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HESS-2019-40 

Title: Uncovering shortcomings of a weather typing method statistical downscaling method 

Authors: Els Van Uytven, Jan De Niel and Patrick Willems  

 

We would like to thank the reviewer for the constructive feedback and comments. Answers to the 

comments have been made (italic font) and the manuscript has been changed accordingly (blue font). 

We would like to note that the manuscript has changed significantly to address the comments of all 

reviewers and  to improve the readability. 

 

Response to reviewer comments (Anonymous Referee #1) 

Summary and Overall Quality: This research investigates the fidelity of a weather typing based 

statistical downscaling strategy used to generate hydrometeorological forcing with respect to several 

of the underlying assumption implicit to these methods. In particular, they evaluate assumptions 

relating to the robustness of predictor predictand relationships - their predictive power, stationarity, 

and sensitivity to greenhouse gas forcing - and how well those relationships are captured by coupled 

models. The focus of this research is a case study for downscaling of precipitation and temperature 

for a catchment within Belgium and makes use of an established weather typing based downscaling 

strategy that also includes use of Clausius-Clapeyron (CC) scaling adjustments. The authors find 

informative relationships between the chosen weather-type predictors and forcing variable. While the 

coupled models capture the general relationships, they exhibit significant biases in particular with 

respect to the frequency of the underlying weather types. The predictor-predictand relationships also 

exhibit non-stationarity. The authors find the use of CC-scaling adjustments result in the downscaling 

method being able to generate more extreme values and account for changes in variance. Overall, the 

manuscript is well organized, though the readability could be improved through more detailed 

formulation of the methods rather than the extensive narrative. 

 

Specific Comments:  

(1) There is very little direct formulation of the SDM within the manuscript; it is mostly left to 

either supplementary material or to an extensive list of references. This left the manuscript 

feeling less than “self-contained,” and readability could be improved with more direct 

formulation of the methods. This should include moving the WT-formulation from 

supplementary material into the primary manuscript.  

 

REPLY: The WT formulation in supplementary information has moved into the main 

manuscript. The readability has also been improved by removing some of the redundant 

information in the manuscript and the more direct formulation and explanation of the 

methods and the results. 

  

 

(2) There are a number of different datasets that are being included. However, there is very little 

information/discussion on why these data were selected, and it is confusing how data are 

being used. Why were ERA-40 and NCEP/NCAR used when these are older-generation 

reanalyses?  
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REPLY: Precipitation time series are available for the station in Uccle since 1901.  We have, 

however, only access to the time series between 1901 and 2000. The range of this precipitation 

time series has been compared with the range of different re-analysis datasets. The 

comparison points out that the older generation re-analysis datasets cover the largest part of 

the available observed precipitation time series. More specifically, the re-analysis datasets and 

the observations have data in common for the period 1957-2000. 

 

The resolution of the data are disparate; how was weather typing applied to each dataset? 

Were they all resampled to the coarsest resolution data (5x5) to allow for consistent WT-

metrics to be defined? If not, how might the fact that the finer resolution data are likely to 

capture more variability affect the frequency distributions of the different WT? Were all the 

CMIP models resampled to the same resolution?  

 

REPLY: The WTs for the re-analysis datasets and for the climate model runs have been 

determined considering resolution of the WT classification system. This information was 

originally provided in supplementary information and has been moved into the main 

manuscript.   

 

 

How is the in situ, station data, being used in the compositing? Are all of the precipitation 

composite information being drawn using only the station data? That is, are the reanalysis 

only being used for developing the WT-classification and the results are just different 

regroupings of the underlying precipitation; or are the reanalyses precipitation actually being 

composited as well? 

 

REPLY: The WT classification system is applied to the re-analysis datasets. Next, the produced  

WTs  are coupled to the observed precipitation amounts, providing the historical pool with 

WTs and their associated precipitation amounts. We have rewritten the methodology to better 

explain the coupling between the precipitation time series for the RMI station in Uccle and the 

associated WTs based on the output of the reanalysis datasets.  

 

(3) It is not clear if the station precipitation data can be used together with the hydrologic 

model. Specifically, the hydrologic model appears to have been calibrated (i.e. tuned 

to) a different observational dataset with likely a different climatology compared to that 

of the climatology of a single station time series. This may limit the applicability of using 

downscaled forcing (to that of a single station) to a dataset with a different climatology 

than that used to calibrate the hydrologic model. 

 

REPLY: In a study for the Flemish Environment agency, De Niel and Willems (2016) investigated 

the spatial and temporal variations in precipitation time series for 43 rain gauges in Flanders. 

Their results indicated significant differences between west (coastal area) and east (Antwerp, 

Flemish Brabant and Limburg). As Uccle is situated in central Belgium and is located 

approximately 100 km from the Grote Nete catchment, the application of the 

hydrometeorological time series for Uccle as input series for the hydrological model of the 

Grote Nete catchment involves small uncertainties. The calibration of the hydrological model 

is, however, performed using precipitation, potential evapotranspiration and discharge time 

series for stations in the Grote Nete catchment.  
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We remark that the hydrological climate change impact analysis is removed from the 

manuscript for sake of brevity.   

 

 

(4) Results indicated super-CC scaling of precipitation changes. This indicates potentially 

significant components of non-thermodynamic generated forcing, either the frequency 

and/or intensity of weather types. The author’s decomposition seems to only account for 

frequency changes of WT and/or precipitation changes, but is rolling-up covariant (deviation) 

terms into “other” forcing. A more detailed decomposition may be warranted to better 

understand the demonstrated super-CC scaling along with projected changes; specifically 

Figure 9 “other” should be more thoroughly decomposed.  

 

REPLY: The decomposition of the precipitation changes into contributions arising from the 

dynamic and thermodynamic processes has been performed for the average daily precipitation 

amount, projected by the climate model output. Indeed, a more detailed decomposition of the 

precipitation changes could be performed, as for instance done by Kröner (2016) and Kroner 

et al. (2017).  

 

We would like to point out that the decomposition is performed for direct climate model 

output. This means that the CC relation has been indirectly considered in the climate models 

and is not directly applied as done by the downscaling methodology. Moreover, in the case 

that the results for the downscaled time series would have been used, then it is questionable 

whether the CC relation influences the average daily precipitation amounts. More specifically, 

the CC relation influences the more extreme precipitation amounts, not the average 

precipitation amounts.   

 

(5) Figure 10 is used to establish the lack of stationarity of the underlying relationships. However, 

the predictor-predictand relationship appears to only be evaluated with respect to temporal 

changes without any control for temperature changes. Given that the used SDM implements 

a temperature-dependent CC-scaling, it is possible that controlling for temperature changes 

(and CC-scaling) in addition to temporal changes may show that the utilized predictor-

predictand relationship is actually stationary as long as temperature-dependency is also 

included. If accounting for temperature-dependent scaling related changes results in a 

stationary relationship, then this would provide a more robust justification for the use of CC-

scaling as part of the SDM. 

 

REPLY: The stationarity assumption has been evaluated using the re-analysis based WTs and 

the observed precipitation amounts. Hence, focus is solely put on the relation between WTs 

and precipitation and temperature is indeed not considered. As pointed out by the reviewer, 

the stationarity assumption could become more accurate when also considering temperature 

as a predictor. The latter could be verified by defining surrogate climate model runs and apply 

the SDM to the surrogate climate model runs. We however note that the empirical 

precipitation distributions for the W WTs for the periods 1981-1990 and 1931-1941 differ over 

the entire range of return periods. The application of the CC relation would thus not resolve 

the differences.  
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One of the other reviewers (Mohammad Sohrabi) wondered whether other strategies exist to 

test the stationarity assumption. After carefully re-reading some references, we modified the 

verification of the stationarity assumption.  In summary, the stationarity assumption implies 

that the relation between the predictors and the predictand remains time-invariant. In other 

words, the predictors-predictand relation, which has been established using historical 

observations, should remain applicable under climate changes. Assuming the stationarity 

assumption is valid, the individual contributions by the dynamical and thermodynamic 

processes to the precipitation processes would not change.  

 

In this context, the decomposition of the precipitation changes is also applied to surrogate 

climate model runs. The latter runs are defined by splitting the observed time series in different 

smaller time series. The decomposition of the surrogate climate model based precipitation 

amount changes is thereafter compared with the decomposition of the longterm global 

climate model based precipitation amount changes.  

 

The decomposition of the surrogated based changes indicates that the contribution by the 

dynamical processes is important and is thus not negligible. The influence of the large scale 

atmospheric circulation on precipitation in winter season is comprehensively described in 

literature (Boé and Habets, 2014; Sousa et al., 2017; Tabari and Willems, 2018; Willems, 2013). 

The results furthermore indicate that the thermodymical processes gain importance at the end 

of the 20st century. The latter in agreement with results of Ntegeka and Willems (2008), 

identifying an intensification of the precipitation amounts due to the increasing temperatures.   

 

In the modified manuscript, the approach to verify the stationarity assumption has been 

replaced and above discussion has been added.  

 

  

(6) A potentially novel component of this work is related to the CC-scaling adjustments and 

implementation. However, it does not appear to be emphasized within the manuscript as 

much of the relevant material is placed in the supplementary manuscript. The scope of this 

work would be more novel with a stronger focus on these aspects and less on the general 

analysis of GCM biases in weather-type frequency and intensity; perhaps the former (CC) 

could be emphasized throughout the paper and the latter included in a more condensed 

fashion. 

 

REPLY: In the modified version of the manuscript, more focus is put on the application of the 

CC relation and less on the biases.  
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Specific Comments:  

(1) Line 16: “160% to 240%” : This is confusing. Is the increase 60% to 140% of current day’s 

values or is the increase truly 160% to 240% more than today’s values (i.e. increases of 100% 

is a doubling of today’s values). Please clearly state. 

