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Abstract 10 

Soil moisture (SM) measurements contain information about both pre-storm hydrologic 11 

states and within-storm rainfall estimates, both are essential for accurate streamflow simulation. 12 

In this study, an existing dual state/rainfall correction system is extended and implemented in a 13 

large basin with a semi-distributed land surface model. The latest Soil Moisture Active Passive 14 

(SMAP) satellite surface SM retrievals are assimilated to simultaneously correct antecedent SM 15 

states in the model and rainfall estimates from the latest Global Precipitation Measurement 16 

(GPM) mission. While the GPM rainfall is corrected slightly to moderately, especially for larger 17 

events, the correction is smaller than that reported in past studies because of the improved 18 

baseline quality of the new GPM satellite product. The streamflow is corrected slightly to 19 

moderately via dual correction across 8 Arkansas-Red sub-basins. The correction is larger at sub-20 

basins with poorer GPM rainfall and poorer open-loop streamflow simulations. Overall, although 21 

the dual data assimilation scheme is able to nudge streamflow simulations in the correct 22 

direction, it corrects only a relatively small portion of the total streamflow error. Systematic 23 

modeling error accounts for a larger portion of the overall streamflow error, which is 24 

uncorrectable by standard data assimilation techniques. These findings suggest that we may be 25 

reaching a point of diminishing returns for applying data assimilation approaches to correct 26 

random errors in streamflow simulations. More substantial streamflow correction would rely on 27 

future research efforts aimed at reducing the systematic error and developing higher-quality 28 

satellite rainfall products. 29 
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1. Introduction 32 

Accurate streamflow simulation is important for water resources management 33 

applications such as flood control and drought monitoring. Reliable streamflow simulation 34 

requires accurate soil moisture (SM) conditions that control the partitioning of infiltration and 35 

surface runoff during rainfall events as well as longer-memory subsurface flow [Freeze and 36 

Harlan, 1969; Western et al., 2002; Aubert et al., 2003]. Good streamflow simulations also 37 

require realistic rainfall time series estimates. 38 

SM measurements, if available, contain information about both antecedent hydrologic 39 

states and preceding rainfall events. With the advance of in-situ and satellite-measured SM 40 

products, researchers have started to explore the potential of using SM measurements to improve 41 

both aspects. For example, a number of studies have attempted to assimilate SM measurements 42 

to improve antecedent SM states in hydrologic models via Kalman-filter-based techniques [e.g., 43 

Francois et al., 2003; Brocca et al., 2010, 2012; Wanders et al., 2014; Alvarez-Garreton et al., 44 

2014; Lievens et al., 2015, 2016; Massari et al., 2015; Mao et al., 2019]. Other studies have 45 

explored approaches to using SM measurements to back-calculate rainfall or to correct existing 46 

rainfall products [e.g., Crow et al., 2011; Chen et al., 2012; Brocca et al., 2013; Brocca et al., 47 

2014; Brocca et al., 2016; Koster et al., 2016]. 48 

In the recent decade, so-called dual state/rainfall correction systems have been 49 

implemented that combine both the state update and rainfall correction schemes to optimally 50 

improve streamflow simulations [e.g., Crow and Ryu, 2009; Chen et al., 2014; Alvarez-Garreton 51 

et al., 2016]. Specifically, SM measurements (typically from satellite observation) are used to 52 

simultaneously update model states and correct a rainfall product (also typically satellite-53 

observed). The updated antecedent states and corrected rainfall are then combined as inputs into 54 

a hydrologic model to produce an improved streamflow simulation (see Fig. 1 for illustration of 55 

the dual correction system). Past studies have suggested that such systems generally outperform 56 

either state-update-only or rainfall-correction-only schemes [Crow and Ryu, 2009; Chen et al., 57 

2014; Alvarez-Garreton et al., 2016], with the rainfall correction contributing more during high-58 

flow events and the state update during low flow periods [also see Massari et al., 2018]. 59 

While these past studies had encouraging findings, they applied the dual correction 60 

system only to catchment-scale, lumped hydrologic models. In this study, a semi-distributed land 61 
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surface model, the Variable Infiltration Capacity (VIC) model, is implemented instead. The VIC 62 

model, compared to the previous lumped models, includes a more detailed representation of both 63 

energy and water balance processes [Liang et al., 1994; Hamman et al., 2018]. The macroscale 64 

grid-based VIC also better matches the spatial resolution of satellite SM measurements and 65 

provides a means for correcting large-scale streamflow analysis. In addition, earlier dual 66 

correction studies used previous-generation satellite products such as the Advanced 67 

Scatterometer (ASCAT) satellite SM data, the Soil Moisture Ocean Salinity (SMOS) satellite 68 

SM data and the Tropical Rainfall Measuring Mission (TRMM) precipitation data. Here, we use 69 

data products from the more recent Global Precipitation Measurement (GPM) mission [Hou et 70 

al., 2014] and the NASA Soil Moisture Active Passive (SMAP) mission [Entekhabi et al., 2010]. 71 

Both the SMAP and GPM products provide near-real-time measurements over much of the 72 

global land surface, making them especially useful for regions with scarce in-situ rainfall and 73 

SM observations.  74 

The main objective of this study is to assess the effectiveness of such a dual correction 75 

system to improve streamflow simulations using the latest satellite SM and precipitation 76 

products. To address this main objective, we introduced a number of methodological advances. 77 

Specifically, we 1) extended the system to provide a probabilistic streamflow estimate via 78 

ensemble simulations (past studies focused solely on deterministic improvement), 2) updated the 79 

rainfall correction scheme to take advantage of the higher accuracy and higher temporal 80 

resolution of the satellite data, and 3) investigated the potential cross-correlation of errors in the 81 

dual system and validated the theoretical correctness of the system design. These methodological 82 

contributions will be presented throughout the paper. 83 

The remainder of this paper is organized as follows. Section 2 describes the dual 84 

correction system and our novel methodological contributions, as well as the study domain, 85 

hydrologic model, and datasets used. Results are presented in Sect. 3. Section 4 discusses a few 86 

remaining issues and takeaways from the study, and Sect. 5 summarizes our conclusions. 87 
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 89 

