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Abstract 33 

Evapotranspiration (ET) is critical in linking global water, carbon and energy cycles. Yet direct 34 

measurement of global terrestrial ET is not feasible. Here, we first summarized the basic theory 35 

and state-of-the-art approaches for estimating global terrestrial ET, including remote sensing-36 

based physical models, machine learning algorithms and land surface models (LSMs). We then 37 

utilized four remote sensing-based physical models, two machine-learning algorithms and fourteen 38 

LSMs to analyze the spatial and temporal variations in global terrestrial ET. The results showed 39 

that the ensemble means of annual global terrestrial ET estimated by these three categories of 40 

approaches agreed well, ranging from 589.6 mm yr-1 to 617.1 mm yr-1. For the period 1982-2011, 41 

both the ensembles of remote sensing-based physical models and machine-learning algorithms 42 

suggested positive trends in global terrestrial ET (0.62 mm yr-2 , p<0.05 and 0.38 mm yr-2 , p<0.05, 43 

respectively). In contrast, the ensemble mean of LSMs showed no statistically significant change 44 

(0.23 mm yr-2, p>0.05), even though many of the individual LSMs reproduced a positive trend. 45 

Nevertheless, all the twenty models used in this study showed anthropogenic earth greening had a 46 
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positive role in increasing terrestrial ET. The concurrent small inter-annual variability, i.e. relative 47 

stability, found in all estimates of global terrestrial ET, suggests there exists a potential planetary 48 

boundary in regulating global terrestrial ET, with the value being about 6.74×104 km3 yr-1 (603 49 

mm yr-1).  Uncertainties among approaches were identified in specific regions, particularly in the 50 

Amazon Basin and arid/semi-arid regions. Improvements in parameterizing water stress and 51 

canopy dynamics, utilization of new available satellite retrievals and deep learning methods, and 52 

model-data fusion will advance efforts in terrestrial ET estimates. 53 

 54 

Keywords: Evapotranspiration; Land surface models; Remote sensing; Machine learning. 55 

 56 

1. Introduction 57 

Terrestrial evapotranspiration (ET) is the sum of the water loss to the atmosphere from plant tissues 58 

via transpiration and that from the land surface elements including soil, plants and open water 59 

bodies through evaporation. Processes controlling ET play a central role in linking the energy 60 

(latent heat), water (moisture flux), and carbon cycles (photosynthesis-transpiration trade-off) in 61 

the earth system. Over 60% of precipitation on the land surface is returned to the atmosphere 62 

through ET (Oki and Kanae, 2006), and the accompanying latent heat (λET, λ is the latent heat of 63 

vaporization) accounts for more than half of the solar energy received by the land surface 64 

(Trenberth et al., 2009). ET is also coupled with the carbon dioxide exchange between canopy and 65 

atmosphere through vegetation photosynthesis. These linkages make ET an important variable in 66 

both the short-term numerical weather predication and long-term climate simulations. Moreover, 67 

ET is a critical indicator for ecosystem functioning across a variety of spatial scales. For enhancing 68 
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our predictive understanding of earth system and sustainability, therefore, it is essential to 69 

accurately assess land surface ET in a changing global environment. 70 

However, large uncertainty still exists in quantifying the magnitude of global terrestrial ET and its 71 

spatial and temporal patterns, despite extensive research (Allen et al., 1998; Liu et al., 2008; 72 

Miralles et al., 2016; Mueller et al., 2011; Tian et al., 2010). The previous estimates of global land 73 

mean annual ET range from 417 mm yr-1 to 650 mm yr-1 for the whole or part of the 1982-2011 74 

period (Mu et al., 2007; Mueller et al., 2011; Vinukollu et al., 2011a; Zhang et al., 2010).  This 75 

large discrepancy among independent studies may be attributed to lack of sufficient measurements, 76 

uncertainty in forcing data, inconsistent spatial and temporal resolutions, ill-calibrated model 77 

parameters and deficiencies in model structures. Of the four components of ET (transpiration, soil 78 

evaporation, canopy interception, and open-water evaporation), transpiration (Tv) contributes the 79 

largest uncertainty, as it is modulated not only by surface meteorological conditions and soil 80 

moisture but also by the physiology and structures of plants. Changes in non-climatic factors such 81 

as elevated atmospheric CO2, nitrogen deposition, and land covers also serve as influential drivers 82 

of Tv (Gedney et al., 2006; Mao et al., 2015; Pan et al., 2018b; Piao et al., 2010). As such, the 83 

global ratio of transpiration to ET (Tv/ET) has long been of debate, with the most recent 84 

observation-based estimate being 0.64±0.13 constrained by the global water-isotope budget (Good 85 

et al., 2015). Most earth system models are thought to largely underestimate Tv/ET (Lian et al., 86 

2018).  87 

Global warming is expected to accelerate the hydrological cycle (Pan et al., 2015). For the period, 88 

1982 to the late 1990s, ET was reported to increase by about 7 mm (~1.2%) per decade driven by 89 

an increase in radiative forcing and consequently global and regional temperatures (Douville et al., 90 

2013; Jung et al., 2010; Wang et al., 2010). The contemporary near-surface specific humidity also 91 
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increased over both land and ocean (Dai, 2006; Simmons et al., 2010; Willett et al., 2007). More 92 

recent studies confirmed that, since the 1980s, global ET has showed an overall increase (Mao et 93 

al., 2015; Yao et al., 2016; Zeng et al., 2018a; Zeng et al., 2012; Zeng et al., 2016; Zhang et al., 94 

2015; Zhang et al., 2016b). However, the magnitude and spatial distribution of such a trend are far 95 

from determined. Over the past 50 years, pan evaporation decreased throughout the world (Fu et 96 

al., 2009; Peterson et al., 1995; Roderick and Farquhar, 2002), implying an increase in actual ET 97 

given the pan evaporation paradox. Moreover, the increase in global terrestrial ET was found to 98 

cease or even be reversed during 1998 to 2008, primarily due to the decreased soil moisture supply 99 

in the Southern Hemisphere (Jung et al., 2010). To reconcile the disparity, Douville et al. (2013) 100 

argued that the peak ET in 1998 should not be taken as a tipping point because ET was estimated 101 

to increase in the multi-decadal evolution. More efforts are needed to understand the spatial and 102 

temporal variations of global terrestrial ET and the underlying mechanisms that control its 103 

magnitude and variability. 104 

Conventional techniques, such as lysimeter, eddy covariance, large aperture scintillometer and the 105 

Bowen ratio method, are capable of providing ET measurements at point and local scales (Wang 106 

and Dickinson, 2012). However, it is impossible to directly measure ET at the global scale because 107 

dense global coverage by such instruments is not feasible and the representativeness of point-scale 108 

measurements to comprehensively represent the spatial heterogeneity of global land surface is also 109 

doubtful (Mueller et al., 2011). To address this issue, numerous approaches have been proposed 110 

in recent years to estimate global terrestrial ET and these approaches can be divided into three 111 

main categories: 1) remote sensing-based physical models, 2) machine learning methods, and 3) 112 

land surface models (Miralles et al., 2011; Mueller et al., 2011; Wang and Dickinson, 2012). 113 

Knowledge of the uncertainties in global terrestrial ET estimates from different approaches is the 114 
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prerequisite for future projection and many other applications. In recent years, several studies have 115 

compared multiple terrestrial ET estimates (Khan et al., 2018; Mueller et al., 2013; Wartenburger 116 

et al., 2018; Zhang et al., 2016b). However, most of these studies analyzed multiple datasets of the 117 

same approach or focused on investigating similarities and differences among different 118 

approaches. Few studies have been conducted to identify uncertainties in multiple estimates of 119 

different approaches.  120 

In this study, we integrate state-of-the-art estimates of global terrestrial ET, including data-driven 121 

and process-based estimates, to assess its spatial pattern, inter-annual variability, environmental 122 

drivers, long-term trend, and response to vegetation greening. Our goal is not to compare the 123 

various models and choose the best one, but to identify the uncertainty sources in each type of 124 

estimate and provide suggestions for future model development. In the following sections, we first 125 

have a brief introduction to all methodological approaches and ET datasets used in this study. We 126 

then quantify the spatiotemporal variations in global terrestrial ET during the period 1982-2011 127 

by analyzing the results from the current state-of-the-art models. Finally, we discuss some 128 

suggested solutions for reducing the identified uncertainties. 129 

2. Methodology and data sources 130 

2.1 Overview of approaches to global ET estimation 131 

2.1.1 Remote sensing-based physical models 132 

Satellite remote sensing has been widely recognized as a promising tool to estimate global ET, 133 

because it is capable of providing spatially and temporally continuous measurements of critical 134 

biophysical parameters affecting ET, including vegetation states, albedo, fraction of absorbed 135 

photosynthetically active radiation, land surface temperature and plant functional types (Li et al., 136 

2009). Since the 1980s, a large number of methods have been developed using a variety of satellite 137 
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observations (Zhang et al., 2016a). However, part of these methods such as surface energy balance 138 

(SEB) models and surface temperature-vegetation index (Ts-VI) are usually applied at local and 139 

regional scales. At the global scales, the vast majority of existing remote sensing-based physical 140 

models can be categorized into two groups: the Penman-Monteith (PM) based and the Priestley-141 

Taylor (PT) based models. 142 

A) Remote sensing models based on Penman-Monteith equation 143 

The Penman equation, derived from the Monin-Obukhov similarity theory and surface energy 144 

balance, uses surface net radiation, temperature, humidity, wind speed and ground heat flux to 145 

estimate ET from an open water surface. For vegetated surfaces, canopy resistance was introduced 146 

into the Penman equation by Monteith (Monteith, 1965) and the PM equation is formulated as: 147 

λET = Δ(𝑅𝑅𝑛𝑛−𝐺𝐺)+𝜌𝜌𝑎𝑎𝐶𝐶𝑝𝑝𝑉𝑉𝑉𝑉𝑉𝑉/𝑟𝑟𝑎𝑎
Δ+𝛾𝛾(1+𝑟𝑟𝑠𝑠 𝑟𝑟𝑎𝑎� )

