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We would like to thank the reviewer for the constructive feedback and comments. An-
swers to the comments have been made (italic font) and the manuscript has been
changed accordingly (blue font). We would like to note that the manuscript has
changed significantly to address the comments of all reviewers and to improve the
readability.

Response to reviewer comments (Mohammad Sohrabi) This study aims at evaluating
assumptions of a weather typing (WT) based statistical downscaling method (SDM) for
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precipitation and river peak flows in Belgium. The results of such studies provide an
assessment of end user needs in choosing a right downscaling methods out of many
available methods in terms of the cons and pros of each method and the intended use
of the results. However, the current study for uncovering the shortcomings of a down-
scaling method has several serious shortcomings itself as listed below: (1) Validity
of the study The results of this study showed that the synoptic changes (WT occur-
rence changes) contributed only 20% of the total change in daily precipitation and the
change is mostly (80%) explained by other processes including the thermo-dynamical
processes. It obviously indicates that a weather typing based statistical downscaling
method shouldn’t be used in the region for the downscaling of precipitation which is
mainly originated from local moisture. So, what would be the point for evaluating a
downscaling method which cannot be used in the region? REPLY: The weather typ-
ing method has been published in 2011 in an international peer reviewed and highly
ranked journal (Willems and Vrac, 2011). The paper elaborates on the downscaling
methodology and the differences between different weather typing methods (see also
comment 4d). The paper, however, does not address the accuracy of the downscaling
assumptions. Those assumptions have neither been verified in follow-up papers. On
the occasion of the European VALUE COST project, the (European) statistical down-
scaling community has put additional focus on the evaluation of downscaling methods.
In this context, the verification and evaluation of the downscaling assumptions have
been conducted. Until now, no follow-up paper has indicated that the studied weather
typing method has several shortcomings. These have only recently been uncovered
by the verifying and evaluating the assumptions. The abstract, discussions and con-
clusions have been modified. They now question the applicability of the weather typing
method for case studies where the precipitation changes are driven by thermodynamic
processes. Indeed, Figure 9 in the original manuscript points out that the thermo-
dynamical processes mainly explain the changes in the average daily precipitation
amount. We note that to some extent the thermodynamic processes have been ac-
counted for in the downscaling methodology, more specifically through the application
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of the Clausius-Clapeyron relation. This relation, however, only applies to the extreme
precipitation amounts, not the average daily precipitation amount. As also suggested
by one of the anonymous referees, in the modified manuscript, more focus has been
put to the added value of the Clausius-Clapeyron relation.

(2) Novelty of the study The statistical downscaling method (SDM) was taken from the
literature without any modification: SD-B-7 method from Willems and Vrac (2011). The
evaluation of statistical downscaling methods is not also new, although it is mentioned
in the second line of the abstract that “Each statistical downscaling method (SDM) has
strengths and limitations, but those are rarely evaluated”. Nine more comprehensive
studies were mentioned in P3L15 of this paper (some of them from EU COST Action
VALUE project for the evaluation of statistical downscaling methods) along with several
unmentioned. A clear objective was not defined for this study. While in the abstract,
only extreme precipitation and river peak flows were stated, the majority of the paper is
about daily precipitation and not extremes. As an example, it was claimed (P6L12-15)
that compared to the previous study by Brisson et al. (2011) across different stations in
Belgium, the current study focuses on the extreme precipitation amounts. However, the
presented results are more related to winter precipitation accumulation and percentage
of wet days per WT (Figures 2 and 3). Overall, there is not a consistent storyline in
the paper. It appears that the paper is a combination of several small studies (leftover
results actually) and then fitting a statistical downscaling to them. REPLY: - The in-
troduction has been modified. The modifications, amongst others, involve a different
formulation of the objective.