Figure 1. The dual state/rainfall correction framework applied in this study. Satellite-based soil 90 

moisture (SM) data is integrated into a hydrological simulation system via two correction 91 

schemes: 1) a standard data assimilation system to correct modeled SM states (shown in the red 92 

box on the left), and 2) a rainfall correction algorithm to correct rainfall forcing data (shown in 93 

the blue box on the right). Finally, these two contributions are combined to improve streamflow 94 

simulations (shown in the black box at the bottom). 95 

 96 

2. Methods 97 

2.1. Study domain 98 

The dual state/rainfall correction system is applied in the Arkansas-Red River basin 99 

(approximately 605,000 km2) located in the south-central United States (Fig. 2). This basin 100 

consists of the Arkansas River and the Red River, both converging eastward into the Mississippi 101 

River. This domain has a strong climatic gradient and is wetter in the east and drier in the west 102 

(Fig. 2). The basin experiences little snow cover in winter except for the mountainous areas 103 

along its far western edge. Vegetation cover tends to be denser in the east (deciduous forest) than 104 

in the west (wooded grassland, shrubs, crops and grassland). 105 
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 106 

 107 

Figure 2. The Arkansas-Red River basin with climatology-averaged annual precipitation 108 

(calculated from NLDAS-2 precipitation data over 1979-2017). The pink shaded areas show the 109 

upstream sub-basins of the 8 USGS streamflow sites evaluated in this study, with basin numbers 110 

labeled on the plot (see Table 1 for basin numbers and corresponding sites). 111 

 112 

2.2. Data 113 

2.2.1. SMAP satellite SM data 114 

The SMAP mission provides SM estimates for the top 5 centimeters of the soil column, 115 

with an average revisit time of 2-3 days, a resolution of 36 km and a 50-hour data latency. Both 116 

ascending (PM) and descending (AM) retrievals from the SMAP L3 Passive product [O'Neill et 117 

al., 2016] (data Version 4) from Mar 31, 2015 to December 31, 2017 were used in this study. A 118 

few SMAP pixels with obvious quality flaws (i.e., near-constant retrieval values) were manually 119 

masked out. The internal quality flags provided by the SMAP mission were not applied in this 120 

study to preserve the measurements in the east half of the domain, where the data quality of the 121 

entire region is flagged as unrecommended due to relatively heavy vegetation cover. The native 122 
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36-km SMAP retrievals were used throughout the study without spatial remapping or temporal 123 

aggregation. 124 

2.2.2 GPM satellite precipitation data 125 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) Level 3 Version 05 Early 126 

Run precipitation data was used in this study [Huffman et al., 2018]. IMERG merges multiple 127 

satellite observations and provides a near-global precipitation product with a spatial resolution of 128 

0.1º [Huffman et al., 2015]. The “Early Run” version of this product was used in this study since 129 

its short latency (4 hours) makes it suitable for near-real-time assimilation applications. We 130 

aggregated the original 30-minute precipitation product to our 3-hourly modeling timestep and 131 

remapped it onto our 1/8º model resolution. 132 

2.2.3. Other meteorological forcing data 133 

Other than precipitation, the VIC model requires air temperature, shortwave and 134 

longwave radiation, air pressure, vapor pressure and wind speed as forcing inputs. These 135 

variables were obtained from the 1/8º gridded North American Land Data Assimilation System 136 

Phase 2 (NLDAS-2) meteorological forcing data product [Xia et al., 2009]. We aggregated the 137 

original hourly NLDAS-2 meteorological variables to the 3-hourly modeling timestep. 138 

2.2.4. Validation data 139 

Daily streamflow data at 8 USGS streamflow sites in the study domain [USGS, 2018] 140 

was used to evaluate the streamflow time series from the dual correction system (Fig. 2 and 141 

Table 1). These 8 sites were selected for their lack of human regulation and their dense rain 142 

gauge coverage (see Crow et al. [2017] for details). We separately evaluated the rainfall 143 

correction scheme, in which the gauge-informed NLDAS-2 precipitation data was treated as the 144 

benchmark. 145 

 146 

2.3. Hydrologic modeling 147 

 We used Version 5 of the VIC model [Liang et al., 1994; Hamman et al., 2018]. VIC is a 148 

large-scale, semi-distributed model that simulates various land surface processes. In this study, 149 

the VIC model was implemented in the Arkansas-Red River basin with the same setup as in Mao 150 
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et al. [2019]. Specifically, the model was set up at 1/8º spatial resolution with each grid cell 151 

further divided into multiple vegetation tiles via statistical distributions. Each grid cell was 152 

simulated by VIC separately using a soil column discretized into 3 vertical layers (with domain-153 

average thicknesses of 0.10 m, 0.40 m and 0.93 m, respectively). Runoff can be generated by 154 

fast-response surface runoff and by slow-response runoff from the bottom soil layer. All 155 

vegetation cover and soil property parameters in the model were taken from Maurer et al. [2002], 156 

which were calibrated against streamflow observations at the most downstream outlet of the 157 

combined Arkansas and Red River basins. The simulation period was from March 2015 to 158 

