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Abstract. Secondary dryland salinity is a global land degradation issue. Drylands are often less-developed, less-well 

instrumented and less-well understood, requiring us to adapt and impose understanding from different hydro-

geomorphological settings that are better-instrumented and understood. Conceptual models of secondary dryland salinity, from 

wet and more hydrologically-connected landscapes imposed with adjustments for rainfall and streamflow, have led to the 

pervasive understanding that land clearing alters water balance in favour of increased infiltration and rising groundwater that 10 

bring salts to the surface. 

This paper presents data from an intra-catchment surface flow gauging network run for six years and a surface water-

groundwater interaction site to assess the adequacy of our conceptual understanding of secondary dryland salinity in 

environments with low gradients and runoff yield. The aim is to (re)conceptualise pathways of water and salt redistribution in 

dryland landscapes, to investigate the role that surface water flows and connectivity plays in land degradation from salinity in 15 

low-gradient drylands. Based on the long-term end-of-catchment gauge, average annual runoff yield is only 0.14% of rainfall. 

The internal gauging network operated from 2007-2012 found pulses of internal water (also mobilising salt) in years when no 

flow was recorded at the catchment outlet. Data from a surface water–groundwater interaction site shows top-down recharge 

of surface water early in the water year, that transitions to a bottom-up system of discharge later in the water year. This 

connection provides a mechanism for the vertical diffusion of salts to the surface waters, followed by evapo-concentration and 20 

downstream export when depression storage thresholds are exceeded. Intervention in this landscape by constructing a broad-

based channel to address these processes, resulted in a 25 % increase in flow volume and a 20 % reduction in salinity, by 

allowing the lower catchment to more effectively support bypassing of the storages in the lower landscape that would otherwise 

retain water and allow salt to accumulate. 

Results from this study suggests catchment internal redistribution of relatively fresh runoff onto the valley floor is a major 25 

contributor to development of secondary dryland salinity. Seasonally inundated areas are subject to significant transmission 

losses and drive processes of vertical salt mobility. These surface flow and connectivity processes are not acting in isolation 

to cause secondary salinity, but are also interact with groundwater systems responding to land clearing and processes 

recognised in the more conventional understanding of hillslope recharge and groundwater discharge. The study landscape 

appears to have three functional hydrological components: upland, hillslope “flow” landscapes that generate fresh runoff; 30 

valley floor “fill” landscapes with high transmission losses and poor flow connectivity controlled by the micro-topography 
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that promotes surface-groundwater connection and salt movement; and the downstream “flood” landscapes, where flows are 

recorded only when internal storages (fill landscapes) are exceeded. This work highlights the role of surface water processes 

as a contributor to land degradation by dryland salinity in low-gradient landscapes. 

1 Introduction 35 

Secondary dryland salinity is a severe land degradation problem, caused where land clearing alters the hydrological balance 

and rising saline groundwater degrades surface water resources and soils. Secondary dryland salinity (herein “salinity”) is a 

global issue reported in North America, central and southern Africa, Australia, South America, central and northern China, the 

Middle-East and central Asia (Ghassemi et al., 1995; Callow and Clifton, 2011). It is found in landscapes cleared for 

agriculture, where past marine conditions have left saline deposits or salts originating as an oceanic aerosol have accumulated 40 

in the soils and the groundwater (Callow and Clifton, 2011; Ghassemi et al., 1995; Hingston and Gailitis, 1976). Over 30-40% 

of some landscapes can be affected (Ferdowsian et al., 1996), impacting infrastructure, agricultural production and biodiversity 

(Cramer and Hobbs, 2002; Callow, 2012; Pannell, 2001). Planning of adaptation and mitigation strategies to address the 

negative impacts of salinity requires a sound conceptual understanding, such that management interventions can address causal 

processes of salt redistribution and accumulation in the landscape. 45 

Drylands occupy something of a mid-point along a hydrological spectrum between wet and hydrologically-connected 

landscapes, and dry poorly-connected landscapes. Hydrologically-connected temperate, sub-tropical and tropical catchments 

have higher and more reliable rainfall, are well-studied, better instrumented, and can support irrigated and seasonal rain-fed 

agriculture. At the other end are sparsely populated and poorly-instrumented flat and semi-arid “smooth plainlands”, 

rangelands and grading to desert areas, where rainfall is to too low or unreliable to support seasonal agriculture. The paucity 50 

of both hydrological data and detailed hydrological process studies in drylands, means that our conceptual understanding of 

dryland systems has often been transposed from the more intensively-studied and instrumented temperate and wet sub-tropical 

systems (Bracken and Croke, 2007; Bracken et al., 2013). This approach presumes the interplay of hydrological processes are 

functionally similar, such that surface and groundwater fluxes and water-balance partitioning can be inferred by scaling to the 

available precipitation and streamflow data. The concept of water balance still holds in drylands, with lower rainfall and runoff 55 

and accounting for groundwater recharge, balanced by greater evapotranspiration potential (Thornes, 2009; Knighton and 

Nanson, 2001; Tooth, 2000; McMillan et al., 2011). Bracken et al. (2013) commented on the need for a better conceptual 

understanding of hydrological processes and connectivity that shape dryland catchments, to allow catchment managers to 

know where, when and how to manage adverse hydrological processes and landscape degradation. This is a particularly acute 

problem in the World’s dryland catchments impacted by salinity. The aim of this paper is to firstly review the past conceptual 60 

basis for how land clearing impacts salinisation processes in dryland catchments, and then to present a dataset from a catchment 

in Western Australia that highlights the complexity of surface water flows in shaping water and salt redistribution and export. 
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The findings from the dataset are used to reconceptualise the spatial and temporal variability in hydrologic pathways, which 

can be used to inform improved land management practice. 

2 Historical basis for conceptual models of dryland salinity   65 

2.1 Dryland hydrological processes 

Drylands are notable for a long history of land degradation challenges related to disturbance of hydrological balance, resulting 

in issues such as desertification and salinity, with severe impacts on civilisations as far back as the Mesopotamian empire 

(Conacher and Conacher, 1995; Conacher and Sala, 1998). The less predictable nature of rainfall and runoff, high levels of 

socio-economic disadvantage and population growth, and hydrological data paucity, mean that drylands are under-developed 70 

in terms of hydrological infrastructure, conceptual understanding and are sites of water vulnerability (Koohafkan and Stewart, 

2008). Their predominantly mid-latitude location is notable as a region recognised as vulnerable to a future climate projected 

to have declining surface and groundwater resources (Barron et al., 2012; Smettem and Callow, 2014; Smettem et al., 2013; 

McFarlane et al., 2012). Attempts to identify a clear classification and understanding of dryland hydrology has been discussed, 

with landscape properties and runoff regimes highlighted as potential key determinants of hydrology (Wagener et al., 2007; 75 

McDonnell and Woods, 2004). Hydrological data scarcity, more limited process knowledge and variable hydrological regime 

presents profound challenges to managing hydrological processes and land degradation including by salinity in the World’s 

drylands. 