REPLY: The main objective of this study is to verify and evaluate the general and struc-
tural statistical downscaling assumptions in order to develop a statistical downscaling
ensemble tailored to the case study and thus end-user needs. Most studies address
the general and structural statistical downscaling assumptions independently. This re-
sults in studies addressing one or some of general statistical downscaling assumptions
(Dixon et al., 2016; Fu et al., 2018; Haberlandt et al., 2015; Hertig et al., 2017; Men-
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doza et al., 2016; Merkenschlager et al., 2017; Salvi et al., 2016; Tabari et al., 2016)
and other studies addressing the structural assumptions by statistical downscaling of
surrogate climate model runs (Bürger et al., 2012; Gutmann et al., 2014; Hertig et al.,
2018; Maraun et al., 2018; Roberts et al., 2019; Werner and Cannon, 2016; Widmann
et al., 2019; Yang et al., 2019) or by statistical downscaling of the projected climate
model output (Li et al., 2017; Sørup et al., 2018; Sunyer et al., 2015; Vaittinada Ayar
et al., 2016; Wang et al., 2016; Wootten et al., 2017). However, to objectively identify
shortcomings of statistical downscaling methods, the verification and evaluation of the
general and structural assumptions should be carried out simultaneously. To the au-
thors knowledge, there are yet no papers which simultaneously address the verification
of both types of assumptions.

- The results describing the relation between the weather types and precipitation ac-
cumulation or the number of wet days have been moved to supplementary informa-
tion.âĂČ (3) Statistical analysis and extreme event definition Another major issue in
the paper is that the results for extremes are based on a limited sample size. The
extremes were separated based on 4 seasons and 11 weather types. How extremes
are the selected extremes for each season and weather type? What threshold was
used for defining extremes? Apparently, the return period of 0.1 year was chosen as
the threshold. The question would be whether precipitation and streamflow that oc-
cur on average every month is really considered extreme in hydrology. Due to a small
sample size after the separation per season and per weather type, even an extreme
precipitation of a 10-year return period amounts 0.5 mm/hr (Figure 5). REPLY: - The
independent daily and sub-daily precipitation amounts are identified using a peak over
threshold (POT) method. More specifically, the threshold is set at 0.1 mm/h and at
least 12 hours are considered between successive events. Next the independent daily
(or sub-daily precipitation amounts are classified in function of the occurrence (season)
and associated weather type.

- The threshold in the POT method is not return period based, but precipitation amount
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based. As indicated in above explanation, the threshold is set at 0.1 mm/h.

- The seasonal time scale has been used instead of the monthly time scale as the
monthly time scale would introduce more sampling uncertainties. In order to address
the sampling uncertainty, the number of WTs could be further reduced. More specifi-
cally, 4 wind directions could be considered instead of 8.

We have restricted the analysis to the winter season as De Niel et al. (2019) have
shown that peak flows in the studied catchment mainly occur during winter season.
We remark that the hydrological impact analysis is removed from the manuscript, but
focus remains on the winter season. By considering only winter season, we focus on
solely stratiform precipitation events. By combining the results for all seasons, strat-
iform and convective events would have been considered together. This would have
been inaccurate as these events have a strongly different nature and manner of mod-
elling. Stratiform and convective events have moreover different precipitation drivers.
(4) Justification of the selected methods (a) Why was the Lamb weather classification
used in this study, while k-means clustering is regarded as one of the best-performing
classification schemes over western Europe (e.g., Beck and Philipp, 2010; Casado et
al., 2010; Garcia-Valero et al., 2012; Broderick and Fealy, 2015). REPLY: Philipp et
al. (2016) provide an overview on large scale atmospheric circulation classification
systems. In summary, the classification systems are divided into subjective methods,
threshold-based methods, methods based on principal component analysis, leader al-
gorithms, hierarchical clustering analysis, optimization algorithms, mixture models and
methods based on random processes. K-means methods are optimization algorithms,
whereas the Jenkinson-Collison modified Lamb weather types are threshold based
methods. The Jenkinson-Collison weather types have the advantage to be easier un-
derstood, as indicated in the paper of Brisson et al. (2011) and Otero et al. (2018).
Brisson et al. (2011) also claim that the Jenkinson-Collison Lamb WTs are physically
more correct. We would like to point out that these WTs remain presently frequently
used (Ästrøm et al., 2016; Manola et al., 2019).
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(b) De Niel et al. (2018) identified a minor uncertainty contribution by the hydrological
models in the peak flow changes. Among the tested hydrological models in that study,
why NAM was selected for the current study? REPLY: As the uncertainty contribution
arising from the hydrological models is small, the reliance of the peak flow discharges
does not involve large uncertainties. This is however not the case for the simulation of
low flow discharges in river catchments. This has also been observed by Vansteenkiste
et al. (2014), who studied the influence of hydrological model structures for the same
river catchment. Moreover, the NAM rainfall runoff model is applied in many parts of
the world. We would like to remark that the hydrological impact analysis has been
removed from the manuscript.

