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Abstract.

The main objective of this study is to investigate how brightness temperature observations from satellite microwave sensors

may help in reducing errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological

model. In particular, we use as forcings the ERA-Interim public dataset and we couple the CMEM radiative transfer model

with a hydro-meteorological model enabling therefore soil moisture and SMOS-like brightness temperature simulations. The5

hydro-meteorological model is configured using recent developments of the SUPERFLEX framework, which enables tailoring

the model structure to the specific needs of the application as well as to data availability and computational requirements. In

this case, the model spatial resolution is adapted to the spatial grid of the satellite data, and the soil stratification is tailored

to the satellite datasets to be assimilated and the forcing data. The hydrological model is first calibrated using a sample of

SMOS brightness temperature observations (period 2010-2011). Next, SMOS-derived brightness temperature observations are10

sequentially assimilated into the coupled SUPERFLEX-CMEM model (period 2010-2015). For this experiment, a Local En-

semble Transform Kalman Filter is used and the meteorological forcings (ERA interim-based rainfall, air and soil temperature)

are perturbed to generate a background ensemble. Each time a SMOS observation is available, the SUPERFLEX state vari-

ables related to the water content in the various soil layers are updated and the model simulations are resumed until the next

SMOS observation becomes available. Our empirical results show that the SUPERFLEX-CMEM modelling chain is capable15

of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical

experimental set up using the CLM land surface model. This shows that a simple model, when carefully calibrated, can yield

performance level similar to that of a much more complex model. The correlation between simulated and in situ observed

soil moisture ranges from 0.62 to 0.72. The assimilation of SMOS brightness temperature observation into the SUPERFLEX-

CMEM modelling chain improves the correlation between predicted and in situ observed soil moisture by 0.03 on average20

showing improvements similar to those obtained using the CLM land surface model.
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1 Introduction

Motivated by the impact of climate change on the scarcity or excess of water in many areas around the world, and follow-

ing the recommendations of the Sendaï framework for disaster risk reduction (UNISDR, 2015), several agencies and research

institutions have put substantial efforts in better monitoring and predicting the hydrologic cycle at a global scale. Such moni-5

toring/prediction efforts are indeed necessary for assessing the risk of extreme hydrological events and for enabling flood and

drought early warnings (Revilla-Romero et al., 2016), especially considering that impacts related to such hydrological extremes

are expected to increase in the future due to the combined effect of socio-economic development and climate change (Lehner

et al., 2016).

Numerical models such as hydrological and land surface models are central to predict and forecast floods and droughts10

(Matgen et al., 2012; Rains et al., 2017). They help in better anticipating disaster and the associated emergency response

(Revilla-Romero et al., 2016). However, model simulations suffer from inherent uncertainties (Liu and Gupta, 2007), due to

the simplified representation of physical processes as well as uncertain forcing (García-Pintado et al., 2015; Hostache et al.,

2011) and the lack of data for setting up and controlling them (Pappenberger et al., 2007; Hostache et al., 2015; Wood et al.,

2016). To reduce uncertainty in model simulations, an advanced solution that has gained increased interest over the last decades15

is the integration of remote sensing data into models (Andreadis and Schumann, 2014; Hostache et al., 2018; De Lannoy

and Reichle, 2016b). This approach pursues an optimal combination of hydro-meteorological modelling and remote sensing,

for example by using satellite measurements as forcing or calibration data and/or for regularly updating the model states or

parameters (Moradkhani, 2007). This allows periodically controlling and correcting the models via external observations. In

forecasting mode, such data assimilation approaches allow keeping the predictions on track, while in hind-casting mode they20

enable improved simulations of measured fluxes and states of the past.

Many advances have been made in these areas of research and undoubtedly, the near future will witness further progress as

a result of the ever increasing number of spaceborne sensors enabling the large scale monitoring of key hydrological variables

at unprecedented temporal and spatial resolution. In this context, spaceborne sensors are already providing a wealth of earth

observation data with many applications in hydrology (Brocca et al., 2012; De Lannoy and Reichle, 2016b). In particular,25

the last decades have seen the launch of several satellite missions allowing the monitoring of soil water storage and today,

satellite soil moisture (SM) estimates are available at temporal and spatial resolutions compatible with operational hydrology

requirements especially at the large scale (De Lannoy and Reichle, 2016b). Although the assimilation of in situ data is widely

established in operational hydrology (Ercolani and Castelli, 2017), the assimilation of remotely sensed datasets, such as SM,

is a more recent development as this source of data has become available only over the last decades (e.g., Parada and Liang,30

2004; De Lannoy et al., 2007; Jia et al., 2009; Matgen et al., 2012; Chen et al., 2014; Mohanty et al., 2017).

SM is a key variable in hydrological models. In many of them, including VIC, HBV, GR4J, etc., SM controls the partitioning

of water and energy fluxes. Hence, improving its representation within a numerical model has the potential of improving
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predictions of the key hydrological variables. In this context, SM data derived from various satellite missions such as ASCAT

(e.g., Brocca et al., 2010, 2012; Dharssi et al., 2011; Draper et al., 2011) and AMSR-E (e.g., Reichle et al., 2007; Yang et al.,

2007; Draper et al., 2009) have been assimilated into land surface or hydrological models (e.g., Draper et al., 2012; Renzullo

et al., 2014).

Since November 2019, the passive Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil5

Moisture and Ocean Salinity (SMOS) satellite is observing top-of-the-atmosphere brightness temperature (Tb). The MIRAS

sensor is sensitive to 1.4 GHz (L-band) emissions and takes multi-angular measurements at vertical and horizontal polarisations

(Kerr et al., 2001). The algorithm used for the retrieval of SM values from SMOS Tb is based on land surface modelling (Kerr

et al., 2012). In past studies, SM estimates retrieved from SMOS Tb were most of the time assimilated into land surface (e.g.,

De Lannoy and Reichle, 2016a; Lievens et al., 2016; Rains et al., 2017) and sometimes in conceptual hydrological models10