                                                (1) 148 

where Δ, Rn, G, ρa, Cp, γ, rs, ra, VPD are the slope of the curve relating saturated water vapor 149 

pressure to air temperature, net radiation, soil heat flux, air density, the specific heat of air, 150 

psychrometric constant, surface resistance, aerodynamic resistance and vapor pressure deficit, 151 

respectively. The canopy resistance term in the PM equation exerts a strong control on 152 

transpiration. For example, based on the algorithm proposed by Cleugh et al. (2007), the MODIS 153 

(Moderate Resolution Imaging Spectroradiometer) ET algorithm improved the model performance 154 

through inclusion of environmental stress into canopy conductance calculation and explicitly 155 

accounted for soil evaporation (Mu et al., 2007). Further, Mu et al. (2011) improved the MODIS 156 

ET algorithm by considering nighttime ET, adding soil heat flux calculation, separating dry canopy 157 

surface from the wet, and dividing soil surface into saturated wet surface and moist surface. 158 

Similarly, Zhang et al. (2010) developed a Jarvis-Stewart-type canopy conductance model based 159 

on normalized difference vegetation index (NDVI) to take advantage of the long-term Advanced 160 
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Very High Resolution Radiometer (AVHRR) dataset. More recently, this model was improved by 161 

adding a CO2 constraint function in the canopy conductance estimate (Zhang et al., 2015). Another 162 

important revision for the PM approach is proposed by Leuning et al. (2008). The Penman-163 

Monteith-Leuning method adopts a simple biophysical model for canopy conductance, which can 164 

account for influences of radiation and atmospheric humidity deficit. Additionally, it introduces a 165 

simpler soil evaporation algorithm than that proposed by Mu et al. (2007), which potentially makes 166 

it attractive to use with remote sensing. However, PM-based models have one intrinsic weakness: 167 

temporal upscaling which is required in translating instantaneous ET estimation into a longer time-168 

scale value (Li et al., 2009).This could be easily done at the daily scale under clear-sky conditions 169 

but faces challenge at weekly to monthly time-scales due to lack of cloud coverage information. 170 

B) Remote sensing models based on Priestley-Taylor equation  171 

The Priestley–Taylor (PT) equation is a simplification of the PM equation without parameterizing 172 

aerodynamic and surface conductance (Priestley and Taylor, 1972) and can be expressed as: 173 

λET = 𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 × 𝛼𝛼 × ∆
∆+𝛾𝛾

× (𝑅𝑅𝑛𝑛 − 𝐺𝐺)                                       (2) 174 

where fstress is a stress factor and is usually computed as a function of environmental conditions. α 175 

is the PT parameter with a value of 1.2–1.3 under water unstressed conditions and can be estimated 176 

using remote sensing. Although the original PT equation works well in estimating potential ET 177 

across most surfaces, the Priestley-Taylor coefficient, α, usually needs adjustment to convert 178 

potential ET to actual ET (Zhang et al., 2016a). Instead, Fisher et al. (2008) developed a modified 179 

PT model that keeps α constant but scales down potential ET by ecophysiological constraints and 180 

soil evaporation partitioning. The accuracy of their model has been validated against eddy 181 

covariance measurements conducted at a wide range of climates and plant functional types (Fisher 182 

et al., 2009; Vinukollu et al., 2011b). Following this idea, Yao et al. (2013) further developed a 183 
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modified Priestley-Taylor algorithm that constrains soil evaporation using the Apparent Thermal 184 

Inertia derived index of soil water deficit. Miralles et al. (2011) also proposed a novel PT type 185 

model, Global Land surface Evaporation: the Amsterdam Methodology (GLEAM). GLEAM 186 

combines a soil water module, a canopy interception model and a stress module within the PT 187 

equation. The key distinguishing features of this model are the use of microwave-derived soil 188 

moisture, land surface temperature and vegetation density, and the detailed estimation of rainfall 189 

interception loss. In this way, GLEAM minimizes the dependence on static variables, avoids the 190 

need for parameter tuning, and enables the quality of the evaporation estimates to rely on the 191 

accuracy of the satellite inputs (Miralles et al., 2011). Compared with the PM approach, the PT 192 

based approaches avoid the computational complexities of aerodynamic resistance and the 193 

accompanying error propagation. However, the many simplifications and semi-empirical 194 

parameterization of physical processes in the PT based approaches may lower its accuracy. 195 

2.1.2 Vegetation index-based empirical algorithms and machine learning methods 196 

The principle of empirical ET algorithms is to link observed ET to its controlling environmental 197 

factors through various statistical regressions or machine learning algorithms of different 198 

complexities. The earliest empirical regression method was proposed by Jackson et al. (1977). At 199 

present, the majority of regression models are based on vegetation indices (Glenn et al., 2010), 200 

such as NDVI and enhanced vegetation index (EVI), because of their simplicity,  resilience in the 201 

presence of data gaps, utility under a wide range of conditions and connection with vegetation 202 

transpiration capacity (Maselli et al., 2014; Nagler et al., 2005; Yuan et al., 2010). As an alternative 203 

to statistical regression methods, machine learning algorithms have been gaining increased 204 

attention for ET estimation due to their ability to capture the complex nonlinear relationships 205 

between ET and its controlling factors (Dou and Yang, 2018). Many conventional machine 206 
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learning algorithms, such as artificial neural networks, random forest, and support vector machine 207 

based algorithms have been applied in various ecosystems (Antonopoulos et al., 2016; Chen et al., 208 

2014; Feng et al., 2017; Shrestha and Shukla, 2015) and have proved to be more accurate in 209 

estimating ET than simple regression models (Antonopoulos et al., 2016; Chen et al., 2014; Kisi 210 

et al., 2015; Shrestha and Shukla, 2015; Tabari et al., 2013). In up-scaling FLUXNET ET to the 211 

global scale, Jung et al. (2010) used the model tree ensemble method to integrate eddy covariance 212 

measurements of ET with satellite remote sensing and surface meteorological data. In a recent 213 

study (Bodesheim et al., 2018), the random forest approach was used to derive global ET at a half-214 

hourly time-scale.  215 

2.1.3 Process-based land surface models (LSMs) 216 

Although satellite-derived ET products have provided quantitative investigations of historical 217 

terrestrial ET dynamics, they can only cover a limited temporal record of about four decades. To 218 

obtain terrestrial ET before 1980s and predict future ET dynamics, LSMs are needed, as they are 219 

able to represent a large number of interactions and feedbacks between physical, biological, and 220 

biogeochemical processes in a prognostic way (Jimenez et al., 2011). ET simulation in LSMs is 221 

regulated by multiple biophysical and physiological properties or processes, including but not 222 

limited to stomatal conductance, leaf area, root water uptake, soil water, runoff and sometimes 223 

nutrient uptake (Famiglietti and Wood, 1991; Huang et al., 2016; Lawrence et al., 2007). Although 224 

almost all current LSMs have these components, different parameterization schemes result in 225 

substantial differences in ET estimation (Wartenburger et al., 2018). Therefore, in recent years, 226 

the multi-model ensemble approach has become popular in quantifying magnitude, spatiotemporal 227 

pattern and uncertainty of global terrestrial ET (Mueller et al., 2011; Wartenburger et al., 2018). 228 
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Yao et al. (2017) showed that a simple model averaging method or a Bayesian model averaging 229 

method is superior to each individual model in predicting terrestrial ET.  230 

2.2 Description of ET models used in this study 231 

In this study, we evaluate twenty ET products that are based on remote sensing-based physical 232 

models, machine-learning algorithms, and LSMs to investigate the magnitudes and spatial patterns 233 

of global terrestrial ET over recent decades. Table 1 lists the input data, adopted ET algorithms, 234 

limitations, and references for each product. We use a simple model averaging method when 235 

calculating the mean value of multiple models. 236 

Four physically-based remote sensing datasets, including Process-based Land Surface 237 

Evapotranspiration/Heat Fluxes algorithm (P-LSH), Global Land surface Evaporation: the 238 

Amsterdam Methodology (GLEAM), Moderate Resolution Imaging Spectroradiometer (MODIS) 239 

and PML-CSIRO (Penman-Monteith-Leuning), and two machine-learning datasets, including 240 

Random Forest (RF) and Model Tree Ensemble (MTE), are used in our study. Both machine 241 

learning and physical-based remote sensing datasets (totally six datasets) were considered as 242 

benchmark products. The ensemble mean of benchmark products was calculated as the mean value 243 

of all machine learning and physical-based satellite estimates since we treated each benchmark 244 

dataset equally. 245 

Three of the four remote sensing-based physical models quantify ET through PM approaches. P-246 

LSH adopts a modified PM approach coupling with biome-specific canopy conductance 247 

determined from NDVI (Zhang et al., 2010). The modified P-LSH model used in this study also 248 

accounts for the influences of atmospheric CO2 concentrations and wind speed on canopy stomatal 249 

conductance and aerodynamic conductance (Zhang et al., 2015). MODIS ET model is based on 250 

the algorithm proposed by Cleugh et al. (2007). Mu et al. (2007) improved the model performance 251 
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through the inclusion of environmental stress into canopy conductance calculation, and explicitly 252 

accounting for soil evaporation by combing complementary relationship hypothesis with PM 253 

equation. The MODIS ET product (MOD16A3) used in this study was further improved by 254 

considering night-time ET, simplifying vegetation cover fraction calculation, adding soil heat flux 255 

item, dividing saturated wet and moist soil, separating dry and wet canopy, as well as modifying 256 

algorithms of aerodynamic resistance, stomatal conductance, and boundary layer resistance (Mu 257 

et al., 2011). PML-CSIRO adopts the Penman-Monteith-Leuning algorithm, which calculates 258 

surface conductance and canopy conductance by a biophysical model instead of classic empirical 259 

models. The maximum stomatal conductance is estimated using the trial-and-error method (Zhang 260 

et al., 2016b). Furthermore, for each grid covered by natural vegetation, the PML-CSIRO model 261 

constrains ET at the annual scale using the Budyko hydrometeorological model proposed by Fu 262 

(1981). GLEAM ET calculation is based on the PT equation, which requires fewer model inputs 263 

than PM equation, and the majority of these inputs can be directly achieved from satellite 264 

observations. Its rationale is to make the most of information about evaporation contained in the 265 

satellite-based environmental and climatic observations (Martens et al., 2017; Miralles et al., 266 