(c) Why were these three reanalysis datasets selected for this study? Why didn’t
they use the E-OBS observations (1950-2018) which has similar data coverage to the
ERA40 reanalysis dataset (1948-2002)? REPLY: E-OBS data is a land-only re-analysis
dataset. For the WT typing algorithm, mean sea level pressure is also required for lo-
cations in the Atlantic Ocean and North Sea.

(d) Several downscaling methods were developed and evaluated by Willems and Vrac
(2011). Why was the SD-B-7 method selected for this study? REPLY: Willems and
Vrac (2011) present two types of statistical downscaling methods: precipitation change
factor methods and weather typing methods. For each type, a set of methods is pre-
sented. For the weather typing methods, more specifically, differences in the methods
involve the definitions for the analogue days. In total, 7 weather typing methods have
been presented, of which only one method (SD-B-7) is able to produce precipitation
amounts outside the range of observations. As an intensification of the precipitation
extremes is expected, the extrapolation of the precipitation amounts outside the range
of observations is a requirement. Consequently, Willems and Vrac (2011) advice the
application of that method for climate change impact analysis.

(5) Weather types (a) The climate model results for WTs are largely biased. Although
the bias was reported in the text regarding the mean scenario of the climate models,
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the difference goes up to 20% for the anti-cyclonic (A) WT and 30% for west (W) WT:
none of the climate models can even reach the frequency of A WT estimated by the
reanalysis datasets. Considering these large biases, how reliable would be the down-
scaling results based on these WTs? The climate models with a coarse resolution are
expected to reasonably simulate these large scale patterns, and so what might be the
main reason for such a bias in climate model results? I would be interesting to investi-
gate why the GCMs have the largest uncertainty for the W WT as the main large scale
driver of winter precipitation over western Europe? REPLY: - Climate model ensem-
bles are often designed based on the climate model performance for current climate.
However, there is yet no proof that better performing models produce more realistic
projections. As stated by Mendlik and Gobiet (2016): “In the literature, models are
often selected based only on their performance in the past, without regarding spread
in the climate change signals, with the aim to use only the “best” models. However,
correlations between past performance and future climate change signals are known
to be very weak, which means that there is no clear indication that the best performing
models in the past are most realistic with regard to climate change signal. In addition,
the ranking of models with regard to performance in the past is highly dependent on
the definition of the performance measure, which leads to a very subjective ranking.” -
Indeed, as discussed in the introduction of Phitan et al. (2016), the circulation biases
decrease at higher horizontal climate model resolution. In order to focus on the main
objective of this paper, the influence of the horizontal resolution on the WTs is not stud-
ied in the manuscript. The influence of the resolution on the biases has, however, been
added to the discussion on the origin of the biases. - A brief discussion on the origin
of the biases in the W and A WTs has been added to the manuscript. In summary,
the North Atlantic storm track has in the climate model simulations a zonal orientation
rather than SW-NE tilt (Phitan et al., 2016, Zappa et al., 2014). The zonal orientation
results in a pronounced meridional pressure gradient, creating zonal westerly flows
which in turn impede the occurrences of anticyclones (Stryhal and Huth, 2019). Bi-
ases in the blocking frequency might also be explained by the climate model resolution
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(Anstey et al., 2013; Scaife et al., 2011, Woollings et al., 2018). (b) What is the driver
for the undefined weather type or the atmospheric state characterized by a weak flow?
A sensitivity test of unclassified days on grid sizes and resolutions by Demuzere et
al. (2009) showed that the number of these days decreases with grid resolution. Was
that the case for this study as well? And generally, how will the different resolutions
of reanalysis data from 2âŮę to 5âŮę explain the discrepancy between reanalysis-
based WTs? REPLY: - We note that the same WT classification system is applied to
all seasons. The relative occurrence frequencies are, however, seasonally dependent.
A difference between winter and summer would be the occurrence frequency of the
undefined WTs. More specifically, the occurrence frequency of the undefined weather
types in winter season is negligible, while for summer season the undefined weather
types represent at least 10% of the summer days. This is in agreement with the re-
sults of Otero et al. (2018). - No sensitivity analysis on the grid resolution has been
conducted as this has already performed by Demuzere et al. (2009). - The application
of the 16 point grid with a 10◦ resolution in the zonal direction and a 5◦ resolution in
meridional direction allows the comparison with previous studies. We note a similar
motivation by Demuzere et al. (2008) and Otero et al. (2018).

