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Abstract. Across the arid regions of water-stressed countries of Asia, groundwater production for irrigated agriculture has 

led to water level declines that continue to worsen. For India, China, Pakistan, Iran and others, it is unrealistic to expect 

groundwater sustainability in a technical sense to emerge. With business as usual, groundwater-related problems receive 10 

insufficient attention, a situation referred to as an “accelerating and invisible groundwater crisis” (Biswas et al., 2017).  

Another obstacle to sustainability comes from trying to manage something you do not understand. With sustainable 

management, there are significant burdens in needed technical and socioeconomic knowhow, in collecting necessary data, 

and in implementing advanced technologies. A pragmatic research agenda for groundwater sustainability should recognize 

that a common threat to long-term sustainability could occur not just from over-pumping but widespread groundwater 15 

contamination. If groundwater sustainability is truly unachievable, then research is needed in facilitating adaption to the 

worst outcomes (Siegel et al., 2019). In hoping for the best outcomes, it is prudent to plan for the worst.  

1 Introduction 

About 20 years ago, hydrogeologists began more fully to appreciate the extent of non-sustainable withdrawals of 

groundwater worldwide. However, recognizing a problem and doing something about it are two different things. Our focus 20 

here is Asia, where the need for sustainable groundwater management is essential, given impacts from irrigated agriculture 

and growing urbanization. Yet, progress towards sustainable development has been slow to non-existent. For many of these 

countries, groundwater sustainability is essentially just a myth. This paper makes a case that groundwater impacts in 

developing Asian countries are already bad and getting worse. Further, it describes impediments to sustainable groundwater 

management and presents suggestions for a pragmatic research agenda.          25 

The concept of sustainability refers to the “development and use of groundwater in a manner that can be maintained for an 

indefinite time without causing unacceptable, environmental, economic or social consequences” (Alley et al., 1999).  It 

builds on the foundational concept of safe yield as “the limit to the quantity of groundwater which can be withdrawn 

regularly and permanently without dangerous depletion of the storage reserve” (Lee, 1915).  A modern concept of 

groundwater sustainability recognizes the additional complexity provided by the inherent coupling of groundwater and 30 
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surface water systems (Winter et al., 1998; Sophocleous, 1997) and a groundwater supply that is impaired because of 

contamination. 

By rights, Asia should be far along towards groundwater sustainability. Earlier studies pointed out problems and posited 

solutions. For example, in 2000, the World Bank formed the Groundwater Management Advisory Team (GW-MATE).  Over 

the next decade, team members worked in Asia and elsewhere on groundwater-related issues and sustainable groundwater 35 

use. Their reports identified seriously impacted groundwater systems and provided practical approaches towards 

sustainability.    

 

2 Few Signs of Progress and Worsening Trends 

In China, India, Pakistan and other hotspots (Figure 1), groundwater continues to be impacted by groundwater depletion and 40 

contamination.  China’s most visible groundwater problem is associated with the over-production of groundwater from 

aquifers underlying the core of the North China Plain (Figure 2a). Groundwater withdrawals since 1960 have produced 

excessive drawdowns that began to receive attention about 15 years ago. Water-level declines of > 20 m were evident in the 

shallow unconfined aquifer and > 40 m in the deep freshwater aquifer (Foster and Garduno, 2004). Estimated reductions in 

groundwater storage were of the order of -8.8 km3 yr-1.  By about 2010, drawdowns as high as ~60 m were reported in the 45 

unconfined aquifer (Cao et al., 2012) and >80 m in the deep freshwater aquifer (Zheng et al., 2010) (Figure 2a). 

The aquifers of the North China Plains are essential to wheat production, to maintaining socio-economic contributions 

associated with the agricultural economy, and in supplying water to cities (e.g., Beijing and Baoding) (Foster and Garduno, 

2012). However, continuing water-level declines indicate limited progress towards sustainability. A recent assessment using 

GRACE (Feng et al., 2018) indicates almost constant declines in storage of -7.2 km3 yr-1 from 2002 to 2015. This result 50 

compares to an earlier estimate of -11.3 Gt yr-1 (-11.3 km3 yr-1) (Rodell et al., 2018).These impacts will continue even with 

water available from the South to North Water Transfer (Ye et al., 2015; Bloomberg, 2017).  