 

REPLY: The increase is estimated between 160% and 240%. Modified. 

 

 

(2) Line 31: “downscaling and,” : There are several instances in the manuscript where the 

comma is placed after “and” in a compound sentence. In these cases, the “,” should be 

placed prior to the conjunction. 

 

REPLY: Modified.  

 

(3) Line 31: “by (Hewitson et al., . . .)” : There are multiple instances in the manuscript where 

the full references are encapsulated within parentheses but should instead only have the 

publication year within parentheses. For example, 2)31, 3)10, and 3)23. Please carefully 

proofread. 

 

REPLY: Modified.  

 

(4) Line 25: Redundant use of “independent”  

 

REPLY: Modified. 

 

(5) Line 27: Figure 3 is noted but it should be Figure 2. Note that all figure numbers in the 

narrative should be double-checked. 

 

REPLY: Modified.  
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HESS-2019-40 

Title: Uncovering shortcomings of a weather typing method statistical downscaling method 

Authors: Els Van Uytven, Jan De Niel and Patrick Willems  

 

We would like to thank the reviewer for the constructive feedback and comments. Answers to the 

comments have been made (see below) and the manuscript has been changed accordingly 

(supplement to the comment, blue font). We would like to note that the manuscript has changed 

significantly to address the comments of all reviewers and  to improve the readability. 

 

Response to reviewer comments (Anonymous Referee #2) 

The study aims to evaluate different common assumptions inherent statistical downscaling methods 

(SDMs). The overarching goal of this study is certainly an important one. However more needs to be 

done to increase the scientific significance of this study. My few main comments are below:  

(1) Why focus on WT based SDM only? Why not choose at least one more type of statistical 

downscaling method such as Bias-correction and Spatial downscaling method, which is a 

widely used SDM. I think inclusion of at least one more SDM would allow the study to more 

appropriately address the overarching goal.  

 

REPLY: The main objective of this study is to verify and evaluate the general and structural 

statistical downscaling assumptions in order to develop a statistical downscaling ensemble 

tailored to the case study and thus end-user needs. Most studies address the general and 

structural statistical downscaling assumptions independently. This results in studies 

addressing one or some of general statistical downscaling assumptions (Dixon et al., 2016; Fu 

et al., 2018; Haberlandt et al., 2015; Hertig et al., 2017; Mendoza et al., 2016; Merkenschlager 

et al., 2017; Salvi et al., 2016; Tabari et al., 2016) and other studies addressing the structural 

assumptions by statistical downscaling of surrogate climate model runs (Bürger et al., 2012; 

Gutmann et al., 2014; Hertig et al., 2018; Maraun et al., 2018; Roberts et al., 2019; Werner 

and Cannon, 2016; Widmann et al., 2019; Yang et al., 2019) or by statistical downscaling of 

the projected climate model output (Li et al., 2017; Sørup et al., 2018; Sunyer et al., 2015; 

Vaittinada Ayar et al., 2016; Wang et al., 2016; Wootten et al., 2017). However, to objectively 

identify shortcomings of statistical downscaling methods, the verification and evaluation of 

the general and structural assumptions should be carried out simultaneously.  To the authors 

knowledge, there are yet no papers which simultaneously address the verification of both types 

of assumptions.  

 

We agree that verifying the general and structural assumptions for another SDM can be of 

interest, but such investigation is not performed in the considered study for sake of brevity. 
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(2) The SDM method needs to be described better. Please consider including the section S1 into 

the main script. 

 

REPLY: The supplementary information on the methodology of the weather typing method 

has been placed into the main script.  

 

(3) Please also clarify in greater details the novelty of this study and implications beyond the 

study domain. 

 

REPLY: We refer the reviewer to the modified introduction and conclusions.  

 

(4) I also think the manuscript can benefit from a thorough copy editing. 

 

REPLY: The quality of the manuscript has been improved.  
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HESS-2019-40 

Title: Uncovering shortcomings of a weather typing method statistical downscaling method 

Authors: Els Van Uytven, Jan De Niel and Patrick Willems  

 

We would like to thank the reviewer for the constructive feedback and comments. Answers to the 

comments have been made (italic font) and the manuscript has been changed accordingly (blue font). 

We would like to note that the manuscript has changed significantly to address the comments of all 

reviewers and  to improve the readability. 

 

Response to reviewer comments (Mohammad Sohrabi) 

This study aims at evaluating assumptions of a weather typing (WT) based statistical downscaling 

method (SDM) for precipitation and river peak flows in Belgium. The results of such studies provide 

an assessment of end user needs in choosing a right downscaling methods out of many available 

methods in terms of the cons and pros of each method and the intended use of the results. However, 

the current study for uncovering the shortcomings of a downscaling method has several serious 

shortcomings itself as listed below: 

(1) Validity of the study 

The results of this study showed that the synoptic changes (WT occurrence changes) contributed 

only 20% of the total change in daily precipitation and the change is mostly (80%) explained by 

other processes including the thermo-dynamical processes. It obviously indicates that a weather 

typing based statistical downscaling method shouldn’t be used in the region for the downscaling 

of precipitation which is mainly originated from local moisture. So, what would be the point for 

evaluating a downscaling method which cannot be used in the region? 

REPLY: The weather typing method has been published in 2011 in an international peer reviewed 

and highly ranked journal (Willems and Vrac, 2011). The paper elaborates on the downscaling 

methodology and the differences between different weather typing methods (see also comment 

4d). The paper, however, does not address the accuracy of the downscaling assumptions. Those 

assumptions have neither been verified in follow-up papers. On the occasion of the European 

VALUE COST project, the (European) statistical downscaling community has put additional focus 

on the evaluation of downscaling methods. In this context, the verification and evaluation of the 

downscaling assumptions have been conducted. Until now, no follow-up paper has indicated that 

the studied weather typing method has several shortcomings. These have only recently been 

uncovered by the verifying and evaluating the assumptions. The abstract, discussions and 

conclusions have been modified. They now question the applicability of the weather typing method 

for case studies where the precipitation changes are driven by thermodynamic processes. 

Indeed, Figure 9 in the original manuscript points out that the thermo-dynamical processes mainly 

explain the changes in the average daily precipitation amount. We note that to some extent the 

thermodynamic processes have been accounted for in the downscaling methodology, more 

specifically through the application of the Clausius-Clapeyron relation. This relation, however, only 

applies to the extreme precipitation amounts, not the average daily precipitation  amount. As also 
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suggested by one of the anonymous referees, in the modified manuscript, more focus has been put 

to the added value of the Clausius-Clapeyron relation.  

 

(2) Novelty of the study 

The statistical downscaling method (SDM) was taken from the literature without any modification: 

SD-B-7 method from Willems and Vrac (2011). The evaluation of statistical downscaling methods 

is not also new, although it is mentioned in the second line of the abstract that “Each statistical 

downscaling method (SDM) has strengths and limitations, but those are rarely evaluated”. Nine 

more comprehensive studies were mentioned in P3L15 of this paper (some of them from EU COST 

Action VALUE project for the evaluation of statistical downscaling methods) along with several 

unmentioned. A clear objective was not defined for this study. While in the abstract, only extreme 

precipitation and river peak flows were stated, the majority of the paper is about daily 

precipitation and not extremes. As an example, it was claimed (P6L12-15) that compared to the 

previous study by Brisson et al. (2011) across different stations in Belgium, the current study 

focuses on the extreme precipitation amounts. However, the presented results are more related 

to winter precipitation accumulation and percentage of wet days per WT (Figures 2 and 3). Overall, 

there is not a consistent storyline in the paper. It appears that the paper is a combination of 

several small studies (leftover results actually) and then fitting a statistical downscaling to them. 

REPLY: 

- The introduction has been modified. The modifications, amongst others, involve a different 

formulation of the objective.  

 

- The main objective of this study is to verify and evaluate the general and structural statistical 

downscaling assumptions in order to develop a statistical downscaling ensemble tailored to 

the case study and thus end-user needs. Most studies address the general and structural 

statistical downscaling assumptions independently. This results in studies addressing one or 

some of general statistical downscaling assumptions (Dixon et al., 2016; Fu et al., 2018; 

Haberlandt et al., 2015; Hertig et al., 2017; Mendoza et al., 2016; Merkenschlager et al., 2017; 

Salvi et al., 2016; Tabari et al., 2016) and other studies addressing the structural assumptions 

by statistical downscaling of surrogate climate model runs (Bürger et al., 2012; Gutmann et 

al., 2014; Hertig et al., 2018; Maraun et al., 2018; Roberts et al., 2019; Werner and Cannon, 

2016; Widmann et al., 2019; Yang et al., 2019) or by statistical downscaling of the projected 

climate model output (Li et al., 2017; Sørup et al., 2018; Sunyer et al., 2015; Vaittinada Ayar 

et al., 2016; Wang et al., 2016; Wootten et al., 2017). However, to objectively identify 

shortcomings of statistical downscaling methods, the verification and evaluation of the 

general and structural assumptions should be carried out simultaneously.  To the authors 

knowledge, there are yet no papers which simultaneously address the verification of both types 

of assumptions.  

 

- The results describing the relation between the weather types and precipitation accumulation 

or the number of wet days have been moved to supplementary information.  
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(3) Statistical analysis and extreme event definition 

Another major issue in the paper is that the results for extremes are based on a limited sample 

size. The extremes were separated based on 4 seasons and 11 weather types. How extremes are 

the selected extremes for each season and weather type? What threshold was used for defining 

extremes? Apparently, the return period of 0.1 year was chosen as the threshold. The question 

would be whether precipitation and streamflow that occur on average every month is really 

considered extreme in hydrology. Due to a small sample size after the separation per season and 

per weather type, even an extreme precipitation of a 10-year return period amounts 0.5 mm/hr 

(Figure 5). 