Drylands are influenced by processes such as antecedent conditions and seasonal rainfall accumulation that drive saturation-

excess from a partial-contributing variable source area, similar to wetter and more temperate and tropical areas (Ruprecht and 80 

Schofield, 1989; Ruprecht and Stoneman, 1993). They are also influenced by infiltration-excess (Hortonian) processes, event 

and episodic flow regimes and limited hydrological connectivity with high transmission losses, typical of drier, semi-arid 

landscapes (Koohafkan and Stewart, 2008; Nanson et al., 2002; Powell, 2009; Tooth, 2000; Walker et al., 1995; Bracken and 

Croke, 2007; Bracken et al., 2013). Work on improving hydrological understanding and prediction in data-scarce basins has 

emphasised the importance of understanding threshold behaviour including activation and deactivation of dynamic (surface 85 

and subsurface) drainage networks and landscape specific emergent behaviours that can override small-scale processes 

(Hrachowitz et al., 2013).  

Themes that emerge from the limited research on hydrological processes in the World’s drylands highlight the significant role 

of processes related to water connectivity, including lateral and longitudinal hydrological redistribution of surface water and 

surface-groundwater interactions, including in work from northeastern Brazil (Costa et al., 2012), Africa (Bonell and Williams, 90 

2009; Bauer et al., 2006) and Spain (Abrisqueta et al., 2007; Ceballos and Schnabel, 1998; Nicolau et al., 1996). Ecohydrology 

and interaction of vegetation with rainfall, topography, aquifers and runoff is also highlighted as significant (Ludwig and 

Tongway, 2000; Ludwig et al., 1997; Ludwig et al., 2005; Wilcox and Newman, 2005; Gifford, 1978; Callow, 2011; Eamus 

et al., 2006; Turnbull et al., 2012; Wang et al., 2012). Topographic subtleties are disproportionately important in low-gradient 
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drylands as microtopography from the Earth surface, but also organic processes such as animal workings, woody debris, rocks 95 

and litter debris dams can have a significant influence on hydrological and biogeochemical pathways (Ludwig et al., 2005; 

Wilcox and Newman, 2005). Micro-scale processes and vegetation-hydrology-topography interactions are also recognised as 

particularly significant (Dunkerley, 2011; Ludwig et al., 2005; McGrath et al., 2012; HilleRisLambers et al., 2001). The 

trigger–transfer–reserve–pulse (TTRP) framework of Ludwig et al. (1997) and Ludwig and Tongway (2000) emphasises the 

role of microtopography in the form of litter dams (Ludwig et al., 2005), that controls patterns of water redistribution and 100 

longitudinal connectivity due to high depression storage of “run-on” water. Bartley et al (2008) demonstrated the interaction 

of hydrological, geomorphological and ecological processes across multiple scales controls runoff and erosion in the semi-arid 

rangelands. 

2.2 Hydrological processes causing dryland salinity  

Native vegetation systems of the World’s drylands have been extensively clearing for agricultural development. Deep-rooted 105 

vegetation has been replaced with seasonal cropping and pasture and shifted hydrology towards increased runoff and 

groundwater recharge (Callow and Smettem, 2007; Commander et al., 2001; Ruprecht and Schofield, 1991; Muirden et al., 

2003). In the study region, annual and peak flood discharge increased by a factor of 2-4 times (Muirden et al., 2003; Pen, 1999; 

Callow and Smettem, 2007; Bowman and Ruprecht, 2000), groundwater recharge increased by 5-30 times (0.02 – 0.14 mm 

yr-1 under native woodland systems to 6 – 30 mm yr-1 with agriculture) (George, 1992; George and Conacher, 1993), and 110 

groundwater levels risen by up to tens of meters (Bennett and George, 2008; Callow and Smettem, 2007; George and Conacher, 

1993) expanding the saturated, shallow groundwater areas and other partial-source areas (Ruprecht and Schofield, 1989, 1991; 

Ruprecht and Stoneman, 1993). Responses of water resources and biodiversity to the resultant increase in landscape 

salinisation have been reported for over a century (Bennett and Macpherson, 2002; Callow and Smettem, 2007; Halse et al., 

2003; Nielsen et al., 2003; Peck and Hatton, 2003; Mann, 1907; Wood, 1924; Wood and Wilsmore, 1928). 115 

2.2.1 Hillslope-recharge model 

The association of salinity and land clearing was recognised from the first decade of the twentieth century, associated with 

impacts on water resources used for railway locomotives (Mann, 1907). Wood (1924) reported that “where destruction of the 

native vegetation has taken place rapidly, there has followed a very noticeable increase in salinity in the streams draining that 

area” (Wood, 1924, p. 35). Wood (1924) proposed that land clearing increases the volume of water on the hillside that will 120 

then raise the water-table near the watercourse, where this is sufficiently pervious the water will rise through it bringing salts 

to the surface and as the area dries leaves salinity on the surface as a salty incrustation. (see Wood, 1924, p. 40-41 for full 

description) 

The hillslope-recharge model of Wood (1924) has been supported by subsequent work on the causes of salinity, and in 

designing and evaluating management interventions targeted at mitigating and adapting to land degradation caused by salinity 125 

(Hatton and Salama, 1999; Hatton and Nulsen, 1999; Hatton et al., 2003). Conacher (2001; 2001) and George and Conacher 
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(1993) identified four mechanisms for development of salinity: 1) increased overland flow and surface runoff; 2) increased 

regional groundwater throughflow and the development of perched aquifers; 3) increased infiltration to deep aquifers leading 

to rising water-tables; and 4) increased soil throughflow and infiltration to deep groundwater, leading to a mixing of perched 

and deeper aquifer systems in saline seeps. George and Conacher (1993) and George et al. (2008) found that event recharge is 130 

significant and large rainfall events can account for large proportions of annual recharge and lateral expansion of the salinised 

area. Similar to Wood, George and Conacher (1993) proposed that mechanism three was the dominant causal process leading 

to secondary salinity in dryland areas. 

Managing salinity has focused on what Hatton and Nulsen (1999) termed functional ecosystem mimicry, where perennial 

vegetation was re-introduced into the landscape. Evaluation of this effort found that in areas of higher rainfall and on sandplain 135 

seep sites, recharge management has delivered direct impacts in reducing groundwater levels and the expansion of areas 

affected by secondary salinity (George et al., 1999; Bell et al., 1990; Bennett and George, 2008). Results from low-gradient 

areas with valley-floor salinity and in lower rainfall zones (<600mm yr-1) display no evidence of positive impacts (George et 

al., 1999; Johnsen et al., 2008). This raises the question as to whether the extent of intervention (revegetation) is not sufficient 

(Hatton and Nulsen, 1999), or whether there is an important process-response difference between the higher gradient and 140 

rainfall areas that are more hydrologically-connected, and the drier and lower-gradient landscapes. There is the potential that 

adapting the understanding from one landscape type (wetter and connected) to another (drier, flatter and disconnected), has 

not been able to capture the full subtly of processes causing land degradation by salinity in the drier and flatter setting. 

