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Abstract. The use of Poisson-cluster processes to model rainfall time series at a range of scales now has a history of more than

30 years. Among them, the Randomised (also called modified) Bartlett-Lewis model (RBL1) is particularly popular, while a

refinement of this model was proposed recently (RBL2) (Kaczmarska et al., 2014). Fitting such models essentially relies upon

minimising the difference between theoretical statistics of the rainfall signal and their observed estimates. The first are obtained

using closed form analytical expressions for statistics of order 1 to 3 of the rainfall depths, as well as useful approximations5

of the wet-dry structure properties. The second are standard estimates of these statistics for each month of the data. This paper

discusses two issues that are important for optimal model fitting of the RBL1 and RBL2. The first is that, when revisiting the

derivation of the analytical expressions for the rainfall depth moments, it appears that the space of possible parameters is wider

than has been assumed in the past papers. The second is that care must be exerted in the way monthly statistics are estimated

from the data. The impact of these two issues upon both models, in particular upon the estimation of extreme rainfall depths10

at hourly and sub-hourly timescales is examined using 69 years of 5-min and 105 years of 10-min rainfall data from Bochum

(Germany) and Uccle (Belgium), respectively.

Copyright statement. TEXT

1 Background

Rainfall is the main input to a range of models in geophysics such as hydrological catchment models, sewerage discharge15

models, erosion models. Therefore, to understand the behaviour of catchment runoff, sewer flows or soil erosion, it is nec-

essary to have access to precipitation data sets at the characteristic response scales of these variables. There are also other

non-geophysical applications which require such data sets, for instance the investigation of the frequency of outages in telecom-

munications data. For all such applications, hourly and sub-hourly rainfall data are required. The availability of data sets that

are long enough to represent the range of variability of precipitation at such scales is however limited, even in developed20

countries. This is why the availability of a stochastic model able to generate realistic time-series of rainfall depths at a range

of scales is very useful. There is already a considerable literature in this area (Connolly et al., 1998; Arnbjerg-Nielsen, 2012;

Arnbjerg-Nielsen et al., 2013; Onof and Arnbjerg-Nielsen, 2009; Wang et al., 2010): the present paper is a contribution to the

improvement of the performance of a particular type of stochastic rainfall model.
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Depending upon the application, ’realistic’ will mean different things. For applications that are related to design, ’realistic’25

will involve the reproduction of the observed extreme behaviour of the precipitation process at a range of time-scales. Onof and

Arnbjerg-Nielsen (2009) and Arnbjerg-Nielsen (2012), for example, integrated two stochastic models to eventually generate

5-min point rainfall time series from 1-h 10-km RCM (Regional Climate Model) output. This method enables the consideration

of the impact of climate change in urban sewer system design.

In this paper, we focus upon one approach to rainfall modelling, that which is based upon the use of point processes as30

defining the times at which the building blocks of the model, i.e. rainfall cells, arrive. These cells are conceptual ones, although

their typical characteristics are those of Small Mesoscale Areas (SMSA) which are embedded in Large Mesoscale Areas

(Burlando and Rosso, 1993). The presence of clustering means that a homogeneous Poisson point process is not an appropriate

choice for the underlying process of cell arrivals. Two options are available. The first introduces randomness by having the

Poisson rates behave as a continuous-time Markov chain: this defines a Cox (doubly-stochastic) process (see Ramesh (1995);35

Ramesh et al. (2018)).

The second explicitly models the clustering process. This can be by defining the number cells in a storm as a random variable,

with another random variable modelling the delays from the storm to the cell arrival time. This defines a Neyman-Scott process

(see Cowpertwait (1998); Evin and Favre (2008); Paschalis et al. (2014)). Alternatively, a second homogeneous Poisson process

defines the cell arrival times over a duration of storm activity that defines a random variable (see Onof and Wheater (1993);40

Khaliq and Cunnane (1996); Verhoest et al. (1997); Kossieris et al. (2018)). For both Poisson-cluster processes, the SMSAs

are then represented by rectangular pulses corresponding to a random constant rainfall intensity over a random duration. In this

paper, the Bartlett-Lewis process is the chosen point process model.

Two issues have been flagged in the literature which limit the applicability of a number of variants of the basic model type

published in 1987 (Rodriguez-Iturbe et al., 1987). The first one is well-known (e.g. Verhoest et al. (2010)). Many studies have45

shown that Rectangular Pulse models underestimate hourly extremes (Verhoest et al. (2010) and references therein). This is

often accompanied by an overestimation of daily extremes. The other, less well-known problem was identified by Marani

(2003). While one of the strengths of models based upon Poisson-cluster processes is their ability to capture rainfall variability

over a range of scales (hence its use in disaggregation - see Koutsoyiannis and Mamassis (2001)), they underestimate this

variability for scales equal to or larger than a few days.50

Both issues are closely connected to fundamental features of these models and of the way they are fitted. The first arises

partly due to the fact that the model is calibrated in such a way as to reproduce the mean behaviour of the precipitation process.

That is, statistics like the mean, variance, autocovariance of rainfall totals at time-scales varying from one to 24 hours are used

to fit the models. As far as the cell intensity parameters are concerned, these statistics are functions of their first and second-

order moments only. The rest of this distribution is not thereby determined, although the choice of distribution has a clear55

impact upon the extremes (Onof and Wheater, 1994). This situation can be partially addressed by including the coefficients

of skewness (hereafter, ’skewness’) of the rainfall depths at relevant time-scales as additional statistics in the calibration of

the model (Cowpertwait, 1998). Kaczmarska et al. (2014) similarly find that the inclusion of the skewness yields a reasonable

performance and extend the range of time-scales to include sub-hourly scales which are of key importance in urban hydrology,
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erosion studies and telecommunications applications. There remains however the option of using a fat-tailed distribution for60

the cell intensity to achieve further improvement. To see whether this is advisable/useful, we need to get a better picture of

what produces the extremes at different time-scales: is it predominantly the superposition of several cells, or is it mostly the

rainfall produced by a single cell. In the latter case, the choice of a different distribution of rainfall intensities is a key decision.

The other issue, namely that of the reproduction of the variability of rainfall depths across scales, had not so far received much

attention although it is in fact of clear practical import. If we want the model to be able to capture longer term variability (as65

would certainly be required to reproduce climate variability for instance), then this issue must be addressed. The most promising

ways forward in this respect come from combining the Poisson-cluster model with a coarse-scale model that captures much of

the longer-term variability (Park et al., 2019), or from letting climatological information guide the weighting to be assigned to

different months in the data in calibrating the model (Kaczmarska et al. (2015); Cross et al. (2019)). Both approaches represent

important developments. The first approach involving the combination of two models has the advantage of enabling a much70

improved reproduction of extreme rainfall depths. The second approach which incorporates climatological information, enables

this model to be used as weather generator in climate impact studies.

While the use of extraneous (e.g. climatological) information and the combination with another (e.g. coarse-scale) model are

the most promising ways in which this area of stochastic rainfall modelling is developing, the issue of how the Poisson-cluster

model is fitted to rainfall statistics needs to be revisited. In this paper, we address two hitherto unnoticed issues with random75

parameter Bartlett-Lewis rainfall models. First, we draw attention to a claim made in the original publication of the randomised

Bartlett-Lewis model (Rodriguez-Iturbe et al., 1988) which involves an erroneous assessment of the mathematically feasible

limits of a key model parameter. Correcting this misspecification of the constraints on this parameter allows us to consider

a broader parameter space, thereby potentially including parameter values that will improve model performance. Second, we

show the importance of the choice of estimators for the statistics used in model fits to individual months. We shall show that,80

by taking both issues into account, it is possible to improve the reproduction of extreme rainfall depths over a range of scales.

A detailed examination of the impact upon the variance function will be carried out in another paper.

This paper starts with a presentation of the data and a reminder of the structure of three versions of the Rectangular Pulse

Bartlett-Lewis model, as well as of how these models are fitted. The revised equations for the statistics of order 1 to 3 of the

rainfall depths at aggregation scale h hours are then presented. In the following section, we discuss the estimation of standard85

monthly statistics, and show the bias that can be introduced through the use of a commonly used type of estimator. In the

final section, we consider the impact of the new equations and unbiased estimation method upon the reproduction of standard

statistics and extremes of rainfall depths.

2 Data

Five-minute rain gauge rainfall data from a rain gauge in Germany (North-Rhine-Westphalia) and one in Belgium (Flanders:90

Brussels region) are used to demonstrate the new developments in model (population) and data (sample) statistics for model

fitting described in this paper. These are:
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– Bochum: 69 years of 5 minute data from January 1981 to December 1999;

– Uccle: 105 years of 10 minute data from January 1898 to December 2002.