REPLY: 

- The independent daily and sub-daily precipitation amounts are identified using a peak over 

threshold (POT) method. More specifically, the threshold is set at 0.1 mm/h and at least 12 

hours are considered between successive events. Next the independent daily (or sub-daily 

precipitation amounts are classified in function of the occurrence (season) and associated 

weather type.  

 

- The threshold in the POT method is not return period based, but precipitation amount based. 

As indicated in above explanation, the threshold is set at 0.1 mm/h.  

 

- The seasonal time scale has been used instead of the monthly time scale as the monthly time 

scale would introduce more sampling uncertainties. In order to address the sampling 

uncertainty, the number of WTs could be further reduced. More specifically, 4 wind directions 

could be considered instead of 8.  

 

We have restricted the analysis to the winter season as De Niel et al. (2019) have shown that 

peak flows in the studied catchment mainly occur during winter season. We remark that the 

hydrological impact analysis is removed from the manuscript, but focus remains on the 

winter season. By considering only winter season, we focus on solely stratiform precipitation 

events. By combining the results for all seasons, stratiform and convective events would have 

been considered together. This would have been inaccurate as these events have a strongly 

different nature and manner of modelling. Stratiform and convective events have moreover 

different precipitation drivers. 

(4) Justification of the selected methods 

(a) Why was the Lamb weather classification used in this study, while k-means clustering is 

regarded as one of the best-performing classification schemes over western Europe (e.g., Beck 

and Philipp, 2010; Casado et al., 2010; Garcia-Valero et al., 2012; Broderick and Fealy, 2015). 

REPLY: 

Philipp et al. (2016) provide an overview on large scale atmospheric circulation classification 

systems. In summary, the classification systems are divided into subjective methods, threshold-

based methods, methods based on principal component analysis, leader algorithms, hierarchical 

clustering analysis, optimization algorithms, mixture models and methods based on random 

processes. K-means methods are optimization algorithms, whereas the Jenkinson-Collison 

modified Lamb weather types are threshold based methods. The Jenkinson-Collison weather types 

have the advantage to be easier understood, as indicated in the paper of Brisson et al. (2011) and 
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Otero et al. (2018).  Brisson et al. (2011) also claim that the Jenkinson-Collison Lamb WTs are 

physically more correct. We would like to point out that these WTs remain presently frequently 

used (Ästrøm et al., 2016; Manola et al., 2019).  

 

(b) De Niel et al. (2018) identified a minor uncertainty contribution by the hydrological models in 

the peak flow changes. Among the tested hydrological models in that study, why NAM was 

selected for the current study? 

REPLY: As the uncertainty contribution arising from the hydrological models is small, the reliance 

of the peak flow discharges does not involve large uncertainties. This is however not the case for 

the simulation of low flow discharges in river catchments. This has also been observed by 

Vansteenkiste et al. (2014), who studied the influence of hydrological model structures for the 

same river catchment. Moreover, the NAM rainfall runoff model is applied in many parts of the 

world. 

We would like to remark that the hydrological impact analysis has been removed from the 

manuscript. 

 

(c) Why were these three reanalysis datasets selected for this study? Why didn’t they use the E-

OBS observations (1950-2018) which has similar data coverage to the ERA40 reanalysis dataset 

(1948-2002)? 

REPLY:  E-OBS data is a land-only re-analysis dataset. For the WT typing algorithm, mean sea level 

pressure is also required for locations in the Atlantic Ocean and North Sea.  

 

(d) Several downscaling methods were developed and evaluated by Willems and Vrac (2011). Why 

was the SD-B-7 method selected for this study? 

 

REPLY: Willems and Vrac (2011) present two types of statistical downscaling methods: 

precipitation change factor methods and weather typing methods. For each type, a set of methods 

is presented.  For the weather typing methods, more specifically, differences in the methods involve 

the definitions for the analogue days.  In total, 7 weather typing methods have been presented, of 

which only one method (SD-B-7) is able to produce precipitation amounts outside the range of 

observations. As an intensification of the precipitation extremes is expected, the extrapolation of 

the precipitation amounts outside the range of observations is a requirement. Consequently, 

Willems and Vrac (2011) advice the application of that method for climate change impact analysis.  

 

(5) Weather types 

(a) The climate model results for WTs are largely biased. Although the bias was reported in the 

text regarding the mean scenario of the climate models, the difference goes up to 20% for the 

anti-cyclonic (A) WT and 30% for west (W) WT: none of the climate models can even reach the 

frequency of A WT estimated by the reanalysis datasets. Considering these large biases, how 

reliable would be the downscaling results based on these WTs? The climate models with a coarse 

resolution are expected to reasonably simulate these large scale patterns, and so what might be 
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the main reason for such a bias in climate model results? I would be interesting to investigate why 

the GCMs have the largest uncertainty for the W WT as the main large scale driver of winter 

precipitation over western Europe? 

REPLY:   

- Climate model ensembles are often designed based on the climate model performance for current 

climate. However, there is yet no proof that better performing models produce more realistic 

projections. As stated by Mendlik and Gobiet (2016):  

“In the literature, models are often selected based only on their performance in the past, without 

regarding spread in the climate change signals, with the aim to use only the “best” models. 

However, correlations between past performance and future climate change signals are known to 

be very weak, which means that there is no clear indication that the best performing models in the 

past are most realistic with regard to climate change signal. In addition, the ranking of models 

with regard to performance in the past is highly dependent on the definition of the performance 

measure, which leads to a very subjective ranking.” 

- Indeed, as discussed in the introduction of Phitan et al. (2016), the circulation biases decrease at 

higher horizontal climate model resolution. In order to focus on the main objective of this paper, 

the influence of the horizontal resolution on the WTs is not studied in the manuscript. The influence 

of the resolution on the biases has, however, been added to the discussion on the origin of the 

biases.  

- A brief discussion on the origin of the biases in the W and A WTs has been added to the 

manuscript. In summary, the North Atlantic storm track has in the climate model simulations a 

zonal orientation rather than  SW-NE tilt (Phitan et al., 2016, Zappa et al., 2014). The zonal 

orientation results in a pronounced meridional pressure gradient, creating zonal westerly flows 

which in turn impede the occurrences of anticyclones (Stryhal and Huth, 2019). Biases in the 

blocking frequency might also be explained by the climate model resolution (Anstey et al., 2013; 

Scaife et al., 2011, Woollings et al., 2018).  

(b) What is the driver for the undefined weather type or the atmospheric state characterized by a 

weak flow? A sensitivity test of unclassified days on grid sizes and resolutions by Demuzere et al. 

(2009) showed that the number of these days decreases with grid resolution. Was that the case 

for this study as well? And generally, how will the different resolutions of reanalysis data from 2◦ 

to 5◦ explain the discrepancy between reanalysis-based WTs? 

REPLY:   

- We note that the same WT classification system is applied to all seasons. The relative occurrence 

frequencies are, however, seasonally dependent. A difference between winter and summer would 

be the occurrence frequency of the undefined WTs. More specifically, the occurrence frequency of 

the undefined weather types in winter season is negligible, while for summer season the undefined 

weather types represent at least 10% of the summer days. This is in agreement with the results of 

Otero et al. (2018).  

- No sensitivity analysis on the grid resolution has been conducted as this has already performed 

by Demuzere et al. (2009).    
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- The application of the 16 point grid with a 10° resolution in the zonal direction and a 5° resolution 

in meridional direction allows the comparison with previous studies. We note a similar motivation 

by Demuzere et al. (2008) and Otero et al. (2018).   

 

(c) A separate set of WTs was produced for each season in the current study. What will be the 

influence of the seasonal cycle on the classification produced as the MSLP fields are clustered? 

REPLY:   

We note that the same WT classification system is applied to all seasons. The relative occurrence 

frequencies are, however, seasonally dependent. In order to keep the manuscript condense, only 

winter season is studied. We refer the reviewer also to our reply on comment 5(b). 

 

(6) Statistical downscaling by analogues 

The CMIP5 GCMs provide data at a daily time scale. Were daily precipitation data from the GCM 

scenario period corresponded to observed sub-daily precipitation? If so, how are the results 

influenced by the difference in the time scale? Were the climate change signals assumed to be 

time scale dependent? 

REPLY:   

- In the case that the observed precipitation time series has a sub-daily time step, the sub-daily 

precipitation amounts are aggregated to daily precipitation amounts. Next, for each season 

and WT, the exceedance probabilities for the daily precipitation amounts of wet days are 

calculated . In a similar way, for each of the projected wet days, the exceedance probabilities 

of the projected daily precipitation amounts are calculated. Thereafter, an analogue wet day 

is defined as an observed wet day occurring in the same season, having the same weather type 

and best approximating the exceedance probability of the projected day precipitation amount. 

To produce the downscaled time series, the daily precipitation amount for the observed 

analogue day is resampled. If the observed precipitation time series had a sub-daily time step, 

the sub-daily precipitation amounts for the analogue day are re-sampled. In other words, 

analogues are defined by comparing the exceedance probabilities for the observed daily 

precipitation amounts with the exceedance probabilities for the projected daily precipitation 

amounts.  

 

- Since no sub-daily temperature time series are available, the CC relation is investigated at daily 

time scale. This is also the case when sub-daily precipitation amounts are available. The scaling 

rates identified at daily time scale are thereafter applied to the sub-daily precipitation 

amounts, assuming the changes at daily time scale are applicable at sub-daily time scale. 

 

(7) Scaling by the Clausius-Clapeyron relation 

(a) Clausius-Clapeyron relation assumes that extreme precipitation amounts are controlled by 

local moisture availability. How local is moisture availability? The developed extreme 

precipitation-temperature scaling relations for central Belgium were used for river peak flow 

simulations in a catchment in the northeast of Belgium. How representative would be the 
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scaling relations developed in central Belgium for northeast Belgium considering the local 

moisture availability assumption? 