2.2.2 Surface water redistribution and dryland salinity 

Less extensively reported in published work on causes of salinity is work that highlights the potential role of surface runoff. 145 

Teakle and Burvill (1938) reported that in addition to the processes captured by Wood’s (1924) hillslope-recharge model, 

dryland salinity can develop due to two additional factors. A seasonally perching aquifer (saturated source area) was observed 

to form where regional groundwater throughflow emerged at the break of slope or due to sub-surface structural features (such 

as dykes and silicified fault plains). This results in saline waterlogging or a hillslope saline-seep, developing as a seasonal 

feature this is common in sandy surface soils over clay and for deeper sand soils termed by George (1990) as “sandplain seeps”. 150 

The second mechanism reported by Teakle and Burvill (1938) was related to observations of surface expressions of salinity 

were that the watertable was not directly connected to the soil surface. Teakle and Burvill (1938) suggested that these 

developed in poorly flushed soils where salts are moved vertically through the unsaturated zone by diffusion in soil moisture 

and evapo-concentration at the surface. They reported that salinity developed where the saline watertable was between 4 ft 

(1.2 m) to 10 ft (3.0 m) below ground level (BGL) at the end of winter, but most common where the saline water table was 155 

less than 5 ft (1.5 m) BGL, and in cracking and swelling clays depressions “where the micro-relief favours surface 

evaporation” (Teakle and Burvill, 1938, p.243). 

Nulsen (1981) found that a saline groundwater depth of 1.8m BGL was a critical limit on wheat crop growth in the drier and 

flatter landscapes, well below the rooting zone of this annual species. Nulsen and Henschke (1981) reported the lateral 
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redistribution of runoff from hillslopes to the valley floor where there was groundwater recharge through preferred-pathway 160 

flow on the valley floor. In a different setting, Jones (2000a, b) questioned the recharge efficiency of grasslands and the role 

of taproots as a vertical pathway for groundwater rise to cause salinity in a low hydraulic conductivity sub-soil (as proposed 

by the hillslope-recharge model). They suggested that surface flows may be important in causing salinity in low-gradient 

landscapes. Bann and Field (2006b, a) used the term “surface-water salinity” in south-eastern Australia to describe similar 

processes of surface water redistribution and valley-floor vertical recharge causing salinity. Other work describe how 165 

waterlogging caused by build up of water behind topographic obstacles, such as roadways/railways with poor culvert capacity 

as a cause of salinity (Cattlin, 2006; Cattlin and Farmer, 2004; Cattlin et al., 2002). Nathan (2000) working on salinity in the 

Dundas Tablelands of Victoria, also highlighted limitations of the conceptual understanding of vegetation clearing and the 

groundwater recharge model of salinity. 

2.2.3 A role for surface water redistribution causing salinity 170 

In summary, the pervasive conceptual understanding of salinity is based on the hillslope research model of Wood (1924), and 

subsequent work by George and Conacher (1993) and others. Causal process can be summarised as land clearing altering 

hydrology in favour of higher hillslope recharge that causes rising salinity groundwater that degrades soil and water resources 

in low-lying landscapes. This understanding may have some limitations in adequately resolving dynamics of water and salt 

flux and pathways of salt accumulation within the unsaturated root zone, especially given lateral groundwater flow rates are 175 

so low (McFarlane et al., 1989). The potential role of surface water runoff and redistribution is not well understood in dryland, 

saline environments and the role that this may have as a contributor to salinisation. 

In this paper we investigate surface streamflow and surface to groundwater connectivity data from a high-resolution gauging 

network within a dryland catchment to determine whether there is evidence to suggest a role for surface water processes as a 

contributor to secondary dryland salinity. The initial focus is the long-term, end-of-catchment gauging data and is evaluated 180 

with respect to the prevailing understanding of hydrological partitioning of fluxes through the hillslope-recharge model, as 

applied to a hydrologically-connected landscape. Data on water and salt yield from a high resolution internal catchment 

gauging network (above the long-term gauge) that was operated for six years is used to investigate surface water runoff and 

patterns of catchment internal water redistribution and connectivity, and salt flux and yield from the landscape. Data from a 

surface water-groundwater (SW-GW) interaction site on a valley-floor area with micro-topography and surface water 185 

inundation is then evaluated in relation to water fluxes and implications for salinity processes. Finally, data on water 

transmission and salt yield from a management intervention where a broad-based channel was constructed to remove micro-

topography, reduce inundation and increase connectivity in a valley-floor location is evaluated in relation to the role of surface 

water in dryland salinity and effectiveness of this intervention. 
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3 Experimental site and data collection 190 

3.1 Study site  

Toolibin Lake is an ephemeral wetland catchment (485 km2), within the broader Blackwood River catchment located in the 

Wheatbelt Region of Western Australia (Fig. 1). The catchment sits atop the Yilgarn Craton, an Archean Craton-aged deposit 

of primarily granitoids. Deep weathering of these granitiods and laterisation occurred under a previous wetter and more humid 

climate (Mulcahy, 1967; Johnstone et al., 1973), leading to the characteristic duplex (texture contrast) lateritic soils typical of 195 

the region (Commander et al., 2001; Verboom, 2003). Due to the age and stability of the landscape, salts derived from oceanic 

aerosols have accumulated in the soils and groundwater of this region (Hingston and Gailitis, 1976), and relict palaeodrainage 

features affect contemporary movement of the (typically saline) groundwater and influence surficial hydrological processes 

(van de Graaff et al., 1977; Beard, 2003; Clarke, 1994; McFarlane et al., 1989). The Toolibin Lake catchment is 140km east 

of the Darling Range atop the Yilgarn Plateau, with gently sloping hillslope and predominantly wide and flat valley floor 200 

landforms that have significant local micro topography and overlie palaeochannel valley-fill sediments (Commander et al., 

2001; Beard, 2003). 

The region has a Mediterranean-type climate, experiencing cool and wet winters, with hot and dry summers. Winter rainfall 

results from cold fronts embedded in westerly moving low pressure cells passing over the region (Sturman and Tapper, 1996). 

Floods are associated with both ex-tropical cyclonic lows that can track across the region during the months of November to 205 

April, and cold fronts that bring widespread (though lower intensity) rainfall during winter and spring months, typically on a 

wet catchment. Average annual rainfall (from 1975-2009) in the Toolibin Lake catchment grades west to east from 390 mm 

to 350 mm (Callow et al., 2008). There is high annual rainfall variability, and a marked decreasing trend since the mid-1970s 

for stations in this catchment (Callow et al., 2008), consistent with what is reported for southwestern Australia (Smith et al., 

2000; Indian Ocean Climate Initiative, 2002; Callow and Smettem, 2007). Stations now receive an average of 40 mm to 80 210 

mm per year less than the pre 1975 average in this catchment (Callow et al., 2008). Hence, rainfall data is analysed within this 

paper with reference to the post-1975 period, rather than the entire record (except where otherwise stated). 