Because of constraints on the length of the paper, the results for Uccle are shown only in the Supplement of this paper.95

Additionally, for the purpose of the numerical investigation of estimators, Greenwich (14.5 years of 5 minute data from

February 1987 to July 2001) data are used.

3 Model structure

In the original Bartlett-Lewis Rectangular Pulse (OBL) model (as illustrated in Fig. 1), storms arrive according to a Poisson

process at rate λ. Another process generates cells associated with each storm: this is also a Poisson process, triggered by100

the storm arrival (rate β), and active over a duration that is exponentially distributed with parameter γ. These cells have an

exponential duration (parameter η) and a random depth (described by its first three (non-centred) moments: µx ; µx2; µx3).

Further development of the original model proposed by Rodriguez-Iturbe et al. (1987) involved has in particular focused

upon the randomisation of the temporal structure of storms for the Bartlett-Lewis process (Rodriguez-Iturbe et al., 1988; Onof

and Wheater, 1993). The temporal structure of precipitation is allowed to vary from storm to storm by randomising parameter105

η. This can be chosen as a Γ(α,1/ν) distributed random variable that varies between storms. The cell arrival rate and storm

duration parameter are scaled accordingly: β = κη; γ = φη. This will be referred to as the Randomised Bartlett-Lewis model

version 1 (RBL1).

Recently, this randomisation strategy was extended to include all the parameters describing the internal structure of the

storm, i.e. to include parameter µx (Kaczmarska et al., 2014). µx is now a random variable that takes on different values for110

different storms, proportionally to η: µx = ιη. This is the Randomised Bartlett-Lewis model version 2 (RBL2). This model was

shown to outperform the OBL and RBL1 by Kaczmarska et al. (2014), but:

– only one data set was examined in that study so this conclusion cannot be generalised;

– the RBL1 was excluded from the comparison because the authors ’concluded that the improvement in the fit to proportion

dry that had previously been found by randomizing η was at the expense of a deterioration in the fit to the skewness’115

(ibid.); but given the popularity and successful application of this model to a range of types of rainfall (e.g. see Onof

et al. (2000)), we decided to include it here for further analysis.

4 Model calibration and the revised equations

4.1 Calibration

The OBL, RBL1 and RBL2 models generate rainfall as a continuous-time process, {Y (t)}t∈R: Y (t) is the continuous-time120

rainfall intensity at time t resulting from the superposition of the intensities of all the cells active at time t. Rainfall records
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are, however, available in aggregated form for discrete time-scales.The rainfall depth Y (h)
i for a level of aggregation h hours is

given by:

Y
(h)
i =

ih∫
(i−1)h

Y (t)dt (1)

Analytical expressions of the moments of the aggregated process Y (h)
i have been derived as functions of the model parameters.125

Expressions for other statistical descriptors such as the proportion of dry periods at time scale h, have also been derived (see

Onof et al. (2000)). In the Supplement to this paper, we provide more efficient approximations of the proportion dry than in the

earlier papers (see Wheater et al. (2006)).

The models are generally calibrated using a Generalised Method of Moments. That is, the model parameters are chosen so

that the model values calculated with the available analytical expressions are as close as possible to the empirical values of130

these statistics obtained from observed data. This is achieved by minimising an objective function:∑
M∈Ω

ω(M)
{
M−M̂

}2

(2)

where Ω is a set of statistical descriptors, ω(M) a weight assigned to that property in the objective function, and M̂ is the

estimate of that property from the sample of available data. For details about the optimal choices of the weights, see Kaczmarska

et al. (2014).135

In this paper, following the best practise suggested in Kaczmarska et al. (2014), we choose mean 1-h rainfall depth, and

coefficient of variation, autocorrelation lag-1 and coefficient of skewness at 5/10-min (5 min for Bochum, 10 min for Uccle), 1-,

6- and 24-hour time-scales as statistical descriptors for the model calibration. In addition, inspired by the optimisation method

proposed in Efstratiadis et al. (2002), we used the Simulated Annealing algorithm to search a promising region, and then the

downhill simplex Nelder-Mead algorithm to identify the optimum to minimise Eq. (2). The minimum objective function values140

for all the RBL models under consideration in this paper using Bochum data are summarised in Table 5. It is worth noting

that the minimum objective function values of the RBL2-bM model are comparable with those of the BLRPRx model given in

Table 2 in Kaczmarska et al. (2014), which indicates that there is consistency between the calibration procedures in these two

papers.

Below, we present the methodology used to derive the new equations for the two randomised versions of the Bartlett-Lewis145

model.

4.2 Derivation of the new equations

As explained in Rodriguez-Iturbe et al. (1988), the mean and variance of the RBL1 - and this also applies to the RBL2 - are

obtained by taking means over η of these moments for the OBL. This is the case because the expressions of these moments

only contain terms corresponding to contributions from single storms, i.e. λqηp terms with q = 1 only, as can be seen from the150

equations obtained by Rodriguez-Iturbe et al. (1987). The same goes for the derivation of the third-order centred moment.
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In this section, we focus upon the derivation of the variance of the RBL1. The complete sets of new equations for RBL1 and

RBL2 are presented in Appendix A.

The starting point for the derivation is the equation for the variance of the OBL model. Here, rather than use the original

OBL model parameters (Rodriguez-Iturbe et al., 1987), i.e.155

{λ,γ,β,η,µx,µx2 ,µx3}

We replace the second and third parameters by dimensionless parameters φ and κ that are also used in RBL1 and RBL2 so that

the parameterisation of the OBL is now in terms of:

{λ,φ,κ,η,µx,µx2 ,µx3}

where γ = φη and β = κη.160

In the analytical expression for the OBL variance, we make the dependence upon parameter η explicit by referring to it as

V (h,η), This distinguishes it from the corresponding variances for RBL models denoted V (h). The OBL variance is:

V (h,η) =
2λµc
η

[
(µx2 +κµ2

x/φ)h

η
+
µ2
xκ(1− e−φηh)

φ2η2(φ2− 1)
−
(
µx2 +

κφµ2
x

φ2− 1

)
1− e−ηh

η2

]
= 2λµcµ

2
x

{(
f1 +

κ

φ

)
h

η2
+

(
κ

φ2(φ2− 1)

)
1− e−φηh

η3

+

(
f1 +

κφ

φ2− 1

)
1− e−ηh

η3

}
(3)165

where f1 = µX2/µ2
X and f2 = µX3/µ3

X . For more on the choice of these parameters, see Appendix B.

When deriving the expression for a momentM in the RBL models, we multiply the corresponding momentM(η) for the

OBL model by the density function f of the gamma distribution Γ(α,1/ν) of η and integrate over all possible values of η:

M= Eη [M(η)] =

∞∫
0

M(η)f(η)dη (4)

where the density function of the Gamma distribution is given by:170

f(η) =
ηα−1ναe−νη

Γ(α)
dη if η ≥ 0

f(η) = 0 if η < 0

The issue of the convergence of these integrals has, however, not been addressed explicitly in the literature (aside from a

mention in Kaczmarska et al. (2014)). The integration involves integrals of the following general type evaluated at l = 0:

T (k,u, l) =

+∞∫
l

η−ke−uη
ηα−1ναe−νη

Γ(α)
dη175

=
να

(ν+u)α−k
Γ(α− k, l(ν+u))

Γ(α)

(5)
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where Γ(s) is the (complete) Gamma function, and Γ(s,x) the incomplete Gamma function, defined as:

Γ(s,x) =

∞∫
x

ts−1e−t dt

When l = 0, the integration in (5) is possible (i.e. the integral is finite) if and only if the integrand is integrable in the neigh-180

bourhood of 0, since there are no problems of convergence at ∞. And if the integration is possible for l = 0, the expression

in (5) can be simplified using the properties of the Gamma function. This will however not be of use here, since we are not

considering such integrals separately, as we shall see below.

If we look at the terms the integrand comprises for the statistics that are used to fit the model, we find that they behave in the

neighbourhood of 0 as ηα−n with n= 2 for the mean rainfall intensity, n≤ 4 for its variance and covariance, and n≤ 5 for its185

third-order central moment. The integrals of such terms converge as long as α−n >−1, i.e. α > n− 1..

It therefore seems that, for the RBL1, V (h) is finite as long as α > 3. Similarly, as the expressions in A2 show, the mean

M(h) is finite as long as α > 1, the covariance of lag k C(k,h) is finite when α > 3 and the third-order centred moment S(h),

when α > 4.

This conclusion is however too hasty. Indeed, it involves considering separately the integration of each additive term in Eq.190

(3). It is with such separate integration that the expressions for the variance and covariance used in Rodriguez-Iturbe et al.

(1988) are obtained, and these expressions were used in subsequent research.