(e.g., Wanders et al., 2014; Lü et al., 2016). However, the land surface model used for the SM retrieval and the model used for

the background simulation are often different. This potentially leads to differences in terms of process representation, model

structure and model forcings (e.g., air and soil temperature) between the two models (De Lannoy and Reichle, 2016a). In the

event the background simulation is carried out using a conceptual hydrological model, these differences may be even more

important, especially in terms of process representation. This potentially makes SM simulations and retrievals inconsistent and15

this can lead to a correlation between retrieved and simulated SM errors that cannot be easily handled by data assimilation

filters (De Lannoy and Reichle, 2016b). As a consequence, recent studies (e.g., De Lannoy and Reichle, 2016a; Lievens et al.,

2016; Rains et al., 2017) have aimed to directly assimilate SMOS Tb into such land surface models. To do so, these studies

used as observation operator of the assimilation filter a radiative transfer model (e.g., the Community Microwave Emission

Modelling platform (CMEM), de Rosnay et al., 2009) that allows to derive SMOS-like Tb from SM simulations. In this20

context, De Lannoy and Reichle (2016a) showed that assimilating either SM retrievals or observed Tb yields almost the same

correlation level between in situ-observed and simulated SM (average correlation equals 0.6 based on the records obtained

from many measurement sites distributed across the United States of America).

Currently, for applications at the large scale, there is a tendency to rely on more complex physically-based hydrological

models in order to better capture the hydrological processes at hand (Devia et al., 2015). However, this may be sometimes25

detrimental to large-scale operational hydrology, due to the increased computational demand and the potential unavailability of

the required datasets. In this context, conceptual models that allow for more efficient and rapid simulations offer an alternative

to more physically-based land surface models (Devia et al., 2015; El Hassan et al., 2013). The main argument against the use of

a conceptual model is often the need for site-specific parameter calibration that is often infeasible in data scarce areas. However,

with the recent increase of satellite missions providing global observations of key hydrological variables at high temporal and30

spatial resolution, it becomes possible to envisage the calibration of conceptual models even at the large scale. Hence, a science

question that is worth investigating is whether a flexible conceptual model, relying on parameter calibration, can reach the

performance level of a more complex physically-based model for hydrological simulations at large scales. Following the study

by Rains et al. (2017), we evaluate here the potential of SMOS Tb assimilation for improving SM simulations of a distributed

conceptual hydrological model.35
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The SUPERFLEX modelling framework (Fenicia et al., 2016) enables tailoring the structure for the specific needs of the

application. In particular, here we seek for a simplified representation of the main controlling processes, and computational

efficiency in order to perform rapid simulations over large areas and for long periods. Compared to more physically based

land surface models, the model built with SUPERFLEX offers fast running simulations without the need for high performance

computing facilities and allows for adapting the model spatial resolution and soil stratification to the characteristics of the5

satellite datasets that are to be assimilated.

The general objective of this study is to assess the performance of a soil moisture prediction chain based on the assimilation

of SMOS Tb into a coupled SUPERFLEX-CMEM model and compare it to the one developed in Rains et al. (2017) based on

the CLM land surface model. To enable a fair and meaningful evaluation and comparison, we use a quasi-identical experimental

set up to the one of Rains et al. (2017), except that we use here the SUPERFLEX instead of the CLM model to simulate soil10

moisture. As a test case, we use the Murray-Darling basin in Australia and we simulate distributed time series of soil moisture

over the period 2010-2015.

The specific objectives of this study are as follows: (i) to compare the SUPERFLEX and CLM models in their ability to

simulate SMOS-like Tb and soil moisture, and (ii) to evaluate the improvement in model predictions when assimilating SMOS

Tb observations.15

In the next sections, we first present the database used for the experiment, the coupling between the hydrological (SUPER-

FLEX) and the radiative transfer (CMEM) models and the data assimilation experiment. Next, we calibrate the hydrological

model using SMOS Tb observations, we evaluate the forward run of the SUPERFLEX-CMEM prediction chain and we com-

pare the performances with the ones obtained in Rains et al. (2017). Then, we assess and discuss the results of the assimilation

experiment using the study by Rains et al. (2017) as a benchmark. As a further discussion element, we finally evaluate the20

impact of the assimilation of SMOS Tb on evapotranspiration simulations.

2 Material and Method

2.1 Study area and available data

2.1.1 Study Area

The study area is the Murray-Darling Basin (MDB) in South-Western Australia. The three main rivers of the MDB, namely25

rivers Darling, Murray and Murrumbigee are among the longest rivers in Australia. The MDB covers an area of more than 1

million km2, representing approximately 14 % of the land surface of Australia. Due to its large dimensions, the basin exhibits

various climate regimes, from sub-tropical in the north to semi-arid in the west and mostly temperate in the south. The average

inter-annual rainfall ranges from up to 1,500 mm in the eastern side and less than 300 mm in the western side of the MDB

(MDBA, 2018). The average inter-annual temperature ranges from ca. 10 ◦C in south-eastern and ca. 20 ◦C in western side of30

the MDB (MDBA, 2018).
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Figure 1. Study area: Murray-Darling Basin and in situ soil moisture measurement locations.

2.1.2 Meteorological forcings

Time series of rainfall and 2-m air and soil temperature predictions are globally available at a 3-hourly time step and 0.25◦ spa-

tial resolution (downscaling from the original 0.75◦ spatial resolution) from the ERA-Interim reanalysis data set (Dee et al.,

2011). From this data set, for each grid cell lying within the limits of the MDB, we extracted rainfall and soil and 2-m air

temperature for the period 2009 to 2016. Soil temperature was extracted for the two upper soil layers, having depths of 7 and5

21 cm respectively. Next, the resulting time series were uniformly redistributed to an hourly time step. The potential evapo-

transpiration (PET) was estimated from the air temperature data using the Hamon formula (Hamon, 1963). Rainfall and PET

time series are used as inputs of the SUPERFLEX hydrological model (see section 2.2.1). Soil and air temperature time series

are used as inputs of the CMEM radiative transfer models (see section 2.2.2)

2.1.3 SMOS Tb observations10

The SMOS database used in this study is identical to the one used in the study by Rains et al. (2017). It covers the period 2010

to 2015 and consists of SMOS Level 3 daily Tb at horizontal polarisation and 42.5◦ incidence angle. They are provided by the

Centre Aval de Traitement des Données (CATDS) (version 310). SMOS acquisitions having probabilities of radio frequency
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interference (RFI) greater than 0.2, Data Quality Index higher than 0.07 or activated science flags, namely strong topography,

snow, flooding, urban areas, coastal zone and precipitation were filtered out from the initial database. The filtered observation

data were resampled from the Equal-Area Scalable Earth Grid 2 (EASE2) 25 km grid to the 0.25◦ model grid used in the

ERA-interim dataset by using inverse-distance interpolation.