The landscape was originally dominated by diverse Eucalypt woodlands and heathlands. Minor clearing began in the late 

nineteenth century, concentrated on clay rich areas in valleys, with the upper Toolibin Lake catchment areas cleared mostly 

after World War II, continuing until the 1970s as agriculture became increasingly mechanised (Watson, 1978). Only around 215 

10 % of the native vegetation remains, and current land use is dominated by annual cereal cropping and pasture grazing by 

sheep, often in mixed cropping-livestock systems (Callow et al., 2008; Muirden and Coleman, 2014).  
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Figure 1: Toolibin Lake catchment showing the monitoring sites coded according to whether conductivity and/or level data recorded. 220 
Drainage lines highlight the often discontinuous and meandering surface hydrologic pathways with poor downstream connectivity 

in valley floor. Map created with field data and open-access data through the Western Australia Government Shared Location 

Information Platform and creative commons data from Geoscience Australia. 

A long-term, streamflow gauging station is operated by the Department of Water and Environmental Regulation (DWER) just 

above Toolibin Lake (Station Number: 609010, Fig. 1). Rainfall data was obtained from long-term Australian Bureau of 225 

Meteorology rainfall stations at Wickepin (10654, opened 1912) and Avoca (10671, opened 1930) as they contain the longest 

continuous record and are located to the north-west and south-east of the catchment. A high resolution surface water gauging 

network was installed and operated from2007-2012 to measure internal catchment hydrological yield and patterns of 

connectivity, salt yield and redistribution (Fig. 1).  

A combination of capacitance probe loggers (Scott Parsons Electronics (SPE) USB Capacitance Loggers), InSitu AquaTroll 230 

200 integrated level (pressure) and conductivity probes, and Unidata 6536D conductivity loggers, were installed to monitor 

streamflow, salinity and groundwater levels. Sites were serviced three monthly, with loggers downloaded and sensor 

calibration of capacitance probes in “dirty” and then “clean” conditions used to create a phased linear change calibration 

managed in a Hydstra hydrological database. Due to the salinity of streamflow (that can exceed the salinity of seawater), 
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laboratory testing of capacitance loggers was undertaken to determine their overall accuracy and susceptibility to calibration 235 

drift under higher salinity water (Callow et al., 2008). Accuracy was better than ± 10mm at full scale under all conditions, with 

a mean error of 3mm (2m is full scale, i.e. <0.5% error) for all calibration tests across water that varied in salinity from tap-

water (~400 mgl-1) to water approximating seawater (33,000 mgl-1) (Callow et al., 2008). Sites recording conductivity were 

used to calculate salinity and salt load by converting conductivity to salinity (or Total Dissolved Salts (TDS) (Callow et al., 

2008). Salt and water flux is reported based on a water year, starting from 1st April each year. 240 

Gauging sites were surveyed using either a Topcon total station or a Magellan ProMark3 Real-Time Kinematic Differential 

Global Positioning System (RTK-DGPS) (depending on the tree canopy density). A Valeport 801 single axis electromagnetic 

velocity meter was used to gauge streamflow greater than 7 cm deep that occurred during gauged events in 2007, 2008 and 

2012. Point survey, gauging and LiDAR data (where available) was also used to calculate stage-discharge rating curves using 

1-D HECRAS (U.S. Army Corps of Engineers, 2008 ), with stage and salinity data plus rating curves managed within the 245 

Hydstra program used to calculate total discharge and salt loads. Details on data review and quality control are described in 

detail by Muirden and Coleman (2014).  

A surface water-groundwater interaction (SW-GW) monitoring site was established at Site M1 (Fig. 1) in April 2008. RTK-

DGPS was used to collect over 7,000 spot heights through a 0.28 ha valley floor site, with points of vertical accuracy lower 

than 3 cm excluded, to create a valley-floor 0.5 meter Digital Elevation Model (DEM). Site M1 was located in a DEM mapped 250 

surface water inundation area. Upstream and downstream surface water loggers were also installed to monitor surface inflow 

and outflow, with DAFWA pluviometer rain gauge (“Martins”) located 2 km from this site. A 4.5 inch (114 mm) hollow-stem 

auger was used to drill to a depth where the pallid zone (chemically-weathered kaolinitic sapriolite) was reached, with 3 inch 

(76mm) plastic inserts used to collect core samples. Fully-slotted PVC pipe (80 mm Class 12 Pressure pipe) was inserted as 

an observation bore. Solid stem augers (3.5 inch) were then used to target drilling into three identified permeable layers, to 255 

install: deep (drilled to 6.2 m, slotted from 5-5.5 m); intermediate (drilled to 4.5 m, slotted from 3.6-4.0 m), and; shallow 

(drilled to 2.5 m, slotted from 1.4-2.0 m) piezometers. Piezometers were 50 mm Class 12 PVC solid pressure pipe with slotted 

section in target layers, sealed above and below the target layer with bentonite (pellets). Loggers were installed in groundwater 

monitoring infrastructure (15 minute logging) and the surface water sites (five minute logging), calibrated to protocols outlined. 

Vertical hydraulic gradient was used to indicate up or down water flux direction, calculated for the shallow to intermediate 260 

and intermediate to deep piezometers, determined as the overall difference of the water levels divided by the mean depth 

difference of the slotted section. 

3.2 Valley-floor channel construction 

During 2009, a new waterway was constructed to connected stations 609037, 609038, 03TON002 and 05HAR002 

concentrating flow directly into Dulbinning Lake (Fig. 1 for locations). The waterway was located based on LiDAR and high-265 

resolution topographic surveying to identify low-points and to connect them, preventing transmission loss and internal storage. 

The waterway was designed and constructed as a low-gradient, broad-based channel, approximately 25 m wide, 0.4 m deep 
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and running at the valley floor gradient (~0.0003 – 0.0015 m m-1) and designed to carry a 1:3 yr flow (Fig. 2). The waterway 

was constructed with the spoil removed to allow lateral inflows from adjacent areas of the reserve and to ensure that spoil 

dump levees (as is the norm for the construction of such channels) did not exacerbate waterlogging on areas lateral to the 270 

constructed channel and hydrologically disconnect the channel from the wetland and prevent lateral inflows. The design 

allowed for larger flows to spread and dissipate across the valley floor, but then drain back into the channel on the falling limb 

of the flow pulse. 

 

Figure 2: New broad-based channel implemented in Dulbinning Nature Reserve. Channel dimensions at this location are 23m wide, 275 
0.55m deep. Water depth in this image is 0.18m. 