Insofar as only moments of order less than 3 were used in past studies (the third-order moment for the RBL1 was only

published in a report (Onof et al., 2013) and therefore not used in most of the literature), the constraint α > 3 applied to the

fits found in these past papers (e.g.(Rodriguez-Iturbe et al., 1988), (Khaliq and Cunnane, 1996), (Verhoest et al., 1997), (Onof195

et al., 2000), (Verhoest et al., 2010) and (Kim et al., 2017)). However, since the issue of the convergence of these integrals

was not examined, it is not surprising to find, in most of these studies, that values of α below 3, i.e. outside the domain of

feasibility of the optimisation, are obtained for some months. The parameter sets for these months are thus not feasible and a

fortiori not optimal. Note that this issue would not easily have been picked up during model calibration because it would not

typically have led to unrealistic values of these statistics. In particular, we found that, as long as we keep α < 2 (as is the case200

in the literature), the variance remains positive for typical values of the other parameters.

But aside from this consequence, we now need to check whether, when proceeding without separating the integration into the

sum of integrals of the additive terms in the integrand, the domain of convergence of the integral is still defined by α ∈ (3,+∞)

for the variance (and for the covariance, and α ∈ (4,+∞) for the third-order moment). That is, are any values of α for which

the individuals integrals diverge, but the integral of the whole integrand does not? That would be the case for instance if, in205

the neighbourhood of 0, the terms leading to a divergence for certain values of α were to cancel out (for a simple example of

individual integrals diverging while, when summed, the total integral does not diverge, see Appendix C). Insofar as this is the

case, as we shall see below, this will lead to a broadening of the space of feasible parameters as compared with what has been

assumed in many studies, with new equations for the extended part of the parameter space. The consequence is that we cannot

be certain that the parameters found in these previous studies are optimal.210
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In line with Eq. (4), the variance V (h) of the RBL1 model is obtained as:

V (h) =

∞∫
0

V (h,η)f(η)dη (6)

and if we choose a small value η0 of η, this integral is the sum:

V (h) =

η0∫
0

V (h,η)f(η)dη+

∞∫
η0

V (h,η)f(η)dη (7)

whereby only the first integral has a limited domain of convergence. Let us call this first term V1(h).215

From Eq. (3), we have:

V1(h) =
2λµcµ

2
x

Γ(α)

η0∫
0

[
ηα−3ναe−νη

(
f1 +

κ

φ

)
h + ηα−4ναe−νη

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)

− ηα−4ναe−(ν+φh)η

(
κ

φ2(φ2− 1)

)
+ ηα−4ναe−(ν+h)η

(
f1 +

κφ

φ2− 1

)]
dη

By doing first and second-order expansions of the exponential terms, we find that the ηα−4 and ηα−3 terms cancel, so that after

some algebra, we get:220

V1(h) =
2λµcµ

2
x

Γ(α)

η0∫
0

[
ηα−2να

h2

2

(
κ

φ+ 1
+ f1

)
+ o(ηα−2)

]
dη

which yields:

V1(h)≈ λµcν
αh2µ2

xη
α−1
0

(α− 1)Γ(α)

(
κ

φ+ 1
+ f1

)
(8)

as long as α− 2>−1, i.e. α > 1. Else, V1(h) is infinite.

This second term V2(h) is thus calculated as:225

V2(h) =

∞∫
η0

V (h,η)f(η)dη

= 2λµcµ
2
x

[(
f1 +

κ

φ

)
hT (2,0,η0) +

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)
T (3,0,η0)

−
(

κ

φ2(φ2− 1)

)
T (3,φh,η0) +

(
f1 +

κφ

φ2− 1

)
T (3,h,η0)

]
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so that the total variance is:

V (h) = 2λµcµ
2
x

[(
f1 +

κ

φ

)
hT (2,0,0) +

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)
T (3,0,0)230

− κ

φ2(φ2− 1)
T (3,φh,0) +

(
f1 +

κφ

φ2− 1

)
T (3,h,0)

]
for α > 3

V (h) ≈ 2λµcµ
2
x

[
ναh2ηα−1

0

2(α− 1)Γ(α)

(
κ

φ+ 1
+ f1

)
+

(
f1 +

κ

φ

)
hT (2,0,η0) +

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)
T (3,0,η0)

−
(

κ

φ2(φ2− 1)

)
T (3,φh,η0) +

(
f1 +

κφ

φ2− 1

)
T (3,h,η0)

]
235

for 1< α≤ 3

V (h) = ∞

for α≤ 1

(9)

In practice, η0 should be chosen as small as is computationally possible since it is term V1(h) that involves the approximation.240

Figure 2 shows, for some typical parameter values, how sensitive the expressions of V (h) (blue line), as well as C(1,h) and

S(h) (grey and orange lines; and see derivations below), are to the choice of η0. As can be seen, values start to be much less

insensitive to the change of η0 as η0 < 0.01. In this paper, η0 = 0.001 is chosen.

As indicated, similar derivations yield the expressions for the covariance of lag-k C(k,h) and the centred third-order moment

S(h) of the RBL1.245

For the RBL2, µx is now random, and chosen proportional to η: µx = ιη so that shorter cells will tend to have greater

intensity. The model equations for the RBL2 are therefore obtained from those of the OBL by, first, substituting ιη for µx in

the expressions for the OBL model moments, and then proceeding as for the RBL1, i.e. integrating these moments multiplied

by the density function of the gamma distribution of η. For this model, the constraint upon α obtained when carrying out

separate integrations of the additive terms for the moments of the rainfall depth is less stringent than for the the RBL1. If we250

look at terms the integrands comprise, we find that, for the RBL2, they behave in the neighbourhood of 0 as ηα−n with n= 1

for the mean, n≤ 2 for the variance, covariance and the third-order moment. The integrals of such terms converge as long as

α−n >−1, i.e. α > n− 1.

Analogously to the RBL1, it therefore seems that M(h) is finite as long as α > 0, V (h), C(k,h) and S(k,h) are finite as

long as α > 1. But this conclusion is only warranted for the mean. For the other statistics, Taylor expansions of the exponential255

terms in the neighbourhood of 0 yield approximations for which the integrals are finite for certain values of α for which the

individual additive terms are not integrable. The results are shown in Appendix A3.
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5 Model calibration and the estimation of standard statistics

5.1 Standard or block estimation?

In fitting Poisson-cluster models, it is standard to consider parts of the year separately e.g. seasons or generally months, and to260

estimate parameter sets for each of these parts. These parts define blocks of data in the full time-series of observed rainfall. The

question then arises as to how to deal with data presenting this block structure. The approach used in many papers, and certainly

that which was implemented in the early papers that used data from the whole year (e.g. Onof and Wheater (1993)), consisted

in treating the data between the blocks of interest (e.g. those corresponding to a given calendar month) as missing data. The

standard estimators were then used for the moments of orders 1 to 3 and the proportions of wet periods at the time-scales of265

interest.

Work on the representation of the uncertainty in the model parameters (Wheater et al., 2006) and on the optimal weights

to be used in the generalised method of moments implemented in the fitting (Jesus and Chandler, 2011) involved calculating

statistics for each block of data of interest (e.g. each month of a given calendar month). This led to the use of other estimators,

which we refer to as block estimators of the rainfall statistics. These are obtained by calculating the standard statistic of interest270

for each block and averaging over the blocks (e.g. each month of a given calendar month). The purpose of this section is to

investigate the impact this might have upon the type of statistics used in Poisson cluster rectangular pulse model calibration,

not to make any more general point about these two approaches to estimating statistics.

Note that, in the analytical developments below, we used biased but asymptotically unbiased estimates of the variance (i.e. the

sum of squares is divided by the sample size without subtracting 1) which considerably simplifies the algebra in comparing the275

standard and block estimators. Because of the large sample sizes, the bias introduced is negligible, in particular in comparison

with the difference we identify between standard and block estimators. To confirm this, the numerical results we provide use

the unbiased estimators.

There is no difference between the two methods as far as the estimate M̂m,h of the mean rainfall intensity for calendar month

m and time-scale h is concerned:280

M̂m,h =
1

NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

Y
(h)
i,j,m

where,

– Ny is the number of years,

– Nm,h the number of time-steps at scale h in a month of calendar month m (for all months except February for which

leap years would lead to a more complicated formula),285

– Y
(h)
i,j,m extends the notation introduced at the start of the paper: it is the rainfall depth in the i-th interval of the j-th month

of calendar month m.
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This is however no longer the case with the variance Vm,h of the rainfall intensity for calendar month m and time-scale h

for which the standard and block (biased) estimates are respectively:

V̂
[1]
m,h =

1

NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

(Y
(h)
i,j,m− M̂m,h)2290

V̂
[2]
m,h =

1

NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

(Y
(h)
i,j,m−Y

(h)

j,m)2

where, Y
(h)

j,m =
∑i=Nm,h

i=1 Y
(h)
i,j,m

Nm,h
for j = 1, ...,Nm,h are the the (sample) mean depths at time-scale h of the j-th month of

calendar month m.

