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Abstract. Future crop production will be affected by climatic changes. In several regions, the projected changes in total 

rainfall and seasonal rainfall patterns will lead to lower soil water storage (SWS) which in turn affects crop water uptake, 

crop yield, water use efficiency, grain quality and groundwater recharge. Effects of climate change on those variables depend 

on the soil properties and were often estimated based on model simulations. The objective of this study was to investigate the 

response of key variables in four different soils and for two different climates in Germany with different aridity index: 1.09 20 

for the wetter (range: 0.82 to 1.29) and 1.57 for the drier climate (range: 1.19 to 1.77), by using high-precision weighable 

lysimeters. According to a “space-for-time” concept, intact soil monoliths that were moved to sites with contrasting climatic 

conditions have been monitored from April 2011 until December 2018.  

Evapotranspiration was lower for the same soil under the relatively drier climate whereas crop yield was significantly higher, 

without affecting grain quality. Especially ‘non-productive’ water losses (evapotranspiration out of the main growing period) 25 

were lower which led to a more efficient crop water use in the drier climate. A characteristic decrease of the SWS for soils 

with a finer texture was observed after a longer drought period under a drier climate. The reduced SWS after the drought 

remained until the end of the observation period which demonstrates carry-over of drought from one growing season to 

another and the overall long term effects of single drought events. In the relatively drier climate, water flow at the soil profile 

bottom showed a small net upward flux over the entire monitoring period as compared to downward fluxes (ground water 30 

recharge) or drainage in the relatively wetter climate and larger recharge rates in the coarser- as compared to finer-textured 

soils. The large variability of recharge from year to year and the long lasting effects of drought periods on SWS imply that 

long term monitoring of soil water balance components is necessary to obtain representative estimates. Results confirmed a 
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more efficient crop water use under less optimal soil moisture conditions. Long-term effects of changing climatic conditions 

on the SWS and ecosystem productivity should be considered when trying to develop adaptation strategies in the agricultural 35 

sector. 

1 Introduction 

The amount of water stored within the root zone of the soil and the vadose zone is a central and characteristic component of 

terrestrial ecosystems. Soil water storage (SWS) is important for provisioning (e.g., crop production, water balance, and 

plant available nutrients) as well as regulating and supporting ecosystem services (e.g. water, nutrients, climate, flood, 40 

drought; Adhikari and Hartemink, 2016; Vereecken et al., 2016). The SWS capacity (SWSC) depends on soil texture, 

organic matter content, bulk density, and soil structure and is related to the effective field capacity, which can be derived 

from the soil water retention function (Vereecken et al., 2010). The knowledge on magnitude and temporal variation of the 

SWS is essential for understanding ecological and hydrological processes and to manage ecosystems (Cao et al., 2018). 

Climate change will modify the temporal availability of soil water, increase the frequency and duration of droughts, affecting 45 

the quantity and quality of aquifer recharge and might affect crop production. Thus future ecosystem productivity (e.g. crop 

yield) is expected to respond to changes in weather (short-term) and climate (long-term), because it will alter the crop water 

balance components, such as SWS, evapotranspiration (ET) and drainage (Yang et al., 2016). How to produce more crop 

yield with less water is a major challenge in agriculture, because i) water is a limiting factor for crop production in many 

regions of the world, and ii) predictions of future climate indicate an increasing water limitation for crop production caused 50 

by reduced rainfall and changing seasonal rainfall distribution (Lobell and Gourdji, 2012).  

Several studies have been conducted to investigate the impact of global climate change on crop water balance components 

(Sebastiá, 2007; Wu et al., 2015) and crop or grain yield (Ewert et al., 2002; Zhao et al., 2016; Schauberger et al., 2017; 

Asseng et al., 2019). Understanding the impact of weather signals on the agricultural productivity is of crucial importance 

for managing future crop production, since variations in weather conditions could explain much of the yield variability 55 

(Frieler et al., 2017). Temperature rise and changing seasonal rainfall patterns could alter the probability of droughts and 

affect freshwater resources (Gudmundsson and Seneviratne, 2016; Gudmundsson et al., 2017). Negative impacts of rising 

temperature on the yield of major crops at the global scale (Asseng et al., 2014; Zhao et al., 2017) are highlighting the 

potential vulnerability of agricultural productivity to climate change. Schauberger et al. (2017) showed a consistent negative 

response of US crops under rainfed conditions being mainly related to water stress induced by higher temperatures. In 60 

addition to the direct effects of a temperature rise, an elevated atmospheric CO2-concentration, and changes in rainfall 

amounts on crop yield (Ewert et al., 2002; Asseng et al., 2014; Gammans et al., 2017; Scheelbeek et al., 2018), the higher 

temperatures could affect crop yields indirectly. Indirect effects caused by increasing the atmospheric water demand, limiting 

ET due to water stress and reducing the SWS, could in turn lead to a decrease in crop yield (Zhao et al., 2016; Zhao et al., 
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2017). Thus investigating the response of crop water balance components and yield to climate change is important to 65 

develop suitable adaptation and mitigation strategies (Albert et al., 2017; Rogers et al., 2017).  

Previous studies reported estimates of crop water balance components and crop yield mostly based on either manipulative 

experiments or observational studies to predict the ecological response of crops to climate change (Yuan et al., 2017). Wu et 

al. (2015) showed that the inter-annual variation of the SWS at northern middle and high latitudes increased under a warmer 

climate with higher values during the wetter and lower values of the SWS during the drier season. In this case, the frequency 70 

of water logging events or soil crack formation will increase and probably alter soil properties such as macroporosity and 

SWSC and thus affect vadose zone hydrology at different scales (Robinson et al., 2016; Hirmas et al., 2018). Robinson et al. 

(2016) showed for a manipulative long-term experiment that intense summer droughts altered the soil water retention 

characteristic and lowered the SWSC.  

