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GENERAL COMMENTS:  

 

This manuscript presents an assessment study of the hydrologic and geologic impact on managed 

aquifer recharge processes. At 100 randomly sampled sites across the model domain the 

correlation between 17 hydro(geo)logical site characteristics/parameters and simulated recharge 

“benefits” is evaluated. Overall, upscaled vertical K multiplied with “Water Table Depth” 

(WTD) produce a good correlation with recharge rates. This proxy parameter (GPP – Kgeom * 

WTD) are most correlated with recharge rates, validated by local and global sensitivity analysis. 

Moreover, the analyses also indicate that permeability and unsaturated zone pore volume 

(porosity used as an indicator for Sy) were relatively more important than other hydraulic 

parameters. 

 

The study presented is comprehensive, thorough, well-organized, and clear. The conclusions are 

informative and I do not see any over-statement in the conclusions drawn. I thus think the 

manuscript should be considered for publication in HESS, although I would suggest that a minor 

revision is needed to clarify some parts of the manuscript. Maybe the most critical point I see is 

how to transfer the obtain important information for MAR (interconnected coarse-texture facies 

paired with water table depth information are crucial for finding suitable recharge sites) to any 

other field where this information is difficult to acquire. I see your point that GIS-derived indices 

of recharge suitability rely solely on soil and surface geology to determine geologic suitability 

for recharge (e.g. Line 354) and the integrated values (up-scaled K + WTD) are more useful. But 

the question is how we could get the required information without knowing the subsurface in 

every detail in the whole model domain/study area. Certainly, in your (semi-)synthetic approach 

we know the parameterization (by the way it is just one field/realization and there remain 

uncertainties about the distribution, however, for this study and target it is ok I believe but should 

be note more clearly in the discussion) but how could we use your guidelines where it is not 

known. I suggest discussing that more to strengthen the manuscript and impact of this interesting 

study. Comprehensive field tests could be probably the best to better understand the problems in 

general. However, they are time-consuming and only a limited number of sites are available to 

accommodate the tests. The numerical analysis, on the other hand, allows us to explore and 

assess multiple sites relatively easily, yet the validity needs to be carefully checked. So, how can 

your useful guideline to be considered by practitioners? Another point is related to the WTD. 

Correct me if I am wrong but my impression based on your manuscript (for instance Fig. 8) is 

that Kgem * WTD is very useful where the WTD is deep (so large unsaturated zone and thus 

more storage). Can you split your analysis/results further to see if the depth to the water table 

matters or not? 

 

RESPONSE: Thank you for the insightful comment. We agree that the manuscript would be 

strengthened by including discussion of potential approaches for characterizing the subsurface 

heterogeneity in real-world situations. We have added an additional paragraph in the Discussion 

to highlight some emerging geophysical approaches that show promise for characterizing 

subsurface geologic architecture for MAR (lines 497-506). 



 

To the second point regarding splitting the analysis/results to determine whether the water table 

is important for recharge, the authors contend that we have discussed these findings in the 

manuscript (lines 372-374; Fig. 6), where we show that water-table depth alone is a poor 

predictor of recharge rate.  

 

FURTHER MINOR COMMENTS:  

 

COMMENT: Line 94: What kind of geological analysis? 

RESPONSE: We agree that this language was ambiguous. We’ve have removed the first phrase 

of the sentence “Through geologic analysis of the data, additional parameters we estimated …” 

to just “Additional parameters were estimated” because the preceding text makes it clear that 

these parameters are part of the greater geostatistical analysis (line 94). 

 

COMMENT: Section 2.3.3 Model Spin up and Calibration: All sentence related to boundary 

conditions should be moved to section 2.3.2 Boundary conditions. (line 134-141) 

RESPONSE: We agree and have moved the five sentences describing boundary conditions to the 

preceding section (2.3.2) as a new paragraph (lines 131-135). 

 

COMMENT: Table 2: Are these parameters the calibrated values? 

RESPONSE: Yes, these are the calibrated values. The title of the table has been changed to 

“Calibrated Hydrofacies Hydraulic Properties” (Table 2). 

 

COMMENT: Section 2.4.1 Why do you select the sites randomly? I would assume that MAR 

will be pretty much every time in more coarse sediments. I think, a useful comparison would be 

to choose the sites based on the surface information (as you mentioned as the “classical” GIS-

approach) and compare the results with results from some randomly chosen sites. You might find 

additional arguments to criticize the “classical” workflow. I think that would be “just” another 

post-processing step and no demanding model runs are required. 

RESPONSE: The intention of gathering 100 random sites from 910 potential sites was to 

represent the variability of geologic configuration throughout the domain in a computationally-

efficient manner. It was not known a-priori which site characteristics would be best correlated 

with MAR, and our intention was not to presume the ‘best’ sites from within the domain. We 

contend that our approach clearly shows the limitations of the “classical workflow” of 

identifying sites with favorable surficial geology. Our results highlight the limitations of 

approaches that rely on surficial geology alone (lines 486-487 and lines 493-496). The approach 

suggested in the comment is explored in a companion paper recently published by the authors in 

Hydrogeology Journal (1) 

 

1. Maples, S. R., Fogg, G. E., and Maxwell, R. M. (2019) Modeling Managed Aquifer 

Recharge Processes in a Highly Heterogeneous, Semi-Confined Aquifer System, 

Hydrogeology Journal, doi:10.1007/s10040-019-02033-9. 

 

COMMENT: Line 201: for all 100 sites 

RESPONSE: We agree that “all 100 recharge simulations” was confusing, and changed the text 

to “all 100 sites” (line 217). 



 

COMMENT: Line 230: 6 hydraulic properties and not 8! 

RESPONSE: Thank you for catching this mistake. “eight” has been changed to “six” accordingly 

(line 246). 

 

COMMENT: Line 258: Where are the four representative sites! You could add these sites to 

figure 3a. 

RESPONSE: We agree that highlighting these sites in Fig. 3a would be helpful and have 

modified the figure accordingly (line 173). 

 

COMMENT: Line 286: yes, they are important, but it is not demonstrated here. The results 

section just comes a few pages later. Please reformulate. 

RESPONSE: We agree that the results presented in the Methods section are out of place. We 

have re-phrased this paragraph to not include mention of results, and instead reframe the 

introduction of Morris parameters without mention of results (lines 300-307). 

 

COMMENT: Line 357: Yes, but again how to get this information for a larger study site. 

RESPONSE: We agree with the Reviewer’s point, which is also stated in the General Comments, 

about the need for applicable field methods to make use of these findings. We have added 

paragraph of emerging geophysical techniques that could be used to validate findings presented 

here for real-world sites in the Discussion (lines 497-506). 

 

COMMENT: Figure 7: Change the 95% confidence lines to dashed lines or change the figure 

caption. 

RESPONSE: We contend that the dashed lines are clearly indicated as the 95% contour intervals 

in figure 7a, but we have added some clarifying language to the figure caption to make this more 

clear (line 383). 

 

COMMENT: Figure 10: Why is the gravel n so important for V_fines? 

RESPONSE: We agree that this is an interesting result, and it is only observed for site q95. We 

attribute this result to the fact that site q95 has a high proportion of gravel, so it is not unexpected 

that pore size distribution (n) of gravel would have some influence on the recharge response. We 

have made a change to the text to acknowledge this result (line 419), but do explore the 

implications in detail. 



Notes to Reviewer 2: Author responses are indicated in red below each respective comment. 

Please also note that line number references in the responses are for the track-change version 

enclosed herein. 

 

GENERAL COMMENTS 

 

COMMENT: “The manuscript “Sensitivity of Hydrologic and Geologic Parameters on Recharge 

Processes in a Highly-Heterogeneous, Semi-Confined Aquifer System” describes an interesting 

study on local and global sensitivity analysis in the framework of Managed Aquifer recharge, 

using a realistic case study. Overall, the manuscript is well written and the results are illustrated 

in a clear manner. Although the research work heavily relies for the creation of the geological 

model and the setting up of a flow model and MAR on two previous works, the additional 

research performed in this study and the new findings justify a new publication. I only have a 

couple of minor suggestions and some technical details.” 

RESPONSE: Thank you for the comments. We have addressed each of your comments, and have 

provided responses to each specific comment below. 

 

SPECIFIC COMMENTS:  

 

COMMENT: “Control volume and connectivity metric (lines 179-188; 331-333) Please double 

check the definition of the control volume and the need for a 6-points connectivity metric: if the 

control volume is defined as “encompassing vertically-coincident cells” (line 179), then there is 

probably no need to require a 6-points connectivity metric. For example, with a 6-points 

connectivity, you can have 2 very horizontally extended layers of a conductive material, 

separated by a rather impermeable aquitard; if only one cell of the aquitard is conductive, then 

the 6-points connectivity guarantees connection. Maybe I missed the definition of the control 

volume. Is it defined by only one cell in the horizontal directions?” 

RESPONSE: We agree that the definition of the control volume was unclear, and have made 

substantial changes to section 2.4.2 to re-frame and add detail to how site characteristics are 

presented. For example, we have added the sentence (lines 199-201): “Percolation was evaluated 

for a control volume encompassing all cells from the land surface to the initial water table depth 

(i.e., unsaturated-zone cells) at the 25 x,y cell locations encompassing each site.” Because each 

control volume incorporates both vertically- and horizontally-connected cells, the 6-connectivity 

metric is necessary to evaluate percolation. We believe that the clarification regarding the 

definition of the control volume will make this clear to the reader. 

 

COMMENT: “Linearity (197-200) As your aquifer is not confined, maybe the fact of separating 

the contribution of each recharge/no-recharge scenario would not work properly as in the case of 

a linear problem. Please comment on this.”  

RESPONSE: Thank you for pointing out some of the limitations associated with the differencing 

approach we use to post-process the results. We have added several sentences to the Discussion 

section to acknowledge the limitations of this approach for non-linear models, and also noted 

that we did not encounter spurious recharge stresses or unrealistic model noise when using this 

approach with our model. (lines 531-535) 

 



COMMENT: “r sign In general, for a negative correlation a negative r is used (line 315, but also 

the corresponding figures).”  

RESPONSE: Thank you for catching this mistake. We added text to point out that R_10d, 

R_30d, and P_30d were positively correlated with all simulated outputs, but V_fines, 90d was 

generally negatively correlated with simulated outputs (lines 354-57). We made changes 

throughout the manuscript to report negative correlations appropriately, and have modified Fig. 5 

to make clear that correlations are reported as the absolute value (line 356). 

 

FIGURES 

 

COMMENT: “Fig.1 and Fig.3 Please report the original publication source of the figure.” 

RESPONSE: We have reported the original source of Figure 1 (Maples et al., 2019) (line 83), 

but Figure 3 is unique to this publication, and thus does not have a publication source, so the 

Figure 3 caption was left as-is (line 173). 