 

REPLY:   

 

In a study for the Flemish Environment agency, De Niel and Willems (2016) investigated the 

spatial and temporal variations in precipitation time series for 43 rain gauges in Flanders. Their 

results indicated significant differences between west (coastal area) and east (Antwerp, 

Flemish Brabant and Limburg). A study investigating the spatial and temporal variation in the 

temperature time series in Flanders has yet to be conducted. As Uccle is situated in central 

Belgium and is located approximately 100 km from the Grote Nete catchment, it is expected 

that application of the hydrometeorological time series of the RMI station in Uccle for case 

studies in the Grote Nete catchment involves only small uncertainties.  Moreover, we would 

like to point out that the application of the short observed time series, as is the case for the 

stations in the Grote Nete catchment, also involves uncertainties. 

 

We would like to remark that the hydrological impact analysis has been removed from the 

manuscript. Hence, this comment is not applicable to the modified manuscript. 

 

(b) Dry-bulb temperature was used here for developing scaling relations, whereas several recent 

studies (e.g., Wasko et al., 2018) recommended to use dew point temperature than dry-bulb 

temperature for Clausius-Clapeyron relation, as it is a better measure of precipitation changes 

because of increases in the moisture holding capacity of the atmosphere (Lenderink et al., 

2011). 

 

REPLY:   

 

Indeed, several studies have pointed out that dew point temperature is a better predictor than 

the average daily temperature (Van de Vyver et al., 2019; Wasko et al., 2018). However, 

compared to average daily temperature, time series for the dew point temperature are not 

readily available for hydrological impact modellers. 

 

The consideration of average daily temperatures rather than dew point temperatures has been 

added as a potential shortcoming of this study.   

(8) Evaluation of greenhouse gas scenario assumption 

To evaluate the greenhouse gas scenario assumption of the SDM, changes in the WT occurrences 

and average daily temperature as a function of the four RCPs were analyzed. However, this 

assumption might be tested for precipitation which is statistically downscaled in this study. 

Besides, the increase of the change in air temperature with greenhouse gas emissions is trivial. 

What is the relation of changes in warm extremes (with return periods ranging between 0.1 and 

10 years) (Figures 7 and 8) to the downscaling of precipitation performed in this study? Though 

irrelevant, for warm extremes the changes in maximum temperature should be analyzed instead 

of mean daily temperature. P7L9-10: “To check whether the predictor simulation results are 

adequate and accurate, a comparison is made between the climate model simulated and observed 

daily average temperature statistics”. Is predictor warm extremes? It seems that the full range of 

temperature was used for the scaling (Figure 6). 
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REPLY:   

As suggested, the sensitivity of the predictand to the greenhouse gas scenarios and the increase in 

greenhouse gas scenarios is verified for the predictand. Schoof (2013) points out that some 

predictor variables do not respond to the greenhouse gas scenarios, while others do. This means 

that a predictand response is achieved by a smart choice of predictors. We note that the definition 

of the greenhouse gas scenario assumption has therefore been changed. The response of the WTs 

to the different greenhouse gas scenarios has been moved to supplementary information, but is 

used as background information for the discussion of the results. 

 

(9) Evaluation of the stationarity assumption 

For the evaluation of the stationarity assumption, the extreme precipitation per weather type was 

compared for different sub-periods of 10 years length between 1901 and 1991. Use of a 10-year 

sub-period for this purpose is questionable as it is far smaller than a natural climate cycle, and 

hence the results are greatly influenced by natural climate variability. Isn’t trend analysis a more 

robust approach for testing the stationarity? How large is the uncertainty in the presented results? 

In my view, a random selection of a dry weather type or and performing the same analysis or 

doing the would reveal the reliability of this results? Would performing the decadal analysis of 

extreme precipitation without considering the WTs lead to similar results? This is because based 

on the results of this study, weather types shouldn’t be related to precipitation formation in the 

region (see comment 1). 

REPLY:   

- We agree that 10 years of data is rather short with respect to the natural cycle. In that context, 

the results are indeed influenced by the climate variability. We note that the methodology for the 

verification of the stationarity assumption has been altered in the modified manuscript. In the 

modified manuscript, the surrogate climate model runs are 20years long. 

(10) Evaluation of the method specific assumptions 

The evaluation of the SDM method specific assumptions was only performed for winter as the 

peak flows in the selected catchment mainly occur in the winter (P5L12-14). As mentioned in 

P4L30, “Application of this scaling rate to precipitation intensities is valid assuming that extreme 

precipitation amounts are controlled by local moisture availability and are not influenced by large 

scale atmospheric circulation patterns.” However, the influence of the large scale circulations on 

winter precipitation in western Europe is well documented in the literature. 

- The influence of large scale circulation patterns on the historical precipitation amounts is indeed 

well documented in literature (Tabari and Willems, 2018; Willems, 2013). The discussion has been 

extended and references have been added to the discussion of the stationarity assumption. 

 

(11) Interpretation and discussion of the results 

(a) The results were interpreted and discussed in a way that the authors expected the results be. 

For example, in P12L20-25, the authors attribute the difference between their results and those 

of Otero et al. (2018) for changes in the anti-cyclonic WT to considered climate model ensemble, 

the location of the 16 points grid for the WT classification system and, the reference and scenario 
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periods. I am wondering why these differences between the two studies (this study and Otero et 

al., 2018) are only important for the changes in the anti-cyclonic WT and not for the changes in 

cyclonic, west and southwest WTs! Another example is in P15L28-31, where the authors mention 

only the results for RCP4.5 and RCP8.5 and not all RCPs to show that changes in the WT 

occurrences and precipitation are magnified under increasing greenhouse gas scenarios. Looking 

at the results, changes in the occurrence of W WTs are far smaller for RCP8.5 compared to RCP6.0 

(P12L5). Also, there is not a clear pattern for the changes in cyclonic (C) WTs where changes are 

equal to 5% for RCP 2.6, - 3% for RCP 4.5, -6% for RCP 6.0 and -5% for RCP 8.5. It was speculated 

in P12L8-10 that these discontinuities in the uni-directionality of the changes may be explained by 

the smaller ensemble size for RCP 6.0 compared to the other RCPs, and/or by the different RCP 

sub-ensemble compositions. This issue can be easily checked by selecting the same GCMs for 

different RCPs. Why isn’t this an issue for temperature changes (P12L28-30). 

 

REPLY: 

- Under global warming, climate models project a poleward shift of the Northern Hemisphere jet‐

streams and storm tracks, resulting increase occurrence of zonal flows and less blocking 

occurrences (Barnes and Screen, 2015; Santos et al., 2016; Stryhal and Huth, 2019; Woollings et 

al., 2018). These projections correspond with an increased occurrence of W and SW WTs and a 

decreased occurrence of A WTs. This physical background information has been added to the 

discussion of the response of the predictors and the predictand to the greenhouse gas scenarios.  

- Schoof (2013) points out that not all variables respond to the greenhouse gas scenarios.  While 

the absolute temperature values increase, the absolute values of the mean sea level pressure do 

not change. For mean sea level pressure, changes occur in the spatial patterns. 

- The monotonicity of the changes for increasing greenhouse gas scenarios is not guaranteed when 

the ensemble compositions and sizes differ. Moreover, in some cases, for the same ensemble 

composition, the monotonicity of the changes for increasing greenhouse gas scenarios might be 

masked by the climate model uncertainties and the stochastic uncertainty, this is the uncertainty 

related to the variability of the climate system (Van Uytven and Willems, 2018).  

(b) In several places in the text, internal variability was argued as the reason for unexplained 

behaviors in the results: for example, internal variability as the reason for the large bias of climate 

models for WT simulations and also internal variability among the climate models as the reason 

for discontinuities in the uni-directionality of the changes with greenhouse gas scenarios. These 

statements might be supported by the results or the literature. 

- References on the influence of the influence of the internal variability and thus the choice of the 

reference period have been added to the manuscript.   

- We refer the reviewer also to our reply on comment 11a 

 (c) The results for the changes in the frequency of WTs showed that the frequency of the wet WTs 

will increase under climate change and the frequency of the dry WTs will decrease. It is worth 

discussing what physical explanations are behind the increasing frequency of westerlies and the 

decreasing frequencies of easterlies under climate change. How might global warming decrease 

the frequencies of cyclonic and anticyclonic WTs? The response to these important questions 

would be beneficial for improving weather typing based SDMs. 

REPLY:  
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Under global warming, climate models project a poleward shift of the Northern Hemisphere jet‐

streams and storm tracks, resulting increase occurrence of zonal flows and less blocking 

occurrences (Barnes and Screen, 2015; Santos et al., 2016; Stryhal and Huth, 2019; Woollings et 

al., 2018). Woolings et al. (2018) also list references reporting an eastward shift of the blocking 

activity. These physical explanations have been added to the discussion of the response of the 

predictand to the greenhouse gas scenarios.  

 

(d) “Stationary is dead” is now a fact for hydrologists. What would be the contribution of this part 

of analysis to the existing knowledge? Rather than discussing the natural climate anomalies for 

this single location in western Europe in section 4.5, it would be more useful to discuss the drivers 

for such anomalies, as several global studies regarding these historical natural anomalies of the 

climate system have already been published. P13L21-22: “the 10 minutes precipitation amounts 

with a 1 year return period measures 6mm/h for the negative anomaly, whereas it is 14mm/h for 

the positive anomaly”. What might be the reason for the positive and negative anomalies in W 

WT and the related extreme precipitation? P13L20 & P13L25: “The difference between the 

positive and negative precipitation anomaly is especially visible for the W WTs and this for all 

aggregation levels between 10 minutes to 1 day. For the C WTs, no differences appear between 

the amounts for the positive and negative anomaly”. Why is W WT based extreme precipitation 

timescale-dependent, but not the C WT-based extreme precipitation? 