Nevertheless, current knowledge on changes of SWS are still limited mostly to the analysis of soil moisture observations 75 

related to restricted soil volumes and soil moisture ranges (Mei et al., 2019; Yost et al., 2019). As an alternative method, 

weighable lysimeters allow the direct observation of SWS by monitoring the temporal changes of the total soil mass in 

mostly cylindrical containers. However, the use of weighable lysimeters was often limited in the past to the quantitative 

determination of the water balance components of precipitation (P), evapotranspiration (ET), and subsurface inflow (Qin) and 

outflow (Qout; e.g. drainage); the change of SWS was obtained as residual of the water balance components (e.g. Herbrich et 80 

al., 2017; Groh et al., 2018b). This approach accumulated all possible errors introduced by other components into the SWS, 

causing a relatively low precision. The direct derivation of SWS from lysimeter mass changes could provide a new 

perspective on the use of lysimeter data as an additional model calibration variable and for lysimeters that are large enough 

to fully capture the complete soil profile with the relevant soil horizons and intact soil structures to be representative for the 

pedon scale. 85 

Crop water use efficiency (WUE), being the ratio between grain yield or total biomass and the water lost to the atmosphere 

by ET, is one of the possible ways to quantify the impact of changes in the environmental conditions and of management 

decisions (e.g. irrigation) on agricultural productivity. The WUE provides insights to better manage and understand the 

productivity and ecological functioning of agricultural ecosystems (Zhang et al., 2015). The prevailing general hypothesis 

for WUE is that plant productivity increases with increasing water use (ET; Hatfield and Dold, 2019), which implies that 90 

WUE efficiency is a linear function of the water used by a crop to produce grain yield or the total above ground biomass. But 

several studies have shown that crop WUE was negatively correlated with annual rainfall and plants achieved their 

maximum crop WUE under less favourable soil water availability (Zhang et al., 2010; Ponce-Campos et al., 2013; Xiao et 

al., 2013; Zhang et al., 2015). The last statement might imply that plants are able to adapt their water use during drought 

conditions by improving their WUE or that there is simply less non-productive water losses by evaporation. Nevertheless, 95 

temperature above a certain threshold (extremely high temperature) especially during the reproductive period (Gourdji et al., 

2013) or due to drought and heat stress reduce yield. However, such investigations are often focused on one specific 

environmental variable (e.g. P or temperature) in manipulation experiments. This basically ignores joint effects of several 
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climate variables on the crop WUE in climate impact research studies. The impact of altered climatic conditions on different 

agricultural ecosystems within manipulative experiments has not been thoroughly studied yet; due to problems to either 100 

realistically manipulate the climatic conditions at a specific site or to move an intact soil to another site with contrasting 

climatic conditions. 

Here, we hypothesize that WUE will not increase for drier climate; because a change in plant productivity will 

simultaneously alter the water use (ET) and thus describe WUE as a linear function between both variables. In addition we 

wanted to test if observed lysimeter mass changes can be used to monitor the long-term change of SWS, which might be in 105 

addition to water flux observation a useful dataset for the calibration of vadose zone models. We used observations from a 

German soil-climate crossed factorial experiment (TERENO-SOILCan; Pütz et al., 2016). The lysimeter network of 

TERENO-SOILCan has been initiated to assess effects of climatic changes on arable and grassland soil ecosystems 

including the water balance components (ET, SWS, net drainage) and crop characteristics including yield, yield quality and 

WUE. As part of this project, arable-land lysimeters filled with four different soils were transferred within and between 110 

TERENO observatories (space-for-time; see details in Pütz et al., 2016) to expose soils from originals sites to other climatic 

conditions. The space-for-time approach means that soils are translocated in space instead of waiting at the same location for 

changes in climatic conditions in time. The concept initially intended to evaluate the impact of climate on agricultural 

ecosystems (Pütz et al., 2016). It represents basically a crossed soil type and climate experimental setup that could allow 

quantifying changes in the soil water balance and the crop production as response to imposed variations in climatic 115 

conditions. Results from this experimental setup can primarily be used to evaluate models that predict changes in response to 

possible future climatic conditions. 

 

Our objectives were: i) to develop an approach to obtain time series of changes in SWS directly from lysimeter data , ii) to 

determine the other soil water balance components (P, ET, inflow and drainage) of soils each exposed to two different 120 

climates, iii) to compare the net flux (inflow and drainage)/SWS dynamics for the same soils in relatively dry and wet 

climates and iv) to test the hypothesis that WUE of crops remains constant under changing climatic conditions in these 

crossed soil type and climate experiment. The analysis was based on lysimeter data from April 2011 until December 2017. 

2 Material and Methods 

2.1 Site descriptions 125 

The study was conducted at the experimental field sites Selhausen (50°52´7´´N, 6°26´58´´E) and Bad Lauchstädt 

(51°23´37´´N, 11°52´41´´E), which are part of the Eifel/Lower Rhine Valley and the Harz/Central German Lowland 

Observatory of TERENO in Germany (Wollschläger et al., 2016; Bogena et al., 2018), respectively. The TERENO-

SOILCan lysimeter network was established at several experimental stations across a rainfall and temperature gradient. 

Local excavated lysimeters (i.e. intact soil monoliths) were transferred between the stations to subject them to different 130 
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climate regimes so as to generate a crossed soil-climate setup according to the space for time approach. For this study, we 

considered all arable-land lysimeter at the central sites Bad Lauchstädt and Selhausen of the TERENO-SOILCan lysimeter 

network. Each central experimental site contains three replicates of soils from different locations: Bad Lauchstädt (BL; 

Haplic Chernozems, loess), Dedelow (Dd; Calcic Luvisols and Haplic Luvisols, glacial till), Sauerbach (Sb; Colluvic 

Regosols; colluvial deposits), and Selhausen (Se; Haplic Luvisols, loess) allowing to investigate the response of the 135 

corresponding soil type under different climates. Further information on the transfer of soil monoliths from the TERENO-

observatories to the central sites can be taken from Table A1 (see appendix). The transferred eroded Luvisol soil monoliths 

from Dedelow have a varying soil depth to the clay illuviation horizon (Bt) and to the marly, illitic glacial till (C-horizon). 

They represent part of the erosion gradient typically observed in agricultural landscapes of hummocky ground moraines 

(Sommer et al., 2008; Rieckh et al., 2012; Herbrich et al., 2017). Detailed information about the lysimeter design and general 140 

experimental-set up of TERENO-SOILCan can be found in Pütz et al. (2016). The climatic conditions of the central sites 

from 1 January 2012 to 31 December 2017 (complete years) are shown in Fig. 1 according to Walter and Lieth (1967). 