2011). Key variables including air temperature, land surface temperature, precipitation, soil 267 

moisture, vegetation optical depth and snow-water equivalent are satellite-observed. Moreover, 268 

the extensive usage of microwave remote sensing products in GLEAM ensures the accurate 269 

estimation of ET under diverse weather conditions. Here, we use the GLEAM V3.2 version which 270 

has overall better quality than previous version (Martens et al., 2017). 271 

The first used machine learning model, MTE, is based on the Tree Induction Algorithm (TRIAL) 272 

and Evolving Trees with Random Growth (ERROR) algorithm (Jung et al., 2009). The TRIAL 273 

grows model trees from the root node and splits at each node with the criterion of minimizing the 274 
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sum of squared errors of multiple regressions in both subdomains. ERROR is used to select the 275 

model trees that are independent from each other and have best performances under Schwarz 276 

criterion. Canopy fraction of absorbed photosynthetic active radiation (fAPAR), temperatures, 277 

precipitation, relative humidity, sunshine hours, and potential radiation are used as explanatory 278 

variables to train MTE (Jung et al., 2011). The second machine learning model is the random forest 279 

(RF) algorithm whose rationale is generating a set of independent regression trees through 280 

randomly selecting training samples automatically (Breiman, 2001). Each regression tree is 281 

constructed using samples selected by bootstrap sampling method. After fixing individual tree in 282 

entity, the final result is determined by simple averaging. One merit of RF algorithm is its 283 

capability of handling complicated nonlinear problems and high dimensional data (Xu et al., 2018). 284 

For the RF product used in this study, multiple explanatory variables including enhanced 285 

vegetation index, fAPAR, leaf area index, daytime and nighttime land surface temperature, 286 

incoming radiation, top of atmosphere potential radiation, index of water availability and relative 287 

humidity were used to train regression trees (Bodesheim et al., 2018). 288 

The fourteen LSMs-derived ET products were from the Trends and Drivers of the Regional Scale 289 

Sources and Sinks of Carbon Dioxide (TRENDY) Project (including CABLE, CLASS-CTEM, 290 

CLM45, DLEM, ISAM, JSBACH, JULES, LPJ-GUESS, LPJ-wsl, LPX-Bern, O-CN, 291 

ORCHIDEE, ORCHIDEE-MICT and VISIT). Daily gridded meteorological reanalyses from the 292 

CRU-NCEPv8 dataset (temperature, precipitation, long- and short-wave incoming radiation, wind-293 

speed, humidity, air pressure) were used to drive the LSMs. The TRENDY simulations were 294 

performed in year 2017 and contributed to the Global Carbon Budget reported in Le Quéré et al. 295 

(2018). We used the results of S3 experiment of TRENDYV6 (with changing CO2, climate and 296 
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land use) over the period 1982-2011, a time period consistent with other products derived from 297 

remote sensing-based physical models and machine-learning algorithms.  298 

2.3 Description of other datasets  299 

To quantify the contributions of vegetation greening to terrestrial ET variations, we used the LAI 300 

of TRENDYV6 S3 experiment. We also used the newest version of the Global Inventory Modeling 301 

and Mapping Studies LAI data (GIMMS LAI3gV1) as satellite-derived LAI. GIMMS LAI3gV1 302 

was generated from AVHRR GIMMS NDVI3g using an Artificial Neural Network (ANN) derived 303 

model (Zhu et al., 2013). It covers the period 1982 to 2016 with bimonthly frequency and has a 304 

1/12° spatial resolution. To achieve a uniform resolution, all data were resampled to 1/2° using the 305 

nearest neighbour method. Following Pan et al. (2018a), grids with an annual mean NDVI<0.1 306 

were assumed to be non-vegetated regions and were therefore masked out. NDVI data are from 307 

GIMMS NDVI3gV1 dataset. Temperature, precipitation and radiation are from CRU-NCEPv8. 308 

2.4 Statistical analysis 309 

The significance of ET trends is analyzed using the Mann-Kendall (MK) test (Kendall, 1955; 310 

Mann, 1945). It is a rank-based non-parametric method that has been widely applied for detecting 311 

a trend in hydro-climatic time series (Sayemuzzaman and Jha, 2014; Yue et al., 2002). The Theil-312 

Sen estimator was applied to estimate the magnitude of the slope. The advantage of this method 313 

over ordinary least squares estimator is that it limits the influence of the outliers on the slope (Sen, 314 

1968). 315 

Terrestrial ET IAV is mainly controlled by variations in temperature, precipitation, and shortwave 316 

solar radiation (Zeng et al., 2018b; Zhang et al., 2015). In this study, we performed partial 317 

correlation analyses between ET and these three climatic variables at an annual scale for each grid 318 
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cell to explore climatic controls on ET IAV. Variability caused by climatic variables was assessed 319 

through the square of partial correlation coefficients between ET and temperature, precipitation, 320 

and radiation. We chose partial correlation analysis because it can quantify the linkage between 321 

ET and a single environmental driving factor while controlling the effects of other remaining 322 

environmental factors. Partial correlation analysis is a widely applied statistical tool to isolate the 323 

relationship between two variables from the confounding effects of many correlated variables 324 

(Anav et al., 2015; Jung et al., 2017; Peng et al., 2013). All variables were first detrended in the 325 

statistical correlation analysis since we focus on the inter-annual relationship. The study period is 326 

from 1982 to 2011 for all models except MODIS and Rand Forest whose temporal coverage is 327 

limited to 2001-2011 because of data availability.  328 

To quantify the contribution of vegetation greening to terrestrial ET, we separated the trend in 329 

terrestrial ET into four components induced by climatic variables and vegetation dynamics by 330 

establishing a multiple linear regression model between global ET and temperature, precipitation, 331 

shortwave radiation, and LAI (Eq. 3-4): 332 

𝛿𝛿(𝐸𝐸𝐸𝐸) = ∂(𝐸𝐸𝐸𝐸)
∂(𝐿𝐿𝐿𝐿𝐿𝐿)

δ(𝐿𝐿𝐿𝐿𝐿𝐿) + ∂(𝐸𝐸𝐸𝐸)
∂T

δ(T) + ∂(𝐸𝐸𝐸𝐸)
∂(P) δ(P) + ∂(𝐸𝐸𝐸𝐸)

∂R
δ(R) + ε                 (3) 333 

𝛿𝛿(𝐸𝐸𝐸𝐸) = γ𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿δ𝐿𝐿𝐿𝐿𝐿𝐿 + γ𝐸𝐸𝐸𝐸T δT + γ𝐸𝐸𝐸𝐸P δP + +γ𝐸𝐸𝐸𝐸R δR + ε                           (4) 334 

 γ𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 , γ𝐸𝐸𝐸𝐸T , γ𝐸𝐸𝐸𝐸P , γ𝐸𝐸𝐸𝐸R are the sensitivities of ET to leaf area index (LAI), air temperature (T), 335 

precipitation (P), and radiation (R), respectively. ε is the residual, representing the impacts of other 336 

factors.  337 

After calculating  γ𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿, γ𝐸𝐸𝐸𝐸T , γ𝐸𝐸𝐸𝐸P , γ𝐸𝐸𝐸𝐸R , the contribution of trend in factor i (𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)) to the trend 338 

in ET (𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(ET)) can be quantified as follows: 339 

Contri(i)= (γ𝐸𝐸𝐸𝐸𝑖𝑖 × 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖))/𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(ET)                              (5) 340 
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In performing multiple linear regression, we used GIMMS LAI for both remote sensing-based 341 

physical models and machine learning methods, and individual TRENDYv6 LAI for each 342 

TRENDY model. The gridded data of temperature, precipitation and radiation are from CRU-343 

NCEPv8 344 

3. Results 345 

3.1 The ET magnitude estimated by multiple models 346 

 347 

Figure 1. Average annual global terrestrial ET estimated by each model during the period 2001-348 

2011. Error bars represent the standard deviation of each model. The four lines indicate the mean 349 

value of each category.  350 

The multi-year ensemble mean of annual global terrestrial ET during 2001-2011 derived by the 351 

machine learning methods, remote sensing-based physical models and TRENDY models agreed 352 
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well, ranging from 589.6 mm yr-1 to 617.1 mm yr-1. However, substantial differences existed 353 

among individual models (Fig. 1). LPJ-wsl (455.3 mm yr-1) and LPX-Bern (453.7 mm yr-1) 354 

estimated significantly lower ET than other models, even in comparison with most previous studies 355 

focusing on earlier periods (Table S1). In contrary, JULES gave the largest ET estimate (697.3 356 

mm yr-1, equals to 7.57×104 km3 yr-1) among all models, and showed an obvious increase of ET 357 

compared to its estimation during 1950-2000 (6.5×104 km3 yr-1, Table S1). 358 

3.2 Spatial patterns of global terrestrial ET 359 

As shown in Fig. 2, the spatial patterns of multi-year average annual ET of different categories 360 

were similar. ET was the highest in the tropics and low in northern high latitudes and arid regions 361 

such as Australia, central Asia, western U.S., and Sahel. Compared to remote sensing-based 362 

physical models and LSMs, machine-learning methods obtained a smaller spatial gradient. In 363 

general, latitudinal profiles of ET estimated by different approaches were also consistent (Fig. 3). 364 

However, machine-learning methods gave higher ET estimate at high latitudes and lower ET in 365 

the tropics compared to other approaches. In the tropics, LSMs have significant larger uncertainties 366 

than benchmark products, and the standard deviation of LSMs is about two times as large as that 367 

of benchmark products (Fig. 3). In other latitudes, LSMs and benchmark ET products have 368 

generally comparable uncertainties. The largest difference in ET of different categories was found 369 

in the Amazon Basin (Fig. 2). In most regions of the Amazon Basin, the mean ET of remote sensing 370 

physical models are more than 200mm yr-1 higher than the mean ET of LSMs and machine-371 

learning methods. For individual ET estimates, the largest uncertainty was also found in the 372 

