This document contains our answers to the referees’ and editor’s comments. We would like first to
thank Referees #1, 2 and 3 and the editor for the careful reading of the paper and their relevant remarks
and comments. In the remainder, the Referees’ remarks are written in black while our answers are
written in blue. Moreover, cited text from the revised version of the paper is written in red.

Enclosed is as well our revised paper

Editor:

Your manuscript “Assimilation of SMOS brightness temperature into a large-scale distributed
conceptual hydrological model to improve soil moisture predictions: the Murray-Darling basin in
Australia as a test case” has been subjected again to review by the original three reviewers. Two of them
recommended now acceptance of the manuscript and one reviewer recommends major revision.

The paper still lacks details on the complexity of the two models and the differences between the
models. Also some further important details are needed like the handling of the temporal model input.
The small improvements related to data assimilation need to be discussed more critically. | suggest
moderate revision of the paper.

In your answer to the main points and detailed comments, please indicate how comments have been
handled exactly, indicating also whether text has been deleted and what the position of newly included
text blocks is. | am looking forward to the new version of the paper.

According to the editor’s feedback, we provided further details on the complexity of the two models,
on the differences between the models and on the handling of the temporal model input. We also
discussed more critically the moderate improvements related to data assimilation (please see answers
to Referee #3’s comments).

Referee #1:

The authors successfully addressed all reviewers' comments. Specifically, the authors clarified the set
up of the two modelling approaches and their differences. | have two remaining minor comments:
1) | would add some details on the computational demand of the two modelling approaches.
2) If possible, I would include the code of SFX model that can be very useful for the hydrology readers
interested to implement the model.

We thank Referee #1 fort his positive feedback.

We propose to provide the Superflex model code on request, as indicated now in the paper (page 26,
lines 9-10):

“Code availability. The code of the version of the Superflex model used for this study can be obtained
upon request to the corresponding author.”

Moreover, we add some details on the computational demand of the two modelling approaches, as
requested (page 26, lines 3-5):

“While our assimilation experiment with SFX was carried out on a Personal Computer within a few
hours, a High-Performance Computing cluster (using 2 nodes of 12 Cores) was necessary to run the



Rains et al. (2017) experiment over a few days. This shows the added value of a computationally
efficient conceptual model, especially for applications where computational time is critical.”

Referee #2:
Accepted as is

We thank Referee #2 for this positive feedback.

Referee #3

1. The author only provided some brief points to explain CLM is more complex than SFX model. On
the other hand, it is not specifically clear what are difference in complexity, in terms of physical
processes. This matters, particularly, for soil moisture predictions. This reviewer does understand it is
not needed to present all the difference between two models, while still believe a tabulated comparison
is needed, especially for those parts matter the most to the discussions of results (ET, SM, etc.). This is
to verify the claim in the abstract “Our empirical results show that the SUPERFLEX-CMEM modelling
chain is capable of predicting soil moisture at a performance level similar to that obtained for the same
study area and with a quasi-identical experimental set up using the CLM land surface model”. This
reviewer cannot understand how ‘quasi-identical’ it is.

We thank Referee #3 for this feedback, remarks and suggestions to further improve the manuscript.

Two tables have been added in the revised version of the manuscript to further clarify the differences
between processes implemented, respectively, in CLM and Superflex and the minor differences
between the two experiments. Table 1 (page 9) summarizes the main processes implemented in CLM
and SFX. It allows therefore to assess the markedly different level of complexity of the two models.
Table 2 (page 12) further describes how quasi identical the two experiments are. It clearly identifies the
minor differences between the two assimilation experiments.

2. ‘In this study, since we focus on the two upper root zone layers that are of interest for simulating soil
moisture, the deeper reservoirs and the routing function are switched off and not further referred to in
the remainder.” The above treatment means a twist of the physical processes of SFX. This reviewer is
interested how this treatment will affect the final assimilation results.

The removal of the deeper reservoirs of SFX has no effect on the soil moisture simulations as in
Superflex there is no upward water circulation from the deeper reservoirs to the upper ones. As a matter
of fact, when deeper reservoirs are switched off, water exits root zone soil layers based on the usual
equations. The soil moisture simulations within both root zone reservoirs are therefore not impacted.
This information has been added in the revised version of the manuscript (page 7, lines 14-17):

“It is worth mentioning that the removal of the deeper reservoirs of SFX has no effect on the soil
moisture simulations as in SFX there is no upward water circulation from the deeper reservoirs to the
upper ones. As a matter of fact, when deeper reservoirs are switched off, water exits root zone soil
layers based on the usual equations. The soil moisture simulations within both root zone reservoirs are
therefore not impacted.”

3. “The model is therefore distributed over grid cells of 0.25 aligned on the grid used in the ERA-Interim
dataset and simulations are carried out at an hourly time step.” This reviewer is very curious on how



this is possible. ERA-Interim only provides four analyses per day, at 00, 06, 12 and 18 UTC, while the
simulation is carried out at an hourly time step. Is there certain interpolation involved and how?

For the ERA-Interim accumulated variable (i.e., rainfall) the predicted amount is redistributed
uniformly from 6h accumulation to 1h accumulation in order to keep water balance. For the other
variables (i.e., air and soil temperature), the value is imposed constant over 6h and equal to the era-
interim predicted value. This clarification has been added to the manuscript (page 5, lines 12-14):

“For the accumulated variable (i.e., rainfall) the predicted amount was redistributed uniformly from 6h
accumulation to 1h accumulation in order to keep water balance. For the other variables (i.e., air and
soil temperature), the value was imposed constant over 6h and equal to the era-interim predicted value.”

4. For me the improvement of correlation coefficient with 0.03 (for SM) and 0.02 (for ET) do not seem
significant, even though William’s significance test was carried out. Does it mean that the assimilation
of TB does not matter that much? Or please help to discuss with similar studies, or compare with those
studies using spatial information (soil moisture spatial info) to do calibration while not using DA.

We agree with Referee #3 that the values of correlation improvement are moderate for soil moisture
and rather low for Et, as acknowledged in the paper. However, they are still statistically significant, as
testified by the William’s significance test. This test was indeed proposed as a tool for evaluating if an
increase of correlation is statistically significant or not.

For the soil moisture correlation improvement, the first and maybe main point to consider in our opinion
is the already high correlation values (0.77 and 0.7 for the two layers) of the open loop (before the
assimilation) that leaves less room for improvement compared to other studies such as Rains et al (2017)
or De Lannoy and Reichle (2016a) that reported substantially lower background correlation (around
0.6). Moreover, the fact that the SFX model is already calibrated using SMOS Th and ERA interim data
can also explain the fact that the improvement of the soil moisture predictions are slightly lower, but of
the same order of magnitude, than in the other studies relying on uncalibrated land surface models. We
would further argue that the limited effect of the Tb assimilation is in itself an interesting result for the
community that we try to address with our study.

This is now further developed in the manuscript (page 19, lines 6-15):

“As can be seen in Table 4, the assimilation allows for a moderate increase in rho for the two soil layers
depicted in the model when comparing observed and simulated soil moisture time series. Specifically,
the rho increases on average by more than 0.03 for both soil layer depths. These improvements are
similar, although slightly lower to those obtained in the study by Rains et al. (2017, experiments DA2
and DAO), namely ca. 0.06 for upper layers and 0.03 for deeper layers. One possible explanation for
the slightly lower improvements in rho for the top-layer can be found in the SFX open-loop performance
being already higher (rh0o=0.77) than that of CLM (rho=0.61). This arguably limits the room for
improvement as a result of the assimilation as the SFX-based open-loop outperforms the one based on
CLM. Moreover, the fact that the SFX model was calibrated using SMOS Th and forced using the ERA-
interim dataset can also explain the fact that the improvement of the soil moisture predictions are
slightly lower than in other studies relying on uncalibrated land surface models (e.g., Rains et al., 2017;
De Lannoy and Reichle, 2016a).”

For the ET improvement, it is clearly acknowledged that the correlation improvements are limited
except for one station (page 23, line 6-8):

“The effect of the assimilation on evapotranspiration is substantially positive for one station, limited
for 3 of them and slightly negative for the last one. As for SM, one can notice in the right panel of
Figure 10 that the rho is further improved when absolute evapotranspiration increments tends to be
higher.”