A little algebra shows a result that is also familiar from Analysis of variance (ANOVA), i.e. that the two estimators are

related by:295

V̂
[1]
m,h = V̂

[2]
m,h + ˆV ar(Y

(h)

j,m) (10)

where the added term is the (biased) sample variance of the above averages.

With the third-order centred moments, we also have two distinct expressions for their estimators:

T̂
[1]
m,h =

1

NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

(Y
(h)
i,j,m− M̂m,h)3

T̂
[2]
m,h =

1

NyNm,h

j=Ny∑
j=1

i=Nm,h∑
i=1

(Y
(h)
i,j,m−Y

(h)

j,m)3300

which are related by the following equation:

T̂
[1]
m,h = T̂

[2]
m,h + T̂ (Y

(h)

j,m) +
3

NyNm,h

j=Ny∑
j=1

(Y
(h)

j,m− M̂m,h)

i=Nm,h∑
i=1

(Y
(h)
i,j,m−Y

(h)

j,m)2 (11)

where T̂ is the third-order centred moment.

5.2 Are the estimators significantly different? A brief analytical and numerical investigation

5.2.1 Block estimation of moments305

To estimate the differences between estimators, we can first look at simple examples of independent realisations in which we

sample a number of zeroes that corresponds to what is realistic for the proportion dry p at the scale of interest and a simple

distribution for the rainfall depths of non-zero rainfalls is assumed, e.g. a Gamma or Generalised Pareto (hereafter GP) (see

Menabde and Sivapalan (2000), Montfort and V.Witter (1986)), assuming Ny = 50 and Nm,h = 30× 24 (for hourly data).

We found the differences to be less than 1% in the case of either the variances or third-order moments as the additive terms310

in the equations relating them were found to be very small, for all the relevant time-scales of interest (5 mins to 24 hrs). In the

case of the variance, this can be seen by noting that, Y
(h)

j,m has a population variance that is that of the rainfall depths divided
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by Nm,h. So the sample variance Y
(h)

j,m is of the same order of magnitude as 1
Nm,h

V̂
[1]
m,h which means that the added term in

Eq. (10) will be very small. Similar considerations apply to the added terms in Eq. (11).

We also checked that these two methods provide an unbiased estimation of the population second and third-order centred315

moments, i.e. V = V ar(X) and M3 = E
[
(X −E(X))3

]
. These are easily obtained in terms of the corresponding moments

(V>0 and M3>0) of the distribution of non-zero rainfalls (i.e. of a Gamma or GP distribution) using the following easily

derivable relations (where M and M>0 are the means of the full and the non-zero only distributions):

V = (1− p)
(
V>0 + pM>0

)
(12)

M3 = (1− p)
(
M3>0 + 3pM>0V>0 + p(2p− 1)M3

>0

)
(13)320

5.2.2 Block estimation of ratios

However, some authors apply the block estimation approach, not to the moments themselves, but to their ratios, i.e. the coeffi-

cient of variation instead of the variance, and the coefficient of skewness instead of the third-order moment (e.g. Kaczmarska

et al. (2014)). That means that the block estimator of such ratios is obtained by averaging the estimates of these ratios from the

relevant block from each of the years in the data set.325

Here, there are no interesting relations to derive between the estimators from the standard and block methods, so we move

directly to the simple numerical testing introduced in Sect. 5.2. For h= 1, and a proportion of dry periods of 0.9, we fitted a

Gamma and a generalised Pareto (GP) to the non-zero rainfalls at Greenwich (UK). This yielded a Gamma(1.1629,0.692) and

a GPD(0.1795,0.654,0) respectively (with the first providing a better fit), with the parameters given, in order as shape, scale

and, for the GP, location.330

By generating 100 samples of 50 years of hourly data, we find that there is a non-negligible difference between the two

estimation methods. Focusing upon the skewnesses, we find 95% simulation bands of [5.68,6.65] and [5.50,6.15] for the

Gamma samples, i.e. differences that are still small but no longer negligible (of the order of 4%).The block estimates clearly

underestimate the population skewness of 6.40. Further, if we look at rainfall from a summer month, e.g. the month of Au-

gust, these differences are more marked. For the Gamma distribution (Gamma(0.848,1.4)) the bands are now [6.48,7.62] and335

[6.26,6.92] respectively, so a difference that is twice as large for the upper bounds. Again, the population skewness of 7.05 is

underestimated by the block method.

When using the GP distribution (GPD(0.1795,0.654,0)), the differences between the two methods and the underestimation

are starker. The bands are [7.94,13.97] and [7.21,8.55] for the standard and block method respectively. The latter underesti-

mates the population skewness of 10.58 by quite a margin (these results are for the whole year; for August, the GP fit was poor340

and the population skewness infinite).

These results now need to be confirmed by looking at the case of a time-series with an appropriate correlation structure.

This will enable us to ascertain to what extent introducing correlation impacts the performance of the estimators (which are, of

course, theoretically designed for samples of independent realisations).
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To do this, we use an RBL2 model calibrated to the same data used for the above sampling, namely Greenwich, UK. The345

idea is that this rainfall model provides us with a correlation structure that is close enough to the observed correlation to enable

us to conclude as to how one would expect the block estimates to perform with such a correlation structure. We generate

100 samples of 50 years of hourly data with two sets of parameters, obtained from January (winter) and August (summer),

respectively, and the associated theoretical skewnesses calculated from these two parameter sets are 7.69 and 21.73. The 95%

simulation bands obtained from the sampled hourly time series are [6.80,7.65] and [12.67,14.65] using the block method,350

and [7.11,8.44] and [16.70,28.40] using the standard method. In line with the numerical investigation above, we find that,

for both months, the theoretical skewnesses provided by the model equation are underestimated by the block estimate (the

underestimation is particularly significant during summer month), while no significant deviation is obtained for the standard

estimates.

The results we have obtained are indicative of a problem of underestimation of the skewness with the block estimation355

method, which is likely to have a significant impact upon the model’s ability to reproduce the statistics of extreme rainfall.

6 Results and discussion

6.1 Block versus standard estimates

Models RBL1 and RBL2 are fitted using the original equations for these models. Although these equations are not shown in

this paper, they are contained in the new sets of equations given above: for each statistic, the first equation given is that found360

in the past papers, with its domain of validity for α. We note that, for the RBL2, this is α > 1 for all statistics, but we imposed

α > 2 for this model, in line with the work carried out by Kaczmarska et al. (2014). By using statistical estimators of the

observed statistics based upon the standard and the block estimates as described in Sect. 5 (i.e. the block method takes averages

of ratios), we define two different fitting methods, the standard (sM) and block (bM) fitting methods respectively.

Below, we consider:365

– some standard theoretical statistics obtained when the two models are fitted with both methods and how these compare

with the estimates derived from the observations using the standard and block methods;

– the extreme rainfall depths produced by simulating time-series of identical length to the observations; because of sam-

pling variability, 250 simulations are carried out and the median is shown;

– the values of the parameters obtained in fitting these models with these two methods370

While the mean rainfall depth (which has identical standard and block estimators) is nearly perfectly reproduced by both

methods and models, Fig. 3 shows the differences in the skewness standard and block estimators (crosses and circles respec-

tively).

Consequently, the models fitted to each also yield significantly different skewnesses. Since we know from the preliminary

investigation in Sect. 5 that the standard estimator is much less biased, this means that the block fitting method significantly375
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underestimates the skewness of the observations. This is an important conclusion with respect to the validity of previous work

which has used the block fitting method.

We also note some interesting features of the two models’ performance:

– good fits are obtained for RBL1 and RBL2 with the sM for all but the sub-hourly time-scales;

– at the finest time-scale under consideration (i.e. 5 and 10 mins for Bochum and Uccle respectively), there is a considerable380

underestimation of the skewness for bM and sM, in particular by the RBL1 model: this confirms the superiority of the

RBL2 for fine time-scales noted by Kaczmarska et al. (2014)

While these results confirm the importance of using the standard estimation of observation statistics, this message is not as

clear when we consider the reproduction of the coefficient of variation and autocorrelation lag-1, as Fig. 4 and Fig. 5 show.

Due to space constraints, the examination of the effect of changing between bM and sM upon the variances at coarser385

time-scales will be presented together with the effect of using the new equations in Sect. 6.3.

From the figures above, we note that:

– the sub-hourly coefficients of variation estimated with the standard method are poorly reproduced by the sM as compared

with the bM;

– the same is true of the sub-hourly and hourly autocorrelations390

These results might seem a little surprising, so it is important to spell out exactly what they mean: the models fitted to the

block estimates provide in some cases a better reproduction of the statistics than the models fitted to the standard estimates.

This at the very least suggests that the improved reproduction of the skewness by the sM comes at the cost of other statistics

being less well reproduced.