Amazon Basin. MODIS, VISIT and CLASS-CTEM estimated that annual ET was larger than 1300 373 

mm in the majority of Amazon, whereas JSBACH and LPJ-wsl estimated ET of smaller than 800 374 

mm yr-1 (Fig. S1). As is shown in Fig. S2, the difference in ET estimates among TRENDY models 375 
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were larger than those among benchmark estimates for tropical and humid regions. The uncertainty 376 

of ET estimates by LSMs is particularly large in the Amazon Basin where the standard deviation 377 

of LSMs estimates is more than two times as large as that of benchmark estimates. It is noteworthy 378 

that, in arid and semi-arid regions such as western Australia, central Asia, northern China and 379 

western US, the difference in ET estimates among LSMs is significantly smaller than those among 380 

remote sensing models and machine learning algorithms.  381 

 382 

Figure 2. Spatial distributions of mean annual ET derived from (a) remote sensing-based physical 383 

models, (b) machine-learning algorithms, (c) benchmark datasets and (d) TRENDY LSMs 384 

ensemble mean, respectively.   385 
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 386 

Figure 3. Latitudinal profiles of mean annual ET for different categories of models. Each line 387 

represents the mean value of the corresponding category and the shading represents the interval of 388 

one standard deviation.  389 

3.3 Inter-annual variations in global terrestrial ET  390 

The ensemble mean inter-annual variability (IAV) of remote sensing ET estimates and LSMs ET 391 

estimates showed similar spatial patterns (Fig. 4). Both remote sensing physical models and LSMs 392 

presented low IAV in ET in northern high latitudes but high IAV in ET in southwestern U.S, India, 393 

south Sahara Africa, Amazon and Australia. In contrast, IAV of machine-learning based ET was 394 

much weaker. In most regions, IAV of machine learning ET is smaller than 40% of IAV of remote 395 

sensing physical ET and LSMs ET, and this phenomenon is especially pronounced in tropical 396 

regions. Further investigation into the spatial patterns of ET IAV for individual model showed that 397 

the two machine-learning methods performed equally in estimating spatial patterns of ET IAV 398 
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(Fig. S4). In contrast, differences in ET IAV among remote sensing physical estimates and LSMs 399 

estimates were much larger. LSMs showed the largest differences in IAV of ET in tropical regions. 400 

For example, CABLE and JULES obtained an ET IAV of smaller than 15 mm yr-1 in most regions 401 

of the Amazon Basin, while LPJ-GUESS predicted an ET IAV of larger than 60 mm yr-1. Figure 402 

5 showed that, in the north of 20ºS, remote sensing physical ET and LSMs ET had comparable 403 

IAV, but IAV of the machine learning based ET was much smaller. In the region south of 20ºS, 404 

TRENDY ET showed the largest IAV, followed by those of remote sensing physical ET and 405 

machine learning estimates. The three approaches agreed on that ET IAV in the Southern 406 

Hemisphere was generally larger than that in the Northern Hemisphere.  407 

 408 

Figure 4. Spatial distributions of the inter-annual variability in ET derived from (a) remote 409 

sensing-based physical models, (b) machine learning algorithms, (c) benchmark datasets, and (d) 410 
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TRENDY LSMs ensemble mean, respectively. The study period used in this study for inter-annual 411 

variability analysis is from 1982 to 2011.  412 

 413 

Figure 5. Latitudinal profiles of ET IAV for different categories of models.  Each line represents 414 

the mean value of the corresponding category and the shading represents the interval of one 415 

standard deviation.  416 

3.4 Climatic controls on ET 417 

According to the ensemble remote sensing models, temperature and radiation dominated ET IAV 418 

in northern Eurasia, northern and eastern North America, southern China, the Congo River Basin 419 

and the southern Amazon River Basin, while precipitation dominated ET IAV in arid regions and 420 

semi-arid regions (Fig. 6a). The ensemble machine-learning algorithms had a similar pattern, but 421 

suggested a stronger control of radiation in the Amazon Basin and a weaker control of precipitation 422 
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in several arid regions such as central Asia and northern Australia (Fig. 6b). In comparison, the 423 

ensemble LSMs suggested the strongest control of precipitation on ET IAV (Fig. 6). According to 424 

the ensemble LSMs, ET IAV was dominated by precipitation IAV in most regions of the Southern 425 

Hemisphere and northern low latitudes. Temperature and radiation only controlled northern 426 

Eurasia, eastern Canada and part of the Amazon Basin (Fig. 6d). As is shown in Fig. S6, the 427 

majority of LSMs agreed on the dominant role of precipitation in controlling ET in regions south 428 

of 40ºN. However, the pattern of climatic controls in the ORCHIDEE-MICT model is quite unique 429 

and different from all other LSMs. According to the ORCHIDEE-MICT model, radiation and 430 

temperature dominate ET IAVs in more regions, and precipitation only controls ET IAVs in 431 

eastern Brazil, northern Russia, central Europe and a part of tropical Africa. Since ORCHIDEE-432 

MICT was developed from ORCHIDEE, the dynamic root parameterization in ORCHIDEE-MICT 433 

may explain why ET is less driven by precipitation compared to ORCHIDEE (Haverd et al., 2018). 434 

It is noted that two machine learning algorithms MTE and RF had significant discrepancies in the 435 

spatial pattern of dominant climatic factors. According to the result of MTE, temperature 436 

controlled ET IAV in regions north of 45ºN, eastern US, southern China and the Amazon basin 437 

(Fig. S6e). By contrast, RF suggested that precipitation and radiation dominated ET IAV in these 438 

regions (Fig. S6f).  439 

 440 
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  441 

Figure 6. Spatial distributions of climatic controls on inter-annual variation of ET derived from 442 

the ensemble means of remote sensing-based physical models (a), machine learning algorithms 443 

(b), benchmark data (c), and TRENDY LSMs (d). (red: temperature; green: precipitation; and blue: 444 

radiation). 445 

3.5 Long-term trends in global terrestrial ET 446 

All approaches suggested an overall increasing trend in global ET during the period 1982-2011 447 

(Fig. 7), although ET decreased over 1998-2009. This result is consistent with previous studies 448 

(Jung et al., 2010; Lian et al., 2018; Zhang et al., 2015). Remote sensing physical models indicated 449 

the largest increase in ET (0.62 mm yr-2), followed by the machine-learning method (0.38 mm yr-450 

2), and land surface models (0.23 mm yr-2). Mean ET of all categories except LSMs significantly 451 

increased during the study period (p<0.05). It is noted that the ensemble mean ET of different 452 

categories are statistically correlated with each other (p<0.001), even if the driving forces of 453 

different ET approaches are different. 454 
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 455 

Figure 7. Inter-annual variations in global terrestrial ET estimated by different categories of 456 

approaches.  457 

All remote sensing and machine learning estimates indicate a significant positive trend in ET 458 

during the study period (p<0.05), although the increase rate of P-LSH (1.07 mm yr-2) is more than 459 

three times as large as that of GLEAM (0.33 mm yr-2). Nevertheless, there is a larger discrepancy 460 

among LSMs in terms of ET trend. The majority of LSMs (10 of 14) suggest a positive trend with 461 

the average trend of 0.34 mm yr-2 (p<0.05), and eight of them are statistically significant (see Table 462 

2). However, four LSMs (JSBACH, JULES, ORCHIDEE and ORCHIDEE-MICT) suggest a 463 

negative trend with the average trend of -0.12 mm yr-2 (p>0.05). Among the four negative trends, 464 

only the trend of ORCHIDEE-MICT (-0.34 mm yr-2) is statistically significant (p<0.05).   465 
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According to Fig. 8, the ensemble means of all the three approaches showed positive trends of ET 466 

over western and southern Africa, western Indian, and northern Australia, and decreasing ET over 467 

western United States, southern South America and Mongolia. Discrepancies in ET trends mainly 468 

appeared in East Europe, eastern India and central China. LSMs also suggested larger area of 469 

decreasing ET in both North America and South America. Although the differences in ET trends 470 

among individual models were larger than those among the ensemble means of different 471 

approaches, the majority of models agreed that ET increased in western and southern Africa, and 472 

decreased in western United States and southern South America (Fig. S2). For both remote sensing 473 

estimates and LSMs estimates, ET trends in Amazon Basin had large uncertainty. P-LSH, CLM-474 

45 and VISIT suggested large area of increasing ET, in contrast, GLEAM, JSBACH and 475 

ORCHIDEE suggested a large area of decreasing ET.  476 

 477 
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Figure 8. Spatial distributions of ET trends during the period 1982-2011 derived from (a) remote 478 

sensing-based physical models, (b) machine learning algorithm, (c) benchmark datasets, and (d) 479 

TRENDY LSMs ensemble mean, respectively. Regions with non-significant trends were 480 

excluded. 481 

3.6 Impacts of vegetation changes on ET variations 482 

During the period 1982-2011, global LAI trends estimated from remote sensing data and from the 483 

ensemble LSMs are 2.51×10-3 m2 m-2 yr-1 (p<0.01) and 4.63×10-3 m2 m-2 yr-1 (p<0.01), respectively 484 

(Table 2). All LSMs suggested a significant positive trend in global LAI (greening). It was found 485 

that, for both benchmark estimates and LSMs estimates, the spatial pattern of trends in ET matched 486 

well with that of trends in LAI (Fig. 8c-d and Fig. S5a-b), indicating significant effects of 487 

vegetation dynamics on ET variations. According to the results of multiple linear regression, all 488 

models agreed that greening of the Earth since the early 1980s intensified terrestrial ET (Table 2), 489 

although there was a significant discrepancy in the magnitude of ET intensification which varied 490 

from 0.04 mm yr-2 to 0.70 mm yr-2. The ensemble LSMs suggested a smaller ET increase (0.23 mm 491 

yr-2) than the ensemble remote sensing physical models (0.62 mm yr-2) and machine-learning 492 

algorithm (0.38 mm yr-2). Nevertheless, the greening-induced ET intensification estimated by 493 

LSMs (0.37 mm yr-2) is larger than that estimated by remote sensing models (0.28 mm yr-2) and 494 

machine-learning algorithms (0.09 mm yr-2) because LSMs suggested a stronger greening trend 495 

than remote sensing models. The contribution of vegetation greening to ET intensification 496 

estimated by the ensemble LSMs is larger than 100% while the contributions estimated by the 497 

ensemble remote sensing physical models (0.62 mm yr-2) and machine-learning algorithm are 498 

smaller than 50%. Although TRENDY LSMs were driven by the same climate data and remote 499 

sensing physical models were driven by varied climate data, TRENDY LSMs still showed a larger 500 
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discrepancy in terms of the effect of vegetation greening on terrestrial ET than remote sensing 501 

physical models because of the significant differences in both LAI trends (1.74-13.63×10-3 m2 m-502 