Although the patterns in average monthly temperature values are relatively similar at both sites (Fig. 1), a more pronounced 

amplitude of the temperature variations over the year could be found in Bad Lauchstädt (representing a more continental 

climate) as compared to the more temperate and humid climate (sub-oceanic or sub-Atlantic) in Selhausen (Fig. 1). The 145 

average annual grass reference evapotranspiration (ET0) calculated with the FAO56 Penman-Monteith method (Allen et al., 

2006) is slightly higher at Bad Lauchstädt (710 mm) than at Selhausen (694 mm). Larger differences are shown in the annual 

rainfall and the rainfall distribution over the year (Fig. 1). The lower annual P in Bad Lauchstädt (458 mm) than in 

Selhausen (644 mm) corresponds with a higher aridity index (AI = ET0 P
-1

, see data repository) of 1.57 for Bad Lauchstädt 

than for Selhausen (1.09). The rainfall distribution over the year was more uniform in Selhausen whereas the probability of 150 

relatively dry periods in spring (April) and late summer (September) was higher in Bad Lauchstädt. Thus, the climatic 

conditions at the SOILCan experimental sites can be defined as drier for Bad Lauchstädt and wetter at Selhausen, which 

corresponds well to long-term weather station data reported by Groh et al. (2016) for the period from 1981 to 2010.  
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 155 

Figure 1: Climate diagrams according to Walter and Lieth (1967) for Bad Lauchstädt (a), and Selhausen (b) for 2012 to 2017. Data were 

obtained from the SOILCan weather stations at Selhausen and a climate station at Bad Lauchstädt above sea level (asl.). The blue bars at 

the bottom of subplot a) indicate months were frost is likely to occur. 

2.2 Soil water storage (SWS) 

Monthly changes in SWS (ΔSWS) were calculated from lysimeter observations as: 160 

∆SWS =  ∆𝑊 + Δ𝐿𝑦𝑠𝑐𝑜𝑟             (1) 

where ΔW is the monthly lysimeter mass change, and ΔLyscor corresponds to mass changes by maintenance, harvesting, or 

other disturbances that occur accidently (e.g. erroneous load cells) or naturally (e.g., animals). The variable ΔW was directly 

obtained by analysing lysimeter mass data (average value: 12°AM until 2°AM) defined as: 

∆𝑊 = 𝑊𝑖+1 − 𝑊𝑖           (2) 165 

where W is the lysimeter mass at the beginning of month i. The variable ΔLyscor was determined from monthly changes of 

lysimeter mass during maintenance work. Less than 0.6 % of ΔSWS values could not be calculated, because lysimeter mass 

data at the beginning of the corresponding month were missing. A linear regression model obtained for the entire time series 

between ΔSWS of the soils was used for interpolation to fill the gaps. This was first based on ΔSWS from surrounding 

lysimeters of the same soil type and if not available, then the average values of ΔSWS obtained from all available lysimeters 170 

at the respective station were used.  

2.3 Crop water use efficiency (WUE), grain yield and yield quality 

In total 12 arable land lysimeters (three replicates of four soil types) with a surface area of 1 m
2
 and a depth of 1.5 m were 

embedded within larger fields at the respective central experimental site at Selhausen (250 m²) and Bad Lauchstädt (720 m²). 
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The same crops were grown and identical tillage and crop management procedures were carried out at both sites and in the 175 

field around the lysimeters. The lysimeters were cultivated with peas (Pisum sativum L.; cultivar: Mascara), winter barley 

(Hordeum vulgare L.; cultivar: Lomerit), winter canola (Brassica napus L.; cultivar: Adriana), oat (avena sativa L.; cultivar: 

Max G), winter wheat (Triticum aestivum L.; cultivar: Glaucus), winter barley (Hordeum vulgare L., cultivar: Antonella) 

and winter rye (Secale cereal L.; cultivar: SU Santini), whereas the applications of seasonal plant protection, crop growth 

regulators and nitrogen-fertilizer (see appendix Table A2) have been adapted to local farmer conditions at the respective 180 

experimental site. Dry mass of the yield and plant residual matter were gravimetrically determined with a precision balance 

(Selhausen: EMS 6K0.1, KERN, Balingen-Frommern, Germany; Bad Lauchstädt: LC 6200 D, Satorius, Göttingen, 

Germany) after drying at 75°C for 24 hours (Bad Lauchstädt) and at 60°C for >24 hours (Selhausen; until reaching a 

constant weight). The determination of total nitrogen of the dry yield and plant residual material was obtained with an 

elementary analyser (VarioelCube, elementar, Langenselbold, Germany).  185 

The following Eq. (3) was used to calculate the crop WUE (kg m
-3

): 

WUE =  
𝑌

ET
            (3) 

where Y is the grain yield (kg m
-2

), and ET (m
3
 m

-2
) is the measure of the consumed water during the growing season of the 

corresponding crop (Katerji et al., 2008). The growing periods of the crops were defined as the time between sowing and 

harvest (see appendix Table A2). The required ET during the growing season was estimated based on the monthly water 190 

balance equation and observed precipitation (P) in mm per month as: 

ET = 𝑃 −  ∆SWS − 𝑄𝑛𝑒𝑡 − ∆𝐿𝑦𝑠𝑣𝑜𝑙          (4) 

where Qnet is the monthly sum of net water flux across the lysimeter bottom (Qnet > 0: drainage; Qnet < 0: capillary rise) and 

ΔLysvol is mass change determined from monthly soil water sampling volume. P was measured with a tipping bucket rain 

gauge (15189, Lambrecht, Göttingen, Germany) at Bad Lauchstädt (experimental station Bad Lauchstädt), and with a 195 

weighing rain gauge (Ott Pluvio2 L, Ott, Kempten, Germany) at Selhausen (Se_BDK_002). Data of the latter station is 

available at TERENO data portal (http://teodoor.icg.kfa-juelich.de/ddp/index.jsp). The Ott rain gauge was installed in April 

2013; data before April 2013 was estimated by linear regression models and P data from surrounding climate stations of the 