 

COMMENT: “Fig.8 Do you also have a map of IVF? It would be nice to see it on the side of the 

R30d (see also line 370).” 

RESPONSE: We chose not to overlay a map of IVF on our stochastic geologic model because 

our findings are presented as a proof-of-concept of a hypothetical, but physically-realistic 

domain (see lines 530-531, “Our findings are presented as a proof-of-concept to explore the 

importance of geologic heterogeneity on MAR in a hypothetical but physically-realistic 

domain”). Instead, we rely on citations of the relevant studies that have identified IVF in this 

region (e.g., lines 66-73) and encourage the reader to seek those publications for additional 

information. 

 

TECHNICAL CORRECTIONS  

 

COMMENT: “line 63 :1640 m2”  

RESPONSE: Thank you for catching this mistake. We have changed “1640m^2” to “1640 m^2” 

(line 63). 

 

COMMENT: “Parenthesis: Double check journal guidelines for parentheses (i.e. lines 67, 76-77, 

87, 91)” 

RESPONSE: We have checked the manuscript preparation guidelines for HESS and did not find 

specific guidance for these instances of parentheses. We will defer to the associate editor and 

copy editor to provide guidance on these instances. 

 

COMMENT: “Units repetition. It would be more correct to report units close to each number, for 

example 1 × 2 × 3 m should be something like 1 m × 2 m × 3 m (see lines 99, 101). This is also 

valid when a list of numbers (with unit) is reported. See for example line 308, 309, 320.”  

RESPONSE: Thank you for catching this mistake. We have made changes here and elsewhere 

throughout the manuscript to correct unit repetition issues (lines 99, 101).  

 

COMMENT: “Subscript fonts In general, subscripts that are not index should not be in italic font 

(i.e., Ss should be Ss instead) (see line 110 and other locations in the text)” 



RESPONSE: Thank you for catching this mistake. We have made changes here and elsewhere 

throughout the manuscript to correct italicization mistakes in subscripts (lines 110, 112-117, and 

elsewhere). 

 

COMMENT: “lines 123-124 Check ‘0 m amsl’.” 

RESPONSE: We are leaving the acronym as-is because above mean sea level (amsl) is 

introduced previously in Section 2.1 (line 77). 

 

COMMENT: “UZ (line 141) Please introduce this acronym.” 

RESPONSE: Thank you for catching this mistake. We have changed “near-surface UZ cells” to 

“near-surface unsaturated-zone (UZ) cells” (lines 142-143). 

 

COMMENT: “line 165-166 Ss or SS?” 

RESPONSE: Thank you for catching this mistake. We have changed “K_S” to “K_s” (line 173). 

 

COMMENT: “Vfines,90d Double check the consistency of this symbol within the documents 

(see for example Fig.5).” 

RESPONSE: Thank you for catching this mistake. We have fixed the figure accordingly (line 

356), and have double-checked the consistency of its usage throughout the text. 

 

line 479 “to be fully...”?  

RESPONSE: Thank you for catching this mistake. We have changed “challenging to fully 

captured” with “challenging to fully capture” (line 509). 

 

line 538 “to incorporate a measure” 

RESPONSE: Thank you for catching this mistake. We have incorporated the edit (line 572). 
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Abstract.

Increasing reliance on groundwater resources has been observed worldwide during the past 50–70 years and has led to un-

sustainable groundwater abstraction in many regions, especially in semi-arid and arid alluvial groundwater basins. Managed

aquifer recharge (MAR) has been promoted to replenish overdrafted groundwater basins and augment surface water sup-

ply. However, MAR feasibility in alluvial groundwater basins is complicated by complex geologic architecture that typically5

includes laterally-continuous, fine-texture confining units that can impede both recharge rates and regional propagation of in-

creases in hydraulic head. Greater feasibility of MAR hinges on identifying locations where rapid, high-volume recharge that

provides regional increases in pressure head are possible, but relatively little research has evaluated the factors that control

MAR feasibility in alluvial groundwater basins. Here, we combine a transition probability Markov-chain geostatistical model

of the subsurface geologic heterogeneity of the east side of the northern Central Valley, California, with the 3D, variably-10

saturated water flow code, ParFlow, to explore the variability of MAR feasibility in this region. We use a combination of

computationally-efficient local and global sensitivity analyses to evaluate the relative importance of factors that contribute to

MAR feasibility. A novel proxy parameter approach was used to describe the configuration and proportions of subsurface hy-

drofacies and water table depth for sensitivity analyses, and results suggest that recharge potential is relatively more sensitive to

the variability of this proxy parameter than to the variablity of individual hydrofacies hydraulic properties. Results demonstrate15

that large variability of MAR feasibility is typical for alluvial aquifer systems and that outsize recharge rates are possible in

select locations where interconnected, coarse-texture hydrofacies occur.
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1 Introduction

Geologic heterogeneity strongly affects both the movement of water in the subsurface and the exchange of water between

subsurface and surface stores; however, rarely are enough data available to explicitly represent heterogeneous geologic features20

in groundwater models (Koltermann and Gorelick, 1996; De Marsily et al., 2005). Instead, models typically simplify and/or

upscale heterogeneity to represent subsurface flows for purposes of regional-scale water resources management (e.g., Fogg,

1986; Phillips and Belitz, 1991). Upscaling methods have been the focus of numerous studies (e.g., Renard and De Marsily,

1997; Fogg et al., 2000; Neuman and Di Federico, 2003; Fleckenstein and Fogg, 2008), and coarse-resolution models with

upscaled (i.e., effective) hydrologic properties are often adequate for regional-scale flow studies, but typically lack enough25

detail to reliably capture some phenomena, like recharge and transport processes, that are strongly influenced by geologic

heterogeneity.

To represent the influence of geologic heterogeneity on flow and transport phenomena, many approaches have relied on

stochastic methods, like transition probability based indicator geostatistics which can represent heterogeneous features while

honoring measured data (Carle and Fogg, 1996; Weissmann and Fogg, 1999; Weissmann et al., 1999). These approaches30

represent geologic heterogeneity with hydrogeologic facies categories, each of which is assigned effective values or probability

densities for estimates of hydraulic properties. By categorizing facies according to depositional environment rather than texture

alone, the predictable geometries (i.e., facies mean lengths, proportions, and juxtapositions) of these features can be more

accurately represented with sparse data. Studies that rely on these methods show strong influence of subsurface heterogeneity

on groundwater/surface-water interactions and recharge processes (Lee, 2004; Fleckenstein et al., 2006; Engdahl et al., 2010;35

Liu, 2014), including managed aquifer recharge (MAR) (Maples et al., 2019), especially for instances when the mean lengths

and proportions of high-permeability facies allow for percolation, i.e., formation of connected networks (Fogg et al., 2000;

Harter, 2005).

Accurately assigning aquifer properties in models can be a challenge because they are scale dependent attributes that are

challenging to measure and can vary over many orders of magnitude in typical aquifer systems (e.g., Sudicky, 1986; Gelhar40

et al., 1992; Weissmann and Fogg, 1999). While aquifer tests can accurately constrain estimates of hydraulic conductivity (K)

for high-permeability facies, they are typically unreliable for estimating K of low-permeability (i.e., aquitard) facies (Fogg,

1986; Fogg et al., 1998), which have been shown to influence pumping response (Fogg et al., 2000) and be important for

accommodating recharge (Maples et al., 2019). Reconciling typically sparse measurements of aquifer properties from aquifer

tests with the representation of effective values in models is often the source of large uncertainty because parameterization of45

the properties in models is scale dependent (Sudicky and Huyakorn, 1991), and is typically achieved through model calibration.

The contaminant transport community has long recognized the strong influence of K scaling and geologic heterogeneity on

transport processes (e.g., Gelhar et al., 1992; Sudicky and Huyakorn, 1991; Koltermann and Gorelick, 1996), and recent work

has extended these concepts to assess their role on runoff generation, evapotranspiration (ET), and feedbacks between subsur-

face and land-surface water in integrated hydrologic models (Srivastava et al., 2014; Gilbert et al., 2016; Foster and Maxwell,50

2019), but relatively little research has focused on the influence these factors for MAR processes specifically. Recent work has
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highlighted the importance of connected networks of high-K facies for MAR (Maples et al., 2019), but to our knowledge the

sensitivity of MAR processes to these heterogeneous geologic features as compared to other uncertain hydraulic properties

has not been formally evaluated. Here, we simulate variably-saturated MAR dynamics in a highly-resolved representation of

complex subsurface geologic heterogeneity of a clastic, unconsolidated sedimentary aquifer system that includes both intercon-55

nected, high-K sand and gravel deposits intermingled with silt- and clay-dominated sediments. We use a combination of local

and global sensitivity analyses to provide insight into the relative importance of the subsurface geologic facies configuration

and parameterization of subsurface hydraulic properties on MAR processes. This work provides insight into important factors

to consider when investigating potential MAR sites and also highlights the utility of a combination of computationally-frugal

local and global sensitivity analyses for computationally-intensive hydrologic models.60

2 Materials and Methods

2.1 Local Hydrogeology and Domain Extent

The model domain covers about 1640m
::::
1640

:::
m2 of the east side of the northern Central Valley, California, near the conver-

gence of the lower portions of the American and Cosumnes Rivers with the Sacramento River (Fig. 1). The domain comprises a

low-angle alluvial fan complex that is typical of the Central Valley where previous studies have documented the presence of de-65

posits that are favorable for recharge (Shlemon, 1967; Meirovitz, 2010), including massive, interconnected, highly-permeable

sand and gravel deposits known as incised valley fill [IVF, (Weissmann et al., 2004, 2005)] that form from river incision and

deposition events during cyclic Plio-Pleistocene Sierra Nevada glaciation. In places, multiple IVF deposits have been shown

to overlap and interconnect from land surface into the deeper aquifer system, forming massive, coarse-texture, relatively high-

permeability pathways for recharge that bypass local, otherwise laterally-extensive confining units. These features have been70

shown to accommodate recharge volumes that are orders of magnitude greater than would be possible over the rest of the land-

scape (Maples et al., 2019). Other studies have shown that IVF features likely occur on river fans throughout the Central Valley

(Weissmann et al., 2005), and in similar glacially-influenced rivers (Pierce and Scott, 1983) but are still largely undocumented.