REPLY: A discussion on the drivers of the precipitation anomalies has been added to the results of 

the stationarity assumption. We note that the verification of the stationarity assumption has been 

conducted changed in the modified manuscript.   

(12) Reanalysis data uncertainty 

The uncertainty related to the choice of reanalysis data for WTs was considered. Given that the 

reliability of reanalysis products sharply decreases back in time (Ferguson and Villarini, 2013; 

Krueger et al., 2013) due to assimilating sparse observations and starting from a more uncertain 

initial state (Delaygue et al., 2019), a larger uncertainty of reanalysis data is expected for earlier 

years of the study period. Was the uncertainty calculated for the entire analysis period in this 

study? Does the uncertainty decrease as time progresses from far past to near past? 

REPLY:  

The re-analysis datasets provide data for different ranges of time. However, the comparison 

between the different re-analysis datasets is consistently performed using the same range of data. 

The manuscript has been modified to better indicate the prior. 

The time evolution of the assimilation uncertainties in the re-analysis datasets has not been 

studied. We agree that this can be of interest, but such investigation is not performed in the 

considered study for sake of brevity. We also think it would divert the scope from the current main 

focus. 
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Specific comments  

P5L19: The evapotranspiration data are not daily measured data for 100 years, are they? Is it 

reference evapotranspiration or potential evapotranspiration? If the former is the case, with grass 

or alfalfa as the reference crop? 

REPLY: We remark that the hydrological climate change impact analysis is removed from the 

manuscript for sake of brevity.    

 

P7L15: 33 unique control runs were used in this study. I think the number of independent model 

runs should be lower than that!? How was the dependency between climate models investigated? 

REPLY: We agree that the number of independent model runs is smaller than the actual number of 

included model runs in the ensemble. The dependency between the climate model runs has not 

been investigated. As the word “unique” is confusing, this word has been removed from the text.    

 

P7L16-17: The authors found that the choice of the reference period (control period) influences 

the evaluation of the perfect prognosis assumption. It would be interesting to present the results 

of the sensitivity analysis to the control period in the Supplementary Information. 

REPLY: While we do agree that this study can be of interest, it is not performed in the considered 

manuscript for sake of brevity as well as since it would divert the scope from the current main 

focus. References on this topic have been added to the main manuscript.  

 

Figure 12: Does grey area show the 5th-95th percentile range of climate change uncertainty? 

REPLY: The 5th-95th percentile range of Figure 12 in the original manuscript represents the 

uncertainties associated with the surrogate climate model runs. The surrogate climate model runs 

are subsets of the observed time series. Hence, the 5th-95th percentile range represents the 

stochastic uncertainty, i.e. uncertainty related to the internal variability of the climate system.  

 

Table 2: Were the same GCMs used for all climate variables studied?  

REPLY: The same GCMs were used for all climate variables studied.  

 

Used references not present in the reference list of the paper 

REPLY: The reference list has been updated and completed. 
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Abstract. In recent years many methods for statistical downscaling of the precipitation climate model outputs have been

developed. Statistical downscaling is performed under general and method specific (structural) assumptions, but those are

rarely evaluated simultaneously. This paper illustrates the verification and evaluation of the downscaling assumptions for a

weather typing method. Using observations and the output of a global climate model ensemble, the skill of the method is

evaluated for precipitation downscaling in central Belgium during winter season (December to February). Shortcomings of5

the studied method have been uncovered and are identified as biases and a time-variant predictors-predictand relation. More

specifically, the predictors-predictand relation is found informative for the historical observations, but becomes inaccurate for

the projected climate model output. The latter inaccuracy is explained by the increased importance of the thermodynamical

processes in the precipitation changes. The results therefore question the applicability of the weather typing method for the

case study location. Besides shortcomings, the results also demonstrate the added value of the Clausius-Clapeyron relation for10

precipitation amount scaling. The verification and evaluation of the downscaling assumptions are a tool to design a statistical

downscaling ensemble tailored to end-user needs.

Copyright statement. TEXT

1 Introduction

For a 1.5◦C temperature rise, the worldwide direct flood damage is estimated to increase by 160%-240% (Dottori et al., 2018).15

To minimize that potential impact, our society opts for two complementary strategies: climate mitigation and climate adap-

tation (Stocker et al., 2013). Consequently, vulnerability, impact and adaptation studies find ground in our society (Alfieri

et al., 2016; Åström et al., 2016; Brekke et al., 2009; Termonia et al., 2018; Vansteenkiste et al., 2014; Vermuyten et al., 2018;

Willems, 2013). These studies require projected hydro-meteorological time series, using the output of global climate models

as primary information. However, the direct application of this output for impact modelling is hindered by climate model bi-20

ases (Kotlarski et al., 2014; Tabari et al., 2016) and by the mismatch in temporal and spatial resolutions between the climate

model output and the time series required for impact modelling (Cristiano et al., 2018; Salvadore et al., 2015). Therefore,

statistical downscaling or dynamical downscaling is applied. The statistical downscaling approach bridges the resolution gap
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through statistical relations between the predictors and predictand, whereas in the dynamical downscaling approach regional

and limited area climate models (RCMs and LAMs, respectively) are developed. Despite the refined resolution of RCMs and25

LAMs, their climate model output remains biased and requires bias correction (Ehret et al., 2012; Maraun, 2016; Teutschbein

and Seibert, 2012). Both downscaling approaches have strengths and shortcomings, arising from their underlying assump-

tions (Casanueva et al., 2016; Flaounas et al., 2013; Le Roux et al., 2018; Maraun et al., 2010; Vaittinada Ayar et al., 2016).

The statistical downscaling approach builds on four general assumptions (Benestad et al., 2008; Maraun et al., 2010;30

Maraun and Widmann, 2018; Schoof, 2013):

– the relation between the predictors and predictand is relevant (referred to as the informative assumption). This

is of importance in the development of new statistical downscaling methods (SDMs), which requires the selection of

predictors (Fu et al., 2018; Sachindra et al., 2018; Wilby and Wigley, 2000; Yang et al., 2017). The selected predictors

should relate to the physical processes explaining the predictand changes. Precipitation, more specially, responds to35

large scale atmospheric circulation and thermodynamical laws (Emori and Brown, 2005; Kröner et al., 2017; Santos

et al., 2016) and, hence, sea level pressure, geopotential height, relative humidity and/or (dew point) temperature are

common predictors (Maraun and Widmann, 2018).

– the predictors are adequately and accurately simulated by the climate model runs (referred to as the perfect

prognosis assumption. The evaluation of this assumption is foremost performed under the name bias analysis. The bias40

in the predictors depends, among others, on the model resolution, the parametrisation schemes, the internal variability

and the choice of the reference period (Anstey et al., 2013; Arakawa, 2004; Davini et al., 2017; Deser et al., 2012; Fadhel

et al., 2017; Hartung et al., 2017; Prein et al., 2015; Rybka and Tost, 2014; Tabari et al., 2016; Vanden Broucke et al.,

2018; Watterson et al., 2014).

– the relation between the predictors and the predictand remains time-invariant (referred to as the the stationarity45

assumption). This means that the relation between the predictors and the predictand, which has been established using

historical observations, remains applicable under climatic changes. Of all assumptions, this assumption is the most

difficult one to validate as no future observations are yet available (Dixon et al., 2016; Lanzante et al., 2018; Maraun and

Widmann, 2018; Salvi et al., 2016; Wang et al., 2018).

– the predictand is sensitive to the greenhouse gas scenarios. Schoof (2013) has pointed out that one predictor vari-50

able could strongly respond to the greenhouse gas scenarios, while another variable would not. This observation is, for

instance, applicable to changes in temperature and mean sea level pressure, respectively. Moreover, due to the internal

variability of the climate system and the climate model related uncertainties, the response of the predictor to the green-

house gas scenarios is often masked (Van Uytven and Willems, 2018). Hence, the response of the predictand to the

greenhouse gas scenarios is governed by a smart choice of predictors.55
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Alongside the general statistical downscaling assumptions, each SDM has method specific or structural assumptions.

They are encapsulated in the downscaling methodology, create the method strengths and limitations, and are responsible for

the statistical downscaling uncertainty contribution. An overview of commonly applied SDMs for precipitation downscaling

and their strengths and limitations is provided by Hewitson et al. (2014), Maraun et al. (2010), Maraun and Widmann (2018)

and Sunyer et al. (2015).60

The main objective of this paper is to simultaneously verify and evaluate the general and structural statistical downscaling

assumptions. Most studies address the general and structural statistical downscaling assumptions independently. Hence, there

are studies addressing one or some of general statistical downscaling assumptions (Dixon et al., 2016; Fu et al., 2018; Haber-

landt et al., 2015; Hertig et al., 2017; Mendoza et al., 2016; Merkenschlager et al., 2017; Salvi et al., 2016; Tabari et al., 2016)65

and other studies addressing the structural assumptions by statistical downscaling of surrogate climate model runs (Bürger

et al., 2012; Gutmann et al., 2014; Hertig et al., 2018; Maraun et al., 2018; Roberts et al., 2019; Werner and Cannon, 2016;

Widmann et al., 2019; Yang et al., 2019) or by statistical downscaling of the projected climate model output (Li et al., 2017;

Sørup et al., 2018; Sunyer et al., 2015; Vaittinada Ayar et al., 2016; Wang et al., 2016; Wootten et al., 2017). To objectively

identify shortcomings of statistical downscaling methods, the verification and evaluation of the general and structural assump-70

tions should however be performed simultaneously. To the authors knowledge, there are yet no papers which simultaneously

address the verification of both types of assumptions.