In China, there are other places with groundwater-related problems. Depletion is evident at some 164 locations, 

encompassing ¾ of China’s provinces (Wang et al., 2018).  Declining water levels have increased the size of the area 

affected by land subsidence – 4.9x104 km2in the 1990s → 7.9x104 km2 in 2000s → 9x104 km2 in 2012 (Wang et al., 2018). 55 

Pumping of groundwater in coastal areas is also producing seawater intrusion.  

The groundwater situation is also troubling in India with an annual production of ~250 km3, the largest in the world. 

Groundwater provides 85% of drinking water and 60% of water for irrigation (World Bank, 2010). There two prototypical 

settings for groundwater. Shallow hard-rock aquifers, like the Deccan Traps (Basaltic Lava Flows) or weathered granitic 

rocks, occur across the upland areas of the Indian Peninsula (Figure 2b).  These low yielding, weathered bedrock aquifers are 60 

important sources of water, which are being increasingly exploited with rates of withdrawal often greater than recharge 

(World Bank, 2010).  Water typically occurs in fractures in the upper 25 m. During a typical year, increases in water levels 

due to recharge from monsoonal rains do not fully recover from previous years.  
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The Indo-Gangetic alluvial (IGA) aquifer system occurs across the top of India (Figure 2b), extending into Pakistan, Nepal, 

and Bangladesh. It includes flood plains along the Indus and Ganges Rivers and their tributaries as a thick sequence of 65 

alluvial sediments derived from the Himalayan Mountains (MacDonald et al., 2016).  

Groundwater production from the IGA aquifer system in 2010 (including adjacent countries) was 205 km3 yr-1, increasing at 

2-5 km3 yr-1 due to continued expansion of irrigated agriculture (MacDonald et al., 2016). These large withdrawals are offset 

by comparably large inflows as leakage from irrigation canals, irrigation return flows, and natural recharge from monsoonal 

rains. Assessments are complicated by spatial variability in hydraulic parameters, various water quality impacts, and 70 

uncertainties in recharge estimates (MacDonald et al., 2016). Rates of storage depletion, estimated using GRACE data, range 

from 17.76 ±4.5 km3 yr-1 (Rodell et al., 2009) to 14 ±0.4 km3 yr-1 (Long et al., 2016). The most realistic estimate (2000-

2012) is somewhat lower, 8.0 ±3.0 km3 yr-1 (5.2 ±1.9 km3 yr-1 for northern India), based on actual groundwater 

measurements (MacDonald et al., 2016).  

Yet, impacts from pumping are not the urgent problem that some measurements (e.g., Rodell et al., 2009) imply. The 75 

relatively large quantities of groundwater stored in the upper 200 m of the IGA system coupled with 100 plus years of 

additional recharge from unintended canal leakage and irrigation return flows means that depletion is regionalized. Yet, what 

is concerning is that the greatest recent water-level declines are evident in northern Indian and Pakistan, areas essential for 

food production with irrigation.  

What is often misunderstood about IGA aquifer system is the greater threat to groundwater sustainability associated with 80 

water quality issues – salinity, urban and industrial contaminants, and geogenic arsenic in groundwater associated with 

sediments from Himalayan sources (MacDonald et al., 2016; Foster et al., 2018; Young et al, 2019). The origin of salinity in 

the shallow groundwater is complex but commonly associated with effects of irrigation. Leaking canals, over more than a 

century in some instances, have led to waterlogging and salt accumulation in soil, and the salinization of recharge (Foster et 

al., 2018). Large capacity irrigation wells are also capable of mobilizing naturally salty water occurring at depth with up-85 

coning.  Estimates are that 18,000 km3 or 60% of shallow groundwater in the IGA system suffers water-quality impairment 

(MacDonald et al., 2016). 