(c) A separate set of WTs was produced for each season in the current study. What will
be the influence of the seasonal cycle on the classification produced as the MSLP fields
are clustered? REPLY: We note that the same WT classification system is applied to
all seasons. The relative occurrence frequencies are, however, seasonally dependent.
In order to keep the manuscript condense, only winter season is studied. We refer the
reviewer also to our reply on comment 5(b).

(6) Statistical downscaling by analogues The CMIP5 GCMs provide data at a daily
time scale. Were daily precipitation data from the GCM scenario period corresponded
to observed sub-daily precipitation? If so, how are the results influenced by the differ-
ence in the time scale? Were the climate change signals assumed to be time scale
dependent? REPLY: - In the case that the observed precipitation time series has a
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sub-daily time step, the sub-daily precipitation amounts are aggregated to daily precip-
itation amounts. Next, for each season and WT, the exceedance probabilities for the
daily precipitation amounts of wet days are calculated . In a similar way, for each of
the projected wet days, the exceedance probabilities of the projected daily precipitation
amounts are calculated. Thereafter, an analogue wet day is defined as an observed
wet day occurring in the same season, having the same weather type and best ap-
proximating the exceedance probability of the projected day precipitation amount. To
produce the downscaled time series, the daily precipitation amount for the observed
analogue day is resampled. If the observed precipitation time series had a sub-daily
time step, the sub-daily precipitation amounts for the analogue day are re-sampled.
In other words, analogues are defined by comparing the exceedance probabilities for
the observed daily precipitation amounts with the exceedance probabilities for the pro-
jected daily precipitation amounts.

- Since no sub-daily temperature time series are available, the CC relation is investi-
gated at daily time scale. This is also the case when sub-daily precipitation amounts
are available. The scaling rates identified at daily time scale are thereafter applied
to the sub-daily precipitation amounts, assuming the changes at daily time scale are
applicable at sub-daily time scale. (7) Scaling by the Clausius-Clapeyron relation (a)
Clausius-Clapeyron relation assumes that extreme precipitation amounts are controlled
by local moisture availability. How local is moisture availability? The developed extreme
precipitation-temperature scaling relations for central Belgium were used for river peak
flow simulations in a catchment in the northeast of Belgium. How representative would
be the scaling relations developed in central Belgium for northeast Belgium considering
the local moisture availability assumption?

REPLY:

In a study for the Flemish Environment agency, De Niel and Willems (2016) investigated
the spatial and temporal variations in precipitation time series for 43 rain gauges in
Flanders. Their results indicated significant differences between west (coastal area)
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and east (Antwerp, Flemish Brabant and Limburg). A study investigating the spatial and
temporal variation in the temperature time series in Flanders has yet to be conducted.
As Uccle is situated in central Belgium and is located approximately 100 km from the
Grote Nete catchment, it is expected that application of the hydrometeorological time
series of the RMI station in Uccle for case studies in the Grote Nete catchment involves
only small uncertainties. Moreover, we would like to point out that the application of the
short observed time series, as is the case for the stations in the Grote Nete catchment,
also involves uncertainties.

We would like to remark that the hydrological impact analysis has been removed from
the manuscript. Hence, this comment is not applicable to the modified manuscript.

(b) Dry-bulb temperature was used here for developing scaling relations, whereas sev-
eral recent studies (e.g., Wasko et al., 2018) recommended to use dew point tempera-
ture than dry-bulb temperature for Clausius-Clapeyron relation, as it is a better measure
of precipitation changes because of increases in the moisture holding capacity of the
atmosphere (Lenderink et al., 2011).