5. ‘highomputational demand’ ¢ ‘high computational demand’
This typo was only visible in the version of the manuscript with track change. We made sure that this
is correctly written now.



6. In Figure 8 “maps of the number of assimilated SMOS Tb observation at each soil moisture
measurement station, in relation with inter-annual average rainfall (bottom left panel) and inter-annual
average Ep (bottom right panel).” This reviewer cannot see the number of assimilated SMOS Tb in this
figure, and a bit confused by the caption here.

The same colorscale is used for showing two different pieces of information at the same time, namely
the number of satellite observations assimilated into the model together with the inter-annual average
rainfall. While the number satellite observations assimilated into the model is indicated by the colours
of the dots, the rainfall and Ep are indicated via the continuous colour map. We clarified this in figure
8 caption of the revised version of the manuscript:

“Correlation improvement in soil moisture prediction in relation to assimilation absolute increment,
climate variability and number of assimilation events: Maps of the improvement in soil moisture rho
and of the time average of absolute assimilation SM increments for the two root zone soil layers (upper
panels) and maps of the number of assimilated SMOS Th observation at each soil moisture measurement
station (indicated via the dot colours), in relation with inter-annual average rainfall map (bottom left
panel) and inter-annual average Ep map (bottom right panel).”
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Abstract. The main objective of this study is to investigate how brightness temperature observations from satellite microwave
sensors may help in reducing errors and uncertainties in soil moisture and evapotranspiration simulations with a large-scale
conceptual hydro-meteorological model. In addition, this study aims to investigate whether such a conceptual modelling frame-
work, relying on parameter calibration, can reach the performance level of more complex physically-based models for soil
moisture simulations at a large scale. We use the ERA-Interim publicly available forcing dataset and couple the CMEM ra-
diative transfer model with a hydro-meteorological model enabling therefore soil moisture, evapotranspiration and brightness
temperature simulations over the Murray-Darling Basin in Australia. The hydro-meteorological model is configured using re-
cent developments of the SUPERFLEX framework, which enables tailoring the model structure to the specific needs of the
application as well as to data availability and computational requirements. The hydrological model is first calibrated using only
a sample of SMOS brightness temperature observations (period 2010-2011). Next, SMOS brightness temperature observations
are sequentially assimilated into the coupled SUPERFLEX-CMEM model (period 2010-2015). For this experiment, a Local
Ensemble Transform Kalman Filter is used. Our empirical results show that the SUPERFLEX-CMEM modelling chain is capa-
ble of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical
experimental set up using the CLM land surface model. This shows that a simple model, when calibrated using globally and
freely available Earth observation data, can yield performance levels similar to those of a physically-based (uncalibrated)
model. The correlation between simulated and in sifu observed soil moisture ranges from 0.62 to 0.72 for the surface and root
zone soil moisture. The assimilation of SMOS brightness temperature observations into the SUPERFLEX-CMEM modelling
chain improves the correlation between predicted and in situ observed surface and root zone soil moisture by 0.03 on average,
showing improvements similar to those obtained using the CLM land surface model. Moreover, the assimilation improves at

the same time the correlation between predicted and in situ observed monthly evapotranspiration by 0.02 on average.
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1 Introduction

Motivated by the impact of climate change on the scarcity or excess of water in many areas around the world, and follow-
ing the recommendations of the Sendai framework for disaster risk reduction (UNISDR, 2015), several agencies and research
institutions have put substantial efforts in better monitoring and predicting the hydrologic cycle at a global scale. Such mon-
itoring/prediction efforts are indeed necessary for assessing the risk of extreme hydrological events and for enabling early
warning (Revilla-Romero et al., 2016), especially considering that impacts related to such hydrological extremes are expected
to increase in the future due to the combined effect of socio-economic development and climate change (Lehner et al., 2016).

Numerical models such as hydrological and land surface models are central to predict and forecast droughts (Rains et al.,
2017) and help in better anticipating disaster and the associated emergency response (Revilla-Romero et al., 2016). However,
model simulations suffer from inherent uncertainties (Liu and Gupta, 2007) due to the simplified representation of physical
processes as well as uncertain forcing (Garcia-Pintado et al., 2015; Hostache et al., 2011) and the lack of data for setting up
and controlling them (Pappenberger et al., 2007; Hostache et al., 2015; Wood et al., 2016). To reduce uncertainty in model sim-
ulations, an advanced solution that has gained increased interest over the last decades is the integration of remote sensing data
into models (Andreadis and Schumann, 2014; Hostache et al., 2018; De Lannoy and Reichle, 2016b). This approach pursues
an optimal combination of hydro-meteorological modelling and remote sensing, for example by using satellite measurements
as forcing or calibration data and/or for regularly updating the model states or parameters (Moradkhani, 2007). This allows
periodically controlling and correcting the models via external observations. In forecasting mode, such data assimilation ap-
proaches allow keeping the predictions on track, while in hind-casting mode they enable improved simulations of measured
fluxes and states of the past.

Many advances have been made in these areas of research and spaceborne sensors are already providing a wealth of Earth
observation data with many applications in hydrology (Brocca et al., 2012; De Lannoy and Reichle, 2016b). In particular,
satellite surface soil moisture (SM) estimates are available at temporal and spatial resolutions compatible with operational
hydrology requirements especially at the large scale (De Lannoy and Reichle, 2016b). Although the assimilation of in sifu data
is widely established in operational hydrology (Ercolani and Castelli, 2017), the assimilation of remotely sensed datasets, such
as SM, is a more recent development as this source of data has become available only over the last decades (e.g., Parada and
Liang, 2004; De Lannoy et al., 2007; Jia et al., 2009; Matgen et al., 2012; Su et al., 2013b; Chen et al., 2014; Mohanty et al.,
2017).

SM is a key variable in hydrological models. In many of them, including Variable Infiltration Capacity (VIC, Liang et al.,
1994), "Hydrologiska Byrans Vattenbalansavdelning" (HBV, Bergstrom, S., 1976), "modele du Génie Rural a 4 paramétres
Journalier" (GR4J, Perrin et al., 2003), etc., SM controls the partitioning of water and energy fluxes. Hence, improving its
representation within a numerical model has the potential of improving predictions of the key hydrological variables. In this

context, SM data derived from various satellite missions such as ASCAT (e.g., Brocca et al., 2010, 2012; Dharssi et al., 2011;
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Draper et al., 2011) and AMSR-E (e.g., Reichle et al., 2007; Yang et al., 2007; Draper et al., 2009) have been assimilated into
land surface or hydrological models (e.g., Draper et al., 2012; Renzullo et al., 2014).

Since November 2009, the passive Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil
Moisture and Ocean Salinity (SMOS) satellite has been observing top-of-the-atmosphere brightness temperature (Tb). The
MIRAS sensor is sensitive to 1.4 GHz (L-band) emissions and takes multi-angular measurements at vertical and horizontal
polarisations (Kerr et al., 2001). The algorithm used for the retrieval of SM values from SMOS Tb is based on numerical
modelling (Kerr et al., 2012). In past studies, SM estimates retrieved from SMOS Tb were most of the time assimilated into
land surface and sometimes in conceptual hydrological models (Wanders et al., 2014; Lii et al., 2016). However, the land surface
model used for the SM retrieval and the model used for the background simulation are often different for example in terms of
process representation, model structure and model forcing datasets (e.g., air and soil temperature) (De Lannoy and Reichle,
2016a). In the event the background simulation is carried out using a conceptual hydrological model, these differences may be
even more important, especially in terms of process representation. This potentially result in inconsistencies in the way SM is
simulated by the model and retrieved from the observation. Moreover, De Lannoy and Reichle (2016b) argued that this issue
can lead to correlation between retrieved and simulated SM errors that cannot be easily handled by data assimilation filters.
As a consequence, recent studies (e.g., De Lannoy and Reichle, 2016a; Lievens et al., 2016; Rains et al., 2017, 2018; Mundz-
Sabater et al., 2019) have aimed to directly assimilate SMOS Tb into such land surface models. To do so, these studies used as
observation operator of the assimilation filter a radiative transfer model (e.g., the Community Microwave Emission Modelling
platform (CMEM), de Rosnay et al., 2009) that allows to derive Tb from SM simulations. In this context, De Lannoy and
Reichle (2016a) showed that assimilating either SM retrievals or observed Tb yields almost the same correlation level between
in situ-observed and simulated SM (average correlation equals 0.6 based on the records obtained from many measurement sites
distributed across the United States of America) and Lievens et al. (2016) showed that the assimilation of SM retrievals slightly
outperforms the assimilation of observed Tb.