4 Results 

4.1 Hydrological yield at catchment outlet  

The long-term gauging station collects data between Dulbinning Lake and the inflow to Toolibin Lake (DWER Station 609010, 

Fig. 1). Analysis of the long term gauging record for Toolibin Lake inflows (Station 609010) from September 1978 to 280 

December 2012, reveals that flow is only recorded on 4% (502 of 12,563) of days, with there was only flow during 13 % (53 

of 417) of months, with 40% (13 of 34) of years recording no flow days across the entire water year. The 1:5 yr and 1:10 ARI 

peak streamflow is 2 m3sec-1 and 10 m3sec-1, respectively, from a catchment with an area of 485 km2 with an average rainfall 

of around 360 mm. In such low-gradient environments, there is some uncertainty in rating and gauging, and a recent revision 

of the rating curve by DWER has revised cease to flow thresholds and low-flow. If retrospectively applied to this data, it 285 

suggests flow occurred on 1,496 (11.9%) days and during 126 (30.5%) months and at some time during 29 of 34 years, though 

the average difference of annual total flow between the rating used in this paper and the revised rating imposed on data was 

3.34Ml per year (0.3% difference) across the study period 2007-2012. Irrespective of any uncertainty, the gauging data 

characterises this catchment as one with an ephemeral flow regime with long periods of no or only very low flows. 
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The infrequent inflow events to Toolibin Lake tend to occur at two times; either the end of winter and early spring in wetter 290 

years, or in summer due to ex-tropical cyclone activity. Winter streamflow is only typically experienced during June to 

September, with mean monthly discharges of 140, 394, 184, 105 ML respectively. January has an anomalously high mean 

monthly discharge relative to non-winter/spring months (142 ML), skewed by one event, the highest on record which occur 

during the summer 1982 floods associated with ex-tropical cyclone Bruno. Average streamflow by rainfall decile, summer 

events show a significant threshold jump for streamflow between Decile 7 (30 ML) and Decile 8 (366 ML) years, but for late 295 

winter and early spring events, this occurs between Decile 5 (153 ML) and 6 (915 ML). Mean average annual discharge at the 

long-term gauge is 170.6 ML yr-1 (Muirden and Coleman, 2014), which equates to a mean annual runoff yield of streamflow 

of 0.14 % of rainfall.  

4.2 Internal runoff generation, water redistribution and hydrological connectivity 

4.2.1 Water yield 300 

The high resolution gauging network is depicted schematically in Figure 3, and presents results for annual flow of water (black) 

and salt (red, for sites with those data) within the Toolibin Lake catchment. The streamflow data highlights that flows 

frequently occur upstream of the long-term gauge, and annual yield and flow is higher at some of these locations than at the 

downstream location. During the dry years of 2007 (i.e. water year starting 1st April 2007 in including the winter (wet season) 

of 2007), 2010 and low-flow year of 2011 (at the end-of-catchment gauge, 609010), there are significant flows and water 305 

redistribution with the catchment that do not connect through to the long-term gauging site. 

Based on post-1975 rainfall data, the study period included: an average year (2007 - Decile 4), two wetter years (2008 - Decile 

8 and 2011 – Decile 9) and three extreme dry years (2009 – Decile 1, and 2010 and 2012 which respectively represented the 

driest and second driest years since 1975). Flow yield at the long-term gauge, recorded zero flow in the Decile 4 year (2007) 

and flow in Decile 8 (2008) rainfall year are consistent with the activation thresholds discussed above for this site based on the 310 

analysis of the full streamflow record (since 1978). Data from the high-resolution gauging network shows that in 2007 there 

was significant streamflow within the catchment but this did not connect to the long-term gauging station. Internal catchment 

surface water redistribution also occurred in the other no outflow year (2010, which was the second driest year on record), 

with up to 66ML of discharge measured at internal catchment gauges.  

Due to the management intervention to increase hydrological connectivity, results for streamflow after 2009 in locations 315 

downstream of the Dulbinning Nature Reserve (including the long-term gauge) need to be considered in the context of the 

surface water engineering interventions that have changed catchment behaviour (see section 4.4). Streamflow at the long-term 

gauge was recorded during the wet years of 2008 (Decile 8) and 2011 (Decile 9), but also the dry years of 2009 (Decile 1, with 

large rainfall event) and 2012 (Decile 1 and second driest on record, flow from a late summer event) that post-dated this 

management intervention. 320 
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4.2.2 Salt yield 

Opportunistic sampling of water quality during a flow event in July 2007 found that the gauging sites in the east of the 

catchment had salinity values comparable to rainwater on hillslopes, measured at ~ 100 mg L-1 during rainfall events with 

short-lived runoff. Logger data for the same event reported values of 2,150 mg L-1 at 13DUL006 within Dulbinning Nature 

Reserve, and sites 609037 and 609038 had salt concentrations peaking at 4,000 to 13,600 mg L-1. 325 

Salt loads calculated at the ten stations measuring conductivity and flow through the network presents a complex pattern of 

salt flux and export. In 2007, there was significant net input of salt from the surrounding landscape to the valley floor (i.e. 

Dulbinning Nature Reserve), which is not transferred through to Toolibin Lake (no flow recorded the long-term gauge, 

609010). A salt load of 66.5t was measured entering the reserve (609037: 15 t; 609038: 50 t and 03TON: 1.5 t) which increased 

to 162 t at 13DUL006 in the middle of the Dulbinning Nature Reserve. There was no streamflow at the entry to Toolibin Lake 330 

(609010), so no export of the salt from Dulbinning Nature Reserve and Dulbinning Lake in that year. In 2008 (a wet Decile 8 

rainfall year), there were numerous streamflow events connecting through the landscape during winter. Data suggest that 

during this wetter year, there was an initial flushing of surface stores of salt followed by a sequence of flow events that allowed 

for limited input of salts from the surrounding landscape onto the valley floor. In some years (2009, 2012), there appears a 

larger export of salts through the long-term gauge into Toolibin Lake (609010), than enters Dulbinning Nature Reserve in that 335 

single year. 
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Figure 3: Annual discharge data (Ml) (black data) and salt load (tonnes per year in red) for the different gauging stations across the 

study period (2007 – 2010). Note that ND is no data due to equipment failure. 

 340 
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4.3 Surface water - groundwater connectivity and vertical recharge processes 

A surface water-groundwater (SW-GW) interaction site was established to measure the direction of vertical water movement 

in a valley-floor landscape. Data from the SW-GW interaction site across a water year, identifies three broad characteristic 

stages (Fig. 4). At the end of summer, the valley-floor areas are dry and characterised by large surface cracks, up to 3 cm wide 

and 50 cm long and greater than 30 cm deep. The first stage (Stage 1) is dominated by surface flows that drive top-down 345 

recharge but has two sub-stages (1a, 1b) within it. Initially, infiltration relative to rainfall is rapid and responsive (Stage 1a, 

Fig. 4), where macropores likely facilitate rapid infiltration of direct rainfall and surface flows (run-on) that has a rapid 

preferential pathway flow and allows rapid top-down early-season recharge. As the water year progresses, the system 

transitions to a state still dominated by surface inundation and top-down recharge, but where the hydrological response and 

recharge rates relative to rainfall is more subtle (Stage 1b). As soils saturate and macropores close, matrix flow becomes the 350 

dominant flux mechanism and the seasonal surficial aquifer becomes connected. The system behaves as a semi-confined 

aquifer similar to Drake et al. (2013), though the vertical hydraulic gradient still remains downwards through to mid to late 

winter. 