2 yr-1) and the sensitivities of ET to LAI (4.04-217.39 mm yr-2 per m2 m-2). In comparison, remote 503 

sensing physical models had smaller discrepancies in terms of the sensitivity of ET to LAI (55.78-504 

143.43 mm yr-2 per m2 m-2). 505 

4.  Discussion and perspectives 506 

4.1 Sources of uncertainty 507 

4.1.1 Uncertainty in the ET estimation of Amazon Basin 508 

LSMs show large discrepancies in the magnitude and trend of ET in the Amazon Basin (Fig. 3 and 509 

Fig. S3). However, it is challenging to identify the uncertainty sources. Given that the TRENDY 510 

LSMs used uniform meteorological inputs, the discrepancies in ET estimates among the 511 

participating models mainly arise from the differences in underlying model structures and 512 

parameters. One potential source of uncertainty is the parameterization of root water uptake. In the 513 

Amazon Basin, large root depth was confirmed by field measurements (Nepstad et al., 2004). 514 

However, many LSMs have an unrealistically small rooting depth (generally less than 2 m), 515 

neglecting the existence and significance of deep roots. The incorrect root distributions enlarge the 516 

differences in plant available water and root water uptake, producing large uncertainties in ET. In 517 

addition, differences in the parameterization of other key processes pertinent to ET such as LAI 518 

dynamics (Fig. S5), canopy conductance variations (Table 1), water movements in the soil 519 

(Abramopoulos et al., 1988; Clark et al., 2015; Noilhan and Mahfouf, 1996) and soil moisture’s 520 

control on transpiration (Purdy et al., 2018; Szutu and Papuga, 2019) also increase the uncertainty 521 

in ET. The above-mentioned processes are not independent of each other but interact in complex 522 

ways to produce the end result. 523 
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4.1.2 Uncertainty in the ET estimation of arid and semi-arid regions 524 

In arid and semi-arid regions, benchmark products show much larger differences in the magnitude 525 

of ET than LSMs (Fig. S2). One cause of this phenomenon is the difference in meteorological 526 

forcing. Remote sensing and machine learning datasets used different forcing data. For 527 

precipitation, RF used the CRUNCEPv6 dataset, MTE used the Global Precipitation Climatology 528 

Centre (GPCC) dataset, MODIS used the Global Modeling and Assimilation Office (GMAO) 529 

dataset, GLEAM used the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset, 530 

PML-CSIRO used the Princeton Global Forcing (PGF) and the WATCH Forcing Data ERA-531 

Interim (WFDEI) datasets, and P-LSH used data derived from four independent sources. Since 532 

precipitation is the key climatic factor controlling ET in arid and semi-arid regions (Fig. 6), 533 

discrepancies between different forcing precipitation (Sun et al., 2018) may be the main source of 534 

large uncertainty there. In comparison, the uniform forcing data reduced the inter-model range in 535 

ET estimates of TRENDY LSMs. Nevertheless, it is noted that the congruence across LSMs ET 536 

estimates doesn’t necessarily mean they are the correct representation of ET. The narrower inter-537 

model range may suggest shared biases. All remote sensing models and machine learning 538 

algorithms except GLEAM do not explicitly take the effects of soil moisture into account (Table 539 

S1). Given that soil moisture is pivotal to both canopy conductance and soil evaporation in arid 540 

and semi-arid regions (A et al., 2019; De Kauwe et al., 2015; Medlyn et al., 2015; Purdy et al., 541 

2018), the lack of soil moisture information also increases the bias in ET estimation. In addition, 542 

the accuracy of remotely-sensing data itself is also an uncertainty source. The retrieval of key land 543 

surface variables, such as leaf area index and surface temperature, is influenced by vegetation 544 

architecture, solar zenith angle and satellite observational angle, particularly over heterogeneous 545 

surface (Norman and Becker, 1995). 546 
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4.1.3 Uncertainty in the ET IAV in the Southern Hemisphere 547 

In regions south of 20ºS (including Australia, southern Africa and southern South America), the 548 

ET IAVs of remote sensing models and machine learning algorithms are smaller than that of LSMs 549 

(Fig. 4 and 5), although their spatial patterns are similar. In these regions, GLEAM, the only remote 550 

sensing model that explicitly considers the effects of soil moisture, has larger ET IAVs than other 551 

remote sensing models and has similar ET IAVs with LSMs (Fig. S4). This could imply that most 552 

existing remote sensing models may underestimate ET IAVs in the Southern Hemisphere because 553 

the effects of soil moisture are not explicitly considered. Machine learning algorithms show much 554 

smaller IAVs than other models (Fig. 4 and S4). The main reason is that ET inter-annual variability 555 

is partly neglected in the training process because the magnitude of ET inter-annual variability is 556 

usually smaller than the spatial and seasonal variability (Anav et al., 2015; Jung et al., 2019). 557 

Moreover, the IAV of satellite-based key land surface variables such as LAI, fAPAR and surface 558 

temperature may be not reliable because of the effects of clouds, which also affects the estimation 559 

of IAV of satellite-based ET. It is noted that LSMs ET IAVs show large differences in latitudes 560 

south of 20ºS (Fig. 5). This divergence in ET IAV indicates that LSMs need better representation 561 

of ET response to climate in the Southern Hemisphere. 562 

4.1.4 Uncertainty in global ET trend 563 

All the three categories of ET models detected an overall positive trend in global terrestrial ET 564 

since the early 1980s, which is in agreement with previous studies (Mao et al., 2015; Miralles et 565 

al., 2014; Zeng et al., 2018a; Zeng et al., 2018b; Zeng et al., 2014; Zhang et al., 2015; Zhang et 566 

al., 2016b). Benchmark products generally suggested stronger ET intensification than LSMs. The 567 

weaker ET intensification in LSMs may be induced by the response of stomatal conductance to 568 

increasing atmospheric CO2 concentration. The increasing CO2 affects ET in two ways. On one 569 
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hand, increasing CO2 can effectively reduce stomatal conductance and thus decrease transpiration 570 

(Heijmans et al., 2001; Leipprand and Gerten, 2006; Swann et al., 2016); on the other hand, it can 571 

increase vegetation productivity and thus increase LAI. For benchmarks, the second effect could 572 

be captured by remotely sensed LAI, NDVI or fAPAR, while the first effect was neglected by all 573 

models except P-LSH (Zhang et al., 2015). In contrast, both effects were modeled in all TRENDY 574 

LSMs.  575 

LAI dynamics have significant influences on ET. The increased LAI trend (greening) since the 576 

early 1980s was reported by previous studies (Mao et al., 2016; Zhu et al., 2016) and is also 577 

confirmed by remote sensing data and all TRENDY LSMs used in this study (Table 2 and Fig. 578 

S5). Zhang et al. (2015) found that the positive trend of global terrestrial ET over 1982-2013 was 579 

mainly driven by an increase in LAI and the enhanced atmosphere water demand. Using a land–580 

atmosphere coupled global climate model (GCM), Zeng et al. (2018b) further estimated that global 581 

LAI increased about 8%, resulting in an increase of 0.40±0.08 mm yr-2 in global ET (contributing 582 

to 55%±25% of the ET increase). This number is close to the estimates of ensemble LSMs 583 

(0.37±0.18 mm yr-2). In comparison, remote sensing models and machine learning algorithms used 584 

in this study suggested smaller greening-induced ET increases. It is noted that TRENDY LSMs 585 

still showed a larger discrepancy in terms of the effect of vegetation greening on terrestrial ET 586 

than remote sensing physical models (Table 2) because of the significant differences in LAI trend 587 

(1.74-13.63×10-3 m2 m-2 yr-1) and in the sensitivity of ET to LAI (4.04-217.39 mm yr-2 per m2 m-588 

2). Uncertainties in LAI trend may arise from inappropriate carbon allocations and deficits in 589 

responding to water deficits (Anav et al., 2013; Hu et al., 2018; Murray-Tortarolo et al., 2013; 590 

Restrepo‐Coupe et al., 2017). Additionally, for machine-learning algorithms, the results from 591 
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insufficient long-term in situ measurements and sparse observations in tropical, boreal and arid 592 

regions imply that there likely are deficiencies in representing the temporal variations.  593 

4.1.5 Lack of knowledge of the effects of irrigation 594 

Irrigation accounts for about 90% of human consumptive water use and largely affects ET in 595 

irrigated croplands (Siebert et al., 2010).  Global water withdrawals for irrigation were estimated 596 

to be within the range of 1161-3800 km3 yr-1 around the year 2000, and largely increased during 597 

the period 2000-2014 (Chen et al., 2019). However, none of the remote sensing-based physical 598 

models and machine-learning algorithms explicitly accounted for the effects of irrigation on ET, 599 

although these effects could be taken into account to some extent by using observed LAI, NDVI, 600 

or fAPAR to drive the models (Zhang et al., 2015). Considering that annual ET may surpass annual 601 

precipitation in cropland, Zhang et al. (2016b) used the Budyko hydrometeorological model to 602 

constrain PML-CSIRO model only in grids covered by non-crop vegetation. But the process of 603 

irrigation affecting evaporation was still not taken into consideration. For TRENDY LSMs, only 604 

2 of 14 models (DLEM and ISAM) included the irrigation processes (Le Quéré et al., 2018). 605 

Therefore, the effects of irrigation are largely neglected in existing global ET datasets, which 606 

reduces the accuracy of local ET estimates in regions with a large proportion of irrigated cropland.  607 

4.1.6 ET variability across precipitation gradient and its planetary boundary 608 

Precipitation is the source of terrestrial evapotranspiration. According to Fig. 9a, the vast majority 609 

of models agree that ET has the largest IAV in regions with annual precipitation between 700 mm 610 

and 1000 mm, although the magnitude of ET IAV has substantial discrepancies among different 611 

models. The low ET IAV in arid and semi-arid regions doesn’t mean ET is stable in these regions. 612 

In fact, ET has the largest coefficient of variation (CoV, the ratio of ET standard deviation to ET 613 

mean value) in arid regions, and all models show a clear negative trend of CoV with increasing 614 
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precipitation (Fig. 9b). This is mainly caused by the large CoV of precipitation in arid regions 615 

