain of including (very) short records in the modeling in Norway was

large. An explanation is that the annual runoff in Norway is mainly controlled by orographic precipitation. Since the orographic15

precipitation is driven by topography and westerly winds are dominating, the precipitation patterns are repeated each year and

we obtain hydrological spatial stability with σc� σx. The mountains in Norway also lead to rapid weather changes in space,

here expressed as
:::::::
through a low climatic spatial range ρc. Consequently, the information gain from neighboring catchments is

often low for ungauged catchments
:
,
:::
and

::::::::::
information

::::
from

:::
the

:::::
target

:::::::::
catchment

::::
can

::
be

::::
very

:::::::
valuable. It is also convenient that

Norway has a humid climate where only around 10-20 % of the annual precipitation evaporates.20

The evaluation study based on annual time series of monthly runoff gave us an indication of how the framework can be

expected to behave for other climates and countries: For areas where the annual runoff is driven by unstable weather patterns

and hydrological processes, short records can not be expected to contribute to as large improvements in the predictions as

for the Norwegian annual data (see the predictions for April in Figure 11b). This might be the case for countries and areas

where most of the runoff can be explained by convective precipitation, where the aridity index is large or for variables for25

which storage effects are significant. However, the monthly predictions for January and April also illustrated that we safely can

include (very) short records in the model, even if year specific effects explain most of the spatial variability of annual runoff.

By this we have demonstrated that our models represent a framework for safe use of short records regardless of record length

and climate, and with the benefit that we don’t need to consider the choice of donor catchment as in other comparable methods.

Norway is a country with a moderate gauging density. The framework has not been tested for a more dense gauging den-30

sity. We suppose that there is less to gain from including short records if the gauging density is large relative to the spatial

rangebecause
:
:
::::
Here

:
the information obtained from neighboring catchments is

::::
could

::
be

:
sufficient. However, it is always

:
a
::::
high

::::::
density

::
of

::::::
gauged

::::::::::
catchments

::::
and

:
a
:::::
close

:::::::
distance

::
to

::::::::::
neighboring

::::::::::
catchments

::::
does

:::
not

::::::
always

:::::::::
guarantee

::::
good

::::::::::::
predictability

:
at
:::
an

::::::::
ungauged

:::::::::
catchment

:::::::::::::::::::::
(Patil and Stieglitz, 2011).

::
It
::
is

:::
for

:::::::
example

:::::
often difficult to predict runoff in ungauged catchments

that are very small and/or located close to weather divides. We believe that for such catchments, our method for including short35
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records can be useful regardless of gauging density (as long as the study area is characterized by repeated runoff patterns
::::
over

::::
time).

7.2 Comparing the findings of this study with other studies

There exist several other studies of mean annual runoff in the literature, and some of them are compared in terms of the absolute

normalized error (ANE) in the chapter about annual runoff by McMahon et al. (2013) in Blöschl et al. (2013). According to5

Figure 5.27 in McMahon et al. (2013), an ANE between 0.05 and 0.5 is a typical result for regions like Norway where

the potential evapotranspiration is less than 40 % of the mean annual precipitation. Figure 14 showed that the median ANE

obtained for our suggested models is around 0.12 for ungauged catchments, i.e. in the lower range of ANE values in McMahon

et al. (2013). When a short record og length one or five was available (PG1 and PG5), the median ANE was as low as 0.05 and

0.03 for our methods.10

In Figure 5.30 in McMahon et al. (2013) there is also a subplot showing the ANE for predictions of mean annual runoff for

ungauged catchments in Austria. Here, geostatistical models (Top-Kriging) and process-based models (conceptual hydrological

models) provided the best predictions according to the ANE, with a median ANE around 0.1. The results we obtain in Figure

14 for the ungauged catchments are thus comparable to the results from Austria. This is reasonable as the Austrian climate is

humid, like the Norwegian, and the western part of the country is dominated by mountains (the Alps) and has similar climate15

characteristics as Norway.

Furthermore, McMahon et al. (2013) reports an r2 (squared correlation coefficient) between 0.60 and 0.99 for studies done by

cross-validation involving
::
of around 250 catchments, or for studies using models based on spatial proximity like our suggested

framework (Figure 5.25 and Figure 5.26 in McMahon et al. (2013)). The r2 for our two models was shown in Figure 15, and

we see that it lies between 0.91-0.99. This is in the higher range of values obtained by comparable studies.20

7.3 Shortcomings

In this article, we proposed two models for runoff that are Gaussian. That is,
::::::::
However,

:::::
runoff

::
is

::::::::
truncated

::
at

::::
zero

:::
and

::::::::
typically

:::
not

:::::::
Gaussian

:::::::::
distributed

:::::
which

:::
we

::::
also

:::
can

:::
see

::::
from

:::
the

:::::::::
histograms

::
in

::::::
Figure

::
1b

:::
and

::::::
Figure

::
3.