The local hydrostratigraphy of the area is described in detail by Meirovitz (2010) and Maples et al. (2019). In general, the two

major rivers intersecting the domain, the American and Cosumnes Rivers, have markedly different depositional characteristics.75

The American River drains a large (>4000 km2), high-elevation catchment that extends to the Sierra Nevada crest [>3000 m

above mean sea level (amsl)]. As a result, the American River was greatly influenced by cyclic plio-pleistocene glaciation that

deposited IVF in the domain area. Conversely, the Cosumnes River catchment is smaller (900 km2) and lower in elevation. As a

result, deposits from the Cosumnes River do not contain IVF and are typically finer in texture. In some locations in the domain

area, Quaternary and Holocene channel avulsion of the American River resulted in a more southwest course that intersects the80

current path of the Cosumnes river, creating complex overlapping stratigraphy in that area. Cross-cutting IVF and overlapping

paleochannel networks in the domain area result in an aquifer system that is typically unconfined (and sometimes perched) or

semi-confined at shallow depths and increasingly confined with depth (Fleckenstein et al., 2006; Liu, 2014; Niswonger and
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Figure 1. Location of model domain in the in the Central Valley aquifer system in California, and (a) inset of the uppermost layer of the

model hydrofacies overlain over aerial imagery of the Central Valley and local river systems
:::::::::::::::
(Maples et al., 2019). (double-column width)

Fogg, 2008). Groundwater pumping in the region typically occurs at depths >30 m in the deeper semi-confined or confined

portion of the aquifer system (Liu, 2014).85

2.2 Hydrofacies Model Development

Transition probability Markov-chain geostatistics (TPROGS) (Carle and Fogg, 1996, 1997; Carle, 1999), was used to simulate

the subsurface distribution of hydrofacies in the domain area (Fig. 2). Model development is described in detail by Meirovitz

(2010) and Maples et al. (2019). Conditioning data for the TPROGS model included about 1200 well logs, soil surveys,

geologic cross-sections and mapped paleochannels. Geologic data were binned into four textural categories: gravel, sand,90

muddy sand, and mud (undifferentiated silt and/or clay) [Table 1 (Fleckenstein et al., 2004; Meirovitz, 2010)]. "Mud" refers

to silt and clay undifferentiated, because most of the subsurface data available only identify the fine-grained sediments and

are not sufficiently detailed to distinguish silt from clay. From these data the proportions for each facies were calculated

directly. Through geologic analysis of the data, additional
:::::::::
Additional parameters were estimated describing the mean lengths

of each hydrofacies along the principal directions and the embedded transition probabilities to represent cross-correlation95

between different facies. Because the depositional characteristics of the American and Cosumnes fans were markedly different,

individual models of each were produced and subsequently combined by Meirovitz (2010).
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Figure 2. Three-dimensional representation of the model domain (Meirovitz, 2010; Liu, 2014).

TABLE 1 ABOUT HERE.

The model uses an orthogonal grid geometry with 181
::::
cells × 227

::::
cells × 265 cells in the x-, y-, and z- directions, respec-

tively. The x- and y- directions of the grid were rotated 17.85 degrees counterclockwise from the cardinal directions, and the100

z-direction was oriented vertically. Cell sizes were 200
::
m

:
× 200

::
m

:
× 1 m. The total domain size is 36.2

:::
km

:
× 45.4

:::
km ×

0.265 km, in the x-, y- and z-directions, respectively. Cells located above land surface were designated as inactive in the model,

resulting in about 7.3 million active cells in the domain area.

2.3 Hydrologic Model Development

2.3.1 Governing Equations105

Three-dimensional, variably-saturated water flow was simulated with the hydrologic modeling code, ParFlow (Ashby and

Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006), which couples surface and subsurface flow with the 2-

D diffusive or kinematic wave equation, and solves the 3-D mixed form of Richards’ Equation for variably-saturated subsurface

flow:

SssSww
:

(h)
∂h

∂t
+φ

∂Sw(h)

∂t

∂Sw(h)

∂t
::::::

=∇ ·q + qrr(x,z) (1)110

where

q = φSww
:

(h)v =−Kss(x)krr(h)∇(h+ z) (2)
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In these equations Ss ::
Ss is specific storage [L−1], Sw :::

Sw is relative saturation [−], h is pressure head [L], t is time [T], φ is

porosity [−], q is Darcy flux [L T−1], qr ::
qr is a source/sink term [T−1], z is elevation [L], v is the subsurface flow velocity

[L T−1], Ks(x)
:::::
Ks(x)

:
is the saturated hydraulic conductivity tensor [L T−1], and kr is relative permeability [−]. The van115

Genuchten relations (Van Genuchten, 1980) describe Sw and kr ::
Sw::::

and
::
kr:as a function of h in the unsaturated zone, with

parameters for air entry pressure α [L−1], pore size distribution n [−], and residual saturation Sres :::
Sres [−].

2.3.2 Boundary Conditions

Model boundary conditions are discussed in greater detail in Liu (2014) and Maples et al. (2019). The locations of domain

boundaries were chosen to simplify the assignment of boundary conditions for the flow model. The eastern boundary roughly120

coincides with the Sierra Nevada foothills, and the northern, southern, and western boundaries roughly coincide with local

surface water bodies (Fig. 1). A specified head boundary condition was applied for the eastern boundary to coincide with the

local groundwater head distribution estimated from local monitoring well data (Liu, 2014). A general head boundary of 0 m

amsl was set 1 km beyond the western boundary to approximate the Sacramento River and Sacramento-San Joaquin Delta

along the northwestern, and southwestern portions of the western boundary, respectively. No-flow boundary conditions were125

applied along northern, southern, and bottom boundaries because the regional groundwater flow direction is generally from

east to west.

Model spin up and recharge simulations used combinations of specified-flux and specified-head upper boundary condi-

tionsand are described in greater detail in subsequent sections.

2.3.3 Model Spinup and Calibration130

Model spinup and calibration are described in greater detail in Liu (2014) and Maples et al. (2019). To summarize, a 16-yr.

simulation period was used to bring the simulated hydrology into dynamic equilibrium. Water budget components, including

groundwater discharge, recharge and boundary flows along with facies hydraulic properties were estimated and adjusted

manually to simulate a realistic water budget, water table configuration, and vertical hydraulic gradients during the calibration

process.
:
. An initial potentiometric surface was specified using interpolated groundwater level data. Monthly estimated urban135

and agricultural groundwater pumping rates were applied as specified fluxes representing wells screened in lower portions of

the domain that coincide with typical screened intervals of municipal and agricultural pumping wells in the region. Dominant

sources of recharge for the region include stream recharge from the American River, Cosumnes River, and Deer Creek, as

well as deep percolation from agricultural and urban return flows. Weekly estimates of spatially-distributed river stage for

the streams were applied as specified heads along coincident land surface cells. Monthly estimates of urban and agricultural140

recharge volumes were applied as specified-flux boundary condition across the top of the domain to simulate deep percolation

of agricultural and urban return flows and to equilibrate soil moisture conditions in the near-surface UZ cells.
::::::::::::::
unsaturated-zone

::::
(UZ)

:::::
cells.
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2.3.3
:::::
Model

:::::::
Spinup

::::
and

::::::::::
Calibration

:::::
Model

::::::
spinup

::::
and

:::::::::
calibration

:::
are

::::::::
described

:::
in

::::::
greater

:::::
detail

::
in

::::::::::
Liu (2014)

:::
and

:::::::::::::::::
Maples et al. (2019).

:::
To

::::::::::
summarize,

:
a
::::::

16-yr.145

::::::::
simulation

::::::
period

::::
was

::::
used

::
to

:::::
bring

:::
the

::::::::
simulated

:::::::::
hydrology

::::
into

:::::::
dynamic

:::::::::::
equilibrium.

:::::
Water

::::::
budget

:::::::::::
components,

::::::::
including

::::::::::
groundwater

:::::::::
discharge,

::::::::
recharge

:::
and

:::::::::
boundary

:::::
flows

:::::
along

:::::
with

:::::
facies

::::::::
hydraulic

:::::::::
properties

:::::
were

:::::::::
estimated

:::
and

::::::::
adjusted

:::::::
manually

::
to
::::::::
simulate

:
a
:::::::
realistic

:::::
water

::::::
budget,

:::::
water

:::::
table

:::::::::::
configuration,

::::
and

::::::
vertical

::::::::
hydraulic

::::::::
gradients

::::::
during

:::
the

:::::::::
calibration

::::::
process.

:
Hydraulic properties for each facies category were calibrated manually (Table 2) and are consistent with the range of

literature values for the Central Valley, California, and for similar alluvial systems (Anderson et al., 2015; Botros et al., 2009;150

Fleckenstein et al., 2004; Frei et al., 2009; Maserjian, 1993; Niswonger and Fogg, 2008; Sager, 2012).

TABLE 2 ABOUT HERE.

All simulations were performed using the Cheyenne high-performance cluster at NCAR’s Computational and Information

Systems Laboratory (doi:10.5065/D6RX99HX). The numerical problem was distributed on 540 cores for each simulation.

Approximately 450 model evaluations were required for the exploratory simulations, local sensitivity analyses, and global155

sensitivity analyses described in subsequent sections, which required approximately 400,000 core-hours of computing time in

total. The large computational expense for each simulation (890 core-hours per simulation, on average) required that computa-

tionally resources be allocated efficiently.

2.4 Exploratory Simulations

2.4.1 Site Selection160

One hundred 1 km2 recharge sites, each encompassing 25 upper-boundary cells, were chosen to approximate hypothetical

MAR infiltration basins (Fig. 3a). Each site was randomly selected from a 910 km2 region within the domain that excluded

locations within 5 km of lateral domain boundaries to minimize the influence of boundary conditions. The 100 exploratory sites

encompass roughly 6% of the total domain area, which was deemed sufficient to sample the variability of site characteristics

observed across the domain. The size of each site was chosen to reflect a regional-scale MAR site, which range from large165

networks of basins >25 km2 in size (e.g., Kern Water Bank Authority, 2018) to individual infiltration basins over several

hectares or smaller (e.g., Beganskas and Fisher, 2017) in California.