REPLY:

Indeed, several studies have pointed out that dew point temperature is a better pre-
dictor than the average daily temperature (Van de Vyver et al., 2019; Wasko et al.,
2018). However, compared to average daily temperature, time series for the dew point
temperature are not readily available for hydrological impact modellers.

The consideration of average daily temperatures rather than dew point temperatures
has been added as a potential shortcoming of this study. (8) Evaluation of greenhouse
gas scenario assumption To evaluate the greenhouse gas scenario assumption of the
SDM, changes in the WT occurrences and average daily temperature as a function
of the four RCPs were analyzed. However, this assumption might be tested for pre-
cipitation which is statistically downscaled in this study. Besides, the increase of the
change in air temperature with greenhouse gas emissions is trivial. What is the re-
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lation of changes in warm extremes (with return periods ranging between 0.1 and 10
years) (Figures 7 and 8) to the downscaling of precipitation performed in this study?
Though irrelevant, for warm extremes the changes in maximum temperature should be
analyzed instead of mean daily temperature. P7L9-10: “To check whether the predictor
simulation results are adequate and accurate, a comparison is made between the cli-
mate model simulated and observed daily average temperature statistics”. Is predictor
warm extremes? It seems that the full range of temperature was used for the scaling
(Figure 6). REPLY: As suggested, the sensitivity of the predictand to the greenhouse
gas scenarios and the increase in greenhouse gas scenarios is verified for the pre-
dictand. Schoof (2013) points out that some predictor variables do not respond to the
greenhouse gas scenarios, while others do. This means that a predictand response is
achieved by a smart choice of predictors. We note that the definition of the greenhouse
gas scenario assumption has therefore been changed. The response of the WTs to
the different greenhouse gas scenarios has been moved to supplementary information,
but is used as background information for the discussion of the results.

(9) Evaluation of the stationarity assumption For the evaluation of the stationarity as-
sumption, the extreme precipitation per weather type was compared for different sub-
periods of 10 years length between 1901 and 1991. Use of a 10-year sub-period for
this purpose is questionable as it is far smaller than a natural climate cycle, and hence
the results are greatly influenced by natural climate variability. Isn’t trend analysis a
more robust approach for testing the stationarity? How large is the uncertainty in the
presented results? In my view, a random selection of a dry weather type or and per-
forming the same analysis or doing the would reveal the reliability of this results? Would
performing the decadal analysis of extreme precipitation without considering the WTs
lead to similar results? This is because based on the results of this study, weather
types shouldn’t be related to precipitation formation in the region (see comment 1).
REPLY: - We agree that 10 years of data is rather short with respect to the natural
cycle. In that context, the results are indeed influenced by the climate variability. We
note that the methodology for the verification of the stationarity assumption has been
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altered in the modified manuscript. In the modified manuscript, the surrogate climate
model runs are 20years long. (10) Evaluation of the method specific assumptions The
evaluation of the SDM method specific assumptions was only performed for winter as
the peak flows in the selected catchment mainly occur in the winter (P5L12-14). As
mentioned in P4L30, “Application of this scaling rate to precipitation intensities is valid
assuming that extreme precipitation amounts are controlled by local moisture availabil-
ity and are not influenced by large scale atmospheric circulation patterns.” However,
the influence of the large scale circulations on winter precipitation in western Europe
is well documented in the literature. - The influence of large scale circulation patterns
on the historical precipitation amounts is indeed well documented in literature (Tabari
and Willems, 2018; Willems, 2013). The discussion has been extended and references
have been added to the discussion of the stationarity assumption.