TERENO data portal (station names: SE_BDK_002; RU_BCK_003; RU_K_001; ME_BCK_001), which can be used to 

interpolate between the given data points. We used the R software (R-Core-Team, 2016) and the function lm of the package 200 

stats (R-Core-Team, 2016) to set-up linear regressions. The coefficient of determination (R
2
) was used to determine the 

goodness of fit of the linear regression. A stepwise gap-filling approach was used to gap-fill missing P data after April 2013, 

which consisted of an analysis of data from other meteorological stations that were operating and missing values, were filled 

based on the observation which had the highest R
2
. Monthly Qnet values were obtained from mass changes of the leachate 

from the lysimeters, collected with a weighable reservoir tank. The lysimeter bottom boundary pressure head condition was 205 

imposed by a pumping mechanism, which enabled either outflow or inflow according to differences in pressure head values 

at 1.4 m depth between lysimeter and surrounding field soil. This control of the bottom boundary allowed imitating the 
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upward and downward water fluxes and representation of ET processes in lysimeters (Groh et al., 2016) more realistically 

and comparable to the intact soil profile. More technical details can be found in Pütz et al. (2016). Missing data in the time 

series of Qnet were filled for small gaps of about one minute by linear interpolation and for gaps between >1 and 10 minutes 210 

by using a moving average with a window width of 30 minutes. Larger gaps in the time series were filled by average water 

flux values from other lysimeters of the same soil type. Nearly 5% of monthly ET values were found not plausible perhaps 

due to water loss by leaking during periods with water-saturated conditions at the lysimeter bottom. These conditions 

occurred mainly in winter, when monthly ET fluxes were in general relatively low as compared to summer conditions, so 

that potential error was low and easily detectable. A linear regression based on either single or average ET values from other 215 

non-affected lysimeters with similar soils were used for interpolation to fill the gaps. Detailed information on the monthly 

water balance data and missing data can be taken from the TERENO data portal (see section Data availability). 

3 Results and Discussion 

3.1 Soil water storage change 

For the observation period (April 2011- January 2018), evapotranspiration (ET) and cumulative soil water storage change 220 

(ΔSWS) differed at both stations, Selhausen and Bad Lauchstädt, in amount and temporal development between transferred 

soils and those from the original site (Fig. 2). Larger deviations in ΔSWS between origin and transferred soils were visible 

for the crop winter canola after date of harvest in summer 2013 (soils from BL, Sb, and Se Fig. 2b, 2d, 2h) and winter barley 

2016 (all soils). Largest depletions of SWS during the entire observation period could be observed for all soils during the 

spring-summer period (March and July) in 2015. At Bad Lauchstädt, the aridity index (AI = ET0 P
-1

) of 2.7 for March-July 225 

2015 was larger as compared to the average AI value of 2.0 calculated for all March and July periods between 2012 and 

2017. Also the value of the AI for Selhausen was with 2.0 slightly larger as compared to the average AI value of 1.6 for all 

March-July periods. The SWS depletion in 2015 was larger at both sites for soils from Bad Lauchstädt (BL; Fig. 2b) and 

Sauerbach (Sb; Fig. 2d) as compared to that of the other two soils from Dedelow (Dd; Fig. 2f) and Selhausen (Se; Fig. 2h). 

The Sb and BL soils were strongly desiccated by the winter wheat crop in 2015, which can be seen from ET June 2015 for 230 

BL and Sb of about 125 - 175 mm/month (Figs. 2a and 2c) was larger than for Dd and Se soils of about 100 - 125 mm/month 

(Figs. 2e and 2g) even for the soils exposed to the drier climate in Bad Lauchstädt. For the BL (Fig. 2b) and Sb (Fig. 2d) 

soils, the amount of rainfall after the growing season of 327 mm (August 2015 - April 2016) in Bad Lauchstädt was not 

sufficient to compensate for ET and drainage such that the soil profile did not return to a SWS capacity (i.e., typical spring 

moisture) at the end of the winter period characterized by a value close to 0 of the cumulative ΔSWS. The soil moisture 235 

deficit from 2015 was carried over to the growing seasons of 2016 and even of 2017. For the Dd and Se soils (Figs. 2f and 

2h, the SWS deficit during the 2015 growing season under the climate of Bad Lauchstädt was less and the amount of 

precipitation after the growing season was sufficient for the soils to return to a typical SWS value although this value was 

reached later and not before the next spring. The AI of 1.77 at BL in 2015 (January-December) was considerably higher than 
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the average AI for the 5 year period at BL (1.57). For the same year 2015, the AI was 1.13 at Se, and thus only slightly 240 

higher than the 5-years average AI-value of 1.09. For all soils in Se (blue lines in Figs 2b, 2d, 2f, 2h), the amount of 

precipitation after the growing season of 501 mm of 2015 (August 2015 - April 2016) was sufficient for the lysimeters to 

return to their ‘typical’ SWS value at the end of the winter. These results indicate soil type dependent changes in SWS 

during drought periods. The annual carry-over of soil moisture deficits demonstrates the vulnerability towards drought risks 

even for finer-textured soils, despite having an overall larger SWSC than coarser-textured soils. The observed stronger 245 

depletion of soil water corresponds with soil drying reports from larger scale observations on the occurrence of a severe 

drought during the summer 2015, where effects of the drought has been observed from a climatological (Ionita et al., 2016) 

and hydrological (Laaha et al., 2016) perspective. The carry-over of soil moisture deficits to the time after the drought at the 

local scale in Bad Lauchstädt agrees well with the results from Laaha et al. (2016), which showed for several stations in 

Europe that soil water storage (catchment scale) at the end of the study period (November 2015) has not totally recovered 250 

from the summer drought in 2015.  

 

 

Figure 2: Monthly evapotranspiration (ET) and cumulative monthly changes in soil water storage (ΔSWS) from April 2011 until January 

2018 at the lysimeter stations in Selhausen and in Bad Lauchstädt for soils from Bad Lauchstädt (a, b), Sauerbach (c, d), Dedelow (e, f), 255 
and Selhausen (g, h); mean values (dots) and standard deviations (error bars) are from 3 individual lysimeter monoliths of each soil. The 

background colour corresponds with the cropping periods at the TERENO-SOILCan lysimeters: bare soil (white) and crops (green). 