2.4.2 Site Characteristics

Maples et al. (2019) highlighted that the (1) relative proportions, and degree of vertical interconnection, of coarse-texture facies

(sand and gravel) and (2) the unsaturated-zone thickness beneath recharge sites are important factors for recharge feasibility.170

In this study, we sought to develop site characteristics to describe recharge feasibility
:
at
:::

the
::::

100
::::::::::
exploratory

::::
sites

:
across the

domain, including approximations of how effective (i. e., upscaled) vertical Ks varies spatially. Here, .
:::::
First,

:
we use a heuristic

approach of simple averages to bound the expected range of upscaled vertical KS,
:::::::
effective

::::
(i.e.,

::::::::
upscaled)

:::::::
vertical

:::
Ks::

at
:::
all
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Figure 3. Plan view of the model domain, where the first row shows (a) Ksat of the uppermost model layer (i.e., the surface expression)

overlaid with the locations of 100 randomly-sampled 1-km2 exploratory recharge sites (red squares) randomly chosen from 910 potential

locations
::
as

:::
well

::
as

:::
the

:
4
::::

sites
::::::
chosen

::
for

::::::::
sensitivity

:::::::
analyses

::::
(q95,

:::
q75,

:::
q50,

::::
and

:::
q25;

::::
solid

:::::
violet

:::::::
squares),

:
along with (b) arithmetic, (c)

geometric, and (d) harmonic mean of vertical Ksat for unsaturated zone (UZ) facies (i.e., Kgeom, Karith, Kharm, respectively). The second row

shows (e) the coarse-texture (gravel and sand) fraction of UZ facies (UZcoarse), (f) simulated initial depth-to-water (WTD), and (g) Kgeom

multiplied by WTD (Kgeom×WTD). Locations >5 km from the lateral domain boundaries were excluded from the potential sites to avoid

interference with boundary conditions. (double-column width)

::::::
41,087

:::
x,y

:::
cell

::::::::
locations

::::::
across

:::
the

:::::::
domain,

:
where the arithmetic and harmonic mean (Karith and Kharm) are the upper and

lower bounds, respectively, and the geometric mean (Kgeom) is an intermediate value. Karith and Kharm are typically used to175

approximate groundwater flow parallel and perpendicular to layering, respectively, in anisotropic systems (Freeze and Cherry,

1979). This concept has been generally been extended to variably-saturated flow (Mualem, 1984; Assouline and Or, 2006)

::::::::::::::::::::::::::::::::::::::::::::::::::
(Mualem, 1984; Yeh et al., 1985a, b; Assouline and Or, 2006). Fogg et al. (2000) showed that vertical groundwater flow in
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systems with vertically-connected networks of permeable facies tends toward values between Karith and Kgeom. Values for
:::
For

::::
each

:::
x,y

:::
cell

:::::::
location

:::::
across

:::
the

:::::::
domain,

:
Karith, Kgeom, and Kharm for n vertically-coincident cells are given as:180

Karith =
K1 +K2 + ...+Kn

n
(3)

Kgeom = n
√
K1×K2× ...×Kn (4)

Kharm =
n

1
K1

+ 1
K2

+ ...+ 1
Kn

(5)

Site characteristics are described in detail in Table 3 and include upscaled Ks approximations Karith, Kgeom,and Kharm,

along with
:::::
where

::
n

::
is

:::
the

::::::
number

:::
of

:::::::::::::::::
vertically-coincident

::::
cells

::::
from

:::
the

::::
land

:::::::
surface

::
to

:::
the

:::::
initial

:::::
water

:::::
table

:::::
depth

::::
(i.e.,

:::
the185

::::::::::::::
unsaturated-zone

:::::
cells)

::
for

:::::
each

:::
x,y

:::
cell

::::::::
location.

::
In

::::::::
addition,

:::
the initial unsaturated-zone thickness (WTD) ,

:::
and proportion

of coarse-texture sand and gravel unsaturated-zone facies (UZcoarse) , and proportion of coarse-texture facies at land surface

(Surf coarse). Each site characteristic was calculated for a control volume encompassing vertically-coincident cells from the land

surface to the initial water table depth for each site. For the purposes of this work,the interface of the deeper aquifer system was

designated as the initial water table depth (WTD). Additional site characteristics were developed by combining existing site190

characteristics
::
at

::::
each

:::
x,y

:::
cell

:::::::
location

::::::
across

:::
the

::::::
domain

::::
were

::::::::
included

::
as

:::::::
metrics.

:::::::::
Additional

::::::
metrics

::::
were

:::::::::
developed

:::
for

::::
each

:::
x,y

:::
cell

:::::::
location

::
by

:::::::::
combining

:::::::::
individual

::::::
metrics, i.e.,WTD was used as a multiplier forKarith,Kgeom,Kharm, Surf coarse, and

UZcoarse. Spatial distributions of select site characteristics
::::::
metrics

::
at

::
all

:::
x,y

:::
cell

::::::::
locations

:
are shown in Fig. 3.

TABLE 3 ABOUT HERE.

:::
Site

::::::::::::
characteristics

:::::
were

::::::::
calculated

:::
for

:::
the

::::
100

:
1
::::
km2

::::::::::
exploratory

::::
sites

:::::
from

::::
these

:::::::
metrics

::
by

:::::::::::
determining

:::
the

::::::
average

::::
and195

::::::::
maximum

:::::
value

::
of

::::::
Karith,

::::::
Kgeom,

:::
and

::::::
Kharm :::

for
:::
the

::
25

:::
x,y

::::
cell

::::::::
locations

::::::::::::
encompassing

::::
each

::::
site.

::
In

::::::::
addition,

:::
the

:::::::::
proportion

::
of

::::::::::::
coarse-texture

:::::
facies

::
at

::::
land

::::::
surface

:::::::::::
(Surfcoarse)

:::::
were

::::::::
calculated

:::
for

:::::
each

::::
site.

:::
Site

::::::::::::
characteristics

:::
are

:::::::::
described

::
in

:::::
detail

::
in

:::::
Table

::
3. Each site was further evaluated according to whether there was vertical connectivity (i.e., percolation) of coarse-

texture facies from land surface into the deeper
:
to

:::
the

:
aquifer system. Interconnection was

:::::::::
Percolation

::::
was

::::::::
evaluated

:::
for

::
a

::::::
control

::::::
volume

::::::::::::
encompassing

:::
all

::::
cells

:::::
from

:::
the

::::
land

:::::::
surface

::
to

:::
the

:::::
initial

:::::
water

:::::
table

:::::
depth

::::
(i.e.,

:::::::::::::::
unsaturated-zone

:::::
cells)

::
at200

::
the

:::
25

:::
x,y

:::
cell

::::::::
locations

::::::::::::
encompassing

::::
each

::::
site.

::::::::::
Percolation

:::
was

:
defined within each site control volume by a 6-connectivity

metric (Pardo-Iguzquiza and Dowd, 2003), in which neighboring gravel and sand cells are said to be connected if they intersect

along a face. Coarse-texture facies were said to percolate if any combination of gravel and sand facies were interconnected

vertically within the control volume from land-surface to the initial water table.
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2.4.3 Recharge Scenarios and Model Post-Processing205

To evaluate the system response to recharge stress and recovery, 90-day recharge scenarios were run individually at each site,

wherein recharge was simulated during the initial 30-day period followed by a 60-day recovery period. Surface ponding was

approximated by a specified head boundary condition representing 10 cm of ponding at the 25 upper-boundary cells coincident

with each recharge site, with no recharge specified for the remaining upper-boundary cells. An additional simulation was run

in which no recharge was specified for all upper-boundary cells, i.e., as a no-recharge scenario. The initial condition for all210

recharge and no-recharge scenarios was the h distribution from the end of the model spin up. Results were output at 5-day

intervals for all simulations.

Following Maples et al. (2019), recharge responses were isolated from other model stimuli by differencing h, and total

subsurface water storage (TSS) from each colocated cell at each timestep, in each recharge and no-recharge simulation.

In this way, perturbations in h and TSS result from the recharge stress alone, while other stimuli, including transient model215

response to regional boundary condition effects, are eliminated. For each simulation, h perturbations were evaluated at a 10-cm

threshold. Domain-wide perturbations in h and TSS from recharge stress were evaluated for all 100 recharge simulations
::::
sites

at t= 30 days to calculate the volumetric extent of subsurface pressure perturbation, P 30d [L3], and the effective recharge rate,

R30d [L T−1], respectively, at the end of the 30-day recharge stress period for each site. Similarly, domain-wide perturbations

in TSS were evaluated at t= 90 days and were further delineated according to whether the change-in-storage occurred in fine-220

texture (muddy sand and mud) or coarse-texture (sand and gravel) facies, so that the proportion of the total recharge volume

accommodated by fine-texture facies, V fines, 90d [−], could be evaluated. Previous work has highlighted the importance of fine-

texture facies for accommodating recharge, especially during late time (e.g., Maples et al., 2019). All model outputs used for

subsequent analyses are shown in Table 3.

2.4.4 Relations between Site Characteristics and Recharge Potential225

To better understand the relationships between site characteristics (variables
::::::::
predictors) and model outputs (predictors

::::::::
variables),

correlations (Pearson’s r, Spearman’s rho, and Kendall’s tau) were evaluated between all variable and predictor pairs across all

100 sites. Variables and predictors are described in Table 3. The purpose of evaluating correlations between variables and pre-

dictors was to determine if any site characteristics could be used to reasonably predict model outputs with empirical relations.

Log10 data transformations were selectively performed on variables and predictors to improve normality prior to calculation of230

Pearson’s r. Transformations were not performed for Spearman’s rho and Kendall’s tau, as neither require normal distributions

for prediction.

2.4.5 Development of a Geologic Proxy Parameter for Recharge Potential

To incorporate descriptions of geologic configuration in sensitivity analyses of recharge potential, development of a geologic

proxy parameter (GPP ) was required. Correlations between select variables (R30d, P 30d, and V fines, 90d) and predictor pairs235

described in section 2.4.4 were ranked, and a GPP was determined for each by developing empirical regression relations
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between those variables and the highest ranked predictor. Unlike other parameters, the GPP cannot be directly varied at each

site, and instead was approximated either with linear regression of recharge response and GPP , or by relocating the recharge

site within the domain to a location with the corresponding GPP . Previous studies have shown the importance of geologic

heterogeneity on MAR feasibility (e.g., Maples et al., 2019), and the novel proxy parameter methodology described here is240

analogous to a transfer function (e.g., Wösten et al., 2001), in that it describes the influence of complex geologic heterogeneity

on recharge processes with relatively easily-derived site characteristics. By using this approach in sensitivity analyses, we are

able to both capture this geologic complexity and also reduce the overall computational expense, albeit with some predictive

uncertainty related to the regression relations.

2.5 Sensitivity Analyses using Fit-Independent Statistics245

Realistic ranges of model parameters describing eight
:::
six hydraulic properties for four facies types (n= 24 model parameters)

are shown in Table 4 along with an estimated range of GPP . Ranges for model parameters were chosen from literature values

for the Central Valley California, and for similar alluvial systems (Anderson et al., 2015; Botros et al., 2009; Fleckenstein

et al., 2004; Frei et al., 2009; Maserjian, 1993; Niswonger and Fogg, 2008; Sager, 2012). Model parameters were assumed to

be distributed uniformly within each of these ranges for simplicity. The range ofGPP was determined from the range observed250

from the 100 exploratory sites described in section 2.4. The distribution GPP was observed to be approximately log-normal,

so a Log10 data transformation was performed for subsequent sensitivity analyses.

TABLE 4 ABOUT HERE.

All sensitivity scenarios were initialized with the h distribution from the end of the model spin up and were simulated and

post-processed following the approach outlined in section 2.4.3. In this way, each scenario required two simulations be run with255

the same parameter sets (i.e., a recharge and no-recharge simulation) which were then differenced to isolate recharge stresses

from other model stimuli, including transient model responses to changes in parameter values.