(11) Interpretation and discussion of the results (a) The results were interpreted and
discussed in a way that the authors expected the results be. For example, in P12L20-
25, the authors attribute the difference between their results and those of Otero et al.
(2018) for changes in the anti-cyclonic WT to considered climate model ensemble, the
location of the 16 points grid for the WT classification system and, the reference and
scenario periods. I am wondering why these differences between the two studies (this
study and Otero et al., 2018) are only important for the changes in the anti-cyclonic
WT and not for the changes in cyclonic, west and southwest WTs! Another example is
in P15L28-31, where the authors mention only the results for RCP4.5 and RCP8.5 and
not all RCPs to show that changes in the WT occurrences and precipitation are mag-
nified under increasing greenhouse gas scenarios. Looking at the results, changes in
the occurrence of W WTs are far smaller for RCP8.5 compared to RCP6.0 (P12L5).
Also, there is not a clear pattern for the changes in cyclonic (C) WTs where changes
are equal to 5% for RCP 2.6, - 3% for RCP 4.5, -6% for RCP 6.0 and -5% for RCP
8.5. It was speculated in P12L8-10 that these discontinuities in the uni-directionality
of the changes may be explained by the smaller ensemble size for RCP 6.0 compared
to the other RCPs, and/or by the different RCP sub-ensemble compositions. This is-
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sue can be easily checked by selecting the same GCMs for different RCPs. Why isn’t
this an issue for temperature changes (P12L28-30). REPLY: - Under global warming,
climate models project a poleward shift of the Northern Hemisphere jetâĂŘstreams
and storm tracks, resulting increase occurrence of zonal flows and less blocking oc-
currences (Barnes and Screen, 2015; Santos et al., 2016; Stryhal and Huth, 2019;
Woollings et al., 2018). These projections correspond with an increased occurrence
of W and SW WTs and a decreased occurrence of A WTs. This physical background
information has been added to the discussion of the response of the predictors and
the predictand to the greenhouse gas scenarios. - Schoof (2013) points out that not all
variables respond to the greenhouse gas scenarios. While the absolute temperature
values increase, the absolute values of the mean sea level pressure do not change. For
mean sea level pressure, changes occur in the spatial patterns. - The monotonicity of
the changes for increasing greenhouse gas scenarios is not guaranteed when the en-
semble compositions and sizes differ. Moreover, in some cases, for the same ensemble
composition, the monotonicity of the changes for increasing greenhouse gas scenar-
ios might be masked by the climate model uncertainties and the stochastic uncertainty,
this is the uncertainty related to the variability of the climate system (Van Uytven and
Willems, 2018). (b) In several places in the text, internal variability was argued as the
reason for unexplained behaviors in the results: for example, internal variability as the
reason for the large bias of climate models for WT simulations and also internal variabil-
ity among the climate models as the reason for discontinuities in the uni-directionality
of the changes with greenhouse gas scenarios. These statements might be supported
by the results or the literature. - References on the influence of the influence of the
internal variability and thus the choice of the reference period have been added to the
manuscript. - We refer the reviewer also to our reply on comment 11a (c) The results
for the changes in the frequency of WTs showed that the frequency of the wet WTs
will increase under climate change and the frequency of the dry WTs will decrease. It
is worth discussing what physical explanations are behind the increasing frequency of
westerlies and the decreasing frequencies of easterlies under climate change. How
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might global warming decrease the frequencies of cyclonic and anticyclonic WTs? The
response to these important questions would be beneficial for improving weather typing
based SDMs. REPLY: Under global warming, climate models project a poleward shift
of the Northern Hemisphere jetâĂŘstreams and storm tracks, resulting increase occur-
rence of zonal flows and less blocking occurrences (Barnes and Screen, 2015; Santos
et al., 2016; Stryhal and Huth, 2019; Woollings et al., 2018). Woolings et al. (2018)
also list references reporting an eastward shift of the blocking activity. These physical
explanations have been added to the discussion of the response of the predictand to
the greenhouse gas scenarios.