2.1.4 In situ soil moisture observations5

As an independent dataset for evaluating the model results, we make use of in situ soil moisture measurements from OzNet

and CosmOz measurement networks (Smith et al., 2012). These datasets provide time series of soil moisture acquired using,

respectively, time-domain reflectometry (TDR) probes and cosmic-ray neutron probes. Depending on the type of probe, soil

moisture observations are available for various soil depths, namely 5, 8, 30, 60 and 90 cm. The measurement stations are mainly

located within the Murrumbidgee catchment as the latter was selected as one of the sites for SMOS calibration/validation10

campaigns (Peischl et al., 2012). More details on the measurement techniques and the measurement network are provided in

Rains et al. (2017), Renzullo et al. (2014), Holgate et al. (2016) and Su et al. (2013). It is worth mentioning that the in situ soil

moisture dataset is provided with local or limited measurement footprints (a few hundreds of m2 at maximum) whereas the

hydrological model simulates average soil moisture over much larger areas (a few hundreds of km2). As a consequence, the

comparison between model results and in situ observation necessarily suffers from scale-representativeness issues.15

2.1.5 In situ flux tower measurements

As an additional independent dataset for evaluating the model results, we also make use of in situ flux tower measurements

from the TERN OzFlux measurement network (http://www.ozflux.org.au/). This dataset provides, among other variables, time

series of latent heat fluxes that were converted into actual evapotranspiration rates using the latent heat of vaporization constant.

The measurement stations are mainly located in the southern part of the MDB. Moreover, the in situ evaporation data, just like20

the previously described soil moisture data, are provided with local or limited measurement footprints.

2.2 The soil moisture and SMOS-like Tb prediction chain

2.2.1 The conceptual hydrological Model

The SUPERFLEX modelling framework (hereafter denoted SFX, Fenicia et al., 2011, 2016) is used to build the hydrological

model. This modelling framework was developed with the aim to facilitate model development and allow model structure25

comparisons. The modelling platform is based on generic building components that can be configured and combined in var-

ious ways to generate different model architectures. Hydrologists can therefore hypothesize, build and test different model

structures. For example, it allows for adapting the model structure to the forcing and observation datasets (e.g., in terms of

spatial and vertical resolutions) and specific characteristics of the catchment. In the context of this study, we take advantage of

this flexibility and define the model architecture in such a way that it allows to easily ingest globally available meteorological30
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forcing data and at the same time integrate Tb as observed by the SMOS satellite. The model is therefore distributed over grid

cells of 0.25◦ matching the one used in the ERA-Interim dataset.

The architecture of the developed model is represented in Figure 2 for one model grid cell. It is mainly composed of two

stratified upper root zone layers represented by two reservoirs, namely URu and URl. The grey box in Figure 2 also identifies

the deeper reservoirs and the routing function that simulates surface runoff based on deeper soil layer water storage. In this5

study, since we focus on the two upper root zone layers that are of interest for simulating soil moisture, the deeper reservoirs

and the routing function are not further referred to in the remainder.

Figure 2. SUPERFLEX Model architecture.

The upper reservoir (URu) is fed by precipitation and loses water through evapotranspiration to the atmosphere and per-

colation to the second reservoir (URl). The latter is then fed by the incoming percolation from the first reservoir and loses

water through evapotranspiration to the atmosphere and percolation to deeper soil. Outflow Q from the two root zone layers is10

estimated based on the simulated storage S and the incoming water amount using a power function with exponent α:

QURx,i(t) = Pi(t)×
(

SURx,i(t)
SmaxURx,i

)αURx,i

(1)

where t is time, i represents the model grid cell number, x stands for upper (u) or lower (l) reservoir, P is the input to

the reservoir (precipitation for the upper reservoir, outflow from the upper reservoir for the lower reservoir), and Smax is a

parameter representing maximum storage capacity.15

The actual evapotranspiration (Ea) from the two soil layers is estimated based on the simulated storage within the considered

reservoir and the potential evapotranspiration (Ep) using a power function with exponent β:

EaURx,i(t) = Epi(t)×
(

SURx,i(t)
SmaxURu,i +SmaxURl,i

)βURx,i

(2)

The variation of storage within the two reservoirs is estimated by solving the water balance equation:

dSURx,i(t)
dt

= Pi(t)−QURx,i(t)−EaURx,i(t) (3)20
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For each reservoir, the soil moisture is derived from the storage according to:

θURx,i(t) = CEFx,i
SURx,i(t)
SmaxURx,i

(4)

where θ is the predicted soil moisture and CEF a so-called effective field capacity.

In the model architecture, the two root zone reservoirs are meant to conceptually represent two stratified soil layers allowing

to simulate soil moisture over different soil depths. To maintain constant depths of these two layers over the model domain5

(namely 7 and 21 cm in accordance to the depth of the two upper soil layers depicted in the ERA-interim dataset) the respective

reservoir maximum capacities are computed depending on the CEF considering that the maximum storage capacity of a soil

layer can be derived from the CEF and the soil layer depth d according to:

SmaxURx,i = CEFx,i× dEFx (5)

It is worth noting here that the model structure presented beforehand is replicated on each model grid cell i. As a conse-10

quence, for each grid cell, the model has six calibration parameters, namely CEFu,i, αURu,i, βURu,i, CEFl,i, αURl,i, βURl,i.

Moreover, the maximum storage capacities SmaxURx,i are computed based on fixed soil layer depths dEFx and calibrated

effective field capacities CEFu,i.

2.2.2 The radiative transfer model

To simulate SMOS-like Tb using soil moisture predictions of the SFX hydrological model, we use the Community Microwave15

Emission Model version 5.1 (CMEM, de Rosnay et al., 2009).