The largest cities of India exemplify the emerging problems of water sustainability. A useful example is Delhi whose 

population of ~25 million is poised to double in the next 30 to 50 years. Most of Delhi’s drinking water comes from surface-

water sources; but groundwater from the IGA aquifer system is both important and problematic. Almost every sustainability 90 

issue just discussed is a major problem for Delhi – rapidly declining water levels, salinity at depth, and nitrate concentrations 

commonly >45 mg/L and as high as 1500 mg/L. Various news outlets have been active in expressing concerns about the 

local impacts of these problems (Text Box 1).  

Political and policy failures associated with groundwater and surface water have created a crisis for India that bears directly 

on food, water and health (Biswas et al., 2018). Citing centuries of mismanagement of water resources, and “institutional 95 

incompetence” (Biswas et al., 2018) in the context of a large growing population, there has been no willingness for action 

politically in India beyond “cosmetic changes” (Biswas et al., 2018).  Although issues involved with surface waters 
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(contamination, fights over allocation, and reliability of public supplies) are worsening; “the groundwater situation is even 

worse” (Biswas et al., 2018). Yet, data on groundwater is poor in quality or unavailable. Rampant growth in groundwater 

utilization is linked in part to the failure of government to provide surface water for irrigation (Biswas et al., 2018).  100 

Pakistan is another country with groundwater issues threatening future sustainability.  Its large population, ~208 million and 

growing, contributes to its water scarce status with a per capita availability of water in the lowest 10% of the world’s 

population (Young et al., 2019). The Indus River and its tributaries are significant surface-water resources, used almost 

entirely to support irrigated agriculture. Yet, the use of water is inefficient with significant losses due to canal leakage, 

evaporation, and over-irrigation (Young et al., 2019).   105 

The IGA aquifer system extends southward into Pakistan along the length of the Indus River. For now, levels of groundwater 

in the IGA aquifer system in Pakistan are stable or even increasing (MacDonald et al., 2016). The main problems are 

associated with water-level declines of ~10 m since the 1980s in the important food growing area of Punjab Province to the 

northeast (Young et al., 2019). Here, as in India, canal leakage and irrigation return flow have continued to provide an 

unmanaged aquifer recharge system that has banked water in the subsurface since the late 1800s to the point of waterlogging 110 

in some places (MacDonald et al., 2016). The greater threat to sustainability comes from the kinds of water quality problems 

mentioned previously.  

There is little progress in the development of a sustainability ethic for groundwater management in Pakistan. Assessments 

are frustrated by an absence of data and the lack of a quantitative understanding of groundwater-surface water interactions 

along the major rivers (Young et al., 2019).   115 

Elsewhere in Asia, the non-sustainable production of groundwater has resulted in even more serious problems. In Iran, the 

significant loss of groundwater resources could render major parts of the country uninhabitable with the possibility of 

millions displaced as conditions worsen (Collins, 2017). In addition to widespread declines in water levels, there are 

significant problems related to land subsidence and declining water quality (Madani et al., 2016).  

Various factors have contributed to groundwater insecurity. Iran has a growing population of ~80 million, which has doubled 120 

over the last 40 years (Bozorgmehr, 2014). The country is dry, making groundwater a growing source for drinking and 

irrigation water. A continuing trend towards urbanization has resulted in an urban population of 70% with 18% in Tehran 

(Madani et al., 2016). Since 1999, there has been a succession of drought years. When coupled with an increase in annual 

temperature, the new normal is dryer and hotter weather with a likely decline in precipitation and recharge in coming 

decades due to climate change (Gohari et al., 2013; Nabavi, 2018).  125 

This water crisis is also driven by socioeconomic decisions in the late 1970s to become self-sufficient in wheat, the country’s 

most important crop (Collins, 2017). The expansion in wheat production through irrigation has had significant impacts on 

groundwater. Yet, there are few signs of movement towards a more sustainable groundwater future (Collins, 2014).  

Another Asian hot spot for impacts associated with unsustainable groundwater production is Jakarta, Indonesia, on the island 

of Java. Approximately 25-30% of the more affluent residents of this large city receive piped-in surface water (Colbran, 130 

2009). Others obtain drinking water from large numbers of groundwater wells, rainwater, vendors, bottled water, etc.  The 
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poor quality of piped water has pushed industries and other large consumers toward the utilization of deep (~150 m) 

groundwater (Colbran, 2009).  