As the aquifer connects, there is evidence for a transition to the bottom-up groundwater discharge in later winter and early 

spring months (Stage 2). At this stage the hydrological behaviour is as expected under the hillslope-recharge model, whereby 355 

hillslope recharge and lateral movement of groundwater to the valley floors drives a negative hydraulic gradient pushing 

shallow groundwater vertically, a bottom-up groundwater response. Groundwater potentials reach or exceed the ground 

surface, and fresher surface water flows created the potential for the vertical diffusion of salts via matrix flow due to the 

concentration gradient from saline soil to fresher inundation. Where surface inundation ponds salts are subject to evapo-

concentration and ultimately retained in the surface soils or as a surface salt crust, or when inflows exceeded depression storage 360 

thresholds, salt may be exported horizontally and down system. 

From late spring, the system dries and groundwater levels fall and then de-couples from the surface (Stage 3). Soils desiccate 

and macropores re-develop as the system is reset for the subsequent water year, or in the case of March 2010, a dry-season 

thunderstorm (Fig. 4), with a similar top-down and highly responsive behaviour to rainfall (Stage 1a). While the shallow and 

intermediate loggers failed during much of the drying-out “Stage 3” and hydraulic gradients cannot be calculated during this 365 

time, the deep logger records a transition in groundwater response to rainfall. There is almost no response in groundwater to 

the limited number of small rainfall events during the dry season (from October to March/April over the summer dry season), 

and downward groundwater trend across October until the following April. The April 2010 thunderstorm event caused 

significant recharge and initiates a return to Stage 1. While two of three loggers had failed during Stage 3, the deep logger 

supports the interpretation that the surface and groundwater systems disconnect over the dry season. 370 
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Figure 4: Groundwater data for Martins Site M1, showing movement of the shallow, intermediate and deep pieziometers and the 

overall vertical hydraulic gradient from May 2009 to June 2010 and three stages of SW-GW interaction. 

4.4 Manipulating surface water connectivity 

The new channel constructed in the Dulbinning Nature Reserve aimed to increase connectivity of otherwise ponded areas in 375 

the valley floor, to enhance the overall water yield and reduce salt export to Toolibin Lake. The hypothesis was that by 

minimising ponding, the time for exchange and accumulation of salts from groundwater into the surface water would be 

reduced and thereby reducing the load exported downstream. Following construction in early 2009, the hydrological behaviour 

of the catchment, as represented by the end-of-catchment gauge (609010), can be seen to change markedly (Fig. 5). This 

demonstrates a considerably higher yield as water is more efficiently transmitted from landscape positions receiving run-on 380 

from further upstream areas (similar to location M1, presented in section 3.3), and less impacted by micro-topography in the 

valley floor. This occurred in all years post-construction (2009, 2010 and 2012), aside from 2011. This anomalous result is 

most likely a response to the re-wetting of the catchment and high total, but low-intensity, rainfall that was experienced after 

the driest year on record (2010); the combination of numerous low intensity events and dry antecedent conditions considerably 
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reduced the runoff efficiency. This confirms the challenge of ascertaining hydrological behaviour from the gauge lower in the 385 

landscape, and the high non-linearity occurring in these landscapes with weak gradients, and highly episodic rainfall. Analysis 

of salt load transmitted in the limited number of events post-construction found that the salinity of streamflow reaching 

Toolibin Lake was 20% lower when compared to similar magnitude events before construction. 

 

Figure 5: The annual rainfall-runoff data shows the role that microtopography plays within low-gradient drylands, with a 390 
pronounced change in runoff efficiency recorded at the long-term gauge after the construction of the waterway through Dulbinning 

Nature Reserve in 2009.  

5 Discussion 

The results from the long-term, end-of-catchment gauge are consistent with the interpretation of functional catchment 

hydrology and pervasive model of dryland salinity. That is, low runoff and inferred high hillslope recharge that drives 395 

groundwater rise. However, the data from a high-resolution internal surface gauging network, combined with the results from 

a valley floor SW-GW interaction site, and the management intervention to improve hydrological connectivity, all suggest an 

important role for surface water processes in the redistribution of salt and the ultimate manifestation of dryland salinity within 
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low-gradient dryland landscapes. In particular, variability and threshold behaviour in surface water processes that lead to water 

run-on and valley-floor inundation are important in shaping dryland salinity in low-gradient valley-floor locations where 400 

microtopography creates the potential for surface ponding and vertical salt movement via diffusion. The insights from this data 

set allow us to refine and add to the conceptual model for the hydrologic drivers of dryland salinity.  

5.1 A water balance approach to the hillslope-recharge model 

Applying a water balance approach from the long-term gauge to quantify fluxes as the basis for the hillslope-recharge model 

of salinity, yields average annual runoff as 0.14% of rainfall. The remaining 99.86% must be accounted for by losses as 405 

infiltration to groundwater (and/or change in storage), transpired by trees or evaporated from the surface. Whilst 

evapotranspiration (ET) potential is high in this landscape (average annual Potential Pan ET 1897mm, 2008-2018 at Wickepin, 

(DPIRD), unpublished data), Beringer et al. (2016) reported mean annual actual evapotranspiration (AET) at 261.7 mm yr-1 

(or 72 % of rainfall) for the native ecosystem Great Western Woodland OZ-Flux site that has comparable annual rainfall (361.1 

mm yr-1) to the Toolibin Catchment. Unpublished data from the cropping and farmland Ridgefield OZ-flux site suggests a 410 

similar proportion of AET at 330 mm yr-1 with average annual rainfall of 445 mm yr-1 (average evapotranspiration was 74% 

of rainfall, Beringer, unpublished data). Accepting AET as 72-74 % of rainfall, recharge to groundwater and change in storage 

would be around 26-28 % of precipitation or around 90mm yr-1. This figure is significantly higher than the upper value 

suggested by George (1992) and George and Conacher (1993), who propose values in the range of 5.5-27 mm yr-1
 for cleared 

agricultural land (equating to 1.5-7.5 % of rainfall at this site). If recharge was 26-28 % of precipitation, groundwater levels 415 

in valley-floor locations would be rising at least a meter or two more per year (assuming specific yield or effective porosity 

values are 0.1 to 0.05 respectively). Local or regional groundwater data certainly do not support such a high value (Bennett 

and George, 2008; Mouat et al., 2008). 