The set up of CMEM in our study is identical to the one defined in the study of Rains et al. (2017) in order to enable a

meaningful comparison between both experiments. In particular, the time invariant input data (i.e., soil sand and clay fractions,

permanent water surface fractions, ground elevation and vegetation cover types) as well as the equations used to run CMEM

are exactly the same. The ECOCLIMAP vegetation classes (Champeaux et al., 2005) are used to provide CMEM with the20

plant functional types. The development cycle of vegetation classes is defined in CMEM based on the leaf area index (LAI)

(Rains et al., 2017). LAI is interpolated at daily scale from a monthly dataset for low vegetation and a constant LAI value is

fixed for high vegetation. The dielectric constant computation is carried out using the Mironov model (Mironov et al., 2004)

and the required effective temperature is computed via the Wigneron model (Wigneron et al., 2001). The Fresnel, Choudhury

(Choudhury et al., 1979) and Wigneron (Wigneron et al., 2007) models are used for assessing smooth surface emissivity, soil25

roughness and vegetation opacity respectively. Atmospheric contributions are estimated via the Pellarin method (Pellarin et al.,

2003).

The coupling between SFX and CMEM is quasi identical to the one set up in Rains et al. (2017) using CLM: the soil layer

depths in CMEM are identical to the ones used in the SFX model to maintain inter-model consistency ; the soil moisture

simulated by SFX is used as input of CMEM and the 2 m air temperature is derived from the ERA-Interim dataset (Dee et al.,30

2011). However, as SFX does not integrate energy balance processes (while CLM does), it was necessary to slightly adapt the

set up of Rains et al. (2017) and the soil temperature is in our experiment derived from the ERA-Interim dataset (Dee et al.,

2011) whereas it is simulated by CLM in Rains et al. (2017).
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2.2.3 Model Calibration

On each grid cell, the SFX model has 6 calibration parameters (see section 2.2.1). To carry out the calibration, Monte-Carlo

simulations using latin hypercube sampling within plausible parameter ranges are carried out. To do so, parameter sets are first

randomly generated within such plausible parameter ranges. Next, a SFX-CMEM simulation is carried out for each individual

parameter set and the simulated Tb is compared, at the grid cell scale, to the values derived from SMOS observations. Eventu-5

ally, for each individual model grid cell, the parameter set yielding the lowest unbiased root mean square deviation (ubRMSD,

Entekhabi et al., 2010, see Eq. 6) while comparing simulated and SMOS-derived Tb is selected as optimal. The ubRMSD

is chosen here has it allows to remove the bias between simulated and observed soil moisture (and Tb) which is common in

brightness temperature assimilation studies.

ubRMSD =
√〈

((ys(t)−〈ys〉t)− (yo(t)−〈yo〉t))
2
〉
t

(6)10

where ys is the simulated Tb and yo the observed one and 〈.〉t indicates the average over time. The parameters of the CMEM

model were not adjusted and their default values were used to keep the current experiment quasi identical to one of Rains et al.

(2017).

2.3 Data Assimilation

2.3.1 Data assimilation filter15

In this section, we present the method used for assimilating SMOS Tb into the SFX-CMEM coupled models. The method

proposed in this study uses as assimilation filter a Local Ensemble Transform Kalman Filter (LETKF) introduced by Hunt

et al. (2007) and implemented by Miyoshi and Yamane (2007). As usual in ensemble Kalman filtering, the uncertainty in

model predictions is represented via a set of k stochastic model realizations (k=32 in this experiment) having different perturbed

forcings and/or parameters and the model and observation errors are assumed to be normally distributed. The localisation is20

set up so that the assimilation is carried out at the model grid scale. The observation operator is linearly approximated during

the analysis step in the LETKF (see Eq.18 in Hunt et al., 2007). As argued in Hunt et al. (2007), LETKF is deterministic as

no additional random error is added to the observation. This is an advantage here as it allows us to keep track of the individual

ensemble members during the assimilation. Let us denote our non-linear modelM, namely SFX, that propagates state variables

in time (including soil moisture θ) between two assimilation time steps (Eq. 7).25

xb
n,j =M

(
xa
n−1,j

)
(7)

where xb
n,j is the background at time tn when the assimilation is supposed to be carried out for ensemble member number j,

and xa
n−1,j is the analysis computed at time tn−1, i.e. the previous assimilation time step.

9
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The step prior to the assimilation is to run the hydrological model between tn−1 and tn to yield the background ensemble. In

our study, the application of the LETKF proposed by Hunt et al. (2007) consists of the seven main steps listed hereafter (please

note that the temporal index n is not repeated later on for the sake of conciseness).

1. Apply the observation operator, namely CMEM, to the model background ensemble to form the observational back-

ground ensemble yb = [yb
1 , ...,y

b
k ].5

2. Compute the ensemble observational background perturbations based on the ensemble mean yb:

Yb = [yb
1 − yb, ...,yb

k − yb]

3. Compute the ensemble background perturbations based on ensemble mean xb:

Xb = [xb
1 −xb, ...,xb

k −xb]

4. Compute the matrix P̃a =
[
(k− 1)I +

(
Yb
)T

R−1Yb

]−1

where I is the identity matrix and R the observation error10

covariance matrix.

5. Compute the matrix Wa =
[
(k− 1)P̃a

]1/2

6. Compute the k-dimensionnal vector wa = P̃a
(

Yb
)T

R−1
(
yo− yb

)
and derive wa

j by adding wa to each column of Wa

7. Compute the individual member analysis xa
j = xb + Xbwa

j

This process is repeated for each cell of the model domain where a SMOS observation is available at time step tn. Once the15

analysis has been carried out, state variables, namely the storage in the two soil layers of SFX (section 2.3.1), are updated and

the simulation is resumed until the next assimilation time step.

As mentioned in many studies dealing with the assimilation of satellite SM or Tb (e.g. Al Bitar et al., 2012; Matgen et al.,

2012; Rains et al., 2017; Al-Yaari et al., 2017), bias removal prior to the assimilation is often a necessary step. In our study,

we reduce the bias between simulations and observations by deriving model and observation anomalies, following an identical20

approach to the one described in Rains et al. (2017). Anomalies are defined as the difference between the original Tb time

series and their inter-annual climatologies (time-average SMOS observation acquired in a 20 days-sliding window centred

on the considered day of year). The climatology is computed by first smoothing the Tb time series using a 20-days moving

average and next computing the inter-annual average of the smoothed signal. The model background used in the assimilation

filter is the simulated Tb anomaly computed as the difference between the simulated Tb and its climatology, computed as the25

climatology of the ensemble mean of the open loop run. The data assimilation is therefore carried out based on the simulated

and observed Tb anomalies.
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2.3.2 Ensemble generation

To generate an ensemble of SMOS-like Tb, the meteorological forcings of the SFX-CMEM models derived from the ERA-

interim dataset, namely the rainfall and the air and soil temperature time series are randomly perturbed. As in Rains et al.