(Fatichi et al., 2012).  616 

In comparison, terrestrial ET shows a much smaller IAV at the global scale (Table 2), ranging 617 

from 4.8 to 12.2 mm yr-1 (one standard deviation), which only equals to 1.0-1.8% of global annual 618 

mean ET. The model results suggest that global terrestrial ET stabilizes at about 6.74×104 km3 yr-619 

1 (603 mm yr-1), which is close to previous estimates (Alton et al., 2009; Mueller et al., 2011; Oki 620 

and Kanae, 2006; Zeng et al., 2012).The stability of global terrestrial ET is probably based on 621 

partitioning the solar constant and suggests that, at a global scale, droughts in one place are 622 

balanced by excess rain in other places so it all evens out. It implies that ET also has a potential 623 

planetary boundary, a suggestion made by Running (2012) on NPP as a planetary boundary. ET 624 

integrates four aspects of the current planetary boundaries defined by Steffen et al. (2015) : climate 625 

change, freshwater use, land-system change, and biochemical flows. Given ET’s importance in 626 

linking terrestrial water, carbon, nutrient and energy cycles, more studies on the ET planetary 627 

boundary are needed under the background of intensifying global change and increasing human 628 

perturbations on the Earth system. 629 
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 630 

Figure 9. Interannual variability (a) and coefficient of variation (b) of ET in each 50mm 631 

interval of mean annual precipitation. 632 

In short, the multi-model inter-comparison indicates that considerable uncertainty exists in both 633 

the temporal and spatial variations in global ET estimates, even though a large portion of models 634 
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adopt similar ET algorithms (Table 1). The major uncertainty source is different for different types 635 

of models and regions. The uncertainty is induced by multiple factors, including problems 636 

pertinent to parameterization of land processes, lack of in situ measurements, remote sensing 637 

acquisition, scaling effects and meteorological forcing. Based on the results of different 638 

approaches, we suggest that global terrestrial ET also has a potential planetary boundary, with the 639 

value being about 6.74×104 km3 yr-1 (603 mm yr-1), which is consistent with previous estimates.  640 

4.2 Recommendations for future development 641 

4.2.1 Remote sensing-based physical methods 642 

In the past decades, the development of remote sensing technologies has contributed to the boom 643 

of various ET estimating methods. However, there is still a large room for remote sensing 644 

technologies to improve (Fisher et al., 2017). Developing new platforms and sensors that have 645 

improved global spatiotemporal coverage and using multi-band, multi-source remote sensing data 646 

are the key points. Planned or newly launched satellites, such as NASA’s GRACE Follow-On 647 

(GRACE-FO) mission and ECOsystem Spaceborne Thermal Radiometer Experiment on Space 648 

Station (ECOSTRESS) mission, will improve the accuracy of terrestrial ET estimates. 649 

ECOSTRESS’s thermal infrared (TIR) multispectral scanner is capable of monitoring diurnal 650 

temperature patterns at high-resolutions, which gives insights into plant response to water stress 651 

and the means to understand sub-daily ET dynamics (Hulley et al.). GRACE Follow-On 652 

observations can be used to constrain subsurface lateral water transfers, which helps to correct soil 653 

moisture and subsequently improves the accuracy of ET estimates (Rouholahnejad and Martens, 654 

2018). Moreover, building integrated methods that fuse different ET estimates or the upstream 655 

satellite-based biophysical variables from different platforms and the other forcing data will be 656 
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helpful to improve the accuracy and spatiotemporal coverage of ET (Ke et al., 2016; Ma et al., 657 

2018; Semmens et al., 2016). 658 

The theories and retrieval algorithms of ET and related key biophysical variables also need to be 659 

further improved. For example, the method for canopy conductance calculation may be improved 660 

by integrating remote sensing based solar-induced chlorophyll fluorescence (SIF) data. SIF data 661 

in existing Global Ozone Monitoring Experiment-2 (GOME-2), Orbiting Carbon Observatory-2 662 

(OCO-2) and TROPOspheric Monitoring Instrument (TROPOMI) and the forthcoming OCO-3 663 

and Geostationary Carbon Cycle Observatory (GeoCarb) satellites provide a good opportunity for 664 

diagnosing transpiration and for ET partitioning at multiple spatiotemporal scales (Pagán et al., 665 

2019; Stoy et al., 2019; Sun et al., 2017). Theoretical advancements in nonequilibrium 666 

thermodynamics and Maximum Entropy Production (MEP) could be incorporated into the 667 

classical ET theories (Xu et al., 2019; Zhang et al., 2016a). In addition, quantifying the effects of 668 

CO2 fertilization on stomatal conductance is pivotal for remote sensing models to capture the long-669 

term trend of terrestrial ET.  670 

Most existing remote sensing-based ET studies focused on total ET, however, the partitioning of 671 

ET between transpiration, soil evaporation, and canopy interception may have significant 672 

divergence even though the total ET is accurately estimated (Talsma et al., 2018b). In current 673 

remote sensing-based ET models, soil evaporation, which is sensitive to precipitation events and 674 

soil moisture, is the part with the largest error (Talsma et al., 2018a). Therefore incorporating the 675 

increasing accessible satellite-based precipitation, soil moisture observations and soil property 676 

data will contribute to the improvement of soil evaporation estimation. Meanwhile, the 677 

consideration of soil evaporation under herbaceous vegetation and canopy will also reduce the 678 

errors. 679 
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4.2.2 Machine learning methods 680 

It is well known that the capability of machine-learning algorithms in providing accurate ET 681 

estimates largely depends on the representativeness of training datasets in describing ecosystem 682 

behaviors (Yao et al., 2017). As a result, machine-learning algorithms may not perform well 683 

outside the range of the data used for their training. Unfortunately, long-term field observations 684 

out of northern temperate regions are still insufficient. This is an important cause of the small 685 

spatial gradient and small IAVs of machine-learning ET. Given that remote sensing is capable of 686 

providing broad coverage of key biophysical variables at reasonable spatial and temporal 687 

resolutions, one way to overcome this challenge is to exclusively use remote sensing observations 688 

as training data (Jung et al., 2019; Poon and Kinoshita, 2018). Another simple way to make IAVs 689 

of machine-learning ET more realistic is normalizing the yearly anomalies when comparing with 690 

ET estimates from LSMs and remote sensing physical models (Jung et al., 2019). New machine-691 

learning techniques, including the extreme learning machine and the adaptive neuro-fuzzy 692 

inference system, can be used to improve the accuracy of ET estimation (Gocic et al., 2016; Kişi 693 

and Tombul, 2013). The emerging deep learning methods such as recurrent neural network (RNN) 694 

and Long Short-Term Memory (LSTM) have large potential to outcompete conventional machine-695 

learning methods in modelling ET time series (Reichstein et al., 2018; Reichstein et al., 2019). 696 

Almost all machine-learning datasets used precipitation rather soil moisture as explanatory 697 

variable when training. However, soil moisture rather than precipitation directly controls ET. As 698 

more and more global remote sensing based soil moisture datasets become available, using soil 699 

moisture products as input is expected to improve the accuracy of ET estimates, especially for 700 

regions with sparse vegetation coverage (Xu et al., 2018).  701 

4.2.3 Land surface models 702 



37 
 

In contrast to observation-based methods, LSMs are able to project future changes in ET, and can 703 

disentangle the effects of different drivers on ET through factorial analysis. However, results from 704 

LSMs are only as good as their parameterizations of complex land surface processes which are 705 

limited by our incomplete understanding of physical and biological processes (Niu et al., 2011).  706 

Although TRENDY LSMs are the state-of-the-art process-based global land surfaces models, 707 

improvements are still needed because several important processes are missing or not being 708 

appropriately parameterized. Most of the TRENDY LSMs did not simulate the processes relevant 709 

to human management including irrigation (Chen et al., 2019) and application of fertilizers (Mao 710 

et al., 2015), and natural disturbances like wildfire (Poon and Kinoshita, 2018). Incorporating these 711 

processes into present LSMs is critical, although introduction of new model parameters potentially 712 

also leads to an increase in a model’s uncertainty.  713 

In light of the importance of soil water availability in constraining canopy conductance and 714 

dynamics, accurate representation of hydrological processes is a core task for LSMs, particularly 715 

in dry regions. Integrating a dynamic root water uptake function and hydraulic redistribution into 716 

the LSM can significantly improve its performance of estimating seasonal ET and soil moisture 717 

(Li et al., 2012). Moreover, other hydrological processes including groundwater (Decker, 2015), 718 

lateral flow (Rouholahnejad and Martens, 2018) and water vapor diffusion at the soil surface 719 

(Chang et al., 2018) need to be simulated and correctly represented to reproduce the dynamics of 720 

soil water and ET. Since canopy LAI plays an important role in regulating ET, correctly simulating 721 

vegetation dynamics is also critical. One way is to correct the initialization, distribution, and 722 

parameterization of vegetation phenology in LSMs (Murray-Tortarolo et al., 2013; Zhang et al., 723 

2019). Appropriate carbon allocation scheme and parameterization of vegetation’s response to 724 

water deficits are also important for reproducing vegetation dynamics (Anav et al., 2013). 725 
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5. Conclusion 726 

In this study, we evaluated twenty global terrestrial ET estimates including four from remote 727 

sensing-based physical models, two from machine-learning algorithms and fourteen from 728 

TRENDY LSMs. The ensemble mean values of global terrestrial ET for the three categories agreed 729 

well, ranging from 589.6 mm yr-1 to 617.1 mm yr-1. All the three categories detected an overall 730 

positive trend in global ET during the period 1982-2011 and suggested a positive effect of 731 

vegetation greening on ET intensification. However, the multi-model inter-comparison indicates 732 

that considerable uncertainties still exist in both temporal and spatial variations in global ET 733 

estimates. LSMs had significant differences in the ET magnitude in tropical regions especially the 734 

Amazon Basin, while benchmark ET products showed larger inter-model range in arid and semi-735 

arid regions than LSMs. Trends in LSMs ET estimates also had significant discrepancies. These 736 

uncertainties are induced by parameterization of land processes, meteorological forcing, lack of in 737 

situ measurements, remote sensing acquisition and scaling effects. Model developments and 738 

observational improvements provide two parallel pathways towards improving the accuracy of 739 

global terrestrial ET estimation.  740 
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Table 1. Descriptions of models used in this study, including their drivers, adopted algorithms, 1200 

key equations, limitations and references 1201 

Name Input Algorithm Spatial 
resolution 

Temporal 
resolution 

Key equations Limitations References 
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MTE Climate: 
precipitation, 
temperature, 
sunshine hour, 
relative 
humidity, wet 
days 
Vegetation: 
fAPAR 
 