December 2017 when both the SMAP and GPM products are available. The VIC model was 159 

spun-up by running the period 1979-2015 twice. 160 

The local runoff simulated by VIC at each grid cell was routed through the stream 161 

channels using the RVIC routing model [Hamman et al., 2017]. RVIC is an adapted version of 162 

the routing model developed by Lohmann et al. [1996, 1998]. 163 

 164 

2.4. The dual correction system 165 

In this section, we describe our methodological updates to the rainfall correction scheme, 166 

followed by a description of the state update scheme. Next, we describe how the two schemes are 167 

combined to produce the final ensemble streamflow analysis. 168 

2.4.1. The SMART rainfall correction scheme updates and adaption 169 

The Soil Moisture Analysis Rainfall Tool (SMART) rainfall correction algorithm [Crow 170 

et al., 2009; 2011; Chen et al., 2012] is based on sequential assimilation of SM measurements 171 

into a simple Antecedent Precipitation Index (API) model: 172 

1t t tAPI API P −= +        (1) 173 

where t is a timestep index; P is the original IMERG precipitation observation; and γ is a loss 174 

coefficient. We implemented a 3-hourly version of SMART (instead of the daily version in past 175 

studies) to receive the 3-hourly IMERG rainfall input and both the ascending (PM) and 176 

descending (AM) SMAP retrievals at the correct time of day. We also extended the ensemble 177 

Kalman filter (EnKF) version of SMART introduced by Crow et al. [2011] to an ensemble 178 
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Kalman smoother (EnKS), in which the API state is not only updated at timesteps when SMAP 179 

is available, but also updated during measurement gaps (see Supplemental Material Sect. S1 for 180 

mathematical details of the SMART EnKS). We set γ to 0.98 [3 hours-1] such that the un-181 

corrected API time series approximately captures the dynamics of SMAP retrievals (i.e., with 182 

high correlation). SMAP was rescaled to the API regime through cumulative distribution 183 

function (CDF) matching over the 2.5-year simulation period prior to assimilation. 184 

 The SMART algorithm then uses the API increment, δt, to estimate the rainfall correction 185 

amount via a simple linear relation. We implemented an ensemble rainfall correction rather than 186 

the single deterministic rainfall correction used in past SMART applications: 187 

, ,

(j) (j) (j)

corr t pert t tP P = +        (2) 188 

where the superscript (j) denotes the jth ensemble member (ensemble size M = 32); Pcorr,t is the 189 

corrected precipitation for time t; Ppert,t is the perturbed IMERG precipitation; 𝜆 is a scaling 190 

factor that linearly relates API increment to rainfall correction, which was set to a domain-191 

constant of 0.1 [-] (see Supplemental Material Sect. S2 for discussion on the choice of 𝜆). We 192 

applied rainfall correction only at timesteps when the original IMERG rainfall observation is 193 

non-zero, taking advantage of the enhanced rain/no rain detection accuracy of IMERG 194 

[Gebregiorgis et al., 2018]. This tactic mitigates the degradation of the rainfall estimates during 195 

low-rainfall timesteps introduced by SMART  (see also Sect. 3.1). Finally, following Crow et al. 196 

[2009; 2011], negative Pcorr,t values were set to zero, and the final corrected precipitation time 197 

series was multiplicatively rescaled to be unbiased over the entire simulation period against the 198 

original IMERG estimates. 199 

In this study, the SMART algorithm was run at each of the 36-km SMAP pixels 200 

individually. The original 0.1o IMERG product was remapped to the coarser 36-km resolution 201 

prior to SMART, and the corrected 36-km rainfall was then downscaled to the VIC 1/8o 202 

modeling resolution. In our implementation of an EnKS-based SMART system, the original 203 

IMERG precipitation was multiplicatively perturbed by log-normally distributed noise with 204 

mean and standard deviation equal to one. SMAP measurement error ranges from 0.03 to 0.045 205 

m3/m3 across domain, which was estimated from the SMAP ground validation studies [e.g., 206 

Colliander et al., 2017; Chan et al., 2017] and its spatial distribution was set to be proportional to 207 
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leaf area index (LAI) (denser vegetation cover corresponds to larger SMAP error). The API state 208 

was directly perturbed by zero-mean Gaussian noise to represent API model error. The 209 

perturbation variance was set to 0.3 mm2 over the entire domain such that the normalized filter 210 

innovation has variance of approximately one (which is a necessary condition for proper error 211 

assumptions in a Kalman filter; see Mehra [1971] and Crow and Bolten [2007]). See 212 

Supplemental Material Sect. S1 for mathematical details of these error assumptions. 213 

 214 

2.4.2. State updating via EnKF 215 

As illustrated in Fig. 1 (the red box on the left), the SMAP SM retrievals were also 216 

assimilated into the VIC model to update model states using the EnKF method. The EnKF 217 

implementation in this study generally follows Mao et al. [2019]. Specifically, a 1D filter was 218 

implemented for each 36-km SMAP pixel separately and at each pixel SMAP was assimilated to 219 

update the SM states of multiple underlying finer 1/8o VIC grid cells. Only the upper two layers 220 

of SM states in VIC were updated during EnKF (following Lievens et al. [2015; 2016] and Mao 221 

et al. [2019]), although the bottom layer SM does respond to the update of the upper two layers 222 

through drainage. An ensemble of 32 model run replicates was used to represent the probabilistic 223 

estimate of corrected SM states. 224 

 The SMAP retrievals were rescaled to match the 2.5-year mean and standard deviation of 225 

the VIC-simulated surface-layer SM time series prior to assimilation. The error statistics of 226 

IMERG precipitation and unscaled SMAP retrievals were assumed to be the same as used in 227 

SMART (Sect. 2.4.1). The VIC SM states of all three layers were directly perturbed during 228 

EnKF by zero-mean Gaussian noise with standard deviation of 0.5 mm over the entire study 229 

domain (following Mao et al. [2019]), which represents VIC modeling errors. Although VIC 230 

modeling errors are likely to contain spatial auto-correlation, consideration of this did not result 231 

in significantly better filter performance in our case and therefore not implemented here. This 232 

finding is consistent with Gruber et al. [2015] which described the limited benefit of a 2-D filter 233 

when assimilating distributed SM retrievals into a land surface model. We will further discuss 234 

this in Sect. 4. 235 

 236 
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2.4.3. Combining the state update and the rainfall correction schemes 237 