(d) “Stationary is dead” is now a fact for hydrologists. What would be the contribution
of this part of analysis to the existing knowledge? Rather than discussing the natural
climate anomalies for this single location in western Europe in section 4.5, it would
be more useful to discuss the drivers for such anomalies, as several global studies
regarding these historical natural anomalies of the climate system have already been
published. P13L21-22: “the 10 minutes precipitation amounts with a 1 year return pe-
riod measures 6mm/h for the negative anomaly, whereas it is 14mm/h for the positive
anomaly”. What might be the reason for the positive and negative anomalies in W WT
and the related extreme precipitation? P13L20 & P13L25: “The difference between the
positive and negative precipitation anomaly is especially visible for the W WTs and this
for all aggregation levels between 10 minutes to 1 day. For the C WTs, no differences
appear between the amounts for the positive and negative anomaly”. Why is W WT
based extreme precipitation timescale-dependent, but not the C WT-based extreme
precipitation? REPLY: A discussion on the drivers of the precipitation anomalies has
been added to the results of the stationarity assumption. We note that the verification of
the stationarity assumption has been conducted changed in the modified manuscript.
(12) Reanalysis data uncertainty The uncertainty related to the choice of reanalysis
data for WTs was considered. Given that the reliability of reanalysis products sharply
decreases back in time (Ferguson and Villarini, 2013; Krueger et al., 2013) due to
assimilating sparse observations and starting from a more uncertain initial state (De-
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laygue et al., 2019), a larger uncertainty of reanalysis data is expected for earlier years
of the study period. Was the uncertainty calculated for the entire analysis period in this
study? Does the uncertainty decrease as time progresses from far past to near past?
REPLY: The re-analysis datasets provide data for different ranges of time. However,
the comparison between the different re-analysis datasets is consistently performed
using the same range of data. The manuscript has been modified to better indicate the
prior. The time evolution of the assimilation uncertainties in the re-analysis datasets
has not been studied. We agree that this can be of interest, but such investigation
is not performed in the considered study for sake of brevity. We also think it would
divert the scope from the current main focus. âĂČ Specific comments P5L19: The
evapotranspiration data are not daily measured data for 100 years, are they? Is it refer-
ence evapotranspiration or potential evapotranspiration? If the former is the case, with
grass or alfalfa as the reference crop? REPLY: We remark that the hydrological climate
change impact analysis is removed from the manuscript for sake of brevity.

P7L15: 33 unique control runs were used in this study. I think the number of inde-
pendent model runs should be lower than that!? How was the dependency between
climate models investigated? REPLY: We agree that the number of independent model
runs is smaller than the actual number of included model runs in the ensemble. The
dependency between the climate model runs has not been investigated. As the word
“unique” is confusing, this word has been removed from the text.

P7L16-17: The authors found that the choice of the reference period (control period)
influences the evaluation of the perfect prognosis assumption. It would be interesting to
present the results of the sensitivity analysis to the control period in the Supplementary
Information. REPLY: While we do agree that this study can be of interest, it is not
performed in the considered manuscript for sake of brevity as well as since it would
divert the scope from the current main focus. References on this topic have been
added to the main manuscript.

Figure 12: Does grey area show the 5th-95th percentile range of climate change uncer-
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tainty? REPLY: The 5th-95th percentile range of Figure 12 in the original manuscript
represents the uncertainties associated with the surrogate climate model runs. The
surrogate climate model runs are subsets of the observed time series. Hence, the 5th-
95th percentile range represents the stochastic uncertainty, i.e. uncertainty related to
the internal variability of the climate system.

Table 2: Were the same GCMs used for all climate variables studied? REPLY: The
same GCMs were used for all climate variables studied.

Used references not present in the reference list of the paper REPLY: The reference
list has been updated and completed.

References: Anstey, J. A., Davini, P., Gray, L. J., Woollings, T. J., Butchart, N.,
Cagnazzo, C., Christiansen, B., Hardiman, S. C., Osprey, S. M., and Yang, S.:
Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the
role of resolution, Journal of Geophysical Research Atmospheres, 118, 3956–3971,
https://doi.org/10.1002/jgrd.50231, 2013. Åström, H. L., Sunyer, M., Madsen, H., Ros-
bjerg, D., and Arnbjerg-Nielsen, K.: Explanatory analysis of the relationship between
atmospheric circulation and occurrence of flood-generating events in a coastal city,
Hydrological Processes, 30, 2773–2788, https://doi.org/10.1002/hyp.10767, 2016.
Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitude
jet-stream: Can it? Has it? Will it?, Wiley Interdisciplinary Reviews: Climate Change,
6, 277–286, https://doi.org/10.1002/wcc.337, 2015. Bürger, G., Murdock, T. Q.,
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