TRIAL + 
ERROR 

0.5º×0.5º Monthly No specific equation Insufficient flux 
observations in 
tropical regions; with 
no CO2 effect 

Jung et al. 
(2011) 

RF enhanced 
vegetation 
index, fAPAR, 
leaf area index, 
land surface 
temperature, 
radiation, 
potential 
radiation, index 
of water 
availability, 
relative 
humidity 

Randomized 
decision tree 

0.5º×0.5º Half-hourly                    No specific equation The same with MTE Bodesheim 
et al. 
(2018) 

P-LSH Climate: 
radiation, air 
temperature, 
vapor pressure, 
wind speed, 
CO2 
Vegetation: 
AVHRR NDVI 

Modified 
Penman–
Monteith 

0.083 
º×0.083º 

Monthly 
𝐸𝐸𝑣𝑣 =

∆𝑅𝑅𝑛𝑛 + 𝜌𝜌𝐶𝐶𝑝𝑝𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔𝑎𝑎

𝜆𝜆𝑣𝑣(Δ+ Υ �1 + 𝑔𝑔𝑎𝑎
𝑔𝑔𝑠𝑠
�)

 

 

𝐸𝐸𝑠𝑠 = 𝑅𝑅𝑅𝑅
𝑉𝑉𝑉𝑉𝑉𝑉
𝑘𝑘

∆𝑅𝑅𝑛𝑛 + 𝜌𝜌𝐶𝐶𝑝𝑝𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔𝑎𝑎

𝜆𝜆𝑣𝑣(Δ+ Υ �1 + 𝑔𝑔𝑎𝑎
𝑔𝑔𝑠𝑠
�)

 

 

Advantages: 
more robust physical 
basis; consider the 
effects of CO2 

 
Limitations: 
high meteorological 
forcing requirements; 
canopy conductance 
is based on proxies; 

Zhang et al. 
(2015) 

GLEAM Climate: 
precipitation, 
net radiation, 
surface soil 
moisture, land 
surface 
temperature, air 
temperature, 
snow depth  
Vegetation: 
vegetation 
optical depth 
 
 
 

Modified 
Priestley–
Taylor 

0.25º×0.25º Daily 𝐸𝐸𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑆𝑆𝑠𝑠𝛼𝛼𝑠𝑠
Δ

𝜆𝜆𝑣𝑣𝜌𝜌𝑤𝑤(Δ+ 𝛾𝛾) (𝑅𝑅𝑛𝑛𝑠𝑠 − 𝐺𝐺𝑠𝑠) 

 

𝐸𝐸𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝛼𝛼𝑠𝑠𝑠𝑠
Δ

𝜆𝜆𝑣𝑣𝜌𝜌𝑤𝑤(Δ+ 𝛾𝛾) (𝑅𝑅𝑛𝑛𝑠𝑠𝑠𝑠 − 𝐺𝐺𝑠𝑠𝑠𝑠) 

𝐸𝐸𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝛼𝛼𝑠𝑠𝑠𝑠
Δ

𝜆𝜆𝑣𝑣𝜌𝜌𝑤𝑤(Δ+ 𝛾𝛾)
(𝑅𝑅𝑛𝑛𝑠𝑠𝑠𝑠 − 𝐺𝐺𝑠𝑠𝑠𝑠) − 𝛽𝛽𝐸𝐸𝑖𝑖 

Advantages:  
simple; low 
requirement for 
meteorological data; 
well-suited for remote 
sensing observable 
variables; soil 
moisture is considered 
 
Limitations: 
many simplifications 
of physical processes; 
neither VPD nor 
surface and 
aerodynamic 
resistances are 
explicitly accounted 
for; strong 
dependency on net 
radiation 

(Miralles et 
al., 2011) 

MODIS Climate: air 
temperature, 
shortwave 
radiation, wind 
speed, relative 
humidity, air 
pressure 
Vegetation: 
LAI, fAPAR, 
albedo 
 

Penman–
Monteith–
Leuning 

0.05 º×0.05 º Monthly 
𝐸𝐸𝑖𝑖 = 𝑓𝑓𝑤𝑤𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠

Δ(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝜌𝜌𝑐𝑐𝑝𝑝
𝑉𝑉𝑉𝑉𝑉𝑉
𝑇𝑇𝑎𝑎𝑤𝑤𝑠𝑠

𝜆𝜆𝑣𝑣𝜌𝜌𝑤𝑤(Δ+ 𝛾𝛾 𝑇𝑇𝑠𝑠
𝑤𝑤𝑠𝑠

𝑇𝑇𝑎𝑎𝑤𝑤𝑠𝑠
)

 

𝐸𝐸𝑣𝑣 = (1− 𝑓𝑓𝑤𝑤𝑠𝑠𝑠𝑠)𝑓𝑓𝑠𝑠
Δ(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝜌𝜌𝑐𝑐𝑝𝑝

𝑉𝑉𝑉𝑉𝑉𝑉
𝑇𝑇𝑎𝑎𝑠𝑠

𝜆𝜆𝑣𝑣𝜌𝜌𝑤𝑤(Δ+ Υ𝑇𝑇𝑠𝑠
𝑠𝑠

𝑇𝑇𝑎𝑎𝑠𝑠
)

 

𝐸𝐸𝑠𝑠
= [𝑓𝑓𝑤𝑤𝑠𝑠𝑠𝑠

+
(1 − 𝑓𝑓𝑤𝑤𝑠𝑠𝑠𝑠)ℎ𝑉𝑉𝑉𝑉𝑉𝑉

𝛽𝛽
]

(𝑠𝑠𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 +
𝜌𝜌𝑐𝑐𝑝𝑝(1− 𝑓𝑓𝑠𝑠)𝑉𝑉𝑉𝑉𝑉𝑉

𝑇𝑇𝑎𝑎𝑠𝑠
)

𝜆𝜆𝑣𝑣𝜌𝜌𝑤𝑤(S + γ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑎𝑎𝑠𝑠
)

 

Advantages: 
more robust physical 
basis; 
 
Limitations: 
require many 
variables that are 
difficult to observe or 
not observable with 
satellites; canopy 
conductance is based 
on proxies; do not 
consider soil moisture 
but use atmospheric 
humidity as a 
surrogate; do not 

Mu et al. 
(2011) 
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consider the effects of 
CO2 

PML-
CSIRO 

Climate: 
precipitation, air 
temperature, 
vapor pressure, 
shortwave 
radiation, 
longwave 
radiation, wind 
speed 
Vegetation: 
AVHRR LAI, 
emissivity and 
albedo 

Penman–
Monteith–
Leuning  

0.5º×0.5º Monthly 
𝐸𝐸𝑣𝑣 =

∆𝑅𝑅𝑛𝑛 + 𝜌𝜌𝐶𝐶𝑝𝑝𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔𝑎𝑎

𝜆𝜆𝑣𝑣(Δ+ Υ �1 + 𝑔𝑔𝑎𝑎
𝑔𝑔𝑠𝑠
�)

 

𝐸𝐸𝑠𝑠 =
𝑓𝑓Δ𝐿𝐿𝑠𝑠
Δ + 𝛾𝛾

 

Ei: an adapted version of Gash rainfall interception 
model (Van et al., 2001) 

Advantages: 
more robust physical 
basis (compared to 
Priestley–Taylor 
equation); 
biophysically based 
estimation of surface 
conductance 
 
Limitations: 
high meteorological 
forcing requirements; 
canopy conductance 
is based on proxies; 
do not consider the 
effects of CO2 

Zhang et al. 
(2016b) 

TRENDY LSMs 
 
Advantages: land surface models are process-oriented and physically-based. Given their structure almost all models are capable to allow factorial analysis, 
where one forcing can be applied at a time. Most models also consider the physiological effect of CO2 on stomatal closure.  
 
Disadvantages: most models typically do not allow integration/assimilation of observation-based vegetation characteristics. Model parameterizations remain 
uncertain and a same process is modelled in different ways across models. Model parameters may or may not be physically-based and therefore measurable 
in the field.  
 
Models participating in the TRENDYv6 comparison were forced by precipitation, air temperature, specific humidity, shortwave radiation, longwave 
radiation, wind speed based on the CRU-NCEPv8 data as explained in Le Quere et al. 2018. It is very difficult to list all key equations for all land surface 
models.  Here, we just list the stomatal conductance equation for each model. 
 
Name Algorithm Spatial 

resolution 
Temporal 
resolution 

Key equations References 

CABLE Penman-Monteith 0.5º×0.5º Monthly 
𝑔𝑔𝑠𝑠 = 𝑔𝑔0 +

𝑔𝑔1𝑓𝑓𝑤𝑤𝐿𝐿
𝑐𝑐𝑎𝑎 − 𝑐𝑐𝑝𝑝

(1 +
𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉0

)−1 
Haverd et 
al. (2018) 

CLASS-
CTEM 

Modified Penman–Monteith 2.8125º×2.81
25 º 

Monthly 𝑔𝑔𝑠𝑠 = 𝑚𝑚
𝐿𝐿𝑛𝑛𝑝𝑝

(𝑐𝑐𝑠𝑠 − Γ)
1

(1 + 𝑉𝑉𝑉𝑉𝑉𝑉/𝑉𝑉𝑉𝑉𝑉𝑉0) + 𝑏𝑏 𝐿𝐿𝐿𝐿𝐿𝐿 Melton and 
Arora 
(2016) 

CLM45 Modified Penman–Monteith 1.875 º×2.5 º Monthly 𝑔𝑔𝑠𝑠 = 𝑔𝑔0 +
𝑔𝑔1𝐿𝐿
𝑐𝑐𝑎𝑎

𝑅𝑅𝑅𝑅 Oleson et 
al. (2010) 