Currently, for applications at the large scale, there is a tendency to rely on more complex physically-based hydrological
models in order to better capture the hydrological processes at hand (Devia et al., 2015). However, this may be sometimes
detrimental to large-scale operational hydrology, due to the increased computational demand and the potential unavailability
of the required datasets for parameter estimation. Faster models are key tools for carrying simulations at a large scale without
implying a high computational demand. Faster models are therefore powerful for near real-time forecasting applications and
when large ensemble of model runs are required. In this context, conceptual models that allow for more efficient and rapid
simulations offer an alternative to more physically-based land surface models (Devia et al., 2015; EI Hassan et al., 2013).
The main argument against the use of a conceptual model is often the need for site-specific parameter calibration that is often
infeasible in data scarce areas. However, with the recent increase of satellite missions providing global observations of key
hydrological variables at high temporal and spatial resolution, it becomes possible to envisage the calibration of conceptual
models even at the large scale. Hence, a science question that is worth investigating is whether a flexible conceptual model,
relying on parameter calibration, can reach the performance level of a more complex physically-based model for soil moisture

simulations at large scales.
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The SUPERFLEX modelling framework (Fenicia et al., 2016) enables tailoring the model structure (i.e., adapt the model
architecture via reorganising constituting reservoirs) for the specific needs of the application. In particular, here we seek for a
simplified representation of the main controlling processes, and computational efficiency in order to perform rapid simulations
over large areas and for long periods. Compared to more physically based land surface models, the model built with SUPER-
FLEX offers fast running simulations without the need for high performance computing facilities and allows for adapting the
model spatial resolution and soil stratification to the characteristics of the satellite datasets that are to be assimilated.

Following the study by Rains et al. (2017), we evaluate here the potential of SMOS Tb assimilation for improving SM
simulations of this distributed conceptual hydrological model. The general objective of this study is to assess the performance of
a soil moisture prediction chain based on the assimilation of SMOS Tb into a coupled SUPERFLEX-CMEM model. Moreover,
we propose to compare it to the one developed in Rains et al. (2017) based on the Community Land Model (CLM, Oleson
et al., 2013). To enable a fair and meaningful evaluation and comparison, we use a quasi-identical experimental set up to the
one of Rains et al. (2017), except that we use here the SUPERFLEX instead of the CLM model to simulate soil moisture. As a
test case, we use the Murray-Darling basin in Australia and we simulate distributed time series of soil moisture over the period
2010-2015.

The specific objectives of this study are as follows: (i) to compare the SUPERFLEX and CLM models in their ability
to simulate Tb and soil moisture, and (ii) to evaluate the improvement in model predictions when assimilating SMOS Tb
observations. It is worth mentioning that, here and in the remainder of the paper "‘simulated Tb"’ is used for naming Tb that is
derived from the simulated soil moisture using the radiative transfer model parametrized to emulate SMOS observations. The
simulated Tb is therefore meant to emulate SMOS observation based on simulated soil moisture. As an additional objective,
we also propose to evaluate how the assimilation of SMOS Tb can help in improving evapotranspiration predictions.

In the next sections, we first present the database used for the experiment, the coupling between the hydrological (SUPER-
FLEX) and the radiative transfer (CMEM) models and the data assimilation experiment. Next, we calibrate the hydrological
model using SMOS Tb observations, we evaluate the forward run of the SUPERFLEX-CMEM prediction chain and we com-
pare the performances with the ones obtained in Rains et al. (2017). Then, we assess and discuss the results of the assimilation
experiment using the study by Rains et al. (2017) as a benchmark. As a further discussion element, we finally evaluate the

impact of the assimilation of SMOS Tb on evapotranspiration simulations.
2 Material and Method
2.1 Study area and available data

2.1.1 Study Area

The study area is the Murray-Darling Basin (MDB) in South-Western Australia. The three main rivers of the MDB, namely
rivers Darling, Murray and Murrumbigee are among the longest rivers in Australia. The MDB covers an area of 1.06 million

km?, representing approximately 14 % of the land surface of Australia. Due to its large dimensions, the basin exhibits various
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climate regimes, from sub-tropical in the north to semi-arid in the west and mostly temperate in the south. The average inter-
annual rainfall ranges from up to 1,500 mm in the eastern side and less than 300 mm in the western side of the MDB (MDBA,
2018). The average inter-annual temperature ranges from ca. 10 °C in south-eastern and ca. 20 °C in western side of the MDB
(MDBA, 2018).
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Figure 1. Study area: Murray-Darling, Murray, Darling and Murrumbidgee Basins, riverstream courses and in situ soil moisture measurement

locations.

2.1.2 Meteorological forcings

Time series of rainfall and 2-m air and soil temperature predictions are globally available at a 3-hourly time step and 0.25° spa-
tial resolution (downscaling from the original 0.75° spatial resolution) from the ERA-Interim reanalysis data set (Dee et al.,
2011). It would have been possible as well to use the more recent and accurate ERAS5 dataset, but we decided here to use
ERA-Interim as it was also used in Rains et al. (2017). From this data set, for each grid cell lying within the limits of the MDB,
we extracted rainfall and soil and 2-m air temperature for the period 2009 to 2016. Soil temperature was extracted for the two
upper soil layers, having depths of 7 and 21 cm respectively. Next, the resulting time series were uniformly redistributed to
an hourly time step. For the accumulated variable (i.e., rainfall) the predicted amount was redistributed uniformly from 6h
accumulation to 1h accumulation in order to keep water balance. For the other variables (i.e., air and soil temperature), the
value was imposed constant over 6h and equal to the era-interim predicted value. The potential evapotranspiration (Ep) was
estimated from the air temperature data using the Hamon formula (Hamon, 1963). Rainfall and Ep time series are used as
inputs of the SUPERFLEX hydrological model (see section 2.2.1). Soil and air temperature time series are used as inputs of

the CMEM radiative transfer models (see section 2.2.2)
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2.1.3 SMOS Tb observations

The SMOS database used in this study is identical to the one used in the study by Rains et al. (2017). It covers the period 2010
to 2015 and consists of SMOS Level 3 daily Tb at horizontal polarisation and 42.5° incidence angle. They are provided by the
Centre Aval de Traitement des Données (CATDS) (version 310). SMOS acquisitions having probabilities of radio frequency
interference (RFI) greater than 0.2, Data Quality Index higher than 0.07 or activated science flags, namely strong topography,
snow, flooding, urban areas, coastal zone and precipitation were filtered out from the initial database. The filtered observation
data were resampled from the Equal-Area Scalable Earth Grid 2 (EASE2) 25 km grid to a 0.25° model grid aligned with that

of the ERA-interim dataset by using inverse-distance interpolation.
2.1.4 In situ soil moisture observations

As an independent dataset for evaluating the model results, we make use of in sifu soil moisture measurements from OzNet
and CosmOz measurement networks (Smith et al., 2012). These datasets provide time series of soil moisture acquired using,
respectively, time-domain reflectometry (TDR) probes and cosmic-ray neutron probes. Depending on the type of probe, soil
moisture observations are available for various soil depths, namely 5, 8, 30, 60 and 90 cm. The measurement stations are mainly
located within the Murrumbidgee catchment as the latter was selected as one of the sites for SMOS calibration/validation
campaigns (Peischl et al., 2012; Holgate et al., 2016; Su et al., 2013a). More details on the measurement techniques and the
measurement network can be also found in other studies over Australia and the MDB (e.g., Holgate et al., 2016; Su et al.,
2013a). It is worth mentioning that the in situ soil moisture dataset is provided with local or limited measurement footprints
(a few hundreds of m? at maximum) whereas the hydrological model simulates average soil moisture over much larger areas
(a few hundreds of km?). As a consequence, the comparison between model results and in situ observation necessarily suffers

from scale-representativeness issues.
2.1.5 In situ flux tower measurements

As an additional independent dataset for evaluating the model results, we also make use of in sifu flux tower measurements
from the TERN OzFlux measurement network (http://www.ozflux.org.au/). This dataset provides, among other variables, time
series of latent heat fluxes that were converted into actual evapotranspiration rates using the latent heat of vaporization constant.
The measurement stations are mainly located in the southern part of the MDB. Moreover, the in situ evaporation data, just like

the previously described soil moisture data, are provided with local or limited measurement footprints.
2.2 The soil moisture and Tb prediction chain
2.2.1 The conceptual hydrological Model