The ensemble of updated model states and the corrected rainfall forcing were combined 238 

to produce final streamflow results (black box in the bottom of Fig. 1). We first randomly paired 239 

ensemble members of corrected rainfall and updated VIC states and selected 32 such pairs to 240 

balance competing considerations of computational cost and statistical stability. For each pair, 241 

the VIC model was re-run with the updated states inserted sequentially over time and forced by 242 

the corrected rainfall. Other meteorological forcings were kept unchanged. The runoff output 243 

from VIC for each pair was then routed to the gauge locations, resulting in an ensemble of basin-244 

outlet streamflow time series for evaluation. To further separate the relative contribution of the 245 

state update and the rainfall correction schemes to overall streamflow improvement, two 246 

additional streamflow simulations were performed. The first was the “state-updated streamflow” 247 

case, where VIC was re-run with the updated states and forced by the original IMERG 248 

precipitation. The resulting streamflow reflects only the impact of state updating on streamflow 249 

simulations. The second was the “rainfall-corrected streamflow” case, where VIC was forced by 250 

the SMART-corrected rainfall ensemble but without inserting the updated states. The resulting 251 

streamflow reflects only the effect of SMART rainfall correction. 252 

Although the state and rainfall correction schemes were performed separately with no 253 

feedback to each other to mitigate correlated error [Crow et al., 2009], error correlation still 254 

potentially exists in the dual system since the two schemes are informed by the same SM 255 

measurement data. Such cross-correlated error could potentially be amplified when combining 256 

the two schemes and degrading streamflow estimates. Massari et al. [2018] intentionally avoided 257 

combining the state and rainfall correction schemes due to this concern. To investigate this, we 258 

performed a set of synthetic experiments where we compared the following two scenarios: 1) a 259 

single set of synthetically generated SM measurements were assimilated into the state and 260 

rainfall correction schemes, mimicking the real dual correction system; 2) two SM measurements 261 

with mutually independent errors were assimilated separately into the two schemes, thereby 262 

avoiding error cross-correlation in the system. Results show that the two scenarios achieve very 263 

similar streamflow correction performance. This suggests that it is safe to assimilate a single SM 264 

measurement product into both schemes without significantly degrading the final streamflow 265 

performance (see Sect. S3 in Supplemental Material). 266 
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 267 

2.5. Evaluation strategies and metrics  268 

We evaluated the rainfall correction results in addition to the dual-corrected streamflow 269 

results in terms of both deterministic and probabilistic metrics. 270 

The 1/8o gauge-informed NLDAS-2 precipitation data was remapped to the 36-km 271 

SMART resolution grid as the benchmark for evaluating rainfall. Deterministically, the 272 

ensemble-mean SMART-corrected rainfall was compared to the original IMERG precipitation 273 

(remapped to 36 km), and its improvement was evaluated in terms of: 1) correlation coefficient 274 

(r) of time series; 2) percent error reduction (PER) in terms of the root-mean-squared error 275 

(RMSE); 3) Categorical skill metrics, including false alarm ratio (FAR), probability of detection 276 

(POD) and threat score (TS) [Wilks, 2011; Crow et al., 2011; Chen et al., 2012; Brocca et al., 277 

2016]. Probabilistically, the normalized ensemble skill (NENSK) was calculated, which 278 

measures the ensemble-mean error normalized by ensemble spread: 279 

   
ENSK

NENSK
ENSP

=        (3) 280 

where the ensemble skill (ENSK) is the temporal mean of ensemble-mean squared error, and the 281 

ensemble spread (ENSP) is the temporal mean of ensemble variance [De Lannoy et al., 2006; 282 

Brocca et al., 2012; Alvarez-Garreton et al., 2014; Mao et al., 2019]. Ideally, if an ensemble time 283 

series correctly represent the uncertainty of analysis, NENSK should be 1 [Talagrand et al., 284 

1997; Wilks, 2011]. NENSK > 1 indicates an under-dispersed ensemble while NENSK < 1 285 

indicates an over-dispersed ensemble. For all metrics, precipitation datasets were aggregated to 286 

multiple temporal accumulation periods (the native 3-hour period without aggregation; 1-day; 3-287 

day) for evaluation. 288 

The dual-corrected streamflow was evaluated at the 8 USGS sites shown in Fig. 2. 289 

Deterministically, the ensemble-median corrected streamflow was compared to the baseline 290 

streamflow, or the so-called “open-loop” streamflow, which is simply the single VIC simulation 291 

forced by IMERG precipitation without any correction, in terms of 1) PER; and 2) the Kling-292 

Gupta efficiency (KGE) [Gupta et al. 2009] which combines the performance of correlation, 293 

variance and bias. Ensemble-median instead of ensemble-mean streamflow was used for more 294 
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stable evaluation results in the case of a skewed streamflow ensemble caused by model 295 

nonlinearity. Probabilistically, NENSK was calculated for streamflow ensembles. 296 

 297 

3. Results 298 

3.1. SMART rainfall correction 299 

3.1.1. The impact of SMART methodological choices 300 

Figure 3 shows the rainfall improvement in terms of r based on EnKS (the left column) 301 

compared to EnKF (the right column). For EnKF, both δ and P in Eq. (2) were aggregated to 3-302 

day windows prior to correction to ensure SM data availability in every correction window. 303 

EnKF results in less r improvement than EnKS overall, which confirms the benefit of applying 304 

SMART using a smoothing approach. 305 

The impact of our choice of only correcting rainfall at non-zero IMERG timesteps is 306 

demonstrated by the domain-median categorical metrics (Fig. 4). If every timestep is corrected 307 

(Fig. 4 Column 1), FAR is largely degraded (by 0.1 – 0.4) at low rainfall thresholds especially 308 

with shorter accumulation periods (3-hour and 1-day; see Fig. 4a). This is likely due to the issue 309 

of SMART misinterpreting SM retrieval noise as small rainfall corrections [Chen et al., 2014]. 310 