 

Furthermore changing climatic conditions and a more frequent occurrence of drought could alter the SWSC because of the 

increasingly unavailable pore spaces due to different sources, including physical e.g. swelling and shrinking processes (te 260 

Brake et al., 2013; Herbrich and Gerke, 2017), biological e.g. vegetation induced soil desiccation that enhanced soil cracking 
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(Robinson et al., 2016), biochemical e.g. enhanced organic matter mineralization, due to increasingly oxidation of the 

organic horizons during dry periods (Robinson et al., 2016), which will consequently result in a degradation of organic soil 

structure, or change in the soil wettability (Ellerbrock et al., 2005).  

 265 

3.2 Net drainage 

The water fluxes across the suction rake system at the lysimeter bottom in 1.5 m depth were cumulated to monthly net 

drainage fluxes (QMnet). The time series’ of QMnet for all soils at Se, the site with relatively wet climate, were in general 

directed downward during the winter months and upward (capillary rise) during spring and summer (Fig. 3). However, the 

magnitude of monthly fluxes QMnet differed between the soil types (e.g. soils in Se for 2012 or 2013 see Fig.3); QMnet for 270 

lysimeters with the coarser-textured soils from Dd (Fig. 3c) was mostly larger (e.g., drainage during bare fallow 2014) than 

for those with the finer-textured soils from BL (Fig. 3a), Sb (Fig. 3b), and Se (Fig. 3d). For the same soils under the 

relatively dry climate in BL, time series’ of QMnet were rather similar, with the largest values of upward fluxes for the soil 

from Dd (Fig. 3c). The magnitude of QMnet for soils under BL climate was mostly smaller for drainage and larger for upward 

directed fluxes as compared to the QMnet values for the soils under the wet climate in Selhausen.  275 

 

 

Figure 3: Monthly net water fluxes across the lysimeter bottom in 1.5 m soil depth from April 2011 until January 2018 at the stations 

Selhausen and Bad Lauchstädt for soils from a) Bad Lauchstädt, b) Sauerbach, c) Dedelow, and d) Selhausen; mean values (dots) and 

standard deviation (error bars) . Positive values are defined to drainage and negative values to upward direct water flux from capillary rise. 280 
Error bars indicate the variability of storage changes between individual lysimeters of each soil group. The background colour corresponds 

to different crops lysimeter cover types: bare soil (white) and different crops (green). 
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The QMnet time series’ (Fig. 3) demonstrate that weather conditions in 2015 impacted the soil water fluxes in the following 

years: Under the dry climate in BL, hardly any drainage was observed for all soils after 2015. This indicates that the soils 285 

remained so dry during the winter period that downward water percolation or groundwater drainage was limited. The lack of 

water recharge during winter also affected the upward directed QMnet flux rates in the following years, which generally 

decreased after 2015, especially for soils from BL and Sb. The nearly unchanged QMnet values for the soils at BL after 2015 

indicate that soil water saturation and dynamics is limited throughout the soil profile. 

 290 

The annual net water fluxes (QAnet) at the bottom (in 1.5 m) of the same soils under the dry and wet climates are compared in 

form of scatterplots (Fig. 4). The scatterplots clearly show that fluxes were in general directed upward (i.e., negative values 

of QAnet for soils under a dry climate in BL; positive values of QAnet (i.e. drainage) were only observed for 2011 and 2014 

(Fig. 4). The larger values of QAnet for 2014 could be due to the lower ET after an earlier harvesting of the oat crop and a 

longer bare soil period without crop transpiration. The coarser-textured soils from Dedelow showed the largest range of QAnet 295 

values (from -78 mm to +164 mm) at the site with a relatively dry climate (BL) during the observation period of 2011-2017. 

This range could be explained by variation in soil water storage capacities between Dd soils, which depended on the 

thickness of the upper soil horizons that were modified by soil erosion (Herbrich et al., 2017). The long-term average values 

of QAnet for all soils in the dry climate were negative and varied only in a small range (from -18 mm to -28 mm; see appendix 

Table A1). Long term negative groundwater recharge is only possible at sites where groundwater can be replenished, for 300 

instance, by lateral subsurface water flow. Whether the QAnet flux under the BL climate will continue to be negative for all 

soils would require a longer time series. Nevertheless, a low and even negative groundwater recharge has not only an impact 

on the groundwater quantity, but it will also affect the groundwater quality. In case of a small net recharge, the 

concentrations of solutes from agricultural fertilizers, pesticides, and those of dissolved minerals and salts in the water-filled 

soil pores will become relatively high, and soil water movement still remains negligibly small. Thus under conditions of 305 

relatively small leaching rates, solutes including plant nutrients will largely be retained within the soil’s root zone. Under 

long term conditions of net negative leaching, soils and soil horizons may accumulate carbonates (e.g., BL soil Haplic 

Chernozems), or if leaching is small such that the carbonates from the topsoil horizons precipitate already in the subsoil 

within the 1.5  m soil monoliths like in the Ccv horizons in Dd subsoil of Calcic Luvisols (see soil profile descriptions in 

Herbrich and Gerke, 2017) and eventually salts.  310 

QAnet values under a relatively wet climate (in Se) were for all soils positive, indicating in general downward directed 

drainage fluxes (Fig. 4). The long-term average QAnet values ranged between 49 to 119 mm (see appendix Table A1) 

depended on the soil type. The QAnet value was larger for the coarser-textured soil from Dd (Fig. 4c) as compared to the other 

soils. For 2013 (Winter Canola crop), the QAnet fluxes were negative for all finer-textured soils (i.e. Bad Lauchstädt, 

Sauerbach, and Selhausen, Fig. 4a, b, d), which might be related to the deeper reaching root system of the crop canola 315 

(Breuer et al., 2003) in and a consequently larger plant water uptake in comparison to other crops. Upward directed QAnet 
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values were observed during the year 2017 for the soils from Bad Lauchstädt under winter rye crop (Fig. 4a) and during 

2015 for the soils from Sauerbach under winter wheat (Fig. 4b). 