:::
The

:::::::::::
consequence

::
of

:::
the

::::::::
Gaussian

::::::::::
assumptions

::
is

:::
that

:
there is nothing in the models that prevents them from predicting negative runoff. The negative

:::::::
Negative

values appear for a few points for both the areal and the centroid model due to the uncertainty given by σy , but this is also a25

problem for the Top-Kriging technique. Another source for negative values is that the climatic part of the model (c(u)+βc) can

be negative in some areas. This is a fully valid result because the other model components
:::::
could still ensure positive predictions

for most catchments and years. However, it can become a problem if we are unlucky and the year specific GRF doesn’t make

up for the negative climatic GRF
::
for

:
one specific year. To avoid negative values, it is possible to log transform the data before

performing an analysis. However, this is only valid for the centroid model, as the log transform is not compatible with the30

linear aggregation performed by the areal model (Equation (11)).

In the areal model, negative values also appear as a consequence of requiring preservation of water balance. If there are

inconsistent or poor data over nested catchments, negative runoff in parts of a catchment can be the only option to fulfill the
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water balance requirements. To avoid negative runoff it is important that the discretization of the study area is fine enough to

capture rapid changes in runoff over nested catchments. Catchments that are significantly influenced by human activity should

also be removed from the analysis as these can influence both the water balance and the significance of the climatic field c(u)

relative to the annual field xj(u).

In our study, some negative values were produced for the monthly predictions as we can see in Figure 11b. However, this is5

not common and happened for only 1.2 % of the predictions of missing monthly data, and for a few data points for the missing

annual data for the areal and centroid model. For predictions of mean annual runoff, negative values almost never appear as such

effects typically are averaged out. Note that unphysical results also appear for Top-Kriging and other interpolation methods,

either in terms of violating the water balance or in terms of negative values. These model weaknesses should be remarked , but

are hard to fully avoid.
:::
such

::::
that

:::
the

:::::::
modeler

::
is

:::
able

::
to
:::::::
choose

::::
what

::
is

::::
most

::::::::
important

::
in
::
a
:::
real

::::::::
modeling

:::::::
setting.

::
In

:::
this

::::
case

::
it10

:
is
::
a
::::::
choice

:::::::
between

::
1)

:::::::
avoiding

::::::::
negative

:::::
values

:::
by

:::
log

:::::::::::
transforming

:::
the

::::
data

:::::
before

:::::
using

:::::::::::
Top-Kriging

::
or

:::
the

:::::::
centroid

::::::
model

::
or

::
2)

::
to

::::::
impose

::::::::::::
water-balance

:::::::::
constraints

:::::::
through

:::
the

::::
areal

::::::
model.

:

7.4 Suggested areas of use

Finally, we want to highlight what we think are the main areas of use for our suggested framework. First, our results showed

that our main benefit compared to Top-Kriging was connected to exploiting short records from the target catchment. For this15

reason, we think that our method is suitable as a pre-processing method for making inference about the (mean) annual runoff in

partially gauged catchments , for example before doing a further analysis with other statistical tools or process-based models.

:::
One

:::::::
possible

::::::::
approach

:::
for

::::::
runoff

::::::::
estimation

:::::
could

:::
for

::::::::
example

::
be

:
a
::::
two

::::
step

::::::::
procedure

::::::
where

::
we

:::
(i)

:::
use

:::
the

:::::::
centroid

::
or

:::::
areal

:::::
model

::
as

::
a
::::::
record

:::::::::::
augmentation

:::::::::
technique

::
to

::::::
predict

::::::
runoff

:::
for

:::
the

:::::::
partially

:::::::
gauged

::::::::::
catchments

::
in

:::
the

:::::::
dataset,

:::
and

:::
(ii)

::::
use

::::::::::
Top-Kriging

::
to

::::::
predict

::::::
runoff

::
in

:::::::::
ungauged

::::::::::
catchments.