The benefit of an improved reproduction of the skewness upon the models’ ability to reproduce the frequency of rainfall395

extremes at a range of scales is clear, as Fig. 6 shows.

Here, we observe

– sM significantly improves the reproduction of the extremes;

– RBL2 is superior to RBL1, in terms of reproducing the largest extremes in particular at the sub-hourly scales, but also,

for instance at the daily scale400

The importance of the reproduction of extreme values for the typical applications of such rainfall models means that even

taking into account the problems with mean, coefficient of variation and autocorrelation, the sM is preferred. But this leaves us

with an important question: are the shortcomings of the sM in reproducing some of these other statistics down to the model or

the way it is fitted?

A clue to addressing this question can be obtained by looking at the parameters obtained when fitting with the sM method.405

Focusing for instance upon the RBL2, and recalling the constraint α > 2, Table 1 shows that the model calibration has yielded

values of α on the boundary (as in Kaczmarska et al. (2014)).
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Recalling that α is the shape parameter of the distribution of η, a smaller α leads to a more skewed distribution for this

parameter, and thereby also for those which scale with it, such as the storm mean cell intensity in the case of the RBL2. This

enables the RBL2 to generate some much more intense cells and thereby yields higher values of the skewness of rainfall depths410

as we saw above, thereby explaining its superiority over the RBL1.

For model RBL1, the constraint upon α is defined by the limit of validity of the expression for the skewness (e.g. Onof et al.

(2013)) i.e. α > 4. The parameters that are obtained (Table 2) similarly show that the optimisation algorithm finds the optimum

to be near this boundary for most month of the year.

For both models, the fact that the lower limit of parameter α is selected as optimal suggests that a re-examination of the415

domain of feasibility of the non-linear optimisation carried out when fitting the models is required. This is exactly what the use

of the new equations allows us to do as we shall see below. Note that all the above results are confirmed by the Uccle data (see

Sect. S2 in the Supplement).

6.2 New versus old equations

We now consider the performance of models RBL1 and RBL2 fitted using the new equations for these models presented in420

this paper. The impact of the use of these equations, if there is any, will be that of an extension of the domain of feasibility

of parameter α. Since the results presented above have concluded to the superiority of the standard estimates of observation

statistics, we shall use this method in what follows. As in the previous section, we examine (i) model parameters, (ii) the

reproduction of standard statistics and (iii) the reproduction of extreme rainfall depth statistics.

Here it is useful to start with the parameters shown in Tables 3 and 4.425

We see that, for most months, in the case of RBL1, and all but one month, in the case of RBL2, the optimal value of α was

found outside the domain of feasibility imposed by the equations used in previous research, i.e. α > 4 for RBL1 and α > 1 for

RBL2. For RBL1, we can check that for the months where the new values of α remain inside the old domain of feasibility, the

optimal values of α are very similar to those in Table 2. That they are not identical is down to the randomness in the numerical

tool used to optimise the objective function.430

Looking now at the standard statistics, Figures 7-10 illustrate the impact of relaxing the constraint upon α in terms of the

reproduction of the mean, coefficient of variation, autocorrelation lag-1 and skewness of the rainfall depths.

In these figures, aside from the theoretical estimates of the statistics, we show box plots of their sample estimates based upon

250 simulations of 5 minute (and 10 minute for Uccle, see Sect. S2 in Supplement) time-series of length equal to that of the

observations (69 and 105 years for Bochum and Uccle, respectively). This is for two reasons. First it is important to check that435

the equations derived above are correct, which we can do by comparing estimates from these simulations with the theoretical

values. Second, by including information about the simulation bands, we show the sampling variability which is useful to judge

by how much a model statistic over- or under-estimates the corresponding observation statistic.

What the figures show very clearly is a general improvement of the reproduction of all these statistics, through the use of

new equations. The broadening of parameter space thus enables the model to overcome the problem flagged earlier, namely440

that the attempt to reproduce fine-scale skewnesses led to a deterioration in the reproduction of the other depth statistics.
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In particular, we want to draw the reader’s attention to the RBL2’s ability to reproduce the skewness at all scales of interest.

This bodes well for its extreme-value performance which is shown in Fig. 11.

The improvement brought about by the broader parameter space is particular clear at the finest scale of interest (i.e. 5 and

10 minutes for Bochum and Uccle respectively). But we also note an improved reproduction of the extremes of lower return445

periods for sub-hourly and the hourly time-scale. These are however rather overestimated by both versions of the RBL2 model

for coarser time-scales.

Without looking into the detail of the RBL1 model, the question of its performance as compared to the RBL2, with the new

sets of equations in both cases, is illustrated in Fig. 12.

While noting that the above findings are broadly confirmed by the analysis of the Uccle data (see Sect. S2 in Supplement),450

we can conclude that RBL2 outperforms RBL1 for sub-hourly and hourly time-scales (the 20-min results at Uccle excepted).

Aside from a somewhat better reproduction of low return period extremes by the RBL1 at the 6-hourly scale for Bochum,

and since both models provide an equivalent satisfactory reproduction of the daily extreme rainfall depths (RBL2 is better for

Uccle), RBL2 is therefore overall to be preferred for the reproduction of observed extremes.

6.3 Reproduction of coarse-scale variances455

We briefly look at the impacts of the change of estimator of observational statistics and the use of the new equations upon the

reproduction of coarse-scale variability.

Figure 13 shows that:

– as expected, the sM parameter estimates clearly outperform the bM estimates;

– unlike at finer time-scales, there is no clear improvement of the reproduction of the variance for daily-plus scales using460

new equations;

– beyond 7 days, many, and particularly the largest, of the variances are underestimated in line with the observations made

by Marani (2003). This is even clearer in the case of the Uccle data (see Fig. S11 in Supplement)

This suggests that the issue of large-scale variability is probably best addressed by combining Poisson-cluster models with

a coarse-scale model that constrain them so that large-scale variances are reproduced.465

7 Conclusions

This paper has both corroborated certain observations made in previous studies and identified two important issues about

how randomised Bartlett-Lewis models are fitted. In summary, first, the importance of the inclusion of the coefficient of

skewness among the fitting properties (Cowpertwait, 1998) has indirectly been confirmed: it plays a key role in enabling a

good reproduction of rainfall extremes. Second, the new randomised model (RBL2) introduced by Kaczmarska et al. (2014)470

has an overall better performance than the earlier version originally presented by Rodriguez-Iturbe et al. (1988), in particular
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in terms of its ability to reproduce extreme values and at . Third, we have shown that, while the weights used in the objective

function require that estimates of the statistical properties used in the fitting be derived for each single month of the data set

(to obtain their variance), in particular in the case of ratios such as the coefficients of variation or of skewness, these estimates

should not be used to derive the overall estimates of the relevant statistical property. Rather, the estimates of rainfall statistics475

for each calendar month are best derived by pooling together all data from the relevant calendar month (with due attention to

the separation between years in the case of the autocovariance) and using the standard sample statistics. Fourth, we have shown

that the parameter spaces assumed in previous studies could be extended by relaxing the constraints imposed upon a parameter

common to both randomised models (α). This improves in particular the RBL2 model’s performance in reproducing both

standard and extreme value statistics at sub-hourly and hourly time-scales. Fifth, the reproduction of coarse-scale variances (of480

a few days and more) is improved by using the standard method of estimating observation statistics, but the broader parameter

space does not add much. As a result, we find that these Bartlett-Lewis models still tend rather to underestimate the variability

at scales coarser than a week, which provides a confirmation of the wisdom of developing combinations of Bartlett-Lewis

models with simple coarse-scale models to capture long-term variability (e.g. see Park et al. (2019) and forthcoming work).

Appendix A: Formulae for Fitting Properties485

The complete formulae are given here for the selected statistical moments based upon different parameter ranges. These include

mean, variance, lag-k auto-covariance and the third central moment of the discrete time aggregated process of the OBL, RBL1

and RBL2 models.