The SUPERFLEX modelling framework (hereafter denoted SFX, Fenicia et al., 2011, 2016) is used to build the hydrological

model. This modelling framework was developed with the aim to facilitate model development and allow model structure
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comparisons. The modelling platform is based on generic building components that can be configured and combined in var-
ious ways to generate different model architectures. Hydrologists can therefore hypothesize, build and test different model
structures. For example, it allows for adapting the model structure to the forcing and observation datasets (e.g., in terms of
spatial and vertical resolutions) and specific characteristics of the catchment. In the context of this study, we take advantage of
this flexibility and define the model architecture in such a way that it allows to easily ingest globally available meteorological
forcing data and at the same time integrate Tb as observed by the SMOS satellite. The model is therefore distributed over grid
cells of 0.25°aligned on the grid used in the ERA-Interim dataset and simulations are carried out at an hourly time step.

The architecture of the developed model is represented in Figure 2 for one model grid cell. It is mainly composed of two
stratified upper root zone layers represented by two reservoirs, namely URw and URI. The grey box in Figure 2 also identifies
the deeper reservoirs and the routing function that simulates subsurface and surface runoff based on deeper soil layer water
storage. In SFX, the deeper reservoirs are typically two interconnected fast and slow reservoirs, with associated lag functions
whose outflows are summed up to compute the surface runoff (Fenicia et al., 2016). In this study, since we focus on the
two upper root zone layers that are of interest for simulating soil moisture, the deeper reservoirs and the routing function are
switched off and not further referred to in the remainder. It is worth mentioning that the removal of the deeper reservoirs of
SFX has no effect on the soil moisture simulations as in SFX there is no upward water circulation from the deeper reservoirs
to the upper ones. As a matter of fact, when deeper reservoirs are switched off, water exits root zone soil layers based on the

usual equations. The soil moisture simulations within both root zone reservoirs are therefore not impacted.
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Upper root zone soil layer
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Figure 2. SUPERFLEX Model architecture.

The upper reservoir (URw) is fed by precipitation and looses water through evapotranspiration to the atmosphere and per-
colation to the second reservoir (UR/). The latter is then fed by the incoming percolation from the first reservoir and looses
water through evapotranspiration to the atmosphere and percolation to deeper soil. Outflow () from the two root zone layers is

estimated based on the simulated storage S and the incoming water amount using a power function with exponent

SURz,i(t) > OB

SmamURw’i

Qures(t) = Pora(t) x ( ()
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where ¢ is time, ¢ represents the model grid cell number, = stands for upper (u) or lower (I) reservoir, Pyrg,; is the input to
the reservoir (precipitation for the upper reservoir, outflow from the upper reservoir for the lower reservoir), and Smax is a
parameter representing maximum storage capacity.

The actual evapotranspiration (Fa) from the two soil layers is estimated based on the simulated storage within the considered

reservoir and the potential evapotranspiration (Fp) using a power function with exponent 3:

ECLUR;L- 1(t) — Epl (t) X SURH?J/ (t) ﬁURf“’i (2)
’ Smazyry,; +SMarur;
The variation of storage within the two reservoirs is estimated by solving the water balance equation:
UT’() = PuRa,i(t) — QURa,i(t) — Eaure,i(t) (3)
For each reservoir, the soil moisture is derived from the storage according to:
SuRe,i(t
OURg,i(t) = Cr Surea(t). 4)

e SMaruyRrg,:

where 6 is the predicted soil moisture and Cgr a so-called effective field capacity.
In the model architecture, the two root zone reservoirs are meant to conceptually represent two stratified soil layers allowing

to simulate soil moisture over different soil depths. To maintain constant depths of these two layers over the model domain

(namely 7 and 21 cm in accordance to the depth of the two upper soil layers depicted in the ERA-interim dataset) the respective

reservoir maximum capacities are computed depending on the Cgr considering that the maximum storage capacity of a soil

layer can be derived from the Cgp and the soil layer depth d according to:
Smarure,; = CEFe,i X dEPa )

It is worth noting here that the model structure presented beforehand is replicated on each model grid cell 7. As a matter of
fact, the distributed SFX implemented in this study does not simulate lateral flows within the root zone soil layers. As a con-
sequence, for each grid cell, the model has six calibration parameters, namely Cgry i, ®URw,i» BURw,i» CEFLi» ®URL:> BURL;-
Moreover, the maximum storage capacities Smazugg,; are computed based on fixed soil layer depths dgr, and calibrated
effective field capacities Cgpy ;.

From the SFX model description, it appears that this conceptual model is much simpler than CLM in particular for the

following reasons:

— Whereas CLM estimates latent heat fluxes between soil and atmosphere based on aerodynamic diffusion equation and
Monin-Obukhov similarity theory (Oleson et al., 2013), taking into account many information such as soil and vegetation
type, surface roughness, atmospheric stability, the vegetation coverage, SUPERFLEX lumps energy balance contribution

to water balance via a simpler potential evapotranspiration formula, namely the Hamon formula.

— In this study, SFX is structured with two soil layers (respectively 0-7cm and 7-21cm) whereas CLM considers five layers

for the same soil depth range.
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Table 1. Main processes implemented in the CLM- and SFX-based studies.

Main Processes CLM SFX

Surface energy fluxes Air and soil heat fluxes (Monin-Obukhov similarity)

Evaporation Latent heat flux (Monin-Obukhov similarity) Lumped evapotranspiration (Hamon formula)
Transpiration Phenology and plant development status
Subsurface vertical flow Across 10 soil layers (adapted Richards equation) Across 2 soil layers (power low dynamics)
Subsurface lateral Flow Only in the saturated groundwater -

— The set up of CLM therefore requires much more input data (e.g., soil types and land use), and Superflex has a limited
number of parameters (6 parameters per cell) compared to CLM (potentially tens of parameters per cell, Hou et al.,
2012).

It is worth noting here that this list is not exhaustive and that many other processes are further simplified in SFX compared to
CLM. A detailed presentation of CLM is available in Oleson et al. (2013). Table 1 reports the main processes represented in
our implementation of SFX and in the CLM set up of (Rains et al., 2017).

2.2.2 The radiative transfer model

To simulate Tb using soil moisture predictions of the SFX hydrological model, we use the Community Microwave Emission
Model version 5.1 (CMEM, de Rosnay et al., 2009). The parametrization of CMEM and most of the forcings (except SM and
soil temperature) are identical to the ones used in the study of Rains et al. (2017) in order to enable a meaningful comparison
between both experiments. In particular, the time invariant input data (i.e., soil sand and clay fractions, permanent water surface
fractions, ground elevation and vegetation cover types) as well as the equations used to run CMEM are exactly the same. The
ECOCLIMAP vegetation classes (Champeaux et al., 2005) are used to provide CMEM with the plant functional types. The
development cycle of vegetation classes is defined in CMEM based on the leaf area index (LAI) (Rains et al., 2017). LAl is
interpolated at daily scale from a monthly dataset for low vegetation and a constant LAI value is fixed for high vegetation.
The dielectric constant computation is carried out using the Mironov model (Mironov et al., 2004) and the required effective
temperature is computed via the Wigneron model (Wigneron et al., 2001). The Fresnel, Choudhury (Choudhury et al., 1979)
and Wigneron (Wigneron et al., 2007) models are used for assessing smooth surface emissivity, soil roughness and vegetation
opacity respectively. Atmospheric contributions are estimated via the Pellarin method (Pellarin et al., 2003). However, the soil
layer depths in CMEM are identical to the ones used in the SFX model and the soil moisture simulated by SFX is used as input
of CMEM. Moreover, as SFX does not integrate energy balance processes (while CLM does), the soil temperature is in our

experiment derived from the ERA-Interim dataset.
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2.2.3 Model Calibration

On each grid cell, the SFX model has 6 calibration parameters (see section 2.2.1). To carry out the calibration, Monte-Carlo
simulations using latin hypercube sampling within plausible parameter ranges are carried out. To do so, parameter sets are first
randomly generated within such plausible parameter ranges. Next, a SFX-CMEM simulation is carried out for each individual
parameter set and the simulated Tb is compared, at the grid cell scale, to the values derived from SMOS observations. Eventu-
ally, for each individual model grid cell, the parameter set yielding the lowest unbiased root mean square deviation (ubRM S D,
Entekhabi et al., 2010, see Eq. 6) while comparing simulated and SMOS-derived Tb is selected as optimal. The ubRM S D
is chosen here has it allows to remove the bias between simulated and observed soil moisture (and Tb) which is common in

brightness temperature assimilation studies.