 

 320 

Figure 4: Comparison of net fluxes for the same soils at two sites: Annual observed net soil water flux at 1.5 m soil depth of soils from a) 

Bad Lauchstädt, b) Sauerbach, c) Dedelow, and d) Selhausen under a dry climate (Bad Lauchstädt) and wet climate (Selhausen) for the 

years between 2011-2017; average values (symbols) and standard deviations (error bars) for observations from the same soil. 

 

3.3 Crop yield and Water Use Efficiency  325 

The grain yields were in general larger for a dry climate at Bad Lauchstädt than for a wet climate at Selhausen except for the 

peas (Fig. 5a). The pea crop had in comparison to the other cereal crops a relatively short vegetation period and depends 

more on conditions during germination in early spring than on differences in climatic conditions in late spring and summer. 

For the other crops the spread of fungal pathogens under a more humid climate (Talley et al., 2002; Agam and Berliner, 

2006) and frequent occurrence of dew formation (Xiao et al., 2009; Groh et al., 2018a; Brunke et al., 2019; Groh et al., 2019) 330 

could explain the generally lower yield of grain crops for soils under a wet climate in Selhausen. However, an appropriate 

crop management with one to three applications of fungicides during the growing season (see appendix Table A2), except 

for pea crop in 2011 (BL and Se) and winter rye 2017 (Se) should have prevented the spread of fungal diseases and their 

https://doi.org/10.5194/hess-2019-411
Preprint. Discussion started: 27 August 2019
c© Author(s) 2019. CC BY 4.0 License.



13 

 

impact on crop yield such that other reasons have to be considered. The yield varied for the most crops among the soil 

replicates at a certain site, which can be described by the coefficient of variation (CV), below a CV value of 28%, except for 335 

pea, which showed for all soils a high value, for winter canola grown on finer-textured soils in Se (BL, Se see appendix 

Table A3), and for winter barley (Dd and Sb in 2012, Sb in 2016) cropped at Se. For winter canola this might be related to a 

higher loss of rapeseeds during manual harvesting, natural pod shattering, cleaning and threshing (Alizadeh et al., 2007; 

Kuai et al., 2015). The CV value of the observed yield variability between each soil type corresponds to values reported 

between 5 to 27 % by Joernsgaard and Halmoe (2003) and Wallor et al. (2018). The yield of winter wheat (7.8 t ha
-1

 see 340 

appendix Table A3) for the soil from BL at BL agreed well with observations on yields from a long term fertilization 

experiment at the BL site (Merbach and Schulz, 2013), which demonstrates the high yield potential of the soil from BL. 

 

 

Figure 5: Comparison of annual crop yield- and ET-related parameters for the same soils from Bad Lauchstädt, Dedelow, Sauerbach, and 345 
Selhausen (three lysimeters each origin) at the two sites with relatively dry (Bad Lauchstädt) and wet climate (Selhausen); average values 

(symbols) and standard deviation (error bars) between observations from the same soils for (a) observed yield, (b) total biomass, (c) 

harvest index, (d) evapotranspiration, (e) water use efficiency (WUE) from yield, (f) WUE from total biomass, and (h) nitrogen (N) 

content in the grain yield, and (g) the relationship between grain yield and evapotranspiration of all soils and crops during the years 2011-

2017.  350 

 

The scatterplot of the total biomass (Fig. 5b) shows that most crops produced relatively similar amounts of total above 

ground biomass at both sites with the exception of winter barley in years 2012 and 2016. The crops could probably use 

comparable amounts of solar radiation during the observation period (average annual radiation from 2011 to 2017, obtained 

from the weather stations; BL: 1181.4 kWh m
-2

 and Se: 1180 kWh m
-2

). Despite a similar amount of radiation received by 355 

the crops the harvest index, which is defined as the ratio of yield to the total biomass, was found to be larger under a dry 

https://doi.org/10.5194/hess-2019-411
Preprint. Discussion started: 27 August 2019
c© Author(s) 2019. CC BY 4.0 License.



14 

 

climate than under a wet climate (Fig. 5c). This means that crops under a dry climate were more productive with respect to 

crop yield than under a wet climate. The crop ET (i.e., ET related to the vegetation period) was larger under the wet than 

under the dry climate (Fig. 5d), and the corresponding crop water use efficiency (WUE) was larger at the site with the 

relatively dry (BL) as compared to the wet (Se) climate (Fig. 5e). These results demonstrated that plants were more efficient 360 

to produce yield at a site with a suboptimal water supply. The present results are in line with earlier findings from Zhang et 

al. (2015), who showed that the WUE reached a maximum under warm and dry and a stable minimum under warm-wet 

climatic conditions. Also when WUE was calculated based on the total aboveground biomass, a higher WUE was observed 

for the corresponding crop under a dry than under a wet climate (Fig. 5f), which demonstrated that climatic conditions were 

not only beneficial for the grain yield but also for that of the straw. However, differences in fertilizer application (see 365 

appendix Table A2) with lower nitrate application in the wet site could be another reason for the differences in yield and 

biomass production.  

The lower WUE under a wet climate might be related to a higher soil evaporation and plant canopy interception evaporation. 

Kunrath et al. (2018) found for the crop tall fescue that limiting nitrogen-supply conditions negatively affected WUE values 

by a reduced leaf area index, leaf photosynthesis and radiation efficiency, which hence increased the ratio of soil evaporation 370 

to transpiration. Thus, we further compared the ET during periods when ET was either transpiration (ETT) or evaporation 

(ETE) dominated. The transpiration-dominated period was defined from the beginning of April, which corresponds well with 

the temporal increase of the monthly ET, until the time when plants reached the growth stage of ripening /maturity of their 

fruit or seeds about a month before harvest (see appendix Table A2). The rest of the vegetation period was defined as the 

evaporation-dominated period. Evaporation was considered to be non-productive water use. The cumulative values of ET, 375 

ETT and ETE during the observation period are shown in Table 1. The differences for ETE between all soils in the dry and 

wet climate from 359 mm to 576 mm was larger than the differences for ETT (range: -72 mm to 199 mm). Especially the 

larger soil evaporation (ETE) at Selhausen contributed to the lower WUE under wet climate.  

The relationship between yield and ET was reported to correspond with the productivity function of crops (grain yield vs. 