In this paper, the verification and evaluation of the general and structural assumptions is illustrated for a weather typing (WT)

SDM for the purpose of climate change impact modelling on precipitation in Belgium during winter (December to February).75

The studied WT SDM is referred to as SD-B-7 by Willems and Vrac (2011). Downscaling is performed in three steps. In the

first step, weather types are identified based on the mean sea level pressure patterns. In the second step, the relation between the

predictors (weather types) and predictand (point precipitation) is established using analogues. In the last step, the precipitation

amounts are scaled following the Clausius-Clapeyron relation. Overall strengths would emerge from the physical background

of the SDM (Shepherd et al., 2018).80

This paper is organised as follows. Section 2 introduces the studied SDM and the hydro-meteorological data. Section 3

outlines the verification of the downscaling assumptions and corresponding results and discussions are included in Section 4.

Section 5 summarizes the main findings and makes suggestions for future research.

2 Statistical downscaling methods, case study and data85

2.1 The weather typing method

The considered WT method is the method referred to as SD-B-7 by Willems and Vrac (2011). This method has been selected

over the other WT methods as it anticipates the intensification of extreme precipitation amounts. The method downscales
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the daily gridded climate model output to point time series with a time step equal to the observed time series using a three

step approach. In the first step, the Jenkinson-Collison automated Lamb WT classification system is applied and the WTs are90

identified. In the second step, downscaled precipitation time series are produced using WT analogues. In the last step, the

precipitation amounts are scaled using the Clausius-Clapeyron (CC) relation.

Step 1: Jenkinson-Collison automated Lamb WT classification scheme

95

As shown in Figure 1, a 16-point grid is centered around the study area. Assuming pi is the mean sea level pressure (MSLP) in

point i of the 16 point grid andψ the latitude of the study area, then the southerly flow (SF ), westerly flow (WF ), total flow (F ),

southerly shear vorticity (ZS), westerly shear vorticity (ZW ) and total shear vorticity (Z) are calculated as follows (Jenkinson

and Collison, 1977; Jones et al., 1993; Philipp et al., 2016):

SF =
1

cos(ψ)
(0.25(p5 + 2p9 + p13))− 1

cos(ψ)
(0.25(p4 + 2p8 + p12)),

WF = 0.5(p12 + p13)− 0.5(p4 + p5),

F = (SF 2 +WF 2)1/2,

ZS =
sin(ψ)

sin(ψ− 5)
(0.25(p6 + 2p10 + p14))− sin(ψ)

sin(ψ− 5)
(0.25(p5 + 2p9 + p13))− sin(ψ)

sin(ψ− 5)
(0.25(p4 + 2p8 + p12))+

sin(ψ)

sin(ψ− 5)
(0.25(p3 + 2p7 + p11)),

ZW =
sin(ψ)

sin(ψ+ 5)
(0.50(p15 + p16)− 0.50(p8 + p9)) − 0.50× cos2(ψ)× (0.50(p8 + p9)− 0.50(p1 + p2)),

Z = ZS+ZW

(1)100

The flow direction is based on an 8 direction compass (N , NE, E, SE, S, SW , W , NW ) and is calculated as follows:

1

tan(WF/SF )
(2)

If the outcome of Equation (2) is positive, 180◦ is added.

Based on a comparison of the flow indices and the flow direction, 27 different WTs are identified. The comparison of the105

flow indices considers following criteria:

– |Z|< F : pure directional WTs (W , NW , N , NE, E, SE, S, SW )

– |Z|> 2F and Z >0: pure cyclonic WT (C)

– |Z|> 2F and Z <0: pure anti-cyclonic WT (A)

– F < |Z|< 2F and Z >0: hybrid cyclonic WTs (HCW , HCNW , HCN , HCNE, HCE, HCSE, HCS, HCSW )110
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– F < |Z|< 2F andZ <0: hybrid anti-cyclonic WTs (HAW ,HANW ,HAN ,HANE,HAE,HASE,HAS,HASW )

– F < 6 and Z < 6: undefined WT (U )

These 27 WTs are regrouped to 11 WTs by equally dividing the hybrid WTs over the corresponding non-directional WTs

(cyclonic or anti-cyclonic) and directional WTs. Although this might lead to information loss (Schiemann and Frei, 2010), it is

in line with previous case studies for Belgium (Brisson et al., 2011; De Niel et al., 2017; Demuzere et al., 2009; Willems and115

Vrac, 2011).

Step 2: Statistical downscaling by analogues

Downscaled time series are produced by finding analogues for the projected climate model output. In a first step, the bias in120

the number wet days is removed using a climate model dependent and seasonal dependent wet day threshold. In the next step,

the downscaled precipitation time series are constructed by WT analogues.

The first criteria defining an analogue wet day are the season and WT. Consider day d of the projected climate model output,

corresponding with season s, WT wt and a daily precipitation amount p. Then, the search for an analogue day is conducted125

among the observed wet days in season s for which the WT equals wt. Besides the season and the WT, the exceedance prob-

ability of the daily precipitation amount p is considered. More precisely, the exceedance probability is calculated using the

total daily precipitation amounts of wet days occurring in season s and corresponding with the WT wt. As such, the analogue

precipitation amount for day d equals the daily precipitation amount of the observed time series with the closest exceedance

probability.130

In the case that the observed precipitation time series has a sub-daily time step, the sub-daily precipitation amounts are

aggregated to daily precipitation amounts. Next, for each season, for each WT, the exceedance probabilities for the observed

daily precipitation amounts of wet days are calculated based on the total daily precipitation amount. After determining the

analogue day, the sub-daily precipitation amounts of the analogue day are re-sampled to produce the downscaled time series.135
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Step 3: Precipitation scaling by the Clausius-Clapeyron relation

Besides large scale circulation patterns, precipitation also responds to thermodynamical processes. The latter processes are

accounted for by precipitation scaling following the CC relation. The CC relation describes the water holding capacity in air140

masses, which more specifically increases by 7% per degree warming. Application of this scaling rate to precipitation intensi-

ties is valid assuming that extreme precipitation amounts are controlled by the local moisture availability and are not influenced

by the large scale atmospheric circulation patterns. In reality, however, physical processes interact and also higher scaling rates

are found (Barbero et al., 2018; Blenkinsop et al., 2018; Manola et al., 2018; Lenderink et al., 2017; Zhang et al., 2017). The

CC relation is determined on annual time scale. The temperature rise, to be applied for the CC scaling, is computed using a145

seasonal quantile based approach.

Although several studies have pointed out that dew point temperature is a better predictor than the average daily tempera-

ture (Van de Vyver et al., 2019; Wasko et al., 2018), average daily temperatures have been considered. Remark that data for

average daily temperatures are more readily available for hydrological impact modellers.150

2.2 Meteorological data

For the main station of the Royal Meteorological Institute in Uccle, precipitation and average temperature time series are

available for the period 1901-2000 with a 10-minutes and daily time step, respectively. The historical WTs are identified using

the daily gridded MSLP output for the EMULATE, ERA40 and NCEP/NCAR re-analysis datasets(Table 1). Hence, this study

accounts for the recent findings of Horton and Brönnimann (2018) and Stryhal and Huth (2017). Both studies indicate that155

re-analysis datasets introduce uncertainties in the classification of WTs and the statistical downscaling step. By using daily

WTs, rapidly occurring changes in the large scale atmospheric circulation might be neglected (Åström et al., 2016). However,

the winter season is of interest and for this season no rapidly evolving circulation changes, i.e. within one day, are expected.

The climate model ensemble, presented in Table 2, includes 93 CMIP5 climate model runs of which 33 control runs. For the160

climate change impact analysis, all four representative concentration pathways (RCPs) are considered, where the RCP 2.6, 4.5,

6.0 and 8.5 sub-ensembles include 20, 28, 15 and 30 climate model runs, respectively. For each climate model run, daily MSLP,

precipitation and average temperature output are extracted for 1961-1990 (control period) and 2071-2100 (scenario period).

The precipitation and temperature data are extracted for the grid cell covering Uccle, whereas MSLP, required for the WT

identification, is extracted for a larger area covering Uccle using the 16-point grid of the WT classification system (Figure 1).165

3 Verification of the statistical downscaling assumptions

The verifications of following assumptions are performed for winter season, including the months December, January and

February.
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3.1 Informative assumption

The informative assumption defines the existence of an informative and physically based relationship between the predictors170

and predictand. The predictors of the WT method are the average daily temperatures and WTs.

In order to examine the informative assumption for the WTs, the WT occurrences and the precipitation statistics related

to the individual WTs are determined for the period 1961-1990. The studied precipitation statistics involve the precipitation

accumulation, the number of wet days and the empirical distribution of independent extreme precipitation amounts. The in-175

dependent 10-minutes, hourly and daily precipitation amounts are determined using a peak-over-threshold method, setting the

threshold at 0.1 mm/h and defining at least 12 hours between successive events (Willems, 2000).

In order to examine the informative assumption for the average daily temperatures, the existence of the CC relation is ver-

ified. The independent precipitation amounts are determined using the 10-minutes precipitation amount time series and the180

daily average temperature time series between 1901 and 2000. First, the 10-minutes precipitation events in the time series are

identified using a peak-over-threshold method (threshold = 0.1 mm/h and time between successive events >12 hours). Next,

the precipitation events and corresponding temperatures are classified in moving temperature bins and per bin sorted from

low to high (Manola et al., 2018). Finally, the magnification of the 90th, 95th and 99th percentile precipitation amount for

increasing temperature bins is investigated.185

3.2 Perfect prognosis assumption

The verification of the perfect prognosis assumption is especially of importance for the WT method. More specifically, the

application of the WT analogues follows the principle of perfect prognosis methods. This means that a statistical relation is

first defined between observed predictors and observed predictand. Thereafter, the statistical relation is applied to the projected190

climate model output. Consequently, the calibrated statistical relation is not tailored to biases in the climate model output.

The scaling of the precipitation amounts by the CC relation, on the contrary, follows the principles of model output statistical

methods. Those methods implicitly assume that the climate model biases are time-invariant and that through the application of

changes the biases in the projected climate model output are cancelled by the biases in the historical climate model output.