This paper presents evidence of significantly higher rates of internal runoff than is recorded at the long-term gauge. While 

measured surface flow fluxes at sites from the internal gauging network only approached 5% runoff coefficients, there remains 420 

significant uncertainty in the calculation of these figures. These are based on catchment area as defined by upslope area of a 

pit-filled (coarse-resolution – 10m) DEM. This is likely to significantly over-estimate actual contributing catchment area, 

particularly in agricultural landscapes with banks and farm hillslopes dams harvesting surface water, and low-gradient valley-

floors where catchment area will be dynamic with depression storage and activation (Ryan et al., 2015; Callow and Smettem, 

2009; Callow et al., 2007). Significant surface flows not recorded in this gauging network are captured and stored on hillslopes 425 

in farm dams (Ryan et al., 2015; Callow and Smettem, 2009). Flows reaching the valley floors are likely contributing to top-

down recharge (i.e. Site M1, stage 1), followed by likely evaporation from surface inundation on valley-floors. Within this 

catchment there is a high pan potential ET through the months when surface inundation occurs (i.e. Site M1, stage 2), with 

PET recorded at Wickepin in June to September respectively 57, 53, 72, 113 mm per month (DPIRD, unpublished data). This 

flux is not accounted for in measured AET measured by flux tower sites mentioned above, that are located in vegetated stands 430 

with no surface water inundation. 
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5.2 (re)Conceptualising surface water flows and dryland salinity 

The results from the high-resolution gauging network and other observations, show a similar pattern of hydrological behaviour 

similar to work by Farmer et al. (2001, 2002), Cattlin et al. (2004) and Cattlin (2006). They applied the terms “shedding” 

“receiving” to these landscapes, suggesting that upper shedding landscapes yielded significant volumes of fresh runoff that 435 

failed to connect and flow through the system, as it ponded in the flatter receiving landscapes. A similar though subtly different 

pattern is found in this study. There is an upper landscape that yields fresh runoff (termed a “flow” landscape), that contributes 

runoff (or runon) to valley floor areas with high detention storage and microtopography but become seasonally activate as 

storage is exceeded, behaving similar as descried at Site M1, Fig. 4 (“fill” landscape). Further downstream, are larger internal 

storages and lakes (Dulbinning Lake and Toolibin Lake), that only yield flow in the wettest years or in the largest event flows 440 

(“flood” landscapes). We therefore propose this “flow-fill-flood” conceptualisation of the landscape water and salt flux (Fig. 

6). 
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Figure 6: Flow-Fill-Flood conceptual model of surface water and salt flux in dryland catchments, showing disconnected flow during 

dry years and flow connection in wet years and large events that records flow at the end-of-catchment gauge. Hydrochemical fluxes 445 
are (water flux in black, salt flux in red): P = precipitation, ET = evapotranspiration, Qs = surface discharge or flow, Qt = 

throughflow, Qg = groundwater discharge or flow, and Ro = runon storage. Salt fluxes are shown in red and show how salt is moved, 

concentrated and then moved down-system. 

To further test this conceptualisation, we use the least squares regression Tan-H method of Grayson et al.(1996) to fit 

rainfall/runoff curves for each of the landscape components (Fig. 7). These results support the interpretation of the hillslopes 450 

and upper landscape as a flow landscape, with higher runoff yield. Flood landscapes have the next highest runoff yield (but is 

biased towards infrequent larger events, so have higher yield but lower frequency). The mid-catchment, intermediate fill 

landscapes have very high transmission losses and relatively low runoff yield (though more frequently flow than the 

downstream flood landscapes). 
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 455 

Figure 7: Rainfall-runoff Tah-H plot (after Grayson et al., 1996), partitioned by landscape position, identifying different hydrological 

behaviour in each. This indicates higher runoff from flow landscapes and lowest runoff from the fill areas due to high transmission 

losses through in-situ vertical recharge, with an intermediate response from flood landscapes that is influenced by these only 

becoming active during the greatest flows. 

The role of surface water redistribution that does not connect through a landscape (runon) is a feature of drier, flatter and semi-460 

arid landscapes (Ludwig et al., 1997; Ludwig et al., 2005; Ludwig and Tongway, 2000). Runon to a dry and desiccated surface 

valley floor fill landscape was associated with top-down recharge of surface water (Stage 1a, Fig. 4) process noted by Teakle 

and Burvill in the 1930s. They linked macropores and salinity, reporting that surface salt was associated with “the rims of 

crab-holes (expression for cracking/swelling clay depressions) where the micro-relief favours surface evaporation” (Teakle 

and Burvill, 1938, p.243). While different to the pervasive hillslope-recharge model, the role of surface water as a cause of 465 

salinity is consistent with processes discussed by Teakle and Burvill (1938), Nulsen (1981), Nulsen and Henschke (1981) and 

Cattlin et al. (2004). 

Top-down recharge of surface water redistributed to the valley floor is consistent with lateral redistribution of runoff from 

lower-slopes onto the valley floors caused groundwater recharge through preferred-pathway described by Nulsen and 

Henschke (1981). Drake et al (2013) found macropores facilitate rapid infiltration during surface water ponding in valley floors 470 

areas in the Toolibin catchment from field inundation field trials. Barrett-Lennard (2009) and Barrett-Lennard and Callow 

(2009) used a 1-D model to evaluate likely flow mechanisms at site M1, and could only replicate measured recharge by 

parameterising macropore flow during Stage 1a and then matrix flow with preferential pathways sealed for Stage 1b (see Fig. 

4). Mouat et al. (2008) noted downward hydraulic gradient in some groundwater bores in valley-floor locations closer to 
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hillslopes in this catchment. This phenomena is consistent with our reconceptualised model of hillslope surface water 475 

redistribution to the valley-floor and early-season top-down macropore (stage 1a) and matrix flow (Stage 1b) recharge. 

While the sites and data presented in this study highlight the under-appreciated role of surface flows, there is still strong 

evidence for the role of processes as described by the hillslope-recharge model, of bottom-up groundwater flux as a cause of 

salinity in this landscape. At Site M1, Stage 2 (see Fig. 4) is dominated by bottom-up fluxes in late winter and spring, consistent 

with mechanisms of the hillslope-recharge model of salinity proposed first by Wood (1924), and work of George and Conacher 480 

(1993). This suggests that as this landscape becomes wetter through the water year, behaviour transitions towards the more 

pervasive model of hydrological behaviour and development of salinity. Under these conditions, hillslope recharge drives a 

response in these lower aquifers that drive bottom-up groundwater rise in later winter to early spring (Fig. 4, Stage 2), and is 

a likely important contributor to salinity in low-gradient, dryland catchments. The complexity heterogeneity of the subsurface 

and low lateral potential due to both (low) gradient and (fine) texture (McFarlane et al., 1989), make it challenging to 485 

qualitatively resolve the processes of lateral groundwater flow and connectivity in this landscape.  