The definitions of the model parameters used are given below. When a parameter is only valid in some of the models, the

models are indicated in square brackets:490

– h: timescale

– λ: storm arrival rate

– η: cell duration parameter [OBL]

– α: shape parameter for the Gamma distribution of the cell duration parameter (η) [RBL1, RBL2]

– ν: scale parameter for the Gamma distribution of η [RBL1, RBL2]495

– β: cell arrival rate [OBL]

– κ: ratio of the cell arrival rate to η (i.e. β/η)

– γ: storm termination rate [OBL]

– φ: ratio of the storm termination rate to η (i.e. γ/η)

– µX = E[X]: mean cell intensity [OBL, RBL1]500
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– µX2 = E[X2]: mean of squares of cell intensities [OBL, RBL1]

– µX3 = E[X3]: mean of cubes of cell intensities [OBL, RBL1]

– ι: ratio of mean cell intensity to η (i.e. µX/η) [RBL2]

– f1 = µX2/µ2
X

– f2 = µX3/µ3
X505

– µC = 1 +κ/φ: mean number of cells per storm

A1 Bartlett-Lewis Rectangular Pulse Model (OBL)

Mean

M(h,η) =
λhµxµc

η
(A1)

Variance510

V (h,η) = 2λµcµ
2
x

{(
f1 +

κ

φ

)
h

η2
+

(
κ

φ2(φ2− 1)

)
1− e−φηh

η3

+

(
f1 +

κφ

φ2− 1

)
1− e−ηh

η3

}
(A2)

Covariance at lag k ≥ 1

C(k,h) =
λµcµ

2
x

η3

{(
f1 +

κφ

φ2− 1

)[
e−η(k−1)h− 2e−ηkh + e−η(k+1)h

]
−
(

κ

φ2(φ2− 1)

)[
e−ηφ(k−1)h− 2e−ηφkh + e−ηφ(k+1)h

]}
515

(A3)

Third central moment

S(h,η) = E

[(
Y

(h)
i −E(Y hi )

)3
]

=
λµcµ

3
x

∑k=8
k=1Pk (φ,κ,η,f1,f2)

(1 + 2φ+φ2)(φ4− 2φ3− 3φ2 + 8φ− 4)φ3
(A4)
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where the quantities Pk {φ,κ,η,f1,f2} are given by the following equations:

P1 (φ,κ,η,f1,f2) = 6η−4e−ηhφ2
[
φκ2(2φ4− 7φ2− 3φ+ 2) + 2φf2(φ6− 6φ4 + 9φ2− 4)520

+κf1(4φ6− 22φ4−φ3 + 25φ2 + 4φ− 4)
]

P2 (φ,κ,η,f1,f2) = 6η−3e−ηhφ3h
[
f2(φ6− 6φ4 + 9φ2− 4) +φκf1(φ2− 1)(φ2− 4)

]
P3 (φ,κ,η,f1,f2) = 6η−4e−ηφhκ

[
f1(−φ5 +φ4 + 6φ3− 4φ2− 8φ)

+κ(φ5− 3φ4 + 2φ3 + 14φ2− 8)
]

P4 (φ,κ,η,f1,f2) = 6η−3e−ηφhhκ2
[
φ3(5−φ2)− 4φ

]
525

P5 (φ,κ,η,f1,f2) = η−4
[
−12φ3f2(φ6− 6φ4 + 9φ2− 4)

+κ2(−9φ7 + 39φ5 + 18φ4− 12φ3− 84φ2 + 48)

−3φκf1(7φ7− 39φ5− 2φ4 + 46φ3 + 12φ2− 8φ− 16)
]

P6 (φ,κ,η,f1,f2) = η−3
[
(6hφ3f2 + 12hφ2κf1 + 6hφκ2)(φ6− 6φ4 + 9φ2− 4)

]
P7 (φ,κ,η,f1,f2) = 3η−4e−2ηhφ4(1−φ2)

[
φκ2 +κf1(φ2− 4)

]
530

P8 (φ,κ,η,f1,f2) = 6η−4e−(1+φ)ηhκφ2(φ− 2)(φ− 1) [f1(φ+ 2)−φκ]

A2 Randomised Bartlett-Lewis Rectangular Pulse Model (RBL1)

Mean

M(h) =
λhµxµcν

α− 1
(A5)

Variance535

V (h) = 2λµcµ
2
x

[(
f1 +

κ

φ

)
hT (2,0,0) +

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)
T (3,0,0)

− κ

φ2(φ2− 1)
T (3,φh,0) +

(
f1 +

κφ

φ2− 1

)
T (3,h,0)

]
for α > 3

V (h) ≈ 2λµcµ
2
x

[
ναh2ηα−1

0

2(α− 1)Γ(α)

(
κ

φ+ 1
+ f1

)
+

(
f1 +

κ

φ

)
hT (2,0,η0) +

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)
T (3,0,η0)540

−
(

κ

φ2(φ2− 1)

)
T (3,φh,η0) +

(
f1 +

κφ

φ2− 1

)
T (3,h,η0)

]
for 1< α≤ 3

V (h) = ∞

for α≤ 1

(A6)545
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Covariance at lag k ≥ 1

C(k,h) = λµcµ
2
x

{(
f1 +

κφ

φ2− 1

)
[T (3,(k− 1)h,0)− 2T (3,kh,0) +T (3,(k+ 1)h,0)]

−
(

κ

φ2(φ2− 1)

)
[T (3,φ(k− 1)h,0)− 2T (3,φkh,0) +T (3,φ(k+ 1)h,0)]

}
for α > 3

C(k,h) ≈ λµcµ
2
x

{
ναh2ηα−1

0

(α− 1)Γ(α)

(
κ

φ+ 1
+ f1

)
550

+

(
f1 +

κφ

φ2− 1

)
[T (3,(k− 1)h,η0)− 2T (3,kh,η0) +T (3,(k+ 1)h,η0)]

−
(

κ

φ2(φ2− 1)

)
[T (3,φ(k− 1)h,η0)− 2T (3,φkh,η0,) +T (3,φ(k+ 1)h,η0,)]

}
for 1< α≤ 3

C(k,h) = ∞

for α≤ 1555

(A7)

Third central moment

S(h) =
λµcµ

3
x

∑k=8
k=1Qk (φ,κ,f1,f2,0)

(1 + 2φ+φ2)(φ4− 2φ3− 3φ2 + 8φ− 4)φ3

for α > 4

S(h) ≈ λµcµ
3
x

(1 + 2φ+φ2)(φ4− 2φ3− 3φ2 + 8φ− 4)φ3
560 [

ναηα−1
0 h3

Γ(α)(α− 1)

(
2κ2(φ7− 3φ6 +φ5 + 3φ4− 2φ3) + f2(φ9− 6φ7 + 9φ5− 4φ3)

+3κf1(φ8−φ7− 5φ6 + 5φ5 + 4φ4− 4φ3)
)

+

k=8∑
k=1

Qk (φ,κ,f1,f2,η0)

]
for 1< α≤ 4

S(h) = ∞565

for α≤ 1

(A8)
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and the quantities Qk {φ,κ,f1,f2, l} are given by the following equations:

Q1 (φ,κ,f1,f2, l) = 6T (4,h, l)φ2
[
φκ2(2φ4− 7φ2− 3φ+ 2) + 2φf2(φ6− 6φ4 + 9φ2− 4)

+κf1(4φ6− 22φ4−φ3 + 25φ2 + 4φ− 4)
]

570

Q2 (φ,κ,f1,f2, l) = 6T (3,h, l)φ3h
[
f2(φ6− 6φ4 + 9φ2− 4) +φκf1(φ2− 1)(φ2− 4)

]
Q3 (φ,κ,f1,f2, l) = 6T (4,φh, l)κ

[
f1(−φ5 +φ4 + 6φ3− 4φ2− 8φ)

+κ(φ5− 3φ4 + 2φ3 + 14φ2− 8)
]

Q4 (φ,κ,f1,f2, l) = 6T (3,φh, l)κ2h
[
φ3(5−φ2)− 4φ

]
Q5 (φ,κ,f1,f2, l) = T (4,0, l)

[
−12φ3f2(φ6− 6φ4 + 9φ2− 4)575

+κ2(−9φ7 + 39φ5 + 18φ4− 12φ3− 84φ2 + 48)

−3φκf1(7φ7− 39φ5− 2φ4 + 46φ3 + 12φ2− 8φ− 16)
]

Q6 (φ,κ,f1,f2, l) = T (3,0, l)
[
(6hφ3f2 + 12hφ2κf1 + 6hφκ2)(φ6− 6φ4 + 9φ2− 4)

]
Q7 (φ,κ,f1,f2, l) = 3T (4,2h, l)φ4(1−φ2)

[
φκ2 +κf1(φ2− 4)

]
Q8 (φ,κ,f1,f2, l) = 6T (4,(1 +φ)h, l)κφ2(φ− 2)(φ− 1) [f1(φ+ 2)−φκ]580

A3 Randomised Parameter Bartlett-Lewis Rectangular Pulse Model with Dependent Intensity-Duration (RBL2)

Mean

M(h) = λhιµc (A9)

Variance

V (h) = 2λµcι
2

[(
f1 +

κ

φ

)
h+

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)
T (1,0,0)585

−
(

κ

φ2(φ2− 1)

)
T (1,φh,0) +

(
f1 +

κφ

φ2− 1

)
T (1,h,0)

]
for α > 1

V (h) ≈ 2λµcι
2

[
ηα+1

0 h2να

2(α+ 1)Γ(α)

(
κ

φ+ 1
+ f1

)
+

(
f1 +

κ

φ

)
hT (0,0,η0) +

(
κ(1−φ3)