(2017), the perturbation applied to rainfall time series is multiplicative and randomly generated from a log-normal statistical

distribution of mean 0 and standard deviation 0.5. The air temperature time series are perturbed using an additive Gaussian5

random noise of mean 0 K and standard deviation 2.5 K. Each time step and each model grid cell has an independently drawn

random perturbation. Moreover, to maintain a set up similar to the one used in Rains et al. (2017) where air temperature

perturbations are propagated to the soil temperature via the CLM model, perturbed soil temperature predictions are here drawn

from the perturbed air temperature. This is done in two steps. First, linear regressions are carried out on each grid cell between

the ERA-interim predictions of air temperature and soil temperature (separately for the two soil layers). Next, perturbed soil10

temperatures are derived from the perturbed air temperatures based on the coefficients obtained from the linear regressions.

This allows to maintain a certain level of consistence between perturbed air and soil temperatures for each ensemble member.

The main difference between our experiment and the one of Rains et al. (2017) is that we do not perturb soil texture as this

parameter of CLM does not apply to SFX.

2.4 Analyses used to evaluate the proposed soil moisture prediction chain15

The proposed modelling framework is evaluated and compared to the one proposed in Rains et al. (2017) using a series of

empirical tests:

1. We assess the performance of the calibrated conceptual SFX model by comparing, via the Pearson’s correlation, the

RMSD and the mean bias, the simulated and observed SMOS Tb.

2. We compare SFX-based model performance to the one of the forward CLM model previously introduced in Rains et al.20

(2017). To do so, we make use of the RMSD and the Pearson’s correlation together with Taylor diagrams computed

based on the comparison between CLM (resp. SFX) model simulations and observations of Tb (SMOS observation) and

SM (in situ measurements).

3. We assess the effect of the assimilation of SMOS Tb by comparing the open loop and the assimilation simulations of

SM with in situ SM measurements, via the RMSD, the Pearson’s correlation, the ubRMSD, the assimilation efficiency25

and Taylor diagrams and we analyse the spatial distribution of correlation improvement by mapping the changes in

correlation between predictions and in situ measurements of soil moisture at each stations.

4. We further evaluate the influence of the assimilation of SMOS observations on the prediction of evapotranspiration by

comparing the open loop and the assimilation simulation of evapotranspiration with in situ measurements.

11
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3 Results and discussion

In this section, the performance of the conceptual SFX model is assessed and compared to the one of the physically-based

CLM land surface model by comparing simulated and observed time series of Tb and soil moisture.

3.1 Evaluation of the calibrated SUPERFLEX hydrological model

Figure 3 shows the Pearson’s correlation coefficient, the RMSD and the Mean Bias maps obtained by comparing SFX-simulated5

and SMOS-observed Tb time series periods and Table 1 the associated spatial statistics during the calibration (2010-2011) and

the validation (2012-2015). From this figure and this table, the following results can be noted:

1. The calibrated model yield rather satisfying predictions of Tb. In addition, the obtained performances are comparable

to those obtained in (Rains et al., 2017). In particular, in our study we have an average correlation of 0.7, an average

ubRMSD of 14.8 K and an average bias of 30.21 K during the validation period. In the study of Rains et al. (2017) using10

CLM, the RMSD has an average value of 30 K and the average correlation a value 0.7.

2. The three performance metrics have rather similar values and spatial variability when computed during the calibration

and the validation periods although slight differences are visible in Table 1.

3. A general gradient of performance can be seen from the eastern to the western part of the basin.

4. The lowest performances are mainly exhibited on pixels located in the Darling river floodplain (Figure 1).15

Results 1 and 2 leads us to conclude that model results are satisfactory in view of previous applications. Result 3 can be

explained based on the fact that the hydrological regimes vary from east to west in the MDB. Whereas the eastern part is more

dominated by important rainfalls, the western part receives limited amounts of rainfall and evapotranspiration plays then a

more important role in the hydrological cycle. Considering that in our set up, the representation of the evapotranspiration is

rather simplistic as it is based on the Hamon formula, this could explain the poorer performance of the model in the western20

part of the basin. Result 4 can be explained considering that the input data used for running CMEM concerning the fraction of

the grid cell covered by surface water. This input is considered invariant over time in our set up, while in reality an important

number of lakes and ponds of the Darling river floodplain are periodically drying and filling up during the year, potentially

modifying the water fraction on the corresponding model grid cells.

3.2 Comparison of the performances of the SUPERFLEX and CLM models25

To compare the SFX-based model performance to the one of the forward CLM model previously introduced in Rains et al.

(2017), we first make use of Taylor diagrams (Figure 4). These represent useful tools to evaluate and inter-compare model

performances as they display on a unique plot three key performance statistics, namely the normalized standard deviation

of model results, the normalized root mean square deviation (RMSD) and the correlation between model predictions and

observations. The normalisation of standard deviation and RMSD is carried out with respect to observed time series statistics.30

12

https://doi.org/10.5194/hess-2019-414
Preprint. Discussion started: 23 August 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 3. Peason’s correlation coefficients (left hand side panels), Root mean square deviation (RMSD, center panels) and Mean Bias (right

hand side panels) between SFX-CMEM predictions and SMOS observations of Tb during the calibration (top panels) and the validation

(bottom panels) periods.

Table 1. Spatial statistics of simulated Tb performance metrics.

Spatial statistics
Correlation ubRMSD Mean Bias

Cal Val Cal Val Cal Val

Mean 0.65 0.7 14.75 14.8 34.7 30.21

Median 0.65 0.69 15.31 14.86 35.37 31.02

Mode 0.32 0.44 3.91 4.25 0.1 -1.11

Skewness -0.14 -0.08 -0.61 -0.4 -0.01 0.75

Kurtosis 2.78 2.78 3.67 3.98 12.06 23.54

The perfect model would therefore be a point located in the circle labelled as “0” in Figure 4 with values of normalized standard

deviation, normalized RMSD and correlation respectively equal to 1, 0 and 1.