2.5.1 Local Sensitivity Analyses

Parameter sensitivities were evaluated locally using the dimensionless-scaled sensitivity (DSS) and composite-scaled sensitiv-

ity (CSS) metrics, which are computationally-frugal screening methods used to compare the relative importance of different260

parameters to the estimation of a simulated model output (Hill and Tiedeman, 2007).DSS for simulated output i and parameter

j are calculated as

DSSij =

(
∂y

′

i

∂bj

)∣∣∣∣
b
|bj |ω1/2

ii (6)

where y
′

i is the ith simulated output, bj is the jth estimated parameter, ∂y
′

i/∂bj is the derivative (i.e., the sensitivity) of the

simulated output with respect to the jth parameter, b is the vector of parameter values at which sensitivities are evaluated, and265
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ω
1/2
ii is the weight of the ith simulated output. For this work, simulated outputs P 30d, R30d, V fines, 90d were weighted equally at

unity.

Composite-scaled sensitivities (CSS) were calculated to estimate the total amount of sensitivity provided by each parameter

across multiple sites and for multiple model outputs

CSSj =

n∑
i=1

[
(DSSij)

2
∣∣
b/n

]1/2
(7)270

where DSSij is from equation 6, and n is the total number of simulated outputs i associated with parameter j.

DSS were estimated for select model outputs R30d, P 30d and V fines, 90d (Table 3) by perturbing each hydraulic-property

parameter (n= 24) by 10% of its total range (Table 4). Results from the exploratory simulations show that recharge response

is highly dependent on site choice, so DSS was evaluated at four representative sites which span a large range of recharge

potential. Each of the four representative sites were chosen to correspond with the 25th, 50th, 75th and 95th percentile of275

recharge potential, as estimated by GPP . These sites are hereto referred to as q25, q50, q75, and q95, respectively. A total of

96 model evaluations were required to estimateDSS on the three model outputs (R30d, P 30d and V fines, 90d) for all 24 parameters

(Table 4) at these four sites. To incorporate GPP in DSS analyses, an approach was developed using the predictive regression

relation between GPP and R30d. For example, DSS require perturbation of a parameter (i.e., ∂bj) by a percentage of the

parameter range (e.g., by 10%). A corresponding 10% perturbation in R30d (i.e., ∂y
′

i) was approximated using the predictive280

regression relation between GPP and R30d rather than by performing an additional model evaluation.

CSS were calculated for R30d, P 30d and V fines, 90d (Table 3 by combining DSS estimates for each model output across sites

q25, q50, q75, and q95 for each of 24 model parameters. The same approach was used to calculated CSS for GPP , but was

only estimated for R30d and not for P 30d and V fines, 90d.

2.5.2 Global Sensitivity Analyses285

A measure of global sensitivity was provided by the method of Morris (1991), which relies on the calculation of elementary

effects, i.e., local derivatives sampled one-at-a-time (OAT) on a grid that covers the parameter space. The method of Morris

creates a trajectory through the parameter space by perturbing each parameter xj along a grid by a step ∆j . A sequence of p

perturbations is required to obtain a one trajectory for a model with p parameters. For each trajectory, the elementary effect for

a single parameter, EEj , is calculated as the ratio of the perturbation in model output to the perturbation of the parameter290

EEjj =
f(x1, ...,xj + ∆j, ...,xp)− f(x)

∆j

f(x1, ...,xj + ∆j , ...,xp)− f(x)

∆j
::::::::::::::::::::::::::

(8)

where f(x) is the evaluation of the function at the prior point in the trajectory. Calculating the elementary effects for p parame-

ters using a single trajectory requires p+ 1 model evaluations. Because the elementary effect for any single trajectory does not

account for interactions between parameters and depends strongly on the location of the initial point, x, in the parameter space,
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the method of Morris performs the OAT approach over multiple trajectories, N , within the parameter space using a factorial295

sampling approach. A variation of the original approach was employed to resolve issues related to opposite signs of elementary

effects affecting the calculation of total-order sensitivity (Campolongo et al., 2007), in which the total-order sensitivity of each

parameter, µ∗j , was calculated as the mean of the absolute values of N elementary effects

µ∗j =
1

N

N∑
k=1

∣∣EEk
j

∣∣ (9)

Unlike DSS approaches, the method of Morris required significantly greater computational resources for an equivalent300

number of parameters, so a sub-set of three parameters were included in the Morris approach. Results from local sensitivity

analyses suggest that Ks and GPP are relatively important parameters for recharge potential. .
:

Computational expense was

further reduced by pairing parameters, i.e., Ks of gravel and sand, and of muddy-sand and mud, effectively reducing these four

parameters into two describing ’coarse-’ and ’fine-texture’ facies, respectively. By pairing parameters, Ks of gravel and sand

(and of muddy sand and mud) are perturbed within their respective parameter ranges together, reducing the total number of305

parameters from five to three
:
.
::
In

:::::
total,

::::
three

:::::::::
parameters

:::::
were

:::::::
included

::
in

:::
the

::::::
Morris

:::::::::
approach,

::::::::
including

:::
Ks ::

of
::::::::::::
coarse-texture

:::::
facies,

:::
Ks::

of
::::::::::

fine-texture
::::::
facies,

:::
and

::::::
GPP . Sensitivity indices were calculated using a sample size of N = 20, resulting in a

total of 80 model evaluations. Herman et al. (2013) demonstrated that the method of Morris with N = 20 trajectories produced

similar sensitivity results to the Sobol’ method (Sobol, 2001) with >2 orders-of-magnitude fewer model evaluations.

To further reduce the computational expense, the total simulation time was reduced from 90 to 10 days, during which310

recharge was applied for the entire simulation. Sensitivity indices, Morris µ∗j , were only evaluated with respect to the effective

recharge rate at the end the 10-day simulation period, R10d [cm d−1]. Morris µ∗j was not evaluated with respect to other model

outputs describing pressure perturbation or volume of recharge accommodated by fines because GPP was determined to be

an inadequate predictor of these model outputs.

To incorporate GPP in the Morris framework, a novel approach was developed in which the location of the sampling site315

was varied to correspond with the requisite GPP parameter choice. For example, if a hypothetical sensitivity analysis required

evaluation of the model with GPP at the 50th quantile (q50; i.e., the median value), the model would be run using the site

with the nearest corresponding GPP value from the 100 exploratory sites described in section 2.4. In this way, the variability

of GPP as identified in the exploratory simulations can be sampled directly by simply varying the location of the recharge site

within the domain. The Morris approach was implemented with open-source library developed by Herman and Usher (2017).320

3 Results and Discussion

3.1 Exploratory Simulations

Results from the exploratory simulations at the 100 selected sites show a wide range of R30d, P 30d, and V fines, 90d across sites

(Fig. 4). R30d varied over 2 orders of magnitude and were non-normally distributed, with a maximum, minimum, and mean
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value of 66.4
::
cm

:::
d-1, 0.5

:::
cm

:::
d-1, and 8.6 cm d-1. P 30d were similarly non-normally distributed and also showed a large range,325

varying over 4 orders of magnitude. Maximum, minimum, and mean P 30d were 1.6 × 105
::
m3, 33

::
m3, and 1.9 × 103 m3,

respectively. These results highlight that a small number of sites have outsize recharge potential compared with most of the

landscape. R30d and P 30d were positively correlated (r > 0.70), indicating that these recharge benefits are physically related.

The proportion of recharge accommodated by fine-texture facies (V fines, 90d) also showed large variability across sites, ranging

from 0.13 to 1.00, with a mean value of 0.69. The high proportion of V fines, 90d observed here is consistent with previous330

findings that suggest that fine-texture facies are the largest reservoir for MAR in this aquifer system (Maples et al., 2019).

V fines, 90d was negatively correlated with both R30d and P 30d (r > 0.70
::::::::
|r|> 0.70), which indicates that when interconnected,

coarse-texture pathways are present, a greater proportion of MAR is accommodated in the coarse-texture aquifer system.

3.1.1 Influence of Coarse-Texture Connectivity

Of the 100 exploratory sites, 23 were shown to have interconnected coarse-texture gravel and sand facies from land surface335

to the initial water table depth. R30d, P 30d, and V fines, 90d were parsed according to whether they were interconnected (Fig.

4). Results show that mean R30d and P 30d were 2.2× and 2.3× greater, respectively, for interconnected sites than for non-

interconnected sites (14.7 vs
:::
cm

:::
d-1

:::
vs.

:
6.7 cm d-1, and 1.6×104

::
m3

:
vs. 6.9×103 m3, respectively). Mean V fines, 90d were

1.3× greater for non-interconnected sites than for interconnected sites. Distributions of R30d and P 30d for interconnected

and non-interconnected sites differed significantly according to the two-sample Kolmogorov-Smirnov test. Interconnected and340

non-interconnected distributions of V fines, 90d were not significantly different.

These results indicate that sites with interconnected coarse-texture facies have greater R30d and P 30d potential. However,

this metric is not entirely diagnostic of recharge potential. As shown in Fig. 4a,b, some interconnected sites exhibited low

R30d and P 30d. This is likely because some interconnected sites with shallow water table depths have limited unsaturated

pore volume to accommodate large recharge volumes. In addition, the interconnection metric described herein only describes345

vertical interconnection of coarse-texture facies for unsaturated-zone cells that are vertically coincident with the recharge

site, and does not consider whether these coarse facies connect with the greater aquifer network outside of the unsaturated-

zone control volume. Results also show that some seemingly disconnected sites have large recharge potential. Indeed, the

interconnection metric described here does not account for any lateral interconnection from land surface to the greater aquifer

network, which could explain this behavior. In reality, the simplified estimator of connectivity used here likely underestimates350

the number of interconnected sites.

3.2 Recharge Metrics

3.2.1 Correlation Matrices

A matrix of correlations (
::::::
absolute

:::::
value

:::
of Pearson’s r) of pairs of site characteristics and simulated outputs for the 100

exploratory simulations was generated to better understand the relationships between variables (Fig. 5).
::::::::
Simulated

::::::
outputs

:::::
R10d,355

::::
R30d,

::::
and

::::
P 30d ::::

were
::
all

::::::::
positively

:::::::::
correlated

::::
with

::
all

::::::::
simulated

:::::::
outputs,

:::::
while

::::::::
V fines, 90d :::

was
::::::::
generally

::::::::
negatively

:::::::::
correlated

::::
with
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Figure 4. Box plots of the (a) 30-day average recharge rate, R30d and (b) 30-day pressure perturbation area of influence, R30d for all

exploratory simulations (n= 100). Additionally, sites were parsed according to whether there was vertical interconnection of coarse-texture

facies from land surface to the initial water table depth (i.e., interconnected sites, n= 23), or whether sites did not have interconnection of

coarse-texture facies (i.e., disconnected sites, n= 77).
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Figure 5. Correlations (
::::::
absolute

::::
value

::
of
:
Pearson’s r) for all combinations of site characteristics and model outputs. Correlations among site

characteristics are bounded by a solid red box, and correlations between site characteristics and model outputs are bounded by a dashed red

box.