φ2(φ2− 1)
− f1

)
T (1,0,η0)

−
(

κ

φ2(φ2− 1)

)
T (1,φh,η0) +

(
f1 +

κφ

φ2− 1

)
T (1,h,η0)

]
590

for − 1< α≤ 1

(A10)
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Covariance at lag k ≥ 1

C(k,h) = λµcι
2

{(
f1 +

κφ

φ2− 1

)
[T (1,(k− 1)h,0)− 2T (1,kh,0) +T (1,(k+ 1)h,0)]

−
(

κ

φ2(φ2− 1)

)
[T (1,φ(k− 1)h,0)− 2T (1,φkh,0) +T (1,φ(k+ 1)h,0)]

}
595

for α > 1

C(k,h) ≈ λµcι
2

{
ηα+1

0 h2να

Γ(α)(α+ 1)

(
f1 +

κ

φ+ 1

)
+

(
f1 +

κφ

φ2− 1

)
[T (1,(k− 1)h,η0)− 2T (1,kh,η0) +T (1,(k+ 1)h,η0)]

−
(

κ

φ2(φ2− 1)

)
[T (1,φ(k− 1)h,η0)− 2T (1,φkh,η0) +T (1,φ(k+ 1)h,η0)]

}
for − 1< α≤ 1600

(A11)

Third central moment

S(h) =
λµcι

3
∑k=8
k=1Pk (φ,κ,f1,f2,0)

(1 + 2φ+φ2)(φ4− 2φ3− 3φ2 + 8φ− 4)φ3

for α > 1

S(h) ≈ λµcι
3

(1 + 2φ+φ2)(φ4− 2φ3− 3φ2 + 8φ− 4)φ3
605 [

ναηα+2
0 h3

Γ(α)(α+ 2)

(
2κ2(φ7− 3φ6 +φ5 + 3φ4− 2φ3) + f2(φ9− 6φ7 + 9φ5− 4φ3)

+3κf1(φ8−φ7− 5φ6 + 5φ5 + 4φ4− 4φ3)
)

+

k=8∑
k=1

Pk (φ,κ,f1,f2,η0)

]
for − 2< α≤ 1

(A12)610
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with:

P1 (φ,κ,f1,f2, l) = 6T (1,h, l)φ2
[
φκ2(2φ4− 7φ2− 3φ+ 2) + 2φf2(φ6− 6φ4 + 9φ2− 4)

+κf1(4φ6− 22φ4−φ3 + 25φ2 + 4φ− 4)
]

P2 (φ,κ,f1,f2, l) = 6T (0,h, l)φ3h
[
f2(φ6− 6φ4 + 9φ2− 4) +φκf1(φ2− 1)(φ2− 4)

]
P3 (φ,κ,f1,f2, l) = 6T (1,φh, l)κ

[
f1(−φ5 +φ4 + 6φ3− 4φ2− 8φ)615

+κ(φ5− 3φ4 + 2φ3 + 14φ2− 8)
]

P4 (φ,κ,f1,f2, l) = 6T (0,φh, l)hκ2
[
φ3(5−φ2)− 4φ

]
P5 (φ,κ,f1,f2, l) = T (1,0, l)

[
−12φ3f2(φ6− 6φ4 + 9φ2− 4)

+κ2(−9φ7 + 39φ5 + 18φ4− 12φ3− 84φ2 + 48)

−3φκf1(7φ7− 39φ5− 2φ4 + 46φ3 + 12φ2− 8φ− 16)
]

620

P6 (φ,κ,f1,f2, l) = T (0,0, l)
[
(6hφ3f2 + 12hφ2κf1 + 6hφκ2)(φ6− 6φ4 + 9φ2− 4)

]
P7 (φ,κ,f1,f2, l) = 3T (1,2h, l)φ4(1−φ2)ι3

[
φκ2 +κf1(φ2− 4)

]
P8 (φ,κ,f1,f2, l) = 6T (1,(1 +φ)h, l)κφ2(φ− 2)(φ− 1)ι3 [f1(φ+ 2)−φκ]

Appendix B: Relation between cell intensity parameters

In the model equations, parameters µx,f1 and f2 for the RBL1 and ι,f1 and f2 for the RBL2 are three unrelated model param-625

eters only if a three-parameter distribution is chosen for the cell intensity. If a two-parameter distribution is chosen, there will

effectively be two unrelated parameters, if a one-parameter distribution is chosen, there will only be one.

Starting with the last case first, the standard choice is the exponential distribution:

fX(x) = ae−ax for x > 0

for which:630

µx = 1/a

f1 = 2

f2 = 6

So, for the exponential distribution, the only free parameter is µx for the RBL1 and ι for the RBL2.

Next, we can seek to have more flexibility by using the Gamma distribution:635

fX(x) =
xa−1e−x/b

baΓ(a)
for x > 0
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for which:

µx = ab

f1 =
a+ 1

a

f2 =
a2 + 3a+ 2

a2
640

So, for the Gamma distribution there would be two free parameters µx or ι, and f1, with f2 obtained as the following function

of f1:

f2 = 2f2
1 − f1

The Pareto distribution is a thick-tailed distribution that will produce larger extremes:

fX(x) =
aba

xa+1
for x≥ b645

and for this distribution, we have:

µx =
ab

a− 1
(if a > 1)

f1 =
(a− 1)2

a(a− 2)
(if a > 2 i.e. f1 > 1)

f2 =
(a− 1)3

a2(a− 3)
(if a > 3 i.e. f2 > 1)

For the Pareto distribution there would also be two free parameters µx or ι, and f1, with f2obtained as the following function650

of f1:

f2 =
f

3/2
1

f
1/2
1 (3− 2f1)− 2(f1− 1)3/2

where we have to have f1 < 4/3 to fulfill the condition a > 3.

Finally, a mixed distribution could be chosen, e.g. one which is a mixture of Gamma and Pareto, with weight ω representing

the probability of sampling from a Gamma rather than a Pareto. This would be defined by the following pdf:655

fX(x) = ω
xa−1e−x/b

baΓ(a)
+ (1−ω)

cdc

xc+1
for x≥ d

for which the moments are just weighted combinations of those of the Gamma and Pareto distributions:

µx = ωab+ (1−ω)
cd

c− 1
(if c > 1)

f1 =
ω(a+ 1)ab2 + (1−ω) cd

2

c−2(
ωab+ (1−ω) cd

c−1

)2 (if c > 2)

f2 =
ω(a2 + 3a+ 2)ab3 + (1−ω) cd

3

c−3(
ωab+ (1−ω) cd

c−1

)3 (if c > 3)660
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Here, we would have three free parameters, µx,f1 and f2 and for the purposes of simulation, we would seek parameters

ω,a,b,c and d for which the three right-hand sides of the above equations would be equal to µx,f1 and f2, for instance by

minimising a sum of squares. This optimisation problem is underdetermined, but it would make sense to choose at least for the

Gamma parameters a and b, values close to values obtained when fitting a Gamma distribution as starting values, or indeed to

fix these two parameters to these values.665

Appendix C: Example of integral divergence

The integral of a sum of terms is only equal to the sum of the integrals of each additive term when the latter are finite. When

the latter are infinite, this is not necessarily the case. That is, it is possible that the integral of the sum should be finite while the

integrals of the additive terms are infinite. This appendix shows an example to illustrate this.

Consider the following integrals:670

I(x) =

x∫
0

eωt− e−σt

t
dt

I1(x) =

x∫
0

eωt

t
dt

I2(x) =

x∫
0

−e
−σt

t
dt

The integrals I1(x) and I2(x) are divergent integrals because the integrands behave as 1/t and −1/t respectively, in the

vicinity of 0. So I1(x) = +∞ and I2(x) =−∞.675

However, using Taylor expansions, we can see that I(x) is finite:

I(x) =

x∫
0

1 +ωt− 1 +σt+ o(t)

/
tdt

=

x∫
0

(ω+σ+ o(1))dt

Therefore:

I(x) = (ω+σ)x+ o(x)680

and

I(x) 6= I1(x) + I2(x)
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Figure 1. Illustration of the conceptualisation of the Bartlett-Lewis Rectangular Pulse model

Figure 2. Changes of variance (V (h)), autocovaraince lag-1 (C(1,h)) and the third-order centred moment (S(h)) approximations at 1-h

timescale (h= 1) for η0 ∈ (0.0001,1). Parameters used are λ= 0.025, µx = 1.3, α= 2.5, ν = 0.28, κ= 0.65 and φ= 0.04.