Figure 4 assumes that the SMOS Tb observations are reliable and accurate. The panel on the left hand side of Figure 4

shows the spatially averaged model statistics of both models during the calibration and the validation periods. As can be seen,
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Figure 4. Taylor Diagrams (TD) based on the comparison between SMOS-observed and SFX- and CLM-simulated Tb respectively: TD

drawn by spatially averaging model grid cell statistics, separating the calibration (cal) and validation (val) periods (left panel) and TD drawn

using model grid cell statistics individually for calibration and validation periods together (right panel). Red dots indicate CLM statistics and

blue dots SFX statistics.

the performances of both models are similar with average correlation ranging between 0.62 and 0.72 during the calibration

and validation periods. Whereas SFX slightly outperforms CLM during the calibration period, CLM exhibits slightly better

correlation during the validation period. Overall, both models yield very similar levels of satisfying performances. The per-

formances obtained here are as well rather similar to the ones showed in De Lannoy and Reichle (2016a) with correlation

between in situ-observed and simulated SM of 0.6 on average over many stations over the United States of America. One can5

notice that both models have a tendency to underestimate observed variance of Tb as normalized standard deviation values are

lower than 1. The panel on the right hand side of Figure 4 shows the model performance for each individual model grid cell.

The model statistics are here computed over the complete simulation period (calibration and validation periods). At the model

grid cell scale, both model statistics cover a rather wide range of performance levels. This highlights the fact that both models,

albeit yielding good overall levels of performance are less accurate for a few cells. Overall the performance metrics shown in10

Figure 4 confirm that the two models reach similar levels of performance.

Figure 5 shows the maps of difference in correlation and RMSD between both models, as well as the map of average hourly

rainfall and PET. The top left hand side panel highlights a gradient in the difference in correlation from west to east: the

SFX-predicted Tb is better correlated with SMOS observations in the Eastern part of the basin where precipitation is mainly

controlling soil moisture dynamics (Figure 5, bottom left panel) and the CLM-predicted Tb is better correlated with SMOS15

observation in the Western part, where evapotranspiration is impacting soil moisture variations more significantly (Figure 5,
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bottom right panel). This is arguably explained by a better representation of the evapotranspiration process in CLM and a better

capability of SFX to simulate fast transfer of rainfall to deeper soil layers at saturation. The top right hand side panel shows a

generally higher deviation in SFX-based predictions of Tb.

Figure 5. Maps of differences in correlation (top left panel) and RMSD (top right panel) between CLM- and SFX-simulated Tb using as a

reference SMOS observation, and maps of hourly average of input Rainfall (bottom left panel) and PET (bottom right panel).

As SMOS observations likely suffer from significant uncertainties, we propose to further evaluate model results using in situ

observed soil moisture time series from a limited number of available measurement sites (Figure 1). In this context, Figure 65

shows the Taylor diagrams drawn from the comparison between time series of soil moisture observed and simulated by both

models for the thin upper soil layer (panel on the left hand side) and a deeper soil layer (panel on the right hand side). For the

thin upper soil layer (0-8 cm depth) the observations are directly compared with the soil moisture simulations of the upper SFX

reservoir. For the deeper soil layer (0-30 cm depth), the observations are compared with the average soil moisture predictions

15

https://doi.org/10.5194/hess-2019-414
Preprint. Discussion started: 23 August 2019
c© Author(s) 2019. CC BY 4.0 License.



computed as the weighted mean, with weighting proportional to the maximum storage capacity, of the upper and lower SFX

reservoirs (see Figure 2).

Figure 6. Taylor Diagrams (TD) drawn from the comparison between in situ-observed and SFX-simulated soil moisture for two different

soil depth and the two different models. Blue dots indicate SFX statistics and red dots CLM statistics.

Both models exhibit similar correlations. For the upper soil layer, SFX is better in capturing the observation variance.

Regarding the RMSD, CLM slightly outperforms SFX with sometimes lower values for the upper soil layer. For the deeper

soil layer, both models yield again similar performance levels with satisfying correlations, SFX slightly overperforming CLM.5

As a conclusion on the comparison between the forward run of both models, it can be highlighted that the two models finally

reach similar performance levels when using as a reference either observed SMOS Tb or in situ measured soil moisture. It is

also important to keep in mind that similar performance levels have been attained provided that the SFX model was carefully

calibrated.

3.3 Effect of the assimilation of SMOS Tb on the SFX hydrological model10

The data assimilation framework proposed in section 2.3 is applied over the period 2010-2015. Each time a SMOS observation

is available over a model grid cell, the assimilation filter is applied on the background and the soil water storage variables of

SFX are updated. We assimilated SMOS anomalies and the error covariance of the SMOS observation anomaliesR is assumed

constant and equal to 25 K2. Table 2 reports the average performance metrics of the open loop (i.e., without assimilation) and

the analysis simulation performance metrics for two soil layer depths. As some model grid cells include several soil moisture15

measurement stations and with the objective to compensate for the limited footprint, the average performance metrics in

Table 2 are computed both over the individual soil moisture measurement stations and over the cells where in situ observations

are available. In the second case, all soil moisture observations available in a given model grid cell are first averaged. The

performance metrics are next computed using as a reference the "averaged" observations. Eventually, the average metrics are
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obtained by spatially averaging the model grid-cell based metrics. As can be seen in Table 2, the assimilation allows for a

moderate increase in correlation for the two soil layers depicted in the model when comparing observed and simulated soil

moisture time series. Specifically, the correlation increases on average by more than 0.03 for both soil layer depths. These

improvements are similar to those obtained in the study by Rains et al. (2017, experiments DA2 and DA0), namely ca. 0.06

for upper layers and 0.03 for deeper layers. One possible explanation for the slightly lower improvements in correlation for5

the top-layer can be found in the SFX open-loop performance being already higher (correlation equals 0.77) than that of CLM

(correlation equals 0.61). This arguably reduces the room for improvement as a result of the assimilation as the SFX-based

open-loop outperforms the one based on CLM.