ET) and often assumed to be linear (Tolk and Howell, 2009; Wichelns, 2014). However, for our present data, a quadratic 380 

productivity function (Fan et al., 2018) of the winter barley and pea crops (Fig. 5g) rather than a linear one could explain the 

observed larger WUE of soils under a dry climate at Bad Lauchstädt. The crop winter canola could be best described by a 

linear productivity function with a negative slope (Fig. 5g). The other crops, winter rye and winter wheat, could neither be 

described by a linear nor a quadratic function. Longer time series’ with more crop yield observations under different climatic 

conditions would be necessary to confirm the assumed quadratic productivity function for these crops.  385 

Grain yield quality in terms of the nitrogen content of the grains is an additional important variable to characterize the 

quality of legume and cereal crops (Kemanian et al., 2007). The scatterplot of the nitrogen content in the yield compares 

results from the same soils in the dry and wet climate (Fig. 5h). The comparison showed no effect of climatic conditions or 

of the fertilization on the crop grain quality. Larger deviations from the 1:1 line were only visible for the soils from Dedelow 

and the crop pea under a dry climate and for soils from Bad Lauchstädt and crop winter rye under a wet climate (Fig. 5h). 390 
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Nuttall et al. (2017) remarked that heat stress during the time of flowering and higher temperatures during the post-anthesis 

period of crops impact grain-size and milling yield. The impact of rising temperatures and increasing CO2 concentrations in 

the atmosphere on yield quality could affect the nutritional quality and end-use value (Asseng et al., 2019). The grain yield 

quality was reported to be influenced mainly by genetics, crop management, and environmental conditions (Nuttall et al., 

2017). Since in the present study, the crop management was similar and the same cultivars were used, the altered climatic 395 

conditions seemed not to affect the quality of the yield in our crossed soil-climate experiment.  

 

Table 1: Average values (of 3 lysimeters each) of cumulative evapotranspiration (∑ET) for the whole observation period (2011-2017), and 

cumulative transpiration (∑ETT) and evaporation (∑ETE) for periods dominated by evaporation (E) or transpiration (T), for soils from Bad 

Lauchstädt (BL), Sauerbach (Sb), Dedelow (Dd), and Selhausen (Se) under a dry climate at BL and a wet climate at Se. The ETT values 400 
were defined from the beginning of the vegetation period (April) until ripening/maturity of the fruit or seeds; the data for ∑ETE comprised 

the values from rest of the season. The differences of the cumulative values for the same soils between the sites BL and Se are denoted by 

Δ∑ET, Δ∑ETE and Δ∑ETT. 

Location Se BL Se BL Se BL Se BL 

Soil BL BL Sb Sb Dd Dd Se Se 

∑ET (mm) 4090.1 3490.8 4121.0 3406.8 3593.9 3316.7 3985.0 3323.0 

∑ETE (mm) 2102.5 1616.9 2110.3 1595.1 1941.7 1593.1 2228.2 1668.0 

∑ETT (mm) 1987.5 1873.9 2010.7 1811.7 1652.1 1723.7 1756.8 1655.0 

Δ∑ET (mm) 599.3 714.2 277.1 661.9 

Δ∑ETE (mm) 485.7 515.2 348.7 560.2 

Δ∑ETT (mm) 113.6 199.0 -71.5 101.8 

4 Conclusion 

Lysimeter data from a German-wide lysimeter network (TERENO-SOILCan), where intact soil monoliths were moved to 405 

sites with contrasting climatic conditions, were used to analyse effects of soil and climate on agricultural ecosystems in a 

soil-climate crossed factorial design. In the wet climate, there was a net drainage which was larger for the coarser- than for 

the finer-textured soils. In the dry climate, a small negative net drainage (upward flux) was obtained when observing the 

long-term average for the whole period 2011-2017. In the wet climate, drainage dominated for all soils. When looking at 

shorter periods, negative values of monthly net fluxes observed during the summer months at both sites.  410 

During winter months, the soil water storage (SWS) returned to a typical value and drainage occurred when this value was 

reached. In the dry climate, this critical SWS was not reached in two soils after the growing season of 2015 in which the 

SWS was strongly depleted. The resulting insufficient refilling of the soil water storage capacity after a drought suggests that 

the precipitation during the following winter months was not sufficient to refill the soil so that no drainage took place. This 

lack of drainage had consequences for the upward water fluxes in the following growing seasons. Future studies about the 415 

impact of climate change, which in general are expected to increase the frequency and duration of droughts, on agro-
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ecosystem water balances and crop development should consider the long lasting impact of droughts on the soil water 

balance and soil water fluxes that are carried over to following years. Results indicate that direct observation on SWS will 

become increasingly important in environmental climate change studies, where changing climatic conditions could affect the 

SWSC. Longer term monitoring data are needed to observe effects of impacts on soil properties.  420 

Crops were more productive in terms of grain yield and used less water under drier climatic conditions. Plant development 

and a higher crop water use efficiency demonstrated that less plant available soil water did not go along with a decline of 

grain yield, because plants used the available soil water resources under such conditions more efficiently (e.g. by reduced 

soil evaporation). Results revealed in contrast to our hypothesis of a linear productivity function for some crops a quadratic 

productivity function and thus showed that plants can maximize their grain yield under an intermediate ET range in rainfed 425 

agriculture. However, longer time series are necessary to confirm the latter hypothesis of a quadratic productivity function of 

the corresponding crop. Our results suggest that despite the higher grain yield (quantity) climatic conditions seemed not to 

affect the quality of the yield, which might reflect a positive effect of the regional drier climatic conditions for crop 

production. The results of this study so far confirmed that typical soil water balance components, crop water use and 

especially the soil water storage dynamics undergo a substantial change when exposed to different climatic conditions. 430 

We could show that:  

1) The result further suggests that a new approach based on lysimeter mass data can enable the long-term monitoring of 

SWS changes at the pedon scale. 

2) SWS dynamics were vulnerable to droughts and led to an insufficient refilling of the soil water storage capacity.  

3) Crossed soil-climate experiments are useful to determine the impact of changing climatic conditions on the ecosystem 435 

water balances.  

4) Crop water use efficiencies were not constant and changed toward larger yields under suboptimal water supply 

conditions. 