30



Figure 3. Coefficient of skewness by month at Bochum: the observed calculated with block (Obs-bM, orange circle markers) vs. standard

(Obs-sM, blue cross markers) methods, the fitted with RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue line) models, and the fitted

with RBL2 (RBL2-bM, orange lines; RBL2-sM, blue lines) models
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Figure 4. Coefficient of variation (CV) by month at Bochum: the observed calculated with block (Obs-bM, orange circle markers) vs.

standard (Obs-sM, blue cross markers) methods, the fitted with RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue line) models, and

the fitted with RBL2 (RBL2-bM, orange lines; RBL2-sM, blue lines) models
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Figure 5. Autocorrelation lag-1 by month at Bochum: the observed calculated with block (Obs-bM, orange circle markers) vs. standard

(Obs-sM, blue cross markers) methods, the fitted with RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue line) models, and the fitted

with RBL2 (RBL2-bM, orange lines; RBL2-sM, blue lines) models
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Figure 6. Observed (round markers) and simulated (lines) return levels of rainfall at different timescales at Bochum. The simulated is

sampled from the RBL1 and RBL2 models fitted with selected statistical properties calculated using bM and sM methods, respectively; and

the median return levels obtained from 250 simulations, each of 69 years, are illustrated.
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Figure 7. Mean 1-hour rainfall depths by month at Bochum: the observed vs. the fitted using RBL2 models with the original and the new

solution spaces of α (RBL1-sM, light blue lines and boxplots; RBL2-sM-NC, black lines and boxplots).

Figure 8. Coefficient of variation (CV) by month at Bochum: the observed vs. the fitted using RBL2 models with the original and the new

solution spaces of α (RBL2-sM, light blue lines and boxplots; RBL2-sM-NC, black lines and boxplots).
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Figure 9. Autocorrelation lag-1 by month at Bochum: the observed vs. the fitted using RBL2 models with the original and the new solution

spaces of α (RBL2-sM, light blue lines and boxplots; RBL2-sM-NC, black lines and boxplots).

36



Figure 10. Coefficient of skewness by month at Bochum: the observed vs. the fitted using RBL2 models with the original and the new

solution spaces of α (RBL2-sM, light blue lines and boxplots; RBL2-sM-NC, black lines and boxplots).
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Figure 11. Observed (round markers) and simulated (lines) return levels of rainfall at multiple time-scales at Bochum. The simulated is

sampled from the RBL2 models fitted with the original (blue lines) and the new (black lines) solution spaces of α. The median, 95 and 5

percentile return levels obtained from 250 simulations, each of 69 years, are plotted with solid and dashed lines, respectively.
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Figure 12. Observed (round markers) and simulated (lines) return levels of rainfall at multiple time-scales at Bochum. The simulated is

sampled from the RBL1 (grey lines) and RBL2 (black lines) models fitted with the new solution spaces of α. The median, 95 and 5 percentile

return levels obtained from 250 simulations, each of 69 years, are plotted with solid and dashed lines, respectively.
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Figure 13. Daily Variances by month at Bochum: the observed calculated with standard (Obs-sM, blue cross markers) methods, the fitted

with RBL1 (RBL1-bM, light orange line; RBL1-sM, light blue line; RBL1-sM-NC, grey line) models, and the fitted with RBL2 (RBL2-bM,

orange lines; RBL2-sM, blue lines; RBL2-sM-NC, black line) models
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Table 1. Parameters for RBL2-sM model using Bochum gauge data; constraint: α > 2

Month λ ι α α/ν κ φ

[h−1] [mm] [-] [h−1] [-] [-]

Jan 0.0131 0.2143 2.0000 5.9436 0.7521 0.0248

Feb 0.0124 0.2324 2.0000 4.6243 0.9185 0.0341

Mar 0.0152 0.2196 2.0000 6.9889 0.5313 0.0257

Apr 0.0125 0.2243 2.0000 11.1401 0.4508 0.0169

May 0.0143 0.4733 2.0000 10.2016 0.3166 0.0273

Jun 0.0145 1.3043 2.0000 8.3686 0.0886 0.0182

Jul 0.0173 1.3887 2.0000 8.9383 0.0818 0.0228

Aug 0.0129 1.8192 2.0000 6.9965 0.0353 0.0115

Sep 0.0127 1.2115 2.0000 7.3863 0.0918 0.0183

Oct 0.0114 0.2913 2.0000 7.1000 0.5078 0.0216

Nov 0.0100 0.2791 2.0000 4.4562 0.9070 0.0279

Dec 0.0128 0.2386 2.0019 5.6686 0.6863 0.0230

Table 2. Parameters for RBL1-sM model using Bochum gauge data; constraint: α > 4

Month λ µX α α/ν κ φ

[h−1] [mm h−1] [-] [h−1] [-] [-]

Jan 0.0212 1.3041 4.0000 8.7125 0.6222 0.0318

Feb 0.0197 1.2375 4.0000 8.0948 0.6545 0.0357

Mar 0.0235 1.4790 4.0270 10.8216 0.4448 0.0279

Apr 0.0204 2.4651 4.0000 15.4629 0.3693 0.0218

May 0.0250 4.6258 4.3139 17.4875 0.2567 0.0287

Jun 0.0263 10.2162 4.4454 19.8093 0.1195 0.0227

Jul 0.0226 13.2244 7.5061 15.6796 0.0843 0.0208

Aug 0.0180 14.3142 4.5315 20.0000 0.0558 0.0111

Sep 0.0200 9.3123 4.4865 17.9124 0.0879 0.0145

Oct 0.0184 2.1201 4.0000 13.3611 0.4589 0.0232

Nov 0.0202 1.4692 4.0000 8.5970 0.8587 0.0436

Dec 0.0208 1.3561 4.0000 8.2961 0.6026 0.0305
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Table 3. Parameters for RBL1-sM-NC model using Bochum gauge data; constraint: α > 2

Month λ µX α α/ν κ φ

[h−1] [mm h−1] [-] [h−1] [-] [-]

Jan 0.0251 1.2511 2.7887 11.4504 0.4977 0.0255

Feb 0.0227 1.1887 3.1661 9.3302 0.5924 0.0342

Mar 0.0245 1.5670 3.7514 13.4425 0.4390 0.0248

Apr 0.0252 2.0977 3.1090 18.7626 0.3714 0.0212

May 0.0250 4.6259 4.3139 17.4875 0.2567 0.0287

Jun 0.0265 9.7523 4.3302 20.0000 0.1203 0.0225

Jul 0.0226 13.2243 7.5060 15.6796 0.0843 0.0208

Aug 0.0185 8.3316 4.2836 20.0000 0.0596 0.0114

Sep 0.0200 9.3122 4.4865 17.9123 0.0879 0.0145

Oct 0.0197 2.0589 3.5292 14.6293 0.4502 0.0226

Nov 0.0274 1.3329 2.4248 12.4683 0.6338 0.0357

Dec 0.0273 1.3415 2.7193 15.3848 0.5876 0.0244

Table 4. Parameters for RBL2-sM-NC model using Bochum gauge data; constraint: α > 0

Month λ ι α α/ν κ φ

[h−1] [mm] [-] [h−1] [-] [-]

Jan 0.0130 0.2368 0.7408 4.1819 0.7677 0.0280

Feb 0.0125 0.1985 0.9747 4.2279 1.0052 0.0333

Mar 0.0151 0.2178 0.9812 6.1830 0.5708 0.0271

Apr 0.0118 0.3137 0.7190 5.6846 0.4085 0.0206

May 0.0140 0.5276 0.6412 6.8726 0.3718 0.0353

Jun 0.0133 1.1797 0.4630 7.6713 0.1305 0.0215

Jul 0.0177 1.4427 0.6141 6.5735 0.1063 0.0318

Aug 0.0107 1.8582 0.4438 4.9260 0.0664 0.0161

Sep 0.0131 1.1473 0.4831 5.4205 0.1612 0.0306

Oct 0.0113 0.3041 1.0468 5.8242 0.5131 0.0227

Nov 0.0091 0.2344 0.8353 4.2122 1.0394 0.0243

Dec 0.0125 0.2575 0.7119 4.4430 0.6700 0.0236
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Table 5. Comparison minimum objective function values for different RBL models using Bochum gauge data

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

RBL1-bM 85.6 66.8 89.4 93.3 127.9 105.8 107.6 126.6 114.2 92.1 102.9 83.8

RBL2-bM 39.5 30.1 52.1 56.2 73.0 65.2 65.6 72.8 60.4 47.0 41.0 36.6

RBL1-sM 227.5 176.7 192.1 169.1 221.9 328.5 180.3 620.3 323.9 110.1 280.4 410.0

RBL2-sM 145.0 76.7 117.6 173.6 174.3 315.6 96.5 478.4 241.6 61.2 244.6 280.5

RBL1-sM-NC 186.5 169.9 192.0 149.4 221.9 328.5 180.3 620.3 323.9 107.5 104.0 348.8

RBL2-sM-NC 37.4 23.7 75.7 60.9 43.7 59.1 8.2 32.9 8.5 32.4 109.2 142.6

43