However, while correlations increase due to the positive effect of the assimilation, one can notice in Table 2 that errors

(RMSD and ubRMSD) tend to remain rather stable. This indicates that the assimilation improves the correlation between10

model predictions and observations, but fails in reducing average errors in our experiment. This result is consistent with the

findings of Rains et al. (2017).

Table 2. Time-space average values of background and analysis performance (comparison with in situ-observed soil moisture).

Space averaging Layer depth Correlation RMSD ubRMSD

Over measurement stations

8cm
open loop 0.776 0.1 0.98

analysis 0.801 0.1 0.98

30cm
open loop 0.695 0.11 0.071

analysis 0.727 0.11 0.072

Over model grid cells

8cm
open loop 0.771 0.1 0.099

analysis 0.803 0.1 0.1

30cm
background 0.695 0.11 0.062

analysis 0.726 0.11 0.064

To evaluate the effect of the assimilation on individual measurement points, Figure 7 shows the Taylor diagrams obtained

from the comparison between model predictions and in situ observations of soil moisture for two soil layer depths. In this

figure, the circles indicate the open loop run performances and the triangles the assimilation run performances. Each colour15

is assigned to an individual observation point. In Figure 7 almost every individual observation point exhibits an improvement

in correlation due to the assimilation and this for both soil layers. More precisely, all correlations increase for the first layer

and all correlation except one increase for the second soil layer. The improvement is however rather different from one point

measurement to another. Figure 7 indicates that, in general, the lower the open loop run correlation, the higher the improvement.

This general feature is especially visible for the deeper soil layer.20
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Figure 7. Taylor Diagrams (TD) drawn from the comparison between in situ-observed and SFX-simulated (background and analysis) soil

moisture for the two different soil depth.

To analyse the spatial distribution of correlation improvement as a result of the SMOS data assimilation, Figure 8 (top panels)

maps the changes in correlation between predictions and in situ measurements of soil moisture at all stations. Especially for the

first layer, one can notice a gradient from East to West within the Murrumbidgee basin (where observation sites are located).

The bottom panels in Figure 8 show the climate variability over the Murrumbidgee catchment using as a proxy the average

annual rainfall and PET (data provided by the Australian Bureau of Meteorology), together with the number of SMOS records5

assimilated over in situ soil moisture measurement sites. The two bottom panels in Figure 8 indicate that it is likely that

the gradient in correlation increase has its origin in climate variability but that it also depends on the the number of SMOS

observations that are locally assimilated (panel on the bottom left hand side). In the Western semi-arid Murrumbidgee, soil

moisture updates tend to have a longer-lasting effect on the performance because evapotranspiration is the main soil moisture

controlling process and because the extraction of water from the soil due to evapotranspiration takes much longer than soil10

recharge due to rainfall.

Overall, our experiment shows that the assimilation of SMOS data into the SFX model allows for a substantial improvement

of the correlation between model predictions and in situ observations of soil moisture with improvements similar to those

obtained in a very similar study by Rains et al. (2017) using the CLM land surface model.
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Figure 8. Correlation improvement in soil moisture prediction in relation to climate variability and number of assimilation events: Maps of

the improvement in soil moisture correlation for the two root zone soil layers (upper panels) and maps of the number of assimilated SMOS

Tb observation at each soil moisture measurement station, in relation with inter-annual average rainfall (bottom left panel) and inter-annual

average PET (bottom right panel).

To further investigate the effect of the assimilation on soil moisture prediction errors, we compute a so-called assimilation

efficiency:

E(tn) =





(
1− SDAn(tn)

SDOL(tn)

)
∗ 100, if SDAn ≤ SDOL

(
SDOL(tn)
SDAn(tn) − 1

)
∗ 100, if SDAn > SDOL

(8)

With





SDOL(tn) =
tn+1−1∑
t=tn

(θOL(t)− θObs(t))2

SDAn(tn) =
tn+1−1∑
t=tn

(θAn(t)− θObs(t))2
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whereE(tn) is the efficiency of the analysis at time step tn, SDAn the squared deviation of the analysis run, SDOL the squared

deviation of the open loop run, θObs the observed soil moisture, θAn the analysis soil moisture prediction and θOL the open

loop soil moisture prediction. The efficiency evaluates the squared deviation change as a result of the assimilation. Positive

values indicate an error reduction, while negative ones indicate that the squared deviation increased after the analysis step.

In Figure 9, we plot the averaged efficiency as a function of the open-loop soil moisture prediction percentiles for two soil5

depths. To do so, we first compute, for each individual efficiency, the percentile of the synchronously obtained open loop soil

moisture prediction and then compute the average efficiency for each percentile of the open loop soil moisture predictions.

Figure 9 shows that the errors in soil moisture prediction are mainly reduced by the assimilation for the higher quantiles of

soil moisture while they tend to increase for the lower quantiles. For the upper layer, the assimilation is more efficient for

predicted soil moisture values higher than the median. For the deeper layer, errors are reduced for quantiles higher than 80 %.10

This indicates that the assimilation is more efficient for high soil moisture states. A possible explanation for this is that the

assimilation reduces errors when upper soil layers are closer to saturation, mainly during rainfall events when errors in ERA

Interim rainfall simulations are arguably affected by larger errors.

Figure 9. Assimilation efficiency as a function of simulated soil moisture quantiles: upper soil layer (right panel) and deeper soil layer (right

panel).

3.4 Effect of the assimilation on predicted evapotranspiration

As evapotranspiration is also an important control in soil moisture dynamics, we propose to further evaluate the influence of15

the assimilation of SMOS observations on the monthly prediction of evapotranspiration. To do so, we compared the open loop

and analysis simulations of monthly evapotranspiration with in situ observations derived from the flux towers (TERN OzFlux

measurement network, http://www.ozflux.org.au/). Evapotranspiration observations are derived from monthly averaged flux

tower measurements of latent heat flux. The comparison between observations and simulation results is carried out at the
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Table 3. Time-space average values of background and analysis performances of evapotranspiration predictions (comparison with in situ-

observed evapotranspiration).

Correlation RMSD ubRMSD

background 0.46 0.057 0.034

analysis 0.48 0.056 0.034

grid cells including the flux towers. The spatially averaged performance metrics yielded by this comparison are reported in

Table 3, which revealed that the predictions of evapotranspiration are improved by the assimilation of SMOS observations as

the correlation with in situ observations increased by 0.02 with a marginal reduction in RMSD.