Data presented on salt yield, shows a complex response relate to the role of surface water flows and conceptualised using the 

flow-fill-flood model of landscape functional behaviour. In half of the years, net input into the Dulbinning Nature Reserve (fill 

landscape) was higher than the salt flux recorded at the long-term gauging location (flow landscape). In other years, less salt 

load flows into the reserve than is measured at the long-term gauge. Evidence from site M1 (Fig. 4) shows that surface inflows 490 

and inundation may facilitate vertical groundwater movement and salt diffusion to the surface in inundated areas. In lower 

rainfall and flow years when fill landscapes do not contribute sufficient flow to generation streamflow from flood landscapes, 

mobilised salts stored during inundation does not connect through the landscape, but is concentrated as surface salt scalds after 

evaporation and desiccation and is then available for downstream flux in subsequent years. Muirden and Coleman (2014) also 

reported a complex pattern of annual and event flow and salinity data, noting that summer events yielded significantly lower 495 

salinity in comparison to similar magnitude winter events. Muirden and Coleman (2014) declared that the mechanisms behind 

this were unclear without further research and monitoring.  

5.3 Managing surface water drivers of dryland salinity 

The implications of flow-fill-flood conceptualisation of surface water, landscape component flow yield and development of 

valley-floor salinity, has significant practical implications for the how hydrology and salinity might be managed. A constructed 500 

waterway was designed and built in 2009 to remove microtopography in Dulbinning Nature Reserve (fill landscape), to 

improve flow conveyance to stop groundwater recharge by runon and the exchange of salts from the subsurface into the surface 

water. It was hypothesised that this should reduce salt yield while increasing the total flow available at the diversion structure 

above Toolibin Lake, allowing managers to more optimally manage the hydroperiod of Toolibin Lake (Hipsey et al., 2011; 

Coletti et al., 2013). Before construction, flows in a wetter year (2008, decile 8 rainfall) had a 60 % transmission loss (Fig. 3) 505 

through Dulbinning Nature Reserve. This is consistent with the results of Cattlin et al. (2004) who reported in 60-100% 

transmission losses during events between 2000 and 2003, and Callow et al. (2010) who reported an average 50% of runoff 
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volume lost in the reserve across the gauge record and prior to waterway construction. After construction, Muirden and 

Coleman (2014) reported a 25 % increase in flow volume yielded through this part of the landscape. The analysis of salt load 

transmitted post-construction found that the streamflow salinity reaching Toolibin Lake was 20 % lower when compared to 510 

similar magnitude events before construction. The combination of increased flow yield and lower flow salinity results in 

significant reduction of total salt contributed downstream. 

Much effort in addressing salinity has been aimed at increasing perennial vegetation in the landscape (Hatton and Nulsen, 

1999). Tree planting has been found to provide benefits in areas of higher rainfall and on sandplain seep sites, where recharge 

management has delivered direct impacts in reducing groundwater levels and expansion saline areas (George et al., 1999; Bell 515 

et al., 1990; Bennett and George, 2008). For low-gradient and lower in lower rainfall zones (<600 mm yr-1), there has been 

little to no evidence of revegetation impacts on groundwater at the scale it has been implemented at (George et al., 1999; 

Johnsen et al., 2008), but remains a popular approach in attempts to combat salinity and provide biodiversity and ecosystem 

services benefits (Cramer and Hobbs, 2002; Halse et al., 2003; Pannell, 2008). Ryan et al. (2015) provides an interesting 

paradigm to consider in the contact of this work on how hillslope vegetation and surface water management can be integrated. 520 

In the valley-floor, the broad-based channel is a high-cost intervention but offers a potential to address some processes causing 

salinity, and in some parts of the landscape. Assessing long-term vegetation recovery surrounding the channel was beyond the 

scope of this paper, but a worthy of future research. 

The constructed waterway intervention is very different to the deep drainage approach used to combat rising groundwater 

salinity in valley-floor locations in the Wheatbelt region of Western Australia (Ali et al., 2004; Barrett-Lennard et al., 2005; 525 

Pannell, 2001; Pannell and Ewing, 2004; Coles et al., 1999). These are based on digging a ditch or drain to a depth of around 

2m to intercept groundwater and dispose of the saline groundwater effluent downstream (Ali et al., 2004). Deep drainage offers 

limited or no economic return on investment for broadacre farming (Ali et al., 2004; Pannell, 2001; Pannell and Ewing, 2004), 

and has detrimental downstream environment impacts, with discharge often acidic (pH 1.9-3.8) and high in salinity (measured 

as up to 147,000 mgl-1  or 4 ½ times seawater salinity) (Stewart et al., 2009). Deep drains can exacerbate waterlogging and 530 

salinity through the processes identified by this study, as spoil or the removed material is dumped at the sides of the drain and 

causes ponding of surface water. A major cost, but important feature in this targeted intervention was the removal of excavated 

soil material (used to fill low-lying areas on adjacent land). The constructed waterway was designed to convey only low to 

moderate flow events (~1:3 yr), where lateral outflow could then return back into the channel as the flood dissipates. The 

performance of the broad-based channel provides further validation of the role that surface water redistribution plays in the 535 

development of salinity in low-gradient drylands. 

6 Conclusion 

This paper presents a range of evidence that surface water flows play an important role in causing salinity in low-gradient 

drylands, conceptualising this as flow-fill-flood functional behaviour. Much of the generation and internal redistribution of 
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surface flows are not recorded at the long-term gauging location in this catchment. This masks the important role that 540 

(disconnected) surface flows have in this and other low-gradient dryland catchments, including as a contributor to land 

degradation by dryland salinity. It is shown that surface flows fill landscape detention storages, and there is top-down recharge 

in these locations. Inundation creates a potential for vertical diffusion of salts that can evapo-concentrate at the surface and 

degrade these areas, or impact downstream systems when depression storage is exceeded. The broad-based channel 

management intervention to address surface water processes and flow-fill-flood functional behaviour has been shown to 545 

increase the yield of water, and to decrease the salinity of streamflow and downstream salt yield. 

Catchments in the low-gradient drylands have elements of hydrological behaviour in common with high rainfall, steeper-

sloped hydrologically connected catchments of the temperate, tropical and sub-tropical areas, but are equally influenced by 

processes common with dry, flat and disconnected smooth plainlands, rangelands, semi-arid regions and deserts. Beyond this 

study region, the new insight from the “flow-fill-flood” understanding of dryland salinity further demonstrates the importance 550 

of testing and reassessing how rainfall and topography interact across a range of settings in time and space to moderate 

hydrological processes. It is critical to appreciate and question how catchment dynamics in the context of wet-dry, steep-flat, 

connected-disconnected and related important subtly of how surface and groundwater processes drive hydrology, and in this 

case land degradation by dryland salinity. Successful management interventions need to address the specific causes of dryland 

salinity, you cannot manage what you do not understand. 555 
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