; , 2
WRMSD =\ [{(( (1)~ 7)) — ()~ ), ©
where y° is the simulated Tb and y° the observed one and (.), indicates the average over time. The parameters of the CMEM
model were not adjusted and their default values were used to keep the current experiment quasi identical to one of Rains et al.

(2017).
2.3 Data Assimilation
2.3.1 Data assimilation filter

In this section, we present the method used for assimilating SMOS Tb into the SFX-CMEM coupled models. The method
proposed in this study uses as assimilation filter a Local Ensemble Transform Kalman Filter (LETKF) introduced by Hunt
et al. (2007) and implemented by Miyoshi and Yamane (2007). As usual in ensemble Kalman filtering, the uncertainty in
model predictions is represented via a set of k stochastic model realizations (k=32 in this experiment) having different perturbed
forcings and/or parameters while the model and observation errors are assumed to be normally distributed. The localisation is
set up so that the assimilation is carried out at the model grid scale. The observation operator is linearly approximated during
the analysis step in the LETKF (see Eq.18 in Hunt et al., 2007). As argued in Hunt et al. (2007), LETKF is deterministic as no
additional random error is added to the observation. Let us denote our non-linear model M, namely SFX, that propagates state

variables in time (including soil moisture #) between two assimilation time steps (Eq. 7).

b
=M (251 ;) %
where 1‘2 ; 18 the background at time ¢,, when the assimilation is supposed to be carried out for ensemble member number j,
and z,_, ; is the analysis computed at time ¢,, 1, i.e. the previous assimilation time step.

The step prior to the assimilation is to run the hydrological model between ¢,,_; and ¢,, to yield the background ensemble. In
our study, the application of the LETKF proposed by Hunt et al. (2007) consists of the seven main steps listed hereafter (please

note that the temporal index n is not repeated later on for the sake of conciseness).

10
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1. Apply the observation operator, namely CMEM, to the model background ensemble to form the observational back-

ground ensemble yb = [y]fv ,y;?]

2. Compute the ensemble observational background perturbations based on the ensemble mean ?:
Y2 =[y0 — P — ]
3. Compute the ensemble background perturbations based on ensemble mean 20

XP = [zh — 2P, ... zh — 2P
. T -1
4. Compute the matrix P* = [(k - DI+ (Yb) Rle] where I is the identity matrix and R the observation error
covariance matrix.

_ q1/2
5. Compute the matrix W* = [(k - 1)Pa}

. T
6. Compute the k-dimensionnal vector w® = P* (Yb) R™! (y" — yb) and derive w¥ by adding w* to each column of w?

7. Compute the individual member analysis 2% = 7>+ waj-

This process is repeated for each cell of the model domain where a SMOS observation is available at time step ¢,,. Once the
analysis has been carried out, state variables, namely the storage in the two soil layers of SFX (section 2.3.1), are updated and
the simulation is resumed until the next assimilation time step.

As mentioned in many studies dealing with the assimilation of satellite SM or Tb (e.g. Al Bitar et al., 2012; Matgen et al.,
2012; Rains et al., 2017; Al-Yaari et al., 2017), bias removal prior to the assimilation is often a necessary step. In our study,
we reduce the bias between simulations and observations by deriving model and observation anomalies, following an identical
approach to the one described in Rains et al. (2017). Anomalies are defined as the difference between the original Tb time
series and their inter-annual climatologies (time-average SMOS observation acquired in a 20 days-sliding window centred
on the considered day of year). The climatology is computed by first smoothing the Tb time series using a 20-days moving
average and next computing the inter-annual average of the smoothed signal. The model background used in the assimilation
filter is the simulated Tb anomaly computed as the difference between the simulated Tb and its climatology, computed as the
climatology of the ensemble mean of the open loop run. The data assimilation is therefore carried out based on the simulated

and observed Tb anomalies.
2.3.2 Ensemble generation

To generate an ensemble of simulated Tb, the meteorological forcings of the SFX-CMEM models derived from the ERA-
interim dataset, namely the rainfall and the air and soil temperature time series are randomly perturbed. As in Rains et al.

(2017), the perturbation applied to rainfall time series is multiplicative and randomly generated from a log-normal statistical

11
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Table 2. Similarities and differences between the two quasi-identical assimilation experiments.

Experiment characteristics CLM-based study SFX-based study
Number of root zone soil layers 5 2
Perturbed input rainfall Perturbed input rainfall
Ensemble generation Perturbed input air temperature ~ Perturbed input air temperature

Perturbed soil texture parameters -

Simulation time steps Identical: 1 hour
Model grid size Identical: 0.25°
Source of model forcings Identical: ERA-interim
Radiative transfer model Identical: CMEM using the same parametrization
Assimilation filter Identical: LetKF
Assimilated satellite observations Identical: SMOS Tb

distribution of mean 0 and standard deviation 0.5. The air temperature time series are perturbed using an additive Gaussian
random noise of mean 0 K and standard deviation 2.5 K. Each time step and each model grid cell has an independently drawn
random perturbation. Moreover, to maintain a set up similar to the one used in Rains et al. (2017) where air temperature
perturbations are propagated to the soil temperature via the CLM model, perturbed soil temperature predictions are here drawn
from the perturbed air temperature. This is done in two steps. First, linear regressions are carried out on each grid cell between
the ERA-interim predictions of air temperature and soil temperature (separately for the two soil layers). Next, perturbed soil
temperatures are derived from the perturbed air temperatures based on the coefficients obtained from the linear regressions.
This allows to maintain a certain level of consistence between perturbed air and soil temperatures for each ensemble member.
The main difference between our experiment and the one of Rains et al. (2017) is that we do not perturb soil texture as this
parameter of CLM does not apply to SFX. Table 2 reports the similarities and differences between the two quasi-identical

assimilation experiments.
2.4 Analyses used to evaluate the proposed soil moisture prediction chain

The proposed modelling framework is evaluated and compared to the one proposed in Rains et al. (2017) using a series of

empirical tests:

1. We assess the performance of the calibrated conceptual SFX model by comparing, via the Pearson’s correlation (refered

to as p in the remainder), the ubRMSD (Eq. 6) and the mean bias, the simulated and observed SMOS Tb.
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2. We compare SFX-based model performance to the one of the forward CLM model previously introduced in Rains et al.
(2017). To do so, we make use of the root mean square deviation (RMSD) and the p together with Taylor diagrams
computed based on the comparison between CLM (resp. SFX) model simulations and observations of Tb (SMOS obser-

vation) and SM (in situ measurements).

3. We assess the effect of the assimilation of SMOS Tb by comparing the open loop and the assimilation simulations of
SM with in situ SM measurements, via the RMSD, the p, the ubRMSD, the assimilation efficiency (Eq. 8) and Taylor
diagrams and we analyse the spatial distribution of p improvement by mapping the p changes between predictions and

in situ measurements of soil moisture at each stations.