POD is improved at these low thresholds (Fig. 4b), but not enough to compensate for the large 311 

FAR degradation. Therefore, TS, which accounts for both false alarms and missed events, is also 312 

degraded at low thresholds (by as large as 0.2 at 3-hourly). In contrast, when we only correct 313 

rainfall at non-zero IMERG timesteps (Fig. 4 Column 2), the FAR degradation is much less (note 314 

the different y-axes in the two columns in Fig. 4). While it does sacrifice POD at low thresholds 315 

(Fig. 4e), the overall TS for 1-day and 3-day aggregation is improved over most of the event 316 

thresholds, especially at higher ones. As mentioned in Sect. 2.4.1, the success of this SMART 317 

choice is likely due to the improved rain/no rain detection quality of the baseline IMERG 318 

precipitation product, which was found to have superior miss-rain, false-rain and hit rate relative 319 

to TRMM TMPA-RT over the Continental U.S. [Gebregiorgis et al., 2018]. It is thus more 320 

beneficial to retain the IMERG’s rain/no rain detection than to use SMART to correct it. 321 

 322 
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3.1.2. Rainfall correction evaluation 323 

 After rainfall correction at 1-day and 3-day accumulation periods, PER exhibits a 324 

domain-median error reduction of ~8% (Fig. 5 Column 1). The PER improvement is consistent 325 

with the improvement of the categorical metrics at high-event thresholds (Fig. 4 Column 2), 326 

since PER is more sensitive to high rainfall values. Three-hourly PER shows little improvement 327 

(Fig. 5a), suggesting that the deterministic correction is more effective at an accumulation period 328 

that more closely matches the SMAP retrieval interval. The same finding can also be drawn from 329 

the correlation and categorical results (Fig. 3 Column 2 and Fig. 4 Column 2). 330 

 Overall, SMART improves the IMERG rainfall product, but the improvement is 331 

generally smaller than found in previous SMART studies, especially in terms of correlation r 332 

(domain-median improvement of 0.01 to 0.02). The relatively smaller improvement is likely due 333 

to the improved accuracy of the baseline IMERG precipitation product. Table 2 summarizes the 334 

past SMART studies in literature, including the baseline and benchmark rainfall products, the 335 

SM product assimilated, baseline correlation r and its improvement, and baseline RMSE and its 336 

reduction (PER). Over the past decade, the quality of the baseline satellite-derived rainfall 337 

product has improved considerably, from TRMM 3B40-RT used in Crow et al. [2009] and Crow 338 

et al. [2011] with r = ~0.5, to TRMM 3B42-RT used in Brocca et al. [2016] with r = ~0.6 – 0.7, 339 

to IMERG used in our study with r over 0.8. Gebregiorgis et al. [2018] also used a direct 340 

comparison study to show the improved accuracy of IMERG relative to TRMM over the 341 

Continental U.S. in terms of correlation, RMSE, bias and categorical metrics. The marginal value 342 

of SMART is known to decrease as a function of increased baseline rainfall accuracy [Crow et 343 

al., 2011]. Although SMAP presumably provides more reliable SM measurements than the older 344 

satellite SM products used in previous SMART applications, its benefit does not appear 345 

sufficient to substantially correct the current generation of satellite-derived rainfall products. The 346 

high correlation may also be approaching that of the NLDAS-2 rainfall benchmark (which itself 347 

does not have perfect accuracy), thus undermining our ability to detect improvements in SMART 348 

rainfall estimates. 349 

Finally, the probabilistic metric NENSK (Fig. 5 Column 2) is less than one for most of 350 

the domain at a 3-hour timestep, indicating an over-dispersed ensemble on average. However, 351 

when evaluating at 1-day and 3-day accumulation periods, NENSK is closer to one, indicating a 352 
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better representation of the uncertainty of rainfall estimates. As we aggregate over longer 353 

accumulation windows (e.g., 3-day), NENSK becomes slightly greater than 1 (i.e., under-354 

dispersed ensemble), since the SMART algorithm only assumes random rainfall error but not 355 

systematic bias, and therefore slightly underestimates the uncertainty range over longer-term 356 

periods. 357 

In summary, SMART is able to use the SMAP retrievals to correct IMERG rainfall at 358 

relatively larger events, with slight to moderate deterministic improvement. SMART correction 359 

is less successful for small rainfall events and can even lead to slight degradation. The correction 360 

is more effective and ensemble representation is better when rainfall estimates are temporally 361 

aggregated to periods consistent with SMAP retrieval intervals (i.e., 1-day to 3-day accumulation 362 

periods), while the raw 3-hourly correction is less successful. 363 

 364 

  365 
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Figure 3. Maps of correlation coefficient improvement after SMART rainfall correction. The left 366 

column shows the SMART EnKS experiments (a, b, c), and the right column shows the EnKF 367 

experiments (d, e, f). Each row shows results based on different temporal accumulation period: 368 

3-hourly, 1-day and 3-day aggregation, respectively. The number on the lower left corner of each 369 

subplot shows the domain-median correlation improvement. 370 

 371 

 372 

Figure 4. Change in categorical metrics (FAR, POD and TS) before and after SMART 373 

correction for 3-hourly, 1-day and 3-day accumulation periods. Metrics at different event 374 

thresholds are shown on the x axis. The left column (a, b, c) is for SMART with rainfall 375 

corrected at all timesteps; the right column (d, e, f) is for SMART with rainfall corrected only at 376 

non-zero timesteps. Note that the y-axis range is different for the two columns. 377 

 378 
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 379 

Figure 5. Maps of SMART rainfall correction results (with λ = 0.1, EnKS, and rainfall corrected 380 

only at non-zero timesteps). Each column shows the following metrics, respectively: percent 381 