::::::::
simulated

:::::::
outputs. Strong correlation (r > 0.70

::::::::
|r|> 0.70) was observed for 6 of 52 pairs of site characteristics and simulated

outputs. Strong correlation was also observed among many site characteristics and among the majority of simulated outputs

(i.e, collinearity), which can make the choice of an optimal proxy parameter more challenging. Site characteristics that include

Kharm were not shown in the correlation matrix because we were not able to improve normality of the distribution these data360

with a Log10 data transformation; however, additional correlation metrics (Fig. 6) indicate that site characteristics that include

Kharm may also be strongly correlated.

3.2.2 Ranked Correlations

Additional correlation metrics (Pearson’s r, Spearman’s rho, and Kendall’s tau) between R30d and site characteristics were

ranked and are shown in Fig. 6. Results show that site characteristics that include some variation ofKarith,Kgeom, orKharm were,365

in general, more correlated withR30d than site characteristics that only includeWTD,UZcoarse, and Surf coarse.Kgeom×WTD

was, on average, most correlated with R30d.

In general, site characteristics that includedKgeom andKharm were slightly more correlated withR30d than site characteristics

that included Karith. We speculate that this behavior is related to the dominantly vertical flow direction of recharge across
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Figure 6. Ranked correlations (Pearson’s r, Spearman’s Rho, and Kendall’s Tau) of site characteristics with 30-day average recharge rate

(R30d). †Pearson’s r was not evaluated for site characteristics where the normality of the distribution could not be improved with a Log10

data transformation.

typically horizontal facies configurations. Previous work has shown that Kgeom and Kharm best describe upscaled K for these370

flow configurations in this domain (Yunjie Liu, personal communication; Fogg, 1986).

Interestingly, site characteristics that included only WTD, UZcoarse, and Surf coarse were poorly correlated (r < 0.20) with

R30d. This finding has important implications for determining MAR site suitability because many GIS-derived indices of

recharge suitability rely solely on soil and/or surface geology to determine geologic suitability for recharge. These results

suggest that even more detailed geologic descriptions that estimate deeper fractions of coarse-texture facies may not fully375

capture recharge potential. Instead, metrics that include some description of upscaled vertical K appear to be most diagnostic

of recharge potential.

3.3 Recharge Extrapolation

The relation between site-averaged Kgeom×DTW and R30d was determined to be the best predictor and was used to predict

R30d for subsequent sensitivity analyses by treatingKgeom×DTW as aGPP (Fig. 7a). The linear regression relation between380

Kgeom×DTW and R30d was highly significant (p < 0.01), and correlation coefficients (r2) showed that empirical regression

explained 70% of the variation in the data. Linear regression relations for Kgeom×DTW and P 30d and V fines, 90d were deemed

insufficient for prediction (r2 < 0.40) and were not incorporated in sensitivity analyses.
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Figure 7. (a) Relation
::::::::
Regression

::::::
relation between the geologic proxy parameter (Kgeom×WTD) , and the 30-day average recharge rate

(R30d) for all exploratory simulations
:::::
shown

::::
with

::
a

::::
solid

::::
black

::::
line, where dashed lines indicate the

::::
upper

:::
and

:::::
lower

:
95% confidence

interval
:::::::
intervals. (b) The relation is shown with Kgeom×WTD on a Log10 scale, where red circles indicate the original and perturbed sites

at which dimensionless scaled sensitivity (DSS) was estimated. (c) The inset illustrates the procedure for estimating the perturbed site (e.g.,

q75*) from the original site (e.g., q75) for DSS, using the regression relation, where ∂y′i is the change in Kgeom×WTD and ∂bj is the

estimated corresponding change in R30d.

Domain-wide Kgeom×WTD was converted to R30d using the predictive relation described above (Fig. 8). Results show that

84% of the domain hasR30d potential <10 cm d-1, while 6% of the domain hasR30d potential >25 cm d-1, and a small portion of385

the domain has R30d potential >150 cm d-1. These results show a large contrast between locations with high recharge potential

and those with low recharge potential which supports previous findings indicating that a small fraction of the landscape has

recharge potential that is orders-of-magnitude greater than the rest of the landscape (Maples et al., 2019; Fleckenstein et al.,

2006). Deposition of IVF within the domain area has been documented by Meirovitz (2010) and explains the presence of these

high recharge potential locations.390
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3.4 Sensitivity Analyses

3.4.1 Local Sensitivity Analyses

GPP perturbations to estimate DSS for sites q25, q50, q75, and q95 using predictive regression relations are are illustrated

in Fig. 7b,c. DSS and CSS results for each model parameter and GPP with respect to R30d is shown in Fig. 9. DSS results

(Fig. 9a) show that for low recharge potential sites q25 and q50, Ks of mud and muddy sand facies were the most sensitive395

parameters with respect to R30d. For high recharge potential sites q75 and q95, GPP was the most sensitive parameter. These

findings demonstrate that Ks of fine-texture facies is the dominant driver of recharge potential for low recharge potential sites

and the configuration of facies and water table depth is relatively less important. However, for high recharge potential sites,

which presumably have a higher proportion of coarse-texture facies, the configuration of facies and water depth becomes the

dominant driver of recharge potential. In general, DSS of all parameters were greater for sites with higher recharge potential400

than for sites with low recharge potential.

CSS results for R30d (Fig 9b) show that, in general, GPP was the most sensitive parameter for R30d when aggregated

across all 4 sites. In general, Ks and φ were also sensitive with respect to R30d. It is unsurprising that /phi is sensitive to R30d

because specific yield (Sy), which is not explicitly parameterized in ParFlow, is closely related to φ. Moreover, Maples et al.

(2019) showed that the majority of recharge volume in this alluvial system is accommodated by filling unsaturated-zone pore405

volume, which is controlled primarily by Sy, and by association in this model, by φ. Empirical fitting parameters describing
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unsaturated-zone texture and soil water retention, α, n, and Sres, were relatively insensitive, especially for sites q75 and q95.

This suggests that while unsaturated pore volume is important for recharge, the unsaturated flow processes are not particularly

important, at least when considering infiltration of ponded water, which typically allows for rapid wetting-front advancement

through the unsaturated zone, especially for high recharge potential sites. Results suggest that saturated storage properties, i.e.,410

Ss, were also relatively unimportant. This likely because most recharge volume is accommodated by filling unsaturated pore

volume, and is thus more dependent on φ (and Sy) than on Ss.

Normalized DSS for sites q25, q50, q75, and q95, and normalized CSS for all sites are shown in Fig. 10. DSS were scaled

to the range [0,1] (i.e., normalized) for each group of parameters for a given site and a given model output. For example, all

DSS values at q25 forR30d were normalized to the maximum value ofDSS for that group of parameters. CSS were similarly415

scaled for each group of parameters for given model output. Because DSS and CSS values are influenced by the units of each

model output, normalization allows for comparison of their relative magnitudes between model outputs. Results show similar

sensitivity importance for each model output, wherein Ks and φ are generally the most sensitive parameters, while Ss, α, n,

and Sres are all relatively unimportant,
::::::
except

:::
for

::
n

::
of

::::
q95

:::
for

::::::::
V fines, 90d,

:::::
which

::::
was

::::::
shown

::
to

::
be

:::::::::
important. DSS and CSS

of GPP were not evaluated for P 30d and V fines, 90d because regression relations between site characteristics and these outputs420

were generally poor compared to those for R30d, as noted in section 3.3.

DSS and CSS results for GPP demonstrate the novel usage of empirical regression relations in a local sensitivity analysis

framework. By perturbingGPP in this way, constancy of other parameters can be maintained in a way that would be otherwise

difficult if GPP was perturbed by changing the location of the recharge site. Performing local sensitivity analyses at multiple

sites spanning a range of recharge potential allowed for comparison ofDSS sensitivities across sites and highlights differences425

of parameter sensitivities for low- and high-recharge potential sites. Our findings demonstrate that (1) facies permeability

and unsaturated-zone storage properties are important factors for recharge potential, and (2) the configuration of subsurface

geology and water table depth is particularly important for the total recharge volume that can be accommodated at a particular

site, especially for high recharge potential sites.

3.4.2 Global Sensitivity Analyses430

Results from global sensitivity analyses are shown in Fig. 11. Morris µ∗ values indicate that GPP is the most sensitive

parameter when compared with Ksat of coarse- and fine-texture facies. These results are consistent with findings from local

sensitivity analyses which also showed that GPP was the most important parameter with respect to R30d. Unlike DSS and

CSS results, which compared GPP against model parameters for each facies, Morris analysis combined Ks parameters for

coarse- and fine-texture facies which, in turn, increased the influence of those parameters on R30d relative to GPP . Even so,435

results indicate that GPP is the most important parameter with respect to R30d. These results further highlight the importance

of the configuration of subsurface geology and water table depth for groundwater recharge potential.

Morris results demonstrate a novel incorporation of GPP within a global sensitivity analysis framework, and was unique

as compared to incorporation of GPP in local sensitivity analyses described in section 3.4.1. Unlike the local methods, which

used an empirical relation to incorporate an estimate of GPP sensitivity, the method used for the Morris approach directly440
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Figure 9. (a) Dimensionless scaled sensitivities (DSS) evaluated for each model parameter and model outputR30d at sites q25, q50, q75, and

q95, and (b) composite scaled sensitivities (CSS) evaluated for each parameter and model output at all sites. DSS and CSS of parameters

were scaled to the range [0,1] (i.e., normalized). †DSS and CSS values below 0.001 are not shown.

varied GPP within the parameter space by moving the recharge site to the location with the requisite GPP parameter value.