4. We further evaluate the influence of the assimilation of SMOS observations on the prediction of evapotranspiration
by comparing the open loop and the assimilation simulation of evapotranspiration with in sifu measurements. This
comparison is carried out graphically via Taylor Diagrams and time series plot and numerically via the percentage

improvement (Eq. 9).
The assimilation efficiency is computed as follows:

SD an(tn) .
(1_m) *10()’ 1fSl)AnSSZ)OL

E(tn): SDox(tn) (8)
($P2x( ~1) %100, if SDan > SDov
trny1—1 9
SDor(tn)= > (Bor(t) —0owbs(t))
With o™
SDan(tn) = > (Ban(t) —0ops(t))?
t=tn

where FE(t,,) is the efficiency of the analysis at time step t,,, SD 4,, the squared deviation of the analysis run, SDg, the squared
deviation of the open loop run, 6o, the observed soil moisture, 6 4,, the analysis soil moisture prediction and 61, the open
loop soil moisture prediction. The efficiency evaluates the squared deviation change as a result of the assimilation. Positive
values indicate an error reduction, while negative ones indicate that the squared deviation increased after the analysis step.

The percentage improvement is computed as follows:

| Baow (t) = Eaces(t)]| - | Eaan(t) = Eacws (1)]
||ECLOL(t) — EaObs(t)H

where t is the time step, /mp the percentage improvement and Faops, Eaor, and Ea 4, respectively the observed, background

Imp(t) =

* 100 €))

and analysis evapotranspiration. The positive (resp. negative) percentage improvement values indicate that absolute errors are

reduced (resp. increased) as a result of the assimilation of SMOS Tb.

3 Results and discussion

In this section, the performance of the conceptual SFX model is assessed and compared to the one of the physically-based

CLM land surface model by comparing simulated and observed time series of Tb and soil moisture.

13
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3.1 Evaluation of the calibrated SUPERFLEX hydrological model
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Figure 3. Performance and error metrics of Superflex simulated Tb using as a reference SMOS Tb: p coefficients (left hand side panels),
unbiased root mean square deviations (ubRMSD, center panels) and Mean Biases (right hand side panels) between SFX-CMEM predictions

and SMOS observations of Tb during the calibration (top panels) and the validation (bottom panels) periods.

Figure 3 shows the p coefficient, the RMSD and the Mean Bias maps obtained by comparing SFX-simulated and SMOS-
observed Tb time series and Table 3 reports the associated spatial statistics during the calibration (2010-2011) and the validation
(2012-2015). The p-values associated to p coefficients are all below 0.01 lending therefore weight to the significance of the p
between simulated Tb and SMOS Tb. From this figure and this table, the following results can be noted:

1. The calibrated model yields rather satisfying predictions of Tb. In addition, the obtained performances are comparable
to those obtained in Rains et al. (2017). In particular, in our study we have an average p of 0.7, an average ubRMSD of
14.8 K and an average bias of 30.21 K during the validation period. In the study of Rains et al. (2017) using CLM, the
RMSD has an average value of 30 K and the average p a value 0.7.

2. The three performance metrics have rather similar values and spatial variability when computed during the calibration

and the validation periods although slight differences are visible in Table 3.

3. A general gradient in the performance of SFX can be seen from the eastern to the western part of the basin whereas this

gradient is not observed in the CLM.
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4. The lowest performances are mainly exhibited on pixels located in the Darling river floodplain (Figure 1).

Results 1 and 2 leads us to conclude that model results are satisfactory in view of previous applications. Result 3 can be
explained based on the fact that the hydrological regimes vary from east to west in the MDB. Whereas the eastern part is more
dominated by rainfall, the western part receives limited amounts of rainfall and evapotranspiration plays a more important role
in the hydrological cycle. Considering that in our set up, the representation of the evapotranspiration is rather simplistic as it is
based on the Hamon formula, this could explain the poorer performance of the model in the western part of the basin. Indeed,
the simplified representation of SFX model does not allow to adequately capture the evapotranspiration-induced controls of
soil moisture, which revealed poorer performance of the model in the western part of the basin. Result 4 can be explained
considering that the input data used for running CMEM concerning the fraction of the grid cell covered by surface water. This
input is considered invariant over time in our set up, while in reality an important number of lakes and ponds of the Darling river
floodplain are periodically drying and filling up during the year, potentially modifying the water fraction on the corresponding

model grid cells.

Table 3. Spatial statistics of simulated Tb performance metrics (computed using as reference SMOS Tb). Cal: during Calibration Period.

Val: during Validation Period

W pl-] ubRMSD [K]  Mean Bias [K]
Spatial statistic Cal Val Cal Val Cal  Val

Mean 065 070 1475 148 3470 30.21
Median 065 0.69 1531 1486 3537 31.02
Mode 032 044 3091 4.25 0.10  -1.11
Skewness -0.14  -0.08 -0.61 -040 -0.01 0.75
Kurtosis 278 278  3.67 398 12.06 23.54

3.2 Comparison of the performances of the SUPERFLEX and CLM models

To compare the SFX-based model performance to the one of the forward CLM model previously introduced in Rains et al.
(2017), we first make use of Taylor diagrams (Figure 4). These represent useful tools to evaluate and inter-compare model
performances as they display on a unique plot three key performance statistics, namely the normalized standard deviation of
model results, the RMSD and the p between model predictions and observations. The normalisation of standard deviation and
RMSD is carried out with respect to observed time series statistics. The perfect model would therefore be a point located in the
black circle in Figure 4 with values of normalized standard deviation, normalized RMSD and p equal to 1, 0 and 1 respectively.

Figure 4 assumes that the SMOS Tb observations are reliable and accurate. The panel on the left hand side of Figure 4

shows the spatially averaged model statistics of both models during the calibration and the validation periods. As can be
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Figure 4. Taylor Diagrams (TD) based on the comparison between SMOS-observed and SFX- and CLM-simulated Tb respectively: TD
drawn by spatially averaging model grid cell statistics, separating the calibration (cal) and validation (val) periods (left panel) and TD drawn
using model grid cell statistics individually for calibration and validation periods together (right panel). Red dots indicate CLM statistics and

blue dots SFX statistics.

seen, the performances of both models are similar with average p ranging between 0.62 and 0.72 during the calibration and
validation periods. Whereas SFX slightly outperforms CLM during the calibration period, CLM exhibits relatively better p
during the validation period. Overall, both models yield very similar levels of satisfying performances. The performances
obtained here are as well rather similar to the ones showed in De Lannoy and Reichle (2016a) with p between in situ-observed
and simulated SM of 0.6 on average over many stations located in the United States of America. One can notice that both
models have a tendency to underestimate the observed variance of Tb as normalized standard deviation values are lower than
1. Our interpretation is that the two models are unable to reproduce the variance of SMOS observations mainly due to some
limitations of the radiative transfer modelling (e.g.: inaccurate estimates of surface roughness or vegetation optical depth).
Indeed, even with completely dry or wet soils, the simulated Tb does not reach the extreme values of the SMOS Tb. The panel
on the right hand side of Figure 4 shows the model performance for each individual model grid cell. The model statistics are
here computed over the complete simulation period (calibration and validation periods). At the model grid cell scale, both
model statistics cover a rather wide range of performance levels. This highlights the fact that both models, albeit yielding good
overall levels of performance are less accurate for a few cells. Overall the performance metrics shown in Figure 4 confirm that
the two models reach similar levels of performance.

Figure 5 shows the maps of difference in p and RMSD between both models, as well as the map of average hourly rainfall

and Ep. The top left hand side panel highlights a gradient in the p values from west to east: the SFX-predicted Tb is better
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Figure 5. Maps of differences in p (top left panel) and RMSD (top right panel) between CLM- and SFX-simulated Tb using as a reference
SMOS observation, and maps of hourly average of input Rainfall (bottom left panel) and Ep (bottom right panel).

correlated with SMOS observations in the Eastern part of the basin where precipitation is mainly controlling soil moisture
dynamics (Figure 5, bottom left panel) and the CLM-predicted Tb is better correlated with SMOS observation in the Western
part, where evapotranspiration has a higher impact on soil moisture variations (Figure 5, bottom right panel). This is arguably
explained by a better representation of the evapotranspiration process in CLM and a better capability of SFX to simulate fast
transfer of rainfall to deeper soil layers at saturation. The top right hand side panel shows a generally higher deviation in
SFX-based predictions of Tb.