DLEM Penman–Monteith 0.5º×0.5º Monthly 𝑔𝑔𝑠𝑠 = max (𝑔𝑔𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑏𝑏𝑓𝑓(𝑝𝑝𝑝𝑝𝑇𝑇𝑓𝑓)𝑓𝑓(𝐸𝐸𝑠𝑠𝑖𝑖𝑛𝑛)𝑓𝑓(𝑉𝑉𝑉𝑉𝑉𝑉)𝑓𝑓(𝐶𝐶𝐶𝐶2),𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛) Pan et al. 
(2015) 

ISAM Modified Penman–Monteith 0.5º×0.5º Monthly 𝑔𝑔𝑠𝑠 = 𝑚𝑚
𝐿𝐿

𝐶𝐶𝑠𝑠
𝑉𝑉𝑎𝑎𝑠𝑠𝑠𝑠�

×
𝑇𝑇𝑠𝑠
𝑇𝑇𝑖𝑖

+ 𝑏𝑏𝑠𝑠𝛽𝛽𝑠𝑠 
Barman et 
al. (2014) 

JSBACH Penman–Monteith 1.9 º×1.9 º Monthly 
𝑔𝑔𝑠𝑠 = 𝛽𝛽𝑤𝑤

1.6𝐿𝐿𝑛𝑛,𝑝𝑝𝑠𝑠𝑠𝑠

𝑐𝑐𝑎𝑎 − 𝑐𝑐𝑖𝑖,𝑝𝑝𝑠𝑠𝑠𝑠
 

Knauer et 
al. (2015) 

JULES Penman–Monteith 2.5 º×3.75 º Monthly Bare soil conductance: 𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 = 1
100

(𝜃𝜃1
𝜃𝜃𝑐𝑐

)2 
Stomatal conductance is calculated by solving the two equations: 
𝐿𝐿𝑠𝑠 = 𝑔𝑔𝑠𝑠(𝐶𝐶𝑠𝑠 − 𝐶𝐶𝑖𝑖)/1.6; 

𝐶𝐶𝑖𝑖 − Γ∗

𝐶𝐶𝑠𝑠 − Γ∗
= 𝑓𝑓0(1−

Δ
𝑞𝑞𝑠𝑠

) 

 

Li et al. 
(2016) 

LPJ-
GUESS 

Equations proposed by 
Monteith (1995) 

0.5º×0.5º Monthly 𝑔𝑔𝑠𝑠 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛 +
1.6𝐿𝐿𝑑𝑑𝑠𝑠

𝑐𝑐𝑎𝑎(1− 𝜆𝜆𝑠𝑠)
 Smith 

(2001) 
LPJ-wsl Priestley-Taylor 0.5º×0.5º Monthly 𝑔𝑔𝑠𝑠 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛 +

1.6𝐿𝐿𝑑𝑑𝑠𝑠
𝑐𝑐𝑎𝑎(1− 𝜆𝜆𝑠𝑠)

 

 

Sitch et al. 
(2003) 

LPX-Bern Modified equation of Monteith 
(1995) 

1º×1º Monthly 𝑔𝑔𝑠𝑠 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛 +
1.6𝐿𝐿𝑑𝑑𝑠𝑠

𝑐𝑐𝑎𝑎(1− 𝜆𝜆𝑠𝑠)
 Keller et al. 

(2017) 
O-CN Modified Penman-Monteith  1º×1º Monthly 𝑔𝑔𝑠𝑠 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛 +

1.6𝐿𝐿𝑑𝑑𝑠𝑠
𝑐𝑐𝑎𝑎(1− 𝜆𝜆𝑠𝑠)

 Zaehle and 
Friend 
(2010) 
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ORCHID
EE 

Modified Penman-Monteith  0.5º×0.5º Monthly 𝑔𝑔𝑠𝑠 = 𝑔𝑔0 +
𝐿𝐿 + 𝑅𝑅𝑑𝑑
𝑐𝑐𝑎𝑎 − 𝑐𝑐𝑝𝑝

𝑓𝑓𝑣𝑣𝑝𝑝𝑑𝑑 

 
gsoil= exp(8.206-4.255W/Wsat) 

 

d'Orgeval 
et al. 
(2008) 

ORCHID
EE-MICT 

Modified Penman-Monteith  0.5º×0.5º Monthly 𝑔𝑔𝑠𝑠 = 𝑔𝑔0 +
𝐿𝐿 + 𝑅𝑅𝑑𝑑
𝑐𝑐𝑎𝑎 − 𝑐𝑐𝑝𝑝

𝑓𝑓𝑣𝑣𝑝𝑝𝑑𝑑 Guimbertea
u et al. 
(2018) 

VISIT Penman–Monteith 0.5º×0.5º Monthly 
𝑔𝑔𝑠𝑠 = 𝑔𝑔0 +

𝑔𝑔1𝑓𝑓𝑤𝑤𝐿𝐿
𝑐𝑐𝑎𝑎 − 𝑐𝑐𝑝𝑝

(1 +
𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉0

)−1 
Ito (2010) 

Notes: A: net assimilation rate; Adt: total daytime net photosynthesis; An,pot: unstressed net 1202 
assimilation rate; b: soil moisture factor; bt: stomatal conductance intercept; ca: atmospheric CO2 1203 
concentration; cc: critical CO2 concentration; ci: internal leaf concentration of CO2; ci, pot: internal 1204 
leaf concentration of CO2 for unstressed conditions; cs: leaf surface CO2 concentration; cp: CO2 1205 
compensation point; es: vapor pressure at leaf surface; ei: saturation vapor pressure inside the leaf; 1206 
Es: soil evaporation; Ec: canopy evapotranspiration; Edry: dry canopy evapotranspiration; Ewet: wet 1207 
canopy evapotranspiration; Ev: canopy transpiration; Ei: canopy interception; Etc: transpiration 1208 
from tall canopy; Esc: transpiration from short canopy; f: fraction of P to equilibrium soil 1209 
evaporation; fs: soil fraction; fsc: short canopy fraction; ftc: tall canopy fraction; fvpd: factor of the 1210 
effect of leaf-to-air vapor pressure difference; fw: a function describing the soil water stress on 1211 
stomatal conductance; fwet: relative surface wetness parameter; f0: the maximum ratio of internal 1212 
to external CO2; f(ppdf):limiting factor of photosynthetic photo flux density; f(Tmin): limiting factor 1213 
of daily minimum temperature; f(VPD): limiting factor of vapor pressure deficit; f(CO2): limiting 1214 
factor of carbon dioxide; G: ground energy flux; ga: aerodynamic conductance; gm: 1215 
empiricalparameter; gs: stomatal conductance; gsmax: maximum stomatal conductance; gsmin: 1216 
minimum stomatal conductance; gsoil: bare soil conductance; g0: residual stomatal conductance 1217 
when the net assimilation rate is 0 ; g1: sensitivity of stomatal conductance to assimilation, ambient 1218 
CO2 concentration and environmental controls; I: tall canopy interception loss; m: stomatal 1219 
conductance slope; Patm: atmospheric pressure; PEs: potential soil evaporation; PEcanopy: potential 1220 
canopy evaporation; qa: specific air humidity; qc: critical humidity deficit; qs: specific humidity of 1221 
saturated air; ra: aerodynamic resistance; rs: stomatal resistance; Rn: net radiation; Rd: day 1222 
respiration; RH: relative humidity; Ts: actual surface temperature; VPD: vapor pressure deficit; 1223 
VPD0: the sensitivity of stomatal conductance to VPD; W: top soil moisture; Wcanopy: canopy water; 1224 
Wsat: soil porosity; α: Priestley-Taylor coefficient; αm: empirical parameter; β: a constant 1225 
accounting for the times in which vegetation is wet; βt: soil water availability factor between 0 and 1226 
1; βw: A scaling factor to account for water stress; βs: moisture availability function; ρ: air density; 1227 
γ: psychrometric constant; λv: latent heat of vaporization; λc: ratio of intercellular to ambient partial 1228 
pressure of CO2; rcorr: correction factor of temperature and air pressure on conductance; Γ*: CO2 1229 
compensation point when leaf day respiration is zero; θ1: parameter of moisture concentration in 1230 
the top soil layer; θc: parameter of moisture concentration in the spatially varying critical soil 1231 
moisture; Δ: slope of the vapor pressure curve. 1232 
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Table 2. Inter-annual variability (IAV, denoted as standard deviation) and trend of global 1233 

terrestrial ET during 1982-2011 and the contribution of vegetation greening to ET trend. * suggests 1234 

significance of the trend at the 95% confidence level (p<0.05). 1235 

 Model ET IAV 
(mm yr-1) 

ET Trend 
(mm yr-2) 

Greening-induced 
ET change (mm 

yr-2) 

Sensitivity of ET to 
LAI (mm yr-2 per 

m2 m-2) 

LAI trend (10-3 m2 
m-2 yr-1) 

Machine 
learning 

MTE 5.93 0.38* 0.09 35.86 2.51* 

 

RS models 

 

P-LSH 9.95 1.07* 0.34 135.46 2.51* 

GLEAM 8.47 0.33* 0.14 55.78 2.51* 

PML-CSIRO 7.18 0.41* 0.36 143.43 2.51* 

RS model mean 7.98 0.62* 0.28 111.55 2.51* 

 

 

 

 

 

 

 

LSMs 

 

 

 

 

 

 

 

CABLE 9.63 0.07 0.35 102.64 3.41* 

CLASS-CTEM 12.22 0.35* 0.53 134.52 3.94* 

CLM45 8.68 0.38* 0.31 67.54 4.59* 

DLEM 7.21 0.26* 0.53 200.76 2.64* 

ISAM 7.50 0.22 0.16 32.26 4.96* 

JSBACH 10.12 -0.05 0.50 217.39 2.30* 

JULES 11.33 -0.02 0.34 85.21 3.99* 

LPJ-GUESS 7.48 0.50* 0.28 160.92 1.74* 

LPJ-wsl 4.77 0.24* 0.19 31.56 6.02* 

LXP-Bern 4.80 0.20* 0.04 4.04 9.90* 

O-CN 10.41 0.32* 0.53 89.23 5.94* 

ORCHIDEE 9.28 -0.17 0.21 96.33 2.18* 

ORCHIDEE-MICT 10.70 -0.34* 0.50 171.23 2.92* 

VISIT 6.31 0.87* 0.70 51.40 13.62* 

LSM mean 7.73 0.23 0.37 79.91 4.63* 

 1236 