Unlike the local approaches, which required constancy among all other parameters as each parameter is perturbed and thus

required usage of an empirical relation to perturb GPP , the Morris approach varies all parameters globally, which allowed for

GPP to be included explicitly within the approach. Consistency of the results of the local and global approaches despite these

methodological differences for incorporating GPP highlights the robustness of these findings.445

21



R30d

P30d

0.8

0.6

0.4

0.2

1.0

0.0

0.8

0.6

0.4

0.2

1.0

0.0

0.8

0.6

0.4

0.2

1.0

0.0

fines, 90dV

GPP

 gr
av

el 
K s

 sa
nd

 K s

 m
ud

dy
 sa

nd
 K s

 m
ud

 K s

 gr
av

el 
Ss

sa
nd

 Ss

mud
dy

 sa
nd

 Ss

mud
 Ss

 gr
av

el 
α

  s
an

d α

 m
ud

dy
 sa

nd
 α

 m
ud

 α

 gr
av

el 
n

 sa
nd

 n

mud
dy

 sa
nd

 n
mud

 n

 gr
av

el 
S res

sa
nd

 S res

mud
dy

 sa
nd

 S res

mud
 S res

  g
rav

el 
φ

 sa
nd

 φ

 m
ud

dy
 sa

nd
 φ

   m
ud

 φ

†

†

‡

no
rm

al
iz

ed
 D

S
S

, C
S

S

(a)

(b)

(c)

normalized DSS, q25
normalized DSS, q50
normalized DSS, q75
normalized DSS, q95
normalized CSS, all sites

Legend

Figure 10. Normalized dimensionless scaled sensitivities (DSS) evaluated for each model parameter and model outputs (a) R30d, (b) P 30d,

and (c) V fines, 90d at sites q25, q50, q75, and q95, and normalized composite scaled sensitivities (CSS) evaluated for each parameter and

model output at all sites. DSS and CSS of parameters were scaled to the range [0,1] (i.e., normalized). †DSS and CSS of GPP were not

evaluated for P 30d and V fines, 30d. ‡DSS and CSS values below 0.01 are not shown. (double-column width)

4 Discussion

Sensitivity analyses are a fundamental diagnostic tool to provide insight into the relative importance of the parameterization

of aquifer properties among other inputs in complex hydrologic models (Saltelli et al., 2004). Sensitivity analyses can be

broadly categorized as local or global methods, where local methods provide sensitivity evaluation at a single location in the

parameter space (Hill and Tiedeman, 2007), while global approaches explore sensitivities throughout a multi-dimensional pa-450

rameter space (Saltelli et al., 2008). Many studies have shown the diagnostic utility of local approaches (e.g., Foglia et al.,

2009); however, local approaches are generally less robust than global approaches, especially for non-linear models (Saltelli

et al., 2008). On the other hand, global methods are typically orders of magnitude more computationally expensive than local

approaches. Many studies have evaluated sensitivity of diffuse recharge in hydrologic and landscape models (e.g., Hartmann

et al., 2017; McCallum et al., 2010). Other studies have evaluated sensitivities related to subsurface heterogeneity and per-455
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meability upscaling in variably-saturated flow models (e.g., Gilbert et al., 2016; Foster and Maxwell, 2019; Srivastava et al.,

2014) and on MAR specifically (e.g., Rahman et al., 2013; Heilweil et al., 2015), but to our knowledge, this is the first study

to use a 3-dimensional variably-saturated water flow code with a detailed representation of geologic heterogeneity to evaluate

the importance of hydraulic properties and geologic configuration on MAR dynamics with a combination of local and global

sensitivity analyses.460

Our approach includes novel incorporation of geologic architecture as a geologic proxy parameter (i.e., GPP ). Of the many

approaches to develop a GPP of recharge potential from descriptions of subsurface geologic and hydrologic characteristics,

our results show that a GPP which combines metrics related to upscaled vertical Ks and unsaturated zone thickness was most

diagnostic of recharge potential. In addition, results from local and global sensitivity analyses indicate that thisGPP is equally

or more important as characterizing the hydraulic properties of any particular facies for recharge potential. Consistency among465

results for both local and global approaches shows that these findings are reasonably robust and highlights the importance of

accurately characterizing the subsurface configuration of coarse-texture facies in clastic sedimentary aquifer systems. While a

GPP was shown to be the most important parameter with both approaches, we also show that parameters related to unsaturated-

zone storage and facies permeability (i.e., φ and Ks, respectively) were also important for MAR. In contrast, we show that

parameters related to unsaturated-zone geologic texture and soil water retention, along with saturated-zone storage properties470

(i.e., α, n, Sres, and Ss) were relatively unimportant. We speculate that these parameters are relatively unimportant because our

simulations typically showed that surface ponding initiated rapid downward wetting-front advancement through the unsaturated

zone, quickly developing fully saturated conditions from land surface to the water table. In systems dominated by diffuse

recharge, these parameters may be more sensitive.

Findings presented here for a semi-confined alluvial aquifer system show large spatial variability of recharge rates that are475

dependent primarily on subsurface geologic configuration. we show that select locations in the domain area are capable of
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accommodating orders-of-magnitude greater recharge benefit than would be possible over the rest of the landscape. These

findings are consistent with previous studies that indicate that favorable site characteristics, including connect networks of

coarse-texture IVF, are present in the American-Cosumnes River area of the Central Valley, California (Meirovitz, 2010;

Maples et al., 2019), but likely occur over a small fraction of the domain area. Other studies have shown that IVF deposits480

occur elsewhere in California’s Central Valley (e.g., Weissmann et al., 2005) and in other major river fans that drain high-

elevation, glacially-influenced catchments (e.g., Pierce and Scott, 1983). Identifying sites that can accommodate large MAR

volumes during short windows is especially valuable in places like California, where excess surface water available for recharge

typically occurs from a few precipitation events (Dettinger et al., 2011) during short (< 10 day) windows (Kocis and Dahlke,

2017).485

Our results show that cursory investigations of soil or surficial geology are likely insufficient to adequately characterize

MAR favorability. Instead, our findings indicate that more thorough investigations of subsurface geologic architecture and

aquifer configuration are needed to accurately characterize MAR feasibility. We found that metrics that consider the geologic

configuration of facies and provide some measure of upscaled vertical Ks are the best predictors of recharge feasibility. We

show that connectivity metrics that determine whether coarse-texture facies interconnect from land surface to the saturated490

zone are also helpful, but not fully diagnostic of recharge potential. Interestingly, our results show that metrics describing

unsaturated-zone thickness, fraction of coarse-texture facies at land surface, and fraction of coarse-texture unsaturated-zone

facies are insufficient when each is considered alone. This finding has important implications because several GIS-derived

metrics of recharge potential describing recharge suitability of surficial soils have been developed for California and elsewhere

(O’Geen et al., 2015; Adham et al., 2010; Ghayoumian et al., 2007). We consider these products as valuable, albeit incomplete495

metrics that are likely complemented by more detailed investigations of deeper subsurface geologic architecture.

:::::::
Existing

:::::
MAR

:::::
siting

::::::
efforts

::
in

:::::::::
California

::::
have

:::::::
mostly

:::::
relied

:::
on

:::::::
surficial

:::::::
mapping

::::::
rather

::::
than

:::::::::::::
characterization

:::
of

::::::
deeper

::::::::::::::
three-dimensional

:::::::::
subsurface

::::::::
geologic

::::::::::
architecture

::::::
because

:::::
these

:::::::
complex

:::::::::
subsurface

::::::::::::
investigations

:::
are

:::::::
typically

:::::::::::
prohibitively

:::::
labor-

:::
and

::::::::::::
cost-intensive.

:::
In

:::
the

::::
past,

:::::
these

:::::::::
subsurface

::::::::::::
investigations

:::::
relied

::::::::
primarily

:::
on

::::::::
gathering

:::
and

::::::::::
interpreting

::::::::
geologic

::::::
texture

::::
from

:::::::
typically

::::::
sparse

:::::::
well-log

::::
data.

::::::::
However,

::::::::
emerging

::::::::::
geophysical

:::::::::
approaches

:::::
using

:::::::
airborne

::::::::::
time-domain

::::::::::::::
electromagnetic500

:::::::
methods

::::::::::::::::::::::
(AEM; Knight et al., 2018)

:::
and

::::::::::::
ground-based

:::::::
transient

:::::
towed

:::::::::::::
electromagnetic

:::::::
methods

:::::::::::::::::::::::::::::::::::::::::::::
(tTEM; Behroozmand et al., 2019; Auken et al., 2018)

::
are

:::::::::
promising

::::
new

::::::::::
approaches

::
to

:::::::
directly

:::::
image

::::::::::
subsurface

:::::::
geologic

:::::::
texture.

::::
Pilot

::::::
studies

:::::
have

::::::
shown

:::
the

:::::::
efficacy

::
of

:::::
these

:::::::::
approaches

:::
for

:::::::
mapping

:::::::
geologic

::::::
texture

:::
up

::
to

:::
500

::
m

::
in

:::::
depth

::
to

::::::::
efficiently

:::::::
identify

:::::::
regional

::::::
aquifer

:::::::::::
configuration

:::
and

::::::::
potential

:::::
MAR

:::::::
locations

::
in

:::
the

::::::
Central

::::::
Valley

:::::::::::::::::
(Knight et al., 2018)

:::
and

::::::::
mapping

::::::::
favorable

:::::
MAR

:::::::
locations

::
in

:::::::::::::
high-resolution

::
at

:::
the

::::
field

::::
scale

::::::::::::::::::::::
(Behroozmand et al., 2019)

:
.
::::
The

::::::
authors

::::::
present

::::
this

:::::
work,

::
in

::::
part,

::
to
::::::::
motivate

:::
the

::::::::
scientific

:::::::::
community

::
to
:::::::

develop
::::
and505

::::
adopt

:::::
new,

:::::::::::
cost-effective

:::::::::
approaches

:::
for

:::::::::
identifying

::::::::
favorable

:::::::
geology

:::
for

::::::
MAR.

Importantly, no single GPP described herein was a fully diagnostic metric of recharge potential at all sites. This result is

not surprising given the complexity of geologic architecture and variability of aquifer configuration sampled across sites in the

domain, which are challenging to fully captured
::::::
capture with a single metric. For example, all site characteristics described

here were developed only for those model cells that are vertically-coincident with each site footprint, and do not account for510

possible preferential pathways in adjacent cells outside of the immediate site footprint. We acknowledge that further research
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into this phenomena could provide additional insight into developing site-specific GPP , but is outside the immediate scope

of this work. We also acknowledge some limitations of our sensitivity analyses. For example, reliance on imperfect empirical

regression relations to include measures of geologic configuration in local methods likely introduced uncertainty to DSS and

CSS estimates for this parameter. In addition, inclusion of all model parameters describing facies hydraulic properties in the515

Morris approach would have been valuable, but was infeasible given the computational resources for the simulations required.

In addition, parameter-range uncertainty contributes some uncertainty to rankings of parameter importance.