As SMOS observations likely suffer from significant uncertainties, we propose to further evaluate the model results using
in situ observed soil moisture time series from a limited number of available measurement sites (Figure 1). In this context,
Figure 6 shows the Taylor diagrams drawn from the comparison between time series of soil moisture observed and simulated
by both models for the thin upper soil layer (panel on the left hand side) and a deeper soil layer (panel on the right hand side).
For the thin upper soil layer (0-8 cm depth) the observations are directly compared with the soil moisture simulations of the
upper SEX reservoir. For the deeper soil layer (0-30 cm depth), the observations are compared with the average soil moisture

predictions computed as the weighted mean, with weighting proportional to the maximum storage capacity of the upper and
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lower SFX reservoirs (see Figure 2). Both models exhibit similar p values. For the upper soil layer, SFX is better in capturing
the observation variance. Regarding the RMSD, CLM slightly outperforms SFX with sometimes lower values for the upper
soil layer. For the deeper soil layer, both models yield again similar performance levels with satisfying p values, SFX slightly

overperforming CLM.

Depth 8cm Depth 30cm

1.0 1.5

Standard deviation
0.5

Standard deviation

Figure 6. Taylor Diagrams (TD) drawn from the comparison between in situ-observed and SFX-simulated soil moisture for two different

soil depth and the two different models. Blue dots indicate SFX statistics and red dots CLM statistics.

As a conclusion on the comparison between the forward run of both models, it can be highlighted that the two models finally
reach similar performance levels when using as a reference either observed SMOS Tb or in situ measured soil moisture. It is
also important to keep in mind that similar performance levels have been attained provided that the SFX model was calibrated
whereas CLM was not calibrated using SMOS data. We argue that while a conceptual model such as SUPEFLEX requires a
calibration effort because its parameter values cannot be set a priori, CLM is not supposed to be calibrated as it is physically
based and its parameters are usually derived from various input data describing for example the characteristics of the catchment
(Hou et al., 2012). Moreover, one can argue that, because of a large number of parameters, calibrating CLM using SMOS data
would not be an easy task especially due to the computational demand (Karagiannis et al., 2019) over a large basin such as
the Murray Darling. The calibration of many parameters would consequently lead to a widely reported equifinality issue. Of

course it is worth mentioning here that CLM performs satisfactorily even without any calibration.
3.3 Effect of the assimilation of SMOS Tb on the SFX hydrological model

The data assimilation framework proposed in section 2.3 is applied over the period 2010-2015. Each time a SMOS observation
is available over a model grid cell, the assimilation filter is applied on the background and the soil water storage variables of
SFX are updated. We assimilated SMOS anomalies and the error covariance of the SMOS observation anomalies R is assumed

constant and equal to 25 K? (as in Rains et al. (2017)). Table 4 reports the spatially averaged performance metrics of the
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open loop (i.e., without assimilation) and the analysis SM simulations for two soil layer depths. As some model grid cells
include several soil moisture measurement stations and with the objective to compensate for the limited footprint, the average
performance metrics in Table 4 are computed both over the individual soil moisture measurement stations and over the cells
where in situ observations are available. In the second case, all soil moisture observations available in a given model grid cell
are first averaged. The performance metrics are next computed using as a reference the "averaged" observations. Eventually,
the average metrics are obtained by spatially averaging the model grid-cell based metrics. As can be seen in Table 4, the
assimilation allows for a moderate increase in p for the two soil layers depicted in the model when comparing observed and
simulated soil moisture time series. Specifically, the p increases on average by more than 0.03 for both soil layer depths.
These improvements are similar, although slightly lower, to those obtained in the study by Rains et al. (2017, experiments
DA2 and DAO), namely ca. 0.06 for upper layers and 0.03 for deeper layers. One possible explanation for the slightly lower
improvements in p for the top-layer can be found in the SFX open-loop performance being already higher (p=0.77) than that of
CLM (p=0.61). This arguably redueeslimits the room for improvement as a result of the assimilation as the SFX-based open-
loop outperforms the one based on CLM. Moreover, the fact that the SFX model was calibrated using SMOS Tb and forced
using the ERA-interim dataset can also explain the fact that the improvement of the soil moisture predictions are slightly lower

than in other studies relying on uncalibrated land surface models (e.g., Rains et al., 2017; De Lannoy and Reichle, 2016a).

Table 4. Time-space average values of background and analysis performance (comparison with in situ-observed soil moisture).

Space averaging Layer depth p RMSD  ubRMSD

openloop  0.776 0.1 0.98

8cm
analysis 0.801 0.1 0.98

Over measurement stations

openloop  0.695 0.11 0.071

30cm
analysis 0.727 0.11 0.072
openloop  0.771 0.1 0.099

8cm

analysis 0.803 0.1 0.1
Over model grid cells

background  0.695 0.11 0.062

30cm
analysis 0.726 0.11 0.064

To assess the significance of the p improvement as a result of the assimilation, we carried out Williams’ significance tests
(Williams, 1959). The null hypothesis in this test is that the p improvement is not significant. For the upper soil layer the
p-values are lower than 0.01 except for 2 stations where p remains almost constant. For the deeper soil layer the p-values are
lower than 0.01 except for 3 stations where p remains almost constant or slightly decreased. This shows that the p increase as
a result of the assimilation of SMOS Tb can arguably be considered significant for the large majority of stations. To assess the

significance of the p improvement as a result of the assimilation, we carried out Williams’ significance tests (Williams, 1959).
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The null hypothesis in this test is that the p improvement is not significant. For the upper soil layer the p-values are lower than
0.01 except for 2 stations where the p values remains almost constant. For the deeper soil layer the p-values are lower than
0.01 except for 3 stations where p remains almost constant or slightly decreased. This shows that the p increase as a result of
the assimilation of SMOS Tb can arguably be considered significant for the large majority of stations.

However, while p values increase due to the positive effect of the assimilation, one can notice in Table 4 that errors (RMSD
and ubRMSD) tend to remain rather stable. This indicates that the assimilation improves p between model predictions and
observations, but fails in reducing average errors in our experiment. This result is consistent with the findings of Rains et al.
(2017).

To evaluate the effect of the assimilation on individual measurement points, Figure 7 shows the Taylor diagrams obtained
from the comparison between model predictions and in situ observations of soil moisture for two soil layer depths. In this
figure, the circles indicate the open loop run performances and the triangles the assimilation run performances. Each colour is
assigned to an individual observation point. In Figure 7 almost every individual observation point exhibits a p improvement due
to the assimilation and this for both soil layers. More precisely, all p values increase for the first layer and all p values except
one increase for the second soil layer. The improvement is however rather different from one point measurement to another.
Moreover, Figure 7 indicates that, in general, the lower the open loop run p, the higher the improvement. This general feature

is especially visible for the deeper soil layer.

Depth 8cm Depth 30cm

0 @ Open Loop 0 ©  Open Loop
0.2 A Analysis 19 0.2 A Analysis

o Standard dev![gtion
Standard deviation

No.os

odoog

Figure 7. Taylor Diagrams (TD) drawn from the comparison between in situ-observed and SFX-simulated (background and analysis) soil

moisture for the two different soil depth.

To analyse the spatial distribution of p improvement as a result of the SMOS data assimilation, Figure 8 maps the p changes

between predictions and in situ measurements of soil moisture at all stations nd the temporal average of assimilation SM in-
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crements (top panels), together with the average annual rainfall and Ep and the number of SMOS records assimilated over
in situ soil moisture measurement sites (bottom panels). The two top panels show local p improvements and SM increments
in the 8 (top left panel) and 30 cm (top right panel) top soil layer respectively. The bottom panels in Figure 8 show the cli-
mate variability over the Murrumbidgee catchment using as a proxy the average annual rainfall and Ep (data provided by the
Australian Bureau of Meteorology), together with the number of SMOS records assimilated over in situ soil moisture mea-
surement sites. In the bottom left panel of Figure 8, the same colour scale is used to indicate the rainfall amount (map) and the
number of SMOS observations assimilated at each measurement station (colour of each points). The number of stations differs
between left and right top panels as all stations do not measure soil moisture for all soil depths. The bottom panel indicates
all measurement stations. Especially for the first layer, one can notice a gradient from East to West within the Murrumbidgee
basin (where observation sites are located). The two bottom panels in Figure 8 indicate that it is likely that the gradient in p
increase has its origin in climate variability but that it also depends on the the number of SMOS observations that are locally
assimilated (panel on the bottom left hand side). In the Western semi-arid Murrumbidgee, soil moisture updates tend to have a
longer-lasting effect on the performance because evapotranspiration is the main soil moisture controlling process and because
the extraction of water from the soil due to evapotranspiration takes much longer than soil recharge due to rainfall. Moreover
one can notice in the top panels of Figure 8 that p improvements are higher in areas where the temporal average of the absolute
SM increments are higher and vice versa. This indicates that the p is further improved when absolute SM increments tends to
be higher.