195

The verification of the perfect prognosis assumption involves a comparison between the observed and climate model simu-

lated WT occurrences. The verification is conducted over the period 1961-1990 using the historical output of 33 global climate

model runs (Table 2).
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3.3 Stationarity assumption200

To verify the stationarity assumption, the contributions of the dynamical and thermodynamical processes governing precip-

itation changes are studied over time. To this end, the observed period (1901-2000) is split into different sub-periods. The

sub-periods are 20 years long and range between 1901 and 1920, 1921 and 1940, 1941 and 1960, 1961 and 1981 and 1981

and 2000. Each sub-period is thereafter considered as the scenario period for surrogate climate model runs. For instance, when

1901-1920 is selected as scenario period, then the periods 1921-1940, 1941-1960, 1961-1981 and 1981-2000 act as control205

periods. When 1981-2000 is selected as the scenario period, then the periods 1901-1920, 1921-1940, 1941-1960 and 1961-

1980 act as control periods. The combination of the different sub-periods yields an ensemble of 20 surrogate climate models.

For each of the surrogate climate model runs, the change in the average daily precipitation amounts of wet days is decom-

posed. More specifically, the precipitation amount changes ∆P are governed by the changes in the WT occurrence changes,

i.e. the contribution by the dynamical processes ∆Pdynamical, and thermodynamical and local/mesoscale feedback changes,210

i.e. ∆Pother (Souverijns et al., 2016). The contributions are calculated as follows:

∆P = ∆Pdynamica + ∆Pother

∆Pdynamica =

11∑
j=1

(
Nj,scen−Nj,contr

)
Pj,contr

∆Pother =

11∑
j=1

(
Pj,scen−Pj,contr

)
Nj,scen

(3)

with

– Nj,contr the absolute occurrence frequency of wet days with WT j in the climate model output for the control period,

– Nj,scen the absolute occurrence frequency of wet days with WT j in the climate model output for the scenario period,215

– Pj,contr the average daily precipitation amount of the wet days with WT j in the climate model output for the control

period and

– Pj,scen the average daily precipitation amount of the wet days with WT j in the climate model output for the scenario

period.

The decomposition is also performed using the historical and projected output of the 93 membered global climate model220

ensemble (Table 2).

3.4 Response to greenhouse gas scenarios

In order to verify the response of the predictand to the greenhouse gas scenarios, the WT method is applied to the output of 93

global climate model runs (Table 2). Next, the daily precipitation amounts for the downscaled time series are compared against225
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the observed precipitation amounts and the intensification of the extreme precipitation amounts for increasing greenhouse gas

scenarios is investigated. The intensification is visually inspected and focus is put on the magnification of the changes for

increasing greenhouse gas scenarios. Furthermore, a comparison is made between the coarse global climate model changes

and the changes for the downscaled time series. For sake of brevity, the changes in the 30-year return period and the average

winter precipitation accumulation are investigated.230

3.5 Structural downscaling assumptions

To investigate the added value of the CC relation, the original SDM (with CC scaling) and the SDM without CC scaling are

applied to the projected output of 93 global climate models (Table 2). The control period and range of observations are defined

as 1961-1990 and the scenario period as 2071-2100. A comparison is made between the projected changes for the SDM with235

CC scaling and the SDM without CC scaling. The added value of the CC relation will be discussed in combination with the

response of the predictand to the greenhouse gas scenarios.

4 Results and discussions

4.1 The informative assumption240

Figure 2 presents the relative WT occurrence frequencies during winter season. The results show that the A WTs occur most

frequently and represent approximately 30% of the winter days. Also the W , SW and C WTs are identified as frequently

occurring. The occurrence frequency of each of these WTs is approximately 12%. Despite for some details, there are no dif-

ferences between the different re-analysis datasets. The WT occurrence patterns are generally in agreement with the recent

findings of Otero et al. (2018). They identified the A WTs as the overall dominant winter WT in Europe. The A WTs, more245

specifically, represent on average 25% of the winter days. The average occurrence frequency of the C WTs in Europe is es-

timated at approximately 15%, the W WTs at approximately 8% and the SW at approximately 5%. Remark that the WT

occurrences presented by Otero et al. (2018) have been averaged out over the European domain.

Apart from the A WTs, the W , SW and C WTs are associated with a high precipitation accumulation and together explain250

up to 71% of the total winter precipitation accumulation and between 73% and 93% of the WT occurrences are wet days

(Supplementary Information, Figures A1 and A2). Additionally, these WTs are associated with higher precipitation amounts,

as for instance shown for the NCEP/NCAR re-analysis dataset in Figure 3. More specifically, the 1-year daily precipitation

amount for theW WTs measures 0.51 mm/h and is twice as large as the corresponding amount for theAWTs, which measures

0.19 mm/h. Also the NW WTs are characterized by higher precipitation amounts and a higher wet day frequency. However,255
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compared to the W , SW and C WTs, their occurrence is rather low and contributes less to the precipitation accumulation.

The relation between precipitation and temperature is presented in Figure 4. This figure demonstrates the intensification of

the independent precipitation amounts with increasing temperature. For instance, the 90th percentile precipitation amount in-

creases by 7% per 1◦C and this increase follows the CC relation. For temperatures higher than 10◦C, the scaling rate increases260

up to 14% per 1◦C. Similar scaling rates are obtained for the higher precipitation percentiles. For percentiles smaller than

90%, the scaling rate of 7% per 1◦C is not identified. The identified CC relation is compared with other studies for Belgium

(De Troch, 2016; Van de Vyver et al., 2019) and for neighbouring regions (Lenderink and van Meijgaard, 2008). Although the

CC relation in those other studies has been established using dew point temperature rather than average daily temperature, sim-

ilar scaling rates are obtained. Considering the findings of recent studies, the application of dew point temperature is expected265

to better estimate the increases in the atmospheric moisture capacity and, thus, the precipitation changes (Van de Vyver et al.,

2019; Wasko et al., 2018).

4.2 The perfect prognosis assumption

Figure 2 compares the WT occurrences for the historical climate model outputs with those for the re-analysis datasets. The270

comparison reveals large biases, in particular for the W and A WTs. More precisely, the climate models overestimate the

occurrence of W WTs by approximately 11%, whereas the A WTs are underestimated by 14%. Moreover, different to the

re-analysis datasets, the W WTs are the most prominently occurring WTs in the climate model outputs. These findings are in

agreement with the recent study by Stryhal and Huth (2018). Using different atmospheric classification patterns, they found an

overall overestimation of the westerly circulation, which is estimated to be approximately 7% for the British isles and increases275

towards central Europe up to 21%. Otero et al. (2018) and Stryhal and Huth (2018) also indicate that climate models have a

poor performance in reproducing the occurrence of A WTs.

The overestimation of the W WTs is explained by the orientation of the North Atlantic storm track in the climate models. It

has, more specifically, a zonal orientation instead of a SW-NE tilt (Pithan et al., 2016; Zappa et al., 2014). The zonal orienta-280

tion results in a pronounced meridional pressure gradient, creating zonal westerly flows, which in turn impede the occurrences

of anticyclones (Stryhal and Huth, 2019). Biases in the blocking frequency are also arising from the climate model resolu-

tion (Anstey et al., 2013; Scaife et al., 2011; Woollings et al., 2018).

Although it would be possible to remove the bias in WT occurrences, for instance through re-sampling (Mehrotra and285

Sharma, 2019), the studied WT method does not do that. Note that such bias correction would require a technique that si-

multaneously accounts for the bias in the WT occurrences, the WT persistence and the relation between the WTs and other

hydro-meteorological variables.
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4.3 The stationarity assumption290

The contribution of the dynamical processes to the precipitation amount changes for the surrogate climate model runs is pre-

sented in Figure 6. Based on the median results, the dynamical processes are responsible for 35 to 55% of the changes. These

high contributions are explained by the findings of Ntegeka and Willems (2008) and Willems (2013). More specifically, oscilla-

tions in the 100-years precipitation amount time series for Uccle have been identified. Some periods are characterised by higher

precipitation amounts and are referred to as positive anomalies. The periods characterised by smaller precipitation amounts are295

referred to as negative anomalies. Willems (2013) observed that the precipitation anomalies coincide with anomalies in the

number of W WTs and with anomalies in the pressure difference between the Azores and Scandinavia. The coincidence of

large scale atmospheric circulation patterns and precipitation amounts has also been studied for other locations in Europe. In

this context, Tabari and Willems (2018) identified the North Atlantic Oscillation and the ENSO signal as dominant drivers for

the extreme winter precipitation amounts. Hence, the findings of Tabari and Willems (2018) and Willems (2013) imply that300

large scale atmospheric circulation influences winter precipitation in Europe. For the end of the 20th century, the dynamical

processes explain only 20% of the precipitation amount changes. This lower contribution is compensated by a higher contribu-

tion by the thermodynamical processes. More specifically, Ntegeka and Willems (2008) point out that the higher precipitation

amounts are governed by an intensification of the positive anomaly. The intensification arises from the increasing temperatures,

which in turn are attributed to the climatic changes.305

Figure 7 shows the contributions by the dynamical and the thermodynamcial processes to the long term projected changes.

The changes in the WTs account for 18% of the total change and, hence, they are primarily driven by the thermodynamical

processes. This is in agreement with the findings of Kröner (2016), who investigated the drivers for precipitation changes in

Europe. As the thermodynamical processes are only to some extent included in the downscaling methodology, the applicability310

of the SDM is questioned. Note that the application of the CC relation is limited to the extreme precipitation amounts, while

the thermodynamical processes also influence the average precipitation amounts.