RMSE reduction (PER) (a, b, c), and ensemble NENSK (d, e, f). Each row shows results based 382 

on different temporal accumulation period: 3-hourly, 1-day and 3-days, respectively. The number 383 

on the lower left corner of each subplot shows the domain-median statistic. 384 

 385 

3.2. Streamflow from the dual correction system 386 

3.2.1. Evaluation of streamflow improvement 387 

The final daily streamflow performance from the dual correction system is listed in Table 388 

3 (the “dual” columns) for each sub-basin. Overall, streamflow estimates are improved but with 389 

large variability across sub-basins. Specifically, PER ranges from approximately 6% to 34% and 390 

KGE improvement ranges from slightly negative to +0.95 across all sub-basins. If using the 391 

open-loop KGE (listed in Table 3) as a measure of baseline streamflow performance without any 392 
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correction, we observe that at sub-basins with better open-loop streamflow simulations (i.e., 393 

Ninnescah, Walnut and Chikaskia, all with positive baseline KGE), the relative improvement 394 

after the dual correction is generally smaller. 395 

Table 3 also summarizes the streamflow improvement from each of the correction 396 

schemes alone (the “state update only” and “rainfall correction only” columns). For sub-basins 397 

with relatively better open-loop model performance (the three with positive KGE as well as the 398 

Little Arkansas with slightly negative baseline KGE), the contribution of state updating in 399 

general surpasses that of rainfall correction. Conversely, at sub-basins with relatively poorer 400 

open-loop model performance (i.e., Bird, Spring, Illinois and Deep), streamflow improvement is 401 

primarily attributable to the SMART rainfall correction scheme. 402 

3.2.2. Impact of rainfall forcing error 403 

To further understand the relationship between open-loop simulation performance, 404 

rainfall forcing error and correction performance, we forced the VIC model by the NLDAS-2 405 

benchmark rainfall (without state update). The subsequent streamflow improvement level is the 406 

maximum achievable by rainfall correction alone (Table 3 “NLDAS2-forced” columns). While 407 

almost all sub-basins show an obvious streamflow improvement simply by switching to the 408 

NLDAS-2 rainfall forcing, the improvement is larger at sub-basins with poorer open-loop 409 

streamflow. For example, at the four sub-basins with worse open-loop streamflow, PER is over 410 

65% and the negative open-loop KGE improves to near zero or positive. This suggests that the 411 

poor open-loop streamflow simulations at these sub-basins are largely caused by the poor 412 

IMERG rainfall forcing. While the state update is still beneficial at these sub-basins, the SMART 413 

rainfall correction scheme is particularly important. 414 

In contrast, the sub-basins with better open-loop streamflow demonstrate a reduced 415 

capability of streamflow improvement when switching to the NLDAS-2 rainfall forcing. The 416 

sub-basin with best open-loop streamflow, Chikaskia, even experiences smaller streamflow 417 

improvement when forced by the NLDAS-2 rainfall than when forced by SMART-corrected 418 

rainfall (Table 3). One possible reason is that the NLDAS-2 benchmark rainfall at this sub-basin 419 

is not obviously superior than the IMERG baseline. Therefore, switching to the NLDAS-2 420 

rainfall forcing does not benefit streamflow much, but SMART is still able to extract information 421 

from SMAP and slightly correct IMERG rainfall and subsequent streamflow. 422 
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3.2.3. Impact of model parameterization 423 

The dual correction scheme presented in this study is designed to only correct the random 424 

error existing in the simulation system, but not systematic error or overall bias. Figure 6 shows 425 

example time series of the open-loop, USGS-observed and dual-corrected streamflow at three 426 

sub-basins with various levels of open-loop performance. It is readily apparent from the time 427 

series that, although the dual system often nudges the simulated streamflow in the correct 428 

direction (especially during high-flow periods) and results in overall improved evaluation 429 

statistics, obvious systematic error (in the model process representation as well as rainfall 430 

forcing) exists. This systematic error, although difficult to quantify, cannot be corrected by the 431 

data assimilation approach discussed here. The NENSK statistic partly reflects such systematic 432 

error. NENSK is significantly above one at most sub-basins, indicating an under-dispersed 433 

ensemble on average. In other words, at most sub-basins the ensemble spread created by the dual 434 

system only represents the random uncertainty around the open-loop streamflow, but not the 435 

systematic error which accounts for much of the total error. 436 

The level of systematic error is tied closely to the quality of the hydrologic model 437 

parameters, often estimated through calibration. The VIC parameters used in this study were 438 

taken from Maurer et al. [2002] and derived based on streamflow at the outlets of large basins. 439 

To further examine the effect of systematic error on data assimilation, we instead calibrated the 440 

model parameters for the 8 sub-basins separately using streamflow acquired from the USGS 441 

(Table 1). Specifically, VIC parameters that control infiltration, soil conductivity and baseflow 442 

generation as well as the recession rate of the grid-cell-scale unit hydrograph in RVIC were 443 

calibrated using the MOCOM multi-objective autocalibration method [Yapo et al., 1998]. Basin-444 

constant parameters were calibrated toward USGS streamflow time series during 2015 to 2017 445 

(forced by the baseline IMERG precipitation) to optimize daily KGE and monthly bias. Only a 446 

subset of the 8 sub-basins were able to achieve better-than-open-loop streamflow results via this 447 

traditional calibration method, mainly due to the large IMERG forcing error at some sub-basins 448 

that makes the calibration scheme incapable of finding an improved parameterization. Figure 7 449 

shows three example sub-basins with relatively good calibration outcome as demonstration. 450 

Comparing Fig. 6 and Fig. 7, all three sub-basins exhibit a similar or smaller magnitude of 451 

streamflow correction after parameter calibration. While a good calibration itself can 452 
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significantly improve baseline performance, a poor calibration does not degrade (and sometimes 453 

even benefit) the relative added value of the dual correction. 454 

 455 

Figure 6. Example time series of streamflow results from the dual correction system. Black line: 456 