The results herald the need to account for potential changes in soil water storage and plant reactions due to changes in 

climatic conditions and variability when trying to develop adaptation strategies in the agricultural sector. 440 

Data availability 

All data for the specific lysimeter and weather station (raw data) can be freely obtained from the TERENO data portal 

(https://teodoor.icg.kfa-juelich.de/ddp/index.jsp, lysimeter station Bad Lauchstädt and Selhausen: SE_Y_03, SE_Y_04). 

Climate data for the experimental station Bad Lauchstädt can be acquired upon request from Ralf Gründling. The processed 

data to support the findings of this study can be acquired also from the TERENO data portal 445 

(https://hdl.handle.net/20.500.11952/butt.metadata.handle/00000010).  
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Appendix data: 

Table A1: Average observed soil water flux at 1.5m soil depth of soils from Bad Lauchstädt (BL), Sauerbach (Sb), Dedelow (Dd), and Selhausen (Se) under a 460 
dry climate Bad Lauchstädt (BL) and wet climate Selhausen (Se). 

Origin Transfer 2011* 2012 2013 2014 2015 2016 2017 Average# 

mm mm mm mm mm mm mm mm 

BL- -8 -91 -91 119 -16 -35 -53 -28 

Sb BL 17 -18 -97 93 -38 -32 -12 -17 

Dd BL 33 -78 -63 164 -34 -52 -44 -18 

Se BL 17 -19 -99 96 -27 -41 -19 -18 

BL Se 31 61 -57 206 7 94 -14 50 

Sb Se 19 28 -28 132 -8 177 46 58 

Dd Se 48 66 76 284 41 223 27 119 

Se- 28 30 -5 142 20 68 40 49 

* April-December; # 2012 – 2017 
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Table A2: Site management information on seasonal crop type, sowing and harvesting date, crop growth length N-fertilizer and number of fungicide applications 

at Bad Lauchstädt and Selhausen. Calcium ammonium nitrate (KAS) was mainly us as N-fertilizer. Except for 2013 in Selhausen, where ammonium sulphate 465 
nitrate (ASS) instead of KAS was used. 

Crop Bad Lauchstädt Selhausen 

 Sowing 

YY/mm

/dd 

Harvest 

YY/mm

/dd 

Duration 

[days] 

N-Fertilizer 

(KAS)  

kg N ha-1 

 Number of 

fungicide 

applications 

Sowing 

YY/mm/

dd 

Harvest 

YY/mm/dd 

Duration 

[days] 

N-Fertilizer 

(KAS)  

kg N ha-1 

Number of 

fungicide 

applications 

Pea 11/ 

05/04 

11/ 

08/11 

99  0 11/ 06/01 11/ 08/25 85  0 

Winter 

Barley 

11/ 

09/30 

12/ 

07/12 

278 145  3 11/ 10/14 12/ 07/10 270 50  § 

Winter 

Canola 

12/ 

08/27 

13/ 

07/23 

330 210  2 12/ 09/18 13/ 07/25 310 130# 1 

Oat 14/ 

03/13 

14/ 

06/03 

82 60  0 14/ 03/05 14/ 06/03 90 60  0 

Winter 

Wheat 

14/ 

10/13 

15/ 

07/28 

288 60  2 14/ 10/07 15/ 07/21 279 90  2 

Winter 

Barley 

15/ 09/ 

22 

16/ 

06/30 

282 100  3 15/ 10/07 16/ 07/08 275 80  2 

Winter 

Rye 

16/ 

10/05 

17/ 

07/17 

285 100  2 16/ 10/11 17/ 07/21 283 78  0 

# ASS; § no data available         
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Table A3: Average and coefficient of variation (CV) of yield for soil from Bad Lauchstädt (BL), Dedelow (Dd), Sauerbach (Sb), Selhausen (Se) under dry (BL) 

and wet climate (Se). Origin describes the location, where the soil was taken from and the location where the soil was transferred to, where the soil was 470 
transferred to. The value in the brackets describes the variability of yield for each soil type (standard deviation from three replicates). 

Test site 2011 2012 2013 2014 2015 2016 2017 

Origin Transfer Pea Winter barley Winter canola Oat Winter wheat Winter barley Winter rye 

  t ha
-1

 CV % t ha
-1

 CV % t ha
-1

 CV % t ha
-1

 t ha
-1

 CV % t ha
-1

 CV % t ha
-1

 CV % 

BL 2.20 

(0.44) 

20 9.30 

(1.01) 

11 7.01 

(1.60) 

23 # 7.81 

(0.42) 

5 8.46 

(0.23) 

3 7.35 

(1.35) 

18 

Dd BL 1.11 

(0.48) 

43 8.79 

(0.71) 

8 5.64 

(0.50) 

9 # 5.90 

(0.26) 

4 9.42 

(0.81) 

9 7.74 

(0.97) 

13 

Sb BL 2.44 

(0.92) 

38 10.28 

(2.47) 

24 4.65 

(0.61) 

13 # 8.33 

(0.37) 

4 11.36 

(0.46) 

4 6.83 

(0.92) 

13 

Se BL 0.99 

(0.17) 

17 7.76 

(1.50) 

19 5.07 

(0.82) 

16 # 6.36 

(0.36) 

6 8.42 

(0.66) 

8 5.45 

(0.53) 

10 

BL Se 1.87 

(0.45) 

24 8.43 

(1.29) 

15 1.32 

(0.80) 

62 # 5.66 

(0.88) 

16 5.14 

(0.05) 

1 4.77 

(0.44) 

9 

Dd Se 1.13 

(0.64) 

57 4.02 

(2.31) 

57 2.21 

(0.38) 

17 # 4.73 

(0.83) 

18 3.51 

(2.31) 

1 4.77 

(0.44) 

9 

Sb Se 1.90 

(0.22) 

12 5.06 

(3.56) 

70 3.66 

(1.03) 

28 # 5.67 

(0.14) 

2 5.01 

(2.02) 

40 6.37 

(0.57) 

9 

Se- 2.10 

(0.53) 

25 7.93 

(0.61) 

8 3.94 

(3.05) 

77 # 4.61 

(0.71) 

15 3.49 

(0.51) 

15 4.22 

(0.97) 

23 

# Crop was not harvested but biomass was cut and removed in June. Manually tilled so that soil was bare fallow during summer 
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