:::::
Here,

:::
the

::::::
results

::::
from

::::
step

::
(i)

::::
can

::
be

:::::
used

::
as

:::
the

::::::::
observed

::::::
values

::
in20

::::::::::
Top-Kriging

:::::::
together

::::
with

:::
the

::::
data

::::
from

:::
the

::::
fully

::::::
gauged

::::::::::
catchments.

::::::::::
Differences

::
in

:::
the

::::::::::
observation

:::::::::
uncertainty

:::::::
between

:::::
fully

::::::
gauged

:::
and

:::::::
partially

:::::::
gauged

:::
can

::::
also

::
be

:::::
taken

:::
into

::::::::
account.

Secondly, we see that the parameter values of the suggested model provides interesting information about the study area.

More specifically, if the marginal variance of the climatic GRF σc dominates over the marginal variance of the year specific

GRF σx, it suggests that the spatial variability is stable over time, and that short records of runoff can have a large impact on the25

model, particularly if also ρc < ρx. The information from the parameter values can thus be valuable for
:::
This

::::::::::
information

::::
can

::
be

::::
used

:::
by decision-makers when deciding whether or not new observations should be gathered from an ungauged catchment,

::
to e.g. when planning a building project or the construction of a power station .

::::::
motivate

::::
the

:::::::::
installation

::
of

::
a
::::
new

::::::::
(possibly

:::::::::
temporary)

:::::::
gauging

::::::
station

::
as

::::
this

:::::
might

::::::::
improve

:::
the

:::::::::
long-term

::::::::
estimates

::::
only

::
a

::::
year

::::
after

::::::::::
installation

:::
for

:::
this

::::::::::
catchment.

:::::::
Likewise

::::
can

:::
the

:::::
model

::::
and

::
its

::::::::::
parameters

::
be

:::::
used

::
to

:::::
assess

::::::::
whether

:
a
:::::::
gauging

::::::
station

::
is

:::::::::
redundant

:::
and

::::
can

::
be

::::
shut

::::::
down.30

However, to exactly quantify the value of information connected to
:::::::::
importance

::
of a gauging station, all model variances (σ2

x,

σ2
c , σ2

β , σ2
y) and ranges (ρx, ρc) must be taken into account, as well as the distances between the donor catchments and the

target catchment. Computing this gain is outside the scope of this article, but an interesting topic for further research
:::
that

::
is

:::::
related

::
to
:::
the

::::
field

:::
of

:::::::
decision

:::::
theory

::::
and

:::
the

:::::
value

::
of

::::::::::
information

:::::::::::::::::
(Eidsvik et al., 2015).
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8 Conclusions

We have presented a geostatisitcal
::::::::::
geostatistical

:
framework for estimating runoff by modeling several years of runoff data

simultaneously by using one (climatic) spatial field that is common for all years under study, and one (annual) spatial field that

is year specific. By this, we obtain a framework that is particularly suitable for runoff interpolation when the available data

originate from a mixture of gauged and partially gauged catchments, and that can be used to estimate runoff at ungauged and5

partially gauged locations. We evaluated the framework by 1) its ability to fill in missing values of annual runoff and 2) its

ability to predict mean annual runoff for ungauged and partially gauged catchments. The case study from Norway showed that

the suggested framework performs better than Top-Kriging for catchments that have short records of data, both for predictions

of mean annual runoff and when filling in missing annual values. For totally ungauged catchments, Top-Kriging performed

best. We also 3) demonstrated the potential value of including short records in the modeling and found that the value of (very)10

short records was high in Norway: An average reduction of 50 % in the RMSE was reported when a short record of length

one was available for
:::
from

:
the target catchment, compared to when no annual observations were available. The reason for the

large reduction is that the annual runoff in Norway is mainly driven by hydrological processes that are repeated each year. For

such areas, our methodology has its main benefits. However
:
,
:::
and

:::
we

:::
can

:::
use

::
it
::
as

::
a
:::
tool

:::
for

:::::::::
motivating

:::
the

::::::::::
installation

::
of

::::
new

::::::
gauging

::::::::
stations:

:::
The

::::
new

:::::::
gauging

:::::::
stations

:::::
might

:::::::
improve

::::
the

::::::::
long-term

::::::::
estimates

::
at

:::
the

:::::
target

::::::::::
catchments

::::
only

:
a
::::

year
:::::

after15

:::::::::
installation.

:::::::::::
Furthermore, the results also show that the framework represents safe use of short records down to record lengths

of one year, regardless of the underlying climatic conditions
:
in

:::
the

::::
area

::
of

::::::
interest.
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