USGS observed streamflow; magenta line: baseline VIC simulation; light blue lines: ensemble 457 

updated streamflow results; solid blue line: ensemble-mean updated streamflow. Only part of the 458 
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simulation period is shown for clear display. Statistics shown on each panel are based on the 459 

entire simulation period (approximately 2.5 years). 460 

 461 

 462 

Figure 7. Time series of simulated open-loop, corrected and observed streamflow at three 463 

example sub-basin outlets with calibrated model parameters. All lines and notations are the same 464 

as in Fig. 6. 465 
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 466 

4. Discussion 467 

Although we applied the dual correction system to the entire Arkansas-Red basin, we 468 

selected 8 smaller basins for our streamflow evaluation due to the limited availability of 469 

unregulated streamflow observations at basin outlets. Additional research is needed to fully 470 

investigate the impact of error spatial correlation on downstream streamflow performance before 471 

extending our findings to large-scale river systems. Specifically, while a 1-D filter with spatially 472 

white model representation error may be appropriate for small-basin correction, ignoring the 473 

spatial correlation structure of errors could potentially have a more profound impact on the 474 

correction performance at large river outlets where streamflow originates from runoff from a 475 

large number of grid cells. A number of studies have investigated the effects of spatial error 476 

patterns in hydrologic data assimilation. For example, Reichle and Koster [2003] investigated the 477 

impact of spatial error correlation in the model SM states on its assimilation performance; 478 

Gruber et al. [2015] examined the impact of a 2-D filter with spatially auto-correlated error 479 

versus a 1-D filter on SM updating quality; Pan et al. [2009] and Pan and Wood [2009; 2010] 480 

evaluated the surface SM assimilation performance with VIC by comparing a 1-D filter, a 2-D 481 

filter and a multiscale autoregressive filtering approach, as well as considering spatial and 482 

temporal structure of precipitation error. However, these studies focused exclusively on the 483 

performance of SM simulations. Direct assessment of the impact of spatial error patterns on the 484 

routed streamflow results is needed, especially from a probabilistic perspective since the 485 

ignorance of spatial error patterns may potentially cause error cancelation at large outlets and 486 

therefore incorrect ensemble representation of uncertainty. 487 

Nevertheless, this study leads to a number of valuable insights. We have shown that the 488 

dual correction approach is able to correctly nudge streamflow simulation, especially during 489 

relatively high flow events in areas with poor IMERG data. However, the magnitude of this 490 

correction is generally small for two reasons. First, the latest generation of satellite rainfall 491 

products (e.g., IMERG) has significantly improved precision compared to its predecessors. The 492 

already high-quality rainfall estimates are more difficult for SM retrievals to contribute 493 

substantial rainfall correction skill. Second, the dual correction approach is designed to correct 494 

only the zero-mean random error component in the total streamflow error but not systematic 495 
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error or bias. However, systematic error sources, typically associated with inaccurate model 496 

structure and/or parameterization and large rainfall bias, can account for a significant fraction of 497 

overall streamflow error. The existence of systematic error is particularly problematic from a 498 

probabilistic perspective, since the ensemble streamflow produced by the dual system only 499 

represents random error, and therefore largely underestimates simulation uncertainty. 500 

 Given the above considerations, we may be approaching a point of diminishing returns 501 

for applying data assimilation techniques that are aimed solely at reducing random error sources 502 

in streamflow simulations. This insight provides few recommendations for future research: 503 

1) More sophisticated data assimilation techniques aimed solely at random error sources 504 

are unlikely to substantially reduce streamflow error further, since random errors sometimes 505 

account for only a relatively small portion of the total error; 506 

2) Instead, approaches that reduce systematic errors in streamflow simulation are needed. 507 

To date this is still a challenging task in large-scale hydrologic modeling, since calibration is 508 

difficult to perform with limited streamflow data and a large number of distributed parameters. 509 

With the availability of the near-global and distributed satellite products such as SMAP and 510 

IMERG, more creative methods need to be developed to extract useful information from the 511 

large volume of remote sensing observations. For example, characteristics of SM dynamics and 512 

its response to rainfall can be directly extracted from the datasets themselves, which can 513 

potentially inform hydrologic model representation. These areas of research are less studied but 514 

have the potential to improve hydrologic modeling beyond correcting random errors; 515 

3) It is worthwhile to continue to develop future generation of higher-quality, near-real-516 

time rainfall products, since rainfall plays a dominant role in streamflow simulations and its error 517 

is not easily and substantially reduced by the current correction methods that use SM 518 

measurement information. 519 

 520 

5. Conclusion 521 

In this paper, we applied a dual state/rainfall correction data assimilation system in the 522 

Arkansas-Red River basin. Built upon the dual system developed in past studies, we have made 523 
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several methodological advances. First, we implemented the dual correction system with a more 524 

complexed, semi-distributed land surface model, the VIC model, and applied it in a regional-525 

scale basin. Second, the latest satellite products, the SMAP SM product and the IMERG rainfall 526 

product, were incorporated into the system. Third, the existing dual correction algorithm was 527 

extended to maximize the use of information contained in the more accurate and temporally finer 528 

satellite data products, and also to produce an ensemble streamflow product. Fourth, we 529 

confirmed via a formal synthetic experiment that error cross-correlation that potentially exists in 530 

the dual correction system does not cause noticeable degradation of streamflow improvement, 531 

and the dual correction scheme applied here is optimal. 532 

 Our results show that, overall, IMERG rainfall and streamflow are improved to some 533 

extent but not substantially via dual correction. For rainfall, the improvement is primarily from 534 

the correction of larger events via SMART, while smaller events are slightly degraded. Rainfall 535 

correction is more effective at daily to multi-daily time scales than at a 3-hourly scale. The 536 

ensemble produced by the correction scheme represents the rainfall uncertainty relatively well at 537 

daily to multi-daily scale. For streamflow, the dual correction reduces the random errors in 538 

simulated streamflow across the 8 test sub-basins, ranging from near zero improvement to 539 

moderate error reduction. Sub-basins with relatively poorer open-loop streamflow simulations, 540 