Yet, this is not a drought story. Large, localized production from the shallow unconfined aquifer ~50 m thick and a deeper 

confined aquifer ~100 m thick is not sustainable even with significant natural recharge (Kagabu et al., 2013). The overuse of 135 

groundwater has been evident for a long time. For example, in 1995, reported pumping rates were three times larger than 

recharge rates. By 2008, drawdowns in the deep aquifer were >40 m with hydraulic heads 25 m below sea level (Kagabu et 

al., 2013). Water quality in the shallow aquifer is impacted by urban contaminants, like NO3 (Kagabu et al., 2013) because 

there are virtually no sanitary sewer systems. There is evident seawater intrusion landward within the deep aquifer caused by 

over-pumping. Declining water levels have also resulted in subsidence that in several places exceeds 2 m (IRIDeS, 2017). 140 

Now approximately 40% of the city’s land surface is below sea level with only a seawall to protect land from inundation. 

Yet, as far as groundwater utilization, it appears to be business as usual. 

 

3 What are the Hurdles to Groundwater Sustainability? 

Developing Asian countries have encountered significant roadblocks hindering progress towards groundwater sustainability. 145 

So far, it has been relatively painless for countries and large cities to simply ignore groundwater issues, which in the case of 

India has been called an “invisible” crisis (Biswas et al., 2017). Of greater concern in Asian countries is a collection of more 

critical national issues related, for example, to growing their economies, feeding their people, maintaining national security, 

and improving the social conditions for growing populations.  

An instructive example is Yemen, a slowly unfolding example of human tragedy. Yemen is located at the southern end of the 150 

Arabian Peninsula bordering the Red Sea.  After four years of civil war, half the population (~28 million) is short of water 

(Camacho et al., 2018).  Approximately 60% of the population is food insecure with nearly 500,000 children under five 

suffering “severe acute malnutrition” (BBC, 2017). The public health system has trouble providing basic services in the face 

of the world’s largest recorded epidemic of cholera in modern times. There have been more than one million cases from 

2016-2018 (Comacho et al., 2018). It is easy to understand why problems of groundwater over-pumping evident even in 155 

2002 in the Sana’a basin (Foster, 2003) are not an urgent national concern. 

In Asian countries, much less deference is given to water security than food security. India’s “Green Revolution” (GR) is a 

case in point. In the 1950s, government leaders in India were troubled by the deaths from the Bengal Famine of 1943 

(Rahman, 2015). With their growing population, achieving food security became a top priority. In the 1960s, the GR began 

with an expansion in agricultural lands, new high-yielding seeds, expanded irrigation, double cropping, and vastly increased 160 

fertilizer and pesticide applications (Rahman, 2015; Schmanski, 2008).  India became food secure with large increases in the 

production of food and cereal grains. 

Yet there is dark side, which includes severe social, economic, and environmental problems, particularly in the amazingly 

productive Punjab region of India (Figure 2b). Examples include the high suicide rates of farmers, increasing cancer rates 
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from pesticides, and especially the unsustainable utilization of groundwater (Schumanski, 2008; Singh and Park, 2018). 165 

Groundwater impacts were slow to develop but are now serious with water-level declines ranging from 4.5 m to 35 m 

(Rahman, 2015). 

China, India, and Iran have been able to aggressively ramp up agricultural production to feed their people without adequately 

planning for the impacts to groundwater. With recharge and the inherent capacity of large aquifers to store abundant 

groundwater, groundwater problems developed incrementally and have been difficult to recognize in data-poor settings. 170 

Now, food production from irrigated agriculture is structurally part of the national economies of these countries, making it 

difficult to reduce the production of food and groundwater.  