4.4 Response to the greenhouse gas scenarios and the added value of the CC relation

Climate models project a poleward shift of the Northern Hemisphere jet-streams and storm tracks, resulting increased occur-315

rence of zonal flows and fewer blocking occurrences (Barnes and Screen, 2015; Santos et al., 2016; Stryhal and Huth, 2019;

Woollings et al., 2018). As a consequence, an increasing occurrence of W and SW WTs and a decreasing occurrence of A

WTs are projected (Supplementary Information, Figure A3). More specifically, under the total uncertainty range, i.e. all RCPs

combined, the occurrence of W WTs is projected to increase by 7%. For the RCP sub-ensembles, the increase in W WTs is

magnified from 6% for RCP 4.5 to 11% for RCP 8.5. The A WTs, on the contrary, decrease by 10% for RCP 4.5 and 12%320

for RCP 8.5. Using the same climate model ensemble, the median change in the average temperature is estimated at 1.6◦C for
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RCP 2.6, 2.1◦C for RCP 4.5, 2.6◦C for RCP 6.0 and 3.7◦C for RCP 8.5 (Termonia et al., 2018).

The changes in the 30-year daily winter precipitation amounts are shown in Figure 8. While the studied SDM without CC

scaling does not project any changes in the 30-year daily precipitation amount, the coarse GCM projections do. This indicates325

that the reliance of the projections on analogues involves significant shortcomings. Those shortcomings can however be over-

come by the application of the CC relation. As a result, an intensification of the extreme precipitation amounts is obtained

for the studied SDM. The intensification is, moreover, in agreement with the theoretical estimations. The projected changes

for RCP 8.5 are, for instance, estimated at 25.8% and equal the theoretical change values (3.7◦C × 7%). Remark that the CC

relation is applied at daily time scale and that at daily time scale the super CC scaling rate (14% per 1◦C) is not observed. To330

some extent, the estimated median change values for the studied SDM differ from the coarse climate model projections. More

specifically, the differences in the median change values range between 3% and 5%. Besides differences in the change values,

there are differences in the monotonicity of the change intensification for increasing GHSs. For the statistically downscaled

changes, the intensification of the change values is monotonic due the monotonic increase in the temperature predictor. For the

coarse global climate model changes, on the contrary, the monotonicity is masked by random uncertainties, climate model un-335

certainties and the stochastic uncertainty arising from the internal variability of the climate system (Van Uytven and Willems,

2018).

The changes in average winter precipitation accumulation are shown in Figure 9. The comparison between the coarse climate

model changes and the statistically downscaled changes indicates that the statistical downscaling step increases the changes.340

More specifically, under the total uncertainty range, the statistically downscaled changes are approximately 15% larger. The

latter is explained by the absence of bias correction schemes, the overestimation of the W WTs (Figure 5), which have been

identified as one of the wetter WTs (Section 4.1), and the projected increase of these WTs (Figure A3). Figure 9 furthermore

shows that the statistically downscaled changes for the winter precipitation accumulation are not monotonic for increasing

greenhouse gas scenarios. The latter is observed as the CC relation only applies to the extreme precipitation amounts and, hence,345

the monotonicity of the temperature changes is not transferred to the changes in the average winter precipitation accumulation.

5 Conclusions

The studied SDM does not meet all assumptions. It is shown that the SDM has limitations and its skill could be improved. The

WT method fails, among other assumptions, the perfect prognosis assumption. As the method is applied in a perfect prognosis

context, improvements should involve the bias correction of the WT occurrences. Since the simulation of large scale atmo-350

spheric circulation patterns remains biased in RCMs (Addor et al., 2016; Jury et al., 2018), the application of a statistical bias

correction method is suggested. A potential method would be the recently developed re-sampling approach of Mehrotra and

Sharma (2019). Further extensions to the latter approach are, however, required to also address the biases in the WT persistence

and the biases in the relation between WTs and other hydro-meteorological variables. Although the implementation of bias cor-
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rection methods, it remains questionable whether the WT method is applicable for precipitation downscaling of the climate355

model output. The observations confirm an informative relation between the predictors and the predictand, but this relation

is time-variant. The WT occurrences explain between 35% and 55% of the historical precipitation amount changes, but their

contribution decreases to less than 20% for the end of the 21st century. This means that the precipitation changes for the case

study location are controlled by thermodynamical processes rather than dynamical processes (i.e. changes in WT occurrences).

As the extreme precipitation amounts are scaled following the CC relation, the thermodynamical processes are to some extent360

accounted for in the downscaling methodology, but yet insufficiently. The CC relation produces extreme precipitation amounts

outside the range of historical observations and thus anticipates the intensification of extreme events. The latter indicates the

potential of the CC relation for improving non-parametric precipitation models. The standalone application of the CC relation

as a SDM has recently been demonstrated by Manola et al. (2018) and Van de Vyver et al. (2019), but also those SDMs involve

shortcomings (Zhang et al., 2017).365

Uncovering the shortcomings of SDMs does not mean that their use is discouraged. One should not forget that other SDMs

may also fail assumptions and, thus, also have shortcomings. By considering an ensemble of SDMs, the uncertainties introduced

by those shortcomings can be taken into account. When SDM ensembles would be considered, ensemble members could be

weighted based on their skill. The latter would be similar to the existing climate model weighing techniques (Sanderson et al.,370

2017). A first step towards a weighted SDM ensemble is still to be made by the statistical downscaling community.
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Figure 1. Spacing and numbering in the 16-point grid for the Jenkinson-Collision automated Lamb weather typing classification scheme.
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Figure 2. Relative WT occurrence in the winter season for different re-analysis datasets. The results are obtained for the reference period

1961-1990.
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Figure 3. Daily winter precipitation amounts per weather type for the NCEP/NCAR re-analysis dataset. The blue lines indicate the results

for the W , NW , SW and C WTs, the green line for the A WT, the grey lines for the N and S WTs, the orange lines for the NE, E, SE

WTs and the black line for the U WTs. The results are obtained for the reference period 1961-1990.

24



Figure 4. The relation between daily average temperature and independent 10 minutes precipitation amounts. The relation is defined on

annual time scale and this by using the entire Uccle time series (1901-2000). The CC relation (+7%/◦C) is indicated by the grey dotted lines,

whereas the 2 × CC relation (+14%/◦C) by the grey dashed lines. The black lines show the magnification of the 90th, 95th, 99th and 99.9th

percentile precipitation amount for increasing temperatures.
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Figure 5. Relative WT occurrence in the winter season for different re-analysis datasets (dots) and climate model runs (boxplots). The results

are obtained for the reference period 1961-1990.
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Figure 6. Contribution of the dynamical processes to the change in the average precipitation amount of wet days in function of the choice of

the scenario period.
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Figure 7. Contribution of the dynamical processes, i.e. changes in the WT occurrence frequencies, and other effects, for instance due to

thermodynamical processes, to the change in the average daily precipitation amount of wet winter days. The results are based on the climate

model output for the scenario (2071-2100) and control period (1961-1990).
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Figure 8. Changes in the 30-year daily precipitation winter amount in function of the different RCPs. The changes are obtained using the

climate model ouput for 2071-2100 with respect to the output for 1961-1990.
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Figure 9. Changes in the average winter precipitation accumulation in function of the different RCPs. The changes are obtained using the

climate model ouput for 2071-2100 with respect to the output for 1961-1990.
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Table 1. Overview of the re-analysis dataset ensemble employed in this study.

Re-analysis dataset
Resolution

Time range Reference
Lon [◦] × Lat [◦]

EMULATE 5.0 × 5.0 1881-2000 Ansell et al. (2006)

ERA40 2.0 × 2.0 1948-2019 Uppala et al. (2005)

NCEP/NCAR 2.5 × 2.5 1957-2002 Kalnay et al. (1996)
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Table 2. Overview of the climate model ensemble employed in this study.

Model
Resolution

Lon [◦] × Lat [◦]
RCP 8.5 RCP 6.0 RCP 4.5 RCP 2.6

ACCESS1-0 1.9 × 1.3 1

bcc-csm1-1-m 1.1 × 1.1 1 1 1 1

BNU-ESM 2.8 × 2.8 1 1 1

CanESM2 2.8 × 2.8 5 5 5

CMCC-CESM 3.8 × 3.7 1

CMCC-CMS 1.9 × 1.8 1 1

CNRM-CM5 1.4 × 1.4 1 1 1

CSIRO-Mk3-6-0 1.9 × 1.9 10 10 10 10

GFDL-CM3 2.5 × 2.0 1 1 1 1

GFDL-ESM2G 2.5 × 1.5 1 1 1 1

GFDL-ESM2M 2.5 × 1.5 1 1 1

GISS-E2-R 2.5 × 2.0 2

HadGEM2-AO 1.9 × 1.3 1 1 1 1

IPSL-CM5A-LR 3.8 × 1.9 4 1 4 1

IPSL-CM5A-MR 2.5 × 1.3 1 1 1 1

IPSL-CM5B-LR 3.8 × 1.9 1 1

MIROC-ESM-CHEM 2.8 × 2.8 1 1 1 1

MIROC-ESM 2.8 × 2.8 1 1 1 1

MIROC5 1.4 × 1.4 3 3 2 3

MPI-ESM-LR 1.9 × 1.8 1 1 1

MPI-ESM-MR 1.9 × 1.8 1 1 1

MRI-CGCM3 1.1 × 1.1 1 1 1 1

NorESM1-M 2.5 × 1.9 1 1 1 1

Total number of runs: 30 15 28 20
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Figure A1. Relative winter precipitation accumulation per WT for different re-analysis datasets (lines) and climate model runs (boxplots).

The results are obtained for the reference period 1961-1990.
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Figure A2. Percentage wet days per WT in the winter season for different re-analysis datasets (lines) and climate model runs (boxplots). The

results are obtained for the reference period 1961-1990.
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Figure A3. Changes in the winter WT occurrences for RCP 4.5 and RCP 8.5. The changes are obtained using the climate model ouput for

2071-2100 with respect to the output for 1961-1990.
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