Figure 10. Effect of the assimilation on simulated evapotranspiration: Taylor Diagram drawn from the comparison between in situ-observed

and SFX-simulated evapotranspiration (Background and analysis, left panel) and map of the correlation improvement in evapotranspiration

(right panel).

Figure 10 shows the Taylor diagram as well as the map of correlation improvement for individual measurement stations.

The effect of the assimilation on evapotranspiration is substantially positive for one station, limited for 3 of them and slightly5

negative for the last one. Figure 11 shows the percentage improvement of simulated monthly evapotranspiration as a results of

SMOS Tb for each individual flux tower measurement together with averaged monthly rainfall (simulated by ERA-Interim).

The percentage improvement is computed as follows:

Imp(t) =
‖EaOL(t)−EaObs(t)‖−‖EaAn(t)−EaObs(t)‖

‖EaOL(t)−EaObs(t)‖
∗ 100 (9)
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Figure 11. Effect of the assimilation on simulated evapotranspiration: Monthly rainfall and percentage improvement of simulated monthly

evapotranspiration as a results of SMOS Tb assimilation for each individual flux tower measurement (flux tower locations sorted from west

(top left panel) to east (bottom right panel).

where t is the time step, Imp the percentage improvement andEaObs,EaOL andEaAn respectively the observed, background

and analysis evapotranspiration.

The positive (resp. negative) percentage improvement values indicate that absolute errors are reduced (resp. increased) as a

result of the assimilation of SMOS Tb. In Figure 11, the assimilation lead from time to time either to an increase or a reduction

of the error in simulated evapotranspiration. While the site having low annual precipitation (ca. 250 mm.yr−1 at Calperum)5

exhibited a quasi systematic improvement, sites having medium annual precipitation (between ca. 480 to 560 mm.yr−1 at

Whroo, Riggs and Yanco) exhibited more contrasting results. The wettest site (ca. 720 mm.yr−1a t Tubarumba) showed very

limited effect of the assimilation on the absolute error in simulated evapotranspiration. This result is in agreement with other

studies (e.g., Detto et al., 2006; Vivoni et al., 2008; Mallick et al., 2018) that showed that water limitations in arid and semi-arid

regions make evapotranspiration very sensitive to soil moisture variations, thereby explaining the fact that the assimilation of10

SMOS Tb is more efficient in reducing errors of simulated evapotranspiration in water-limited regions of the MDB.

4 Conclusions

This study introduces and evaluates a large-scale SM modelling chain that is based on and takes advantage of the assimilation

of SMOS Tb into a spatially distributed conceptual hydrological model coupled with a radiative model transfer. The main
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objective is to assess the performance of such a modelling chain and its associated data assimilation system and to compare

it with that of a quasi-identical set up using the physically based CLM land surface model (Rains et al., 2017). A closely

connected second objective is to evaluate whether a SM modelling chain, based on a conceptual hydrological model, is able to

reach the same performance level as that of one based on a physically-based model, the main advantage of a conceptual model

being its substantially lower computational demand.5

To carry out our experiment, we use as a test case the Murray-Darling basin in Australia. To enable a meaningful compar-

ison with the study of Rains et al. (2017), we set up a modelling chain using the procedure described in Rains et al. (2017).

The hydrological model is, in our study, based on the SUPERFLEX (SFX) modelling framework and includes two stratified

upper root zone soil layers conceptually representing soil layers of 7 and 21 cm depth, respectively. It uses as forcings time

series of rainfall, air and soil temperature derived from the ERA-Interim reanalysis product. The hydrological model is spa-10

tially distributed, each grid cell covering an area of 0.25◦ by 0.25◦. The CMEM radiative transfer model is coupled with SFX

in order to simulate SMOS-like Tb. The SFX model parameters are first calibrated based on Monte-Carlo simulations using

as a calibration dataset SMOS Tb observations acquired over a period of two years (2010-2011). Next, SMOS Tb observa-

tions acquired over the 6-year period 2010-2016 are sequentially assimilated into the SFX-CMEM modelling chain. For the

assimilation experiment, we apply a Local Ensemble Transform Kalman Filter. To generate an ensemble of SMOS-like Tb, the15

meteorological forcings of the SFX-CMEM models derived from the ERA-interim dataset, namely the rainfall and the air and

soil temperature time series, are randomly perturbed.

The following key conclusions can be drawn from our experiment:

1. A 6-year forward run of the SFX-based modelling chain reaches performance levels similar to those obtained with

CLM both in terms of simulated Tb (comparison with SMOS data) and SM (comparison with in situ observation). The20

average correlations between simulated and SMOS observed Tb range between 0.62 and 0.72 for both models. The local

correlations between simulated and in situ observed SM range between 0.3 and 0.8 for CLM and between 0.3 and 0.9

for SFX.

2. The assimilation of SMOS Tb observations into the SFX-based modelling chain increases the correlation between sim-

ulated and in situ observed SM by ca. 0.03.25

3. The improvement in correlation between simulated and in situ observed SM as a result of the assimilation is slightly

lower in our study than that obtained in Rains et al. (2017), but the correlation values are higher. As a result of the

assimilation, the average correlations between simulated and in situ observed SM (top and deeper root zone soil layers)

range between 0.65 and 0.68 for CLM and between 0.73 and 0.8 for SFX.

4. The assimilation of SMOS Tb observations reduces errors between simulated and in situ observed SM, especially for the30

highest SM values while it tends to increase them for lower SM values. For the upper layer, errors are reduced for SM

values higher than the median. For the deeper layer, errors are reduced for quantiles higher than 80 %.
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5. The assimilation of SMOS Tb observations increases correlation by 0.02 and marginally reduces errors between simu-

lated and in situ observed evapotranspiration.

Overall, the study provides consistent empirical evidence that the SM modelling chain based on a conceptual hydrological

model can reach and at times exceed the performance levels of a modelling chain based on a more physically based state of

the art land surface model. Moreover, although the conceptual model needs to be calibrated, our experiment shows that this5

calibration can be carried out using only satellite data and has therefore the potential to be applicable to all areas where satellite

data are reliable and informative.
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