Our simulations also do not consider some subsurface geologic conditions that influence MAR. Clastic sedimentary aquifer

systems are typically replenished naturally over longer timescales (Taylor et al., 2013) because even productive aquifer systems

are commonly composed mostly of fine-texture sediments (e.g., Fogg, 1986; Fogg et al., 2000), that form nearly ubiquitous,520

multiple confining layers that inhibit direct recharge of the interconnected sand and gravel body networks that comprise the

aquifer system. The presence of laterally-continuous aquitard facies have been well documented portions of the southern Cen-

tral Valley (Phillips and Belitz, 1991; Faunt et al., 2009), and in other unconsolidated alluvial aquifer systems in California

(e.g., Fisher, 1964). While not present within the domain area, these features have been shown to uniformly impede recharge

to confined aquifer systems where they are present. In addition, we do not consider some surface conditions that affect real-525

world MAR, like topographic site limitations, evaporative losses, and clogging effects (Bouwer, 2002). We emphasize that

this study is not a thorough site investigation of the American-Cosumnes area. The TPROGS approach is inherently stochas-

tic and conditioning data to inform the model are sparse in places (Maples et al., 2019). In addition, the single TPROGS

realization used for our simulations provides only a single representation of possible facies distributions within the domain.

Our findings are presented as a proof-of-concept to explore the importance of geologic heterogeneity on MAR in a hypo-530

thetical but physically-realistic domain.
::::::
Finally,

:::
we

:::::::::::
acknowledge

:::::
some

:::::::
potential

::::::::::
limitations

:::::
when

:::::::
applying

:::
the

:::::::::::
differencing

:::::::
approach

:::::
used

::
to

:::::
isolate

::::::::
recharge

::::::
stresses

:::::
from

::::
other

::::::
model

::::::
stimuli

:::
for

:::
the

:::::::::
non-linear

:::::
model

::::::::
presented

:::::
here.

:::
The

::::::::
potential

:::
for

:::::
errors

::::
with

:::
this

::::::::
approach

:::
for

::::::::
non-linear

:::::::
models

::::
have

::::
been

:::::
noted

::
in

::::::
several

::::::
studies

::::::::::::::::::::::::::::::::::::
(e.g., Reilly et al., 1984; Nadler et al., 2018)

:
.
::::::::
However,

:::::::
spurious

::::::::
recharge

::::::
stresses

:::
or

::::::::
unrealistic

::::::
model

:::::
noise

::::
were

::::
not

::::::::::
encountered

:::::
when

:::::::
isolating

::::::::
recharge

:::::::
stresses

::::
with

::
the

:::::::::::
differencing

:::::::
approach

:::
in

:::
this

:::::
study.

:
535

Our findings have important implications for assessing MAR feasibility and for understanding MAR processes in clastic

alluvial aquifer systems in California and globally, where accelerating groundwater overdraft and increasing water scarcity are

observed (Scanlon et al., 2012; Famiglietti et al., 2011; Wada et al., 2011). Our results highlight the importance of identifying

and cataloging locations with favorable geology for recharge, especially in light of recently-passed groundwater management

legislation in California that mandates limiting both the "chronic lowering of groundwater levels" and "significant and unrea-540

sonable reductions in groundwater storage" (Kiparsky et al., 2016). While studies have shown that implementation of MAR

can lead to more sustainable groundwater management (e.g., Niswonger et al., 2017), widespread adoption of of MAR is

still hampered by a number of challenges, including institutional barriers to water-rights transference and water accounting

uncertainty (Asano, 2016), infrastructure limitations, including land acquisition and water conveyance costs (Gailey, 2018),

and water quality considerations (Hartog and Stuyfzand, 2017). Our approach, which combines a detailed representation of545

subsurface geology with physically-realistic water flow physics in a sensitivity analysis framework, can (1) help guide site
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investigations and data collection methods for proposed MAR projects, and (2) improve representation of recharge processes

in management-focused, typically coarse-resolution groundwater models.

5 Conclusions

This research explores the sensitivity of hydraulic properties and subsurface geologic architecture on MAR processes with the550

variably-saturated water flow code, ParFlow, in a highly heterogeneous geologic domain that reflects the complex, unconsol-

idated alluvial geologic architecture of the northern Central Valley, CA that is consistent with many alluvial aquifer systems.

This work comprises two fundamental components. First, exploratory simulations were performed at 100 randomly-sampled

sites across the domain to to evaluate the correlation between 17 geologic and hydrologic site characteristics and simulated

recharge benefits. Results from the exploratory simulations show that site characteristics representing subsurface geologic con-555

figuration by upscaling vertical K can produce good correlations with the average 30-day recharge rate (R30d). Regression re-

lations between site-averaged Kgeom ×WTD and R30d were shown to be the most correlated (r = 0.70, p < 0.01, r2 = 0.70).

Conversely, site characteristics describing unsaturated-zone thickness (WTD), fraction of coarse-texture unsaturated-zone

(UZcoarse), and fraction of coarse-texture surface facies (Surf coarse) alone were all poorly correlated with R30d. These re-

sults highlight the value of characterizing subsurface geologic configuration through K upscaling. For subsequent sensitivity560

analyses, Kgeom × WTD was designated as a geologic proxy parameter, GPP , for recharge potential using aforementioned

predictive regression relation.

Subsequent local and global sensitivity analyses were performed for model hydraulic properties and the GPP to evaluate

the relative importance of these parameters on recharge potential. Results from local sensitivity analyses indicated thatGPP is

the most sensitive parameter for R30d, more so than any parameters describing hydraulic properties of each facies. Sensitivity565

analyses also indicated that permeability and unsaturated-zone pore volume (i.e., Ks and φ, respectively) were relatively more

important than other hydraulic properties, including unsaturated-zone geologic texture, soil water retention, and saturated-zone

storage properties (i.e., α, n, Sres, and Ss) forR30d. Results from global sensitivity analyses were consistent with local sensitiv-

ity analyses, indicating that GPP is relatively more important than Ks of coarse- and fine-texture facies for R30d. Agreement

of local and global approaches regarding the importance of GPP shows a degree of robustness of these findings. The results570

presented here demonstrate the importance of thoroughly characterizing subsurface geologic configuration when considering

recharge feasibility. To our knowledge, this study is the first of its kind to incorporate of a measure of geologic configuration

with a geologic proxy parameter in formal sensitivity analyses. Our approach outlines a novel combination of subsurface site

characterization with simulations of variably-saturated water flow physics within a sensitivity analysis framework to (1) im-

prove understanding the role of geologic heterogeneity on MAR processes and (2) provide insight into potential strategies to575

characterize subsurface geologic heterogeneity when considering recharge feasibility.
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Table 1. Textural classification of hydrofacies designations (Fleckenstein et al., 2004)

Hydrofacies Geologic Interpretation Texture

Gravel Channel deposits Gravel and coarse sand

Sand Near channel/levee Sand (fine to coarse)

Muddy Sand Proximal floodplain Silty and clayey sand, sandy clay, and silt

Mud Floodplain Clay, silty clay, shale
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Table 2.
::::::::
Calibrated Hydrofacies Hydraulic Properties (Liu, 2014)

Facies
Designation

Ks

(m d−1)
Ss

(m−1)
φ

(unitless)
α

(unitless)
n

(unitless)
Sres

(unitless)

Gravel 67.5 4.00E-05 0.35 3.55 3.16 0.1

Sand 41.2 8.00E-05 0.35 3.55 3.16 0.1

Muddy Sand 0.2 1.00E-04 0.40 2.69 2.00 0.1

Mud 0.0017 1.00E-03 0.45 1.62 2.00 0.2

Deep Aquifer 45.0 4.80E-04 0.35 3.55 3.16 0.1
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Table 3. Descriptions of site characteristics (variables) and model outputs (predictors)

Observation
type Name units Description

site characteristics Karith, max m d−1 Maximum arithmetic mean of vertical Ks for cells above the initial water table for each site

(variables
:::::::
predictors) Kgeom, max m d−1 Maximum geometric mean of vertical Ks for cells above the initial water table for each site

Kharm, max m d−1 Maximum harmonic mean of vertical Ks for cells above the initial water table for each site

Karith, avg m d−1 Average arithmetic mean of vertical Ks for cells above the initial water table for each site

Kgeom, avg m d−1 Average geometric mean of vertical Ks for cells above the initial water table for each site

Kharm, avg m d−1 Average harmonic mean of vertical Ks for cells above the initial water table for each site

UZcoarse unitless Proportion of cells above the initial water table that are coarse-texture facies

(gravel and sand) for each site

Surf coarse unitless Proportion of surface cells that are coarse-texture facies (gravel and sand) for each site

WTD m Average initial water table depth for each site

model outputs R10d cm d−1 Effective recharge rate (0–10 day average)

(predictors
::::::
variables) R30d cm d−1 Effective recharge rate (0–30 day average)

P 30d m3 Volumetric extent of pressure perturbation after 30 days (10-cm threshold)

V 90d, fines unitless Proportion of total recharge volume accommodated by fine-texture facies after 90 days
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Table 4. Parameter ranges, along with baseline and DSS perturbed parameter values for hydraulic properties and the geologic proxy param-

eter (GPP )

Parameter
Facies

Designation
Parameter

Range†
Baseline

Parameter‡
DSS Perturbed

Parameter

Ks (m d−1) Gravel 14.42 – 144.2 67.5 80.48

Sand 5.4 – 54.0 41.2 46.06

Muddy Sand 0.089 – 0.89 0.20 0.28

Mud 0.0023 – 0.023 0.0017 0.0038

Ss (m−1) Gravel 1.0×10−6− 1.0×10−4 4.0×10−5 4.9×10−5

Sand 1.0×10−6− 1.0×10−4 8.0×10−5 8.9×10−5

Muddy Sand 0.0001 – 0.001 0.0001 0.0002

Mud 0.0001 – 0.001 0.0010 0.0011

α (unitless) Gravel 3.55 – 3.55 3.55 3.55

Sand 3.55 – 3.55 3.55 3.55

Muddy Sand 2.69 – 3.55 2.69 2.78

Mud 0.35 – 0.45 1.62 1.81

n (unitless) Gravel 2.00 – 3.16 3.16 3.044

Sand 1.89 – 3.16 3.16 3.033

Muddy Sand 1.44 – 2.00 2.00 1.94

Mud 1.32 – 2.00 2.00 1.93

Sres (unitless) Gravel 0.10 – 0.14 0.10 0.104

Sand 0.10 – 0.14 0.10 0.104

Muddy Sand 0.10 – 0.25 0.10 0.12

Mud 0.16 – 0.23 0.20 0.21

φ (unitless) Gravel 0.25 – 0.35 0.35 0.34

Sand 0.25 – 0.35 0.35 0.34

Muddy Sand 0.35 – 0.45 0.40 0.39

Mud 0.35 – 0.45 0.45 0.44

GPP (m2 d−1) - 0.08 – 1891.6 - -

† Ranges of hydraulic properties for each facies category were derived from literature values for the Central Valley,

California, and for similar alluvial systems (Anderson et al., 2015; Botros et al., 2009; Fleckenstein et al., 2004; Frei et al.,

2009; Maserjian, 1993; Niswonger and Fogg, 2008; Sager, 2012).

‡ Baseline hydraulic properties were calibrated manually by Liu (2014)
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