The second major impediment to progress in sustainable management is the inherent inability to manage anything that is not 

understood. For example, assuming that appropriate laws and regulations exist, government administrative actions, such as 

authorizing or charging for groundwater use, banning new wells, or capping production with existing wells (Garduno and 175 

Foster, 2010), all depend on data. The solution to groundwater requires an understanding of the scope and extent of problems 

and specific information as to who is pumping what quantities of water. Populous developing countries quite simply may 

lack the capacity to administer groundwater.  

Modern technical or socioeconomic interventions in support of aquifer sustainability depend on data for planning purposes 

and compliance monitoring to assure actual progress towards sustainability goals. This kind of data-centric approach is 180 

different than, for example, traditional water-harvesting methods understood to promote groundwater recharge and storage. 

For example, India is the world leader in the number of these traditional systems installed (Dillon et al., 2019). There are 

“several million recharge structures” (Dillon et al., 2019) in place, some quite old, and 11 million more planned. Typically, 

this type of managed aquifer recharge (MAR) has involved streambed recharge and percolation tanks/ponds to store water in 

the subsurface. Yet, there are few quantitative assessments of the efficacy of these approaches in promoting recharge (Dillon 185 

et al., 2019; Dashora et al., 2018). While contributing to sustainability, these practices are unlikely to achieve that goal. 

Moving beyond India to China and S.E. Asia, there are few active MAR projects in operation (Dillon et al., 2019).        

A program invested in groundwater sustainability requires personnel with basic knowledge of hydrogeology along with 

specializations in relevant topical areas. Such specialized knowledge exists in the world, but not so much in Asian countries. 

Until this expertise is developed and embellished through practical experience, progress will continue with the ad hoc 190 

traditional practices.  

This idea of “understanding” in relation to the sustainable management of groundwater must extend to comprehensive 

national data collection, such hydrogeologic mapping, monitoring, and modeling. Yet, there is little discernable progress in 

data collection necessary to support sustainability initiatives in either India (Biswas et al., 2017) or Pakistan (Young et al., 

2019). There may be some progress in China but information there is siloed and lacking in necessary transparency. In the 195 

megacities, like Jakarta, Delhi, and Karachi, our reviews found the status of groundwater data to be meagre to nonexistent, 

totally inadequate to support technical or socioeconomic efforts towards sustainability.   
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The kinds of technical information and infrastructure needs for sustainable groundwater management are well known. They 

include a robust qualitative and quantitative understanding of how the land-based portion of the hydrologic system functions, 

physically, chemically and biologically. Basic data collection involves metering or other approaches to establish water-200 

utilization, aquifer characterizations, testing, sampling and measurements in the field, supported by various monitoring 

networks, data acquisition systems, laboratories and database systems. Figure 3 highlights the broad scope of data needs with 

an illustrative conceptual model of a complex coastal hydrologic system (CDWR, 2016).  

Asian countries starting from scratch will need to anticipate costs associated with years of field operations in, for example, 

groundwater mapping, aquifer testing, and water quality measurements. Various monitoring networks will need to be 205 

designed and emplaced, as well as equipment to be purchased, installed, and operated. Provision must be made for data 

compilation and storage, interpretations, modeling, laboratory measurements, etc. What adds even more difficulty is an 

absolute need to monitor for one to several decades to provide an average set of baseline conditions (CDWR, 2016). The 

creation of conceptual models, water balance calculations, and compliance assurance all require these kinds of data. A useful 

place to gain perspective is with a series of best practices reports of the California Department of Water Resources (e.g., 210 

CDWR, 2016). They are intended to provide technical assistance for California’s new state-wide initiative in sustainable 

groundwater management.  

The third major obstacle is that technically-oriented sustainability initiatives require expensive infrastructure with continuing 

operating costs. Consider a problem where the key issue with sustainable management is water-level declines from excessive 

pumping. The operational objective is to end up with an aquifer system where water storage does not change over the long-215 

term while maintaining appropriate natural discharges to rivers and springs. Reductions in storage due to unsustainable 

production can only be reversed in two ways – increasing the quantity of inflows to the aquifer (e.g., recharge) or decreasing 

the outflows (e.g., pumping with wells).  The yellow box in Text Box 2 lists four recharge schemes to increase inflows to 

aquifers (i.e., MAR) with links to the associated issues/problems, as indicated by the red arrows. 