due mainly to poor IMERG rainfall forcing quality, exhibit relatively larger correction, and the 541 

correction is mainly contributed by the SMART rainfall correction scheme. Sub-basins with 542 

relatively better IMERG and open-loop streamflow show less relative correction, and the 543 

correction is attributable more to state updating. The streamflow ensemble produced by the dual 544 

correction system largely underestimates error uncertainty, because the system accounts only for 545 

the random error components and not systematic error (resulting, e.g., from incorrect model 546 

structure or parameterization). Finally, we demonstrated that model parameterization errors that 547 

commonly exist in large-scale distributed models in general does not degrade (and sometimes 548 

actually benefits) the relative added value of the dual correction scheme. 549 

These findings suggest that we are approaching a point of diminishing returns for SM 550 

data assimilation techniques aimed solely at the reduction of random errors in simulated 551 

streamflow. More sophisticated SM data assimilation techniques may lead to additional marginal 552 

improvement, but more substantial streamflow reduction likely require future research efforts on 553 
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reducing systematic modeling errors via, e.g., innovative ways of achieving better model 554 

representation as well as obtaining higher-quality satellite rainfall products. 555 

 556 

Code availability 557 

The VIC model used in the study can be found at https://github.com/UW-Hydro/VIC. 558 

Specifically, we used VIC version 5.0.1 (doi:10.5281/zenodo.267178) with a modification to the 559 

calculation of drainage between soil layers (https://github.com/UW-560 

Hydro/VIC/releases/tag/Mao_etal_stateDA_May2018). The DA code used in this study is 561 

available at https://github.com/UW-Hydro/dual_DA_SMAP. 562 
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Table 1. List of USGS streamflow sites used for verification. 745 

Basin number USGS station no. USGS station name Short name 

1 07144200 Little Arkansas River at Valley Center, KS L Arkansas 

2 07144780 Ninnescah River AB Cheney Re, KS Ninnescah 

3 07147800 Walnut River at Winfield, KS Walnut 

4 07152000 Chikaskia River near Blackwell, OK Chikaskia 

5 07177500 Bird Creek Near Sperry, OK Bird 

6 07186000 Spring River near Wace, MO Spring 

7 07196500 Illinois River near Tahlequah, OK Illinois 

8 07243500 Deep Fork near Beggs, OK Deep 

 746 
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Table 2. Review of SMART rainfall correction results in literature along with the results in this 748 

study. 749 

Literature 

 

 

Baseline 

rainfall 

product 

Benchmark 

rainfall 

product 

SM 

product 

Domain Accumulation 

period 

Baseline 

correlation 

r 

r 

improvement 

Baseline 

RMSE 

(mm) 

PER 

Crow et al. 

[2009] 

TRMM 

3B40RT 

CPC rain 

gauge analysis 

AMSR-E Southern 

Great Plain 

3-day ~ 0.5 ~ + 0.2 13.0 ~ 

30% 

    CONUS 3-day ~ 0.55 ~ + 0.05 11.8 ~ 

15% 

Crow et al. 

[2011] 

TRMM 

3B40RT 

CPC rain 

gauge analysis 

AMSR-E CONUS 3-day ~ 0.55 ~ + 0.1 13.1 ~ 

20% 

Chen et al. 

[2012] 

Princeton 

Global 

Forcing 

Dataset 

CPC rain 

gauge analysis 

SMMR, 

SMM/I, 

ERS 

Global 10-day ~ 0.35 ~ + 0.15 - - 

Brocca et al. 

[2016] 

TRMM 

3B42RT 

AWAP rain 

gauge product 

SMOS Australia 1-day 0.62 +0.01 5.6 7% 

     5-day 0.71 +0.05 14.0 14% 

This study IMERG 

Early Run 

NLDAS-2 SMAP L3 

Passive 

Arkansas-

Red 

1-day 0.80 +0.02 6.1 8% 

     3-day 0.82 +0.02 11.0 8% 
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Table 3. Daily streamflow results from the dual correction system for the 8 USGS sub-basins 752 

shown in Fig. 1. In addition to the deterministic KGE improvement, PER and probabilistic 753 

NENSK results from the dual system (“dual” columns), the table also lists the open-loop 754 

streamflow KGE (“open-loop KGE” column), KGE improvement and PER as a result of state 755 

update or rainfall correction scheme alone (“state update only” and “rainfall correction only” 756 

columns, respectively), and KGE improvement and PER when forced by the NLDAS-2 757 

benchmark precipitation without state update (“NLDAS-2 forced” column). 758 

 Open-loop 

KGE 

KGE improvement PER NENSK 

  Dual State 

update 

only 

Rainfall 

correction 

only 

NLDAS2-

forced 

Dual State 

update 

only 

Rainfall 

correction 

only 

NLDAS2-

forced 

Dual 

L Arkansas -0.12 +0.17 +0.23 -0.01 +0.57 7.3% 10.8% 1.2% 40.0% 1.98 

Ninnescah 0.25 +0.15 +0.06 +0.16 +0.20 14.0% 5.5% 13.7% 30.4% 0.35 

Walnut 0.54 -0.02 -0.03 +0.03 -0.23 5.8% 5.7% 2.8% 23.3% 2.70 

Chikaskia 0.67 +0.07 +0.05 +0.02 -0.45 15.0% 11.1% 6.6% 2.2% 1.96 

Bird -1.49 +0.95 +0.58 0.63 +0.95 33.5% 17.0% 25.8% 68.9% 2.01 

Spring -3.64 +0.83 +0.65 +0.33 +3.93 13.2% 8.7% 7.0% 83.4% 13.11 

Illinois -1.91 +0.50 +0.36 +0.26 +2.72 17.6% 7.4% 12.9% 81.8% 13.78 

Deep -0.77 +0.49 +0.39 +0.37 +1.55 20.8% 13.1% 21.2% 68.3% 2.34 
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