Overall, our experiment shows that the assimilation of SMOS data into the SFX model allows for a substantial improvement
of the p between model predictions and in situ observations of soil moisture with improvements similar to those obtained in a
very similar study by Rains et al. (2017) using the CLM land surface model.

In Figure 9, we plot the averaged efficiency as a function of the open-loop soil moisture prediction percentiles for two soil
depths to further investigate the effect of the assimilation on soil moisture prediction errors. To do so, we first compute, for each
individual efficiency, the percentile of the synchronously obtained open loop soil moisture prediction and then compute the
average efficiency for each percentile of the open loop soil moisture predictions. Figure 9 shows that the errors in soil moisture
prediction are mainly reduced by the assimilation for the higher quantiles of soil moisture while they tend to increase for the
lower quantiles. For the upper layer, the assimilation is more efficient for predicted soil moisture values higher than the median.
For the deeper layer, errors are reduced for quantiles higher than 80 %. This indicates that the assimilation is more efficient for
high soil moisture states. A possible explanation for this is that the assimilation reduces errors when upper soil layers are closer
to saturation, mainly during rainfall events when errors in ERA-Interim rainfall simulations are arguably affected by larger
errors. Although there is no absolute evidence that errors are larger for larger rainfall events for the Murray Darling basin, this
is something that was often reported (for different areas of interest) in the literature as for example in the study by Xu et al.

(2019).
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Figure 8. Correlation improvement in soil moisture prediction in relation to assimilation absolute increment, climate variability and number
of assimilation events: Maps of the improvement in soil moisture p and of the time average of absolute assimilation SM increments for the
two root zone soil layers (upper panels) and maps of the number of assimilated SMOS Tb observation at each soil moisture measurement
station (indicated via the dot colours), in relation with inter-annual average rainfall map (bottom left panel) and inter-annual average Ep map

(bottom right panel).

3.4 Effect of the assimilation on predicted evapotranspiration

As evapotranspiration is also an important control in soil moisture dynamics, we propose to further evaluate the influence of
the assimilation of SMOS observations on the monthly prediction of evapotranspiration. To do so, we compared the open loop
and analysis simulations of monthly evapotranspiration with in situ observations derived from the flux towers (TERN OzFlux
measurement network, http://www.ozflux.org.au/). Evapotranspiration observations are derived from monthly averaged flux
tower measurements of latent heat flux. The comparison between observations and simulation results is carried out at the grid
cells including the flux towers. The spatially averaged performance metrics yielded by this comparison are reported in Table 5,

which revealed that the predictions of evapotranspiration are improved by the assimilation of SMOS observations as the p with
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Figure 9. Assimilation efficiency as a function of simulated soil moisture quantiles: upper soil layer (left panel) and deeper soil layer (right

panel).

Table 5. Time-space average values of background and analysis performances of evapotranspiration predictions (comparison with in sifu-

observed evapotranspiration).

p[-] RMSD [mmh~'] ubRMSD [mm.h~!]

background 0.46 0.057 0.034

analysis 0.48 0.056 0.034

in situ observations increased by 0.02 with a marginal reduction in RMSD. To assess the significance of the p improvement as
a result of the assimilation, we carried out Williams’ significance tests (Williams, 1959). The corresponding p-values are all
lower than 0.01 except for 1 station where the p slightly decreases, indicating that the p increase as a result of the assimilation
of SMOS Tb can arguably be considered significant for most of the stations.

Figure 10 shows the Taylor diagram as well as the map of p improvement for individual measurement stations and the
temporal average of evapotranspiration increments. The effect of the assimilation on evapotranspiration is substantially positive
for one station, limited for 3 of them and slightly negative for the last one. As for SM, one can notice in the right panel of
Figure 10 that the p is further improved when absolute evapotranspiration increments tends to be higher. Figure 11 shows
the percentage improvement of simulated monthly evapotranspiration as a results of SMOS Tb for each individual flux tower
measurement together with averaged monthly rainfall (simulated by ERA-Interim).

In Figure 11, the assimilation lead from time to time either to an increase or a reduction of the error in simulated evap-
otranspiration. While the site having low annual precipitation (ca. 250 mm.yr—! at Calperum) exhibited a quasi systematic

improvement, sites having medium annual precipitation (between ca. 480 to 560 mm.yr—! at Whroo, Riggs and Yanco) exhib-
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ited more contrasting results. The wettest site (ca. 720 mm.yr~'a t Tubarumba) showed very limited effect of the assimilation
on the absolute error in simulated evapotranspiration. This result is in agreement with other studies (e.g., Detto et al., 2006;
Vivoni et al., 2008; Mallick et al., 2018) that showed that water limitations in arid and semi-arid regions make evapotranspira-
tion very sensitive to soil moisture variations, thereby explaining the fact that the assimilation of SMOS Tb is more efficient in

reducing errors of simulated evapotranspiration in water-limited regions of the MDB.

4 Conclusions

This study introduced and evaluated a large-scale SM modelling chain that is based on and takes advantage of the assimilation
of SMOS Tb into a spatially distributed conceptual hydrological model coupled with a radiative transfer model. We assessed
the performance of such a modelling chain and its associated data assimilation system and compared it with that of a quasi-
identical set up using the physically based CLM land surface model (Rains et al., 2017). We evaluated therefore whether a SM
modelling chain, based on a conceptual hydrological model, is able to reach the same performance level as that of one based
on a physically-based model, the main advantage of a conceptual model being its substantially lower computational demand.
Eventually, we also evaluated how the assimilation of SMOS Tb can help in improving evapotranspiration predictions.

The following key conclusions can be drawn from our experiment:

1. A 6-year forward run of the SFX-based modelling chain reaches performance levels similar to those obtained with CLM

both in terms of simulated Tb (comparison with SMOS data) and SM (comparison with in situ observation). The average
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Figure 11. Effect of the assimilation on simulated evapotranspiration: Monthly rainfall and percentage improvement of simulated monthly
evapotranspiration as a results of SMOS Tb assimilation for each individual flux tower measurement (flux tower locations sorted from west

(top left panel) to east (bottom right panel).

p values between simulated and SMOS observed Tb range between 0.62 and 0.72 for both models. The local p values
between simulated and in situ observed SM range between 0.3 and 0.8 for CLM and between 0.3 and 0.9 for SFX.

2. The assimilation of SMOS Tb observations into the SFX-based modelling chain increases the correlation between sim-

ulated and in situ observed SM by ca. 0.03.

3. The improvement in correlation between simulated and in situ observed SM as a result of the assimilation is slightly
lower in our study than that obtained in Rains et al. (2017), but the correlation values are higher. As a result of the
assimilation, the average correlations between simulated and in sifu observed SM (top and deeper root zone soil layers)

range between 0.65 and 0.68 for CLM and between 0.73 and 0.8 for SFX.

4. The assimilation of SMOS Tb observations reduces errors between simulated and in situ observed SM, especially for the
highest SM values while it tends to increase them for lower SM values. For the upper layer, errors are reduced for SM

values higher than the median. For the deeper layer, errors are reduced for quantiles higher than 80 %.

5. The assimilation of SMOS Tb observations increases correlation by 0.02 and marginally reduces errors between simu-

lated and in sifu observed evapotranspiration.
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Overall, the study provides consistent empirical evidence that the SM modelling chain based on a conceptual hydrological
model can reach and at times exceed the performance levels of a modelling chain based on a more physically based state of
the art land surface model. Mereover—altheughWhile our assimilation experiment with SFX was carried out on a Personal
Computer within a few hours, a High-Performance Computing cluster (using 2 nodes of 12 Cores) was necessary to run
the Rains et al. (2017) experiment over a few days. This shows the added value of a computationally efficient conceptual
model, especially for applications where computational time is critical. Although the conceptual model needs to be calibrated,
our experiment shows that this calibration can be carried out using only satellite data and has therefore the potential to be

applicable to all areas where satellite data are reliable and informative.
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