Clogging is a significant problem reducing the quantities of water infiltrated or injected into the subsurface. Consequently, 220 

MAR systems require regular maintenance to maintain performance. In an Asian context, the other issues affecting MAR 

(Text Box 2) also provide formidable challenges. Finding water to recharge an aquifer can be difficult. Surface water can be 

scarce because excess water is often only available with summer monsoons. Treated municipal sewage, another important 

source of water, is often not available or of appropriate quality. For example, ~50% of Delhi’s population has no sewers 

(Sengupta, 2015) with significant quantities of wastewater dumped into the nearby Yamuna River or left to seep into the 225 

ground. In addition, there tends to be declining interest in projects involving long transfers of water. Farmers are commonly 

not persuaded that government-supplied surface water for irrigation is a preferable alternative to groundwater sources (World 

Bank, 2010). Infrastructure, like reservoirs, pipelines or canals is needed to transfer water to where it is needed.  

A variety of strategies exists to reduce groundwater withdrawals. Replacing groundwater (i, ii green, Textbox 2) in irrigation 

with imported surface water or treated wastewater is often not practicable, as was mentioned. Decreasing agricultural 230 

production through acreage reductions, growing one crop per year instead of two, or changing to crops that use less water 
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will lead to less groundwater utilization (iii to vi, Text Box 2). Yet, on the one hand, with governments firmly committed to 

food security and poor farmers needing to maintain their livelihoods, such initiatives are unattractive. On the other hand, 

these strategies require minimal technical expertise. Governments can pass a law, check the sustainability box, and plan to 

spend money to import some food.  Finally, more efficient irrigation technologies might lead reduced pumping (Garduno 235 

and Foster, 2010)   

There are successful models for managing water resources sustainably. They are worth discussing here to illustrate (i) 

requirements for data and advanced technologies, (ii) the long-term commitment to complex and costly projects, and (iii) 

efforts necessary to turn urban wastewater into a valuable water source. The Orange County Water District (OCWD) in 

southern California near Los Angeles is a leader in sustainable groundwater management. OCWD serves a 900 km2 area, 240 

distributing water to ~2.4 million people. Two thirds of that water comes from groundwater produced from hundreds of 

deep, high capacity wells. Sustainable operation of the aquifer systems provides ~345 Mm3 yr-1 of high-quality groundwater, 

while maintaining aquifer storage within a specified operating range (Hendron and Markus, 2014). With natural recharge of 

only 74 Mm3 yr-1, sustainable management requires additions to storage through MAR (Hendron and Markus, 2014). Water 

is diverted from the Santa Ana River and infiltrated through recharge basins (Figure 4).  River flow is mostly treated sewage 245 

and occasional winter stormflows.    

Another recharge source is purified water produced by the Groundwater Replenishment System (GWRS) facility (Figure 4).  

Municipal wastewater, collected and treated at the Orange County Sanitation District (OCSD) treatment facility, is 

transferred to the GWRS facility for advanced treatment (Hendron and Markus, 2014). Processing that includes reverse 

osmosis and other treatments produces near-distilled water. Approximately 65% of this water moves through pipes to 250 

recharge basins at Anaheim (follow the red line, Figure 4). The remainder is injected through a line of wells completed at 

various depths, creating a seawater intrusion barrier.     

A simple water-balance (Eqn. 1), based on Hendron and Markus (2014), shows pumped groundwater (PGW) to be balanced 

by natural recharge (NR), MAR using both infiltrated river water (IR) and advanced treated wastewater (ATW): 

 255 

74 Mm3 yr-1
NR + 185 Mm3 yr-1

IR + 86 Mm3 yr-1
ATW – 345 Mm3 yr-1

PGW = 0       (1) 

 

The success of OCWD’s hydrogeological operations is critically dependent on monitoring. They collect production data 

monthly for the high capacity production wells and less frequently for smaller wells (OCWD, 2015).  Water level and water 

quality data coming from hundreds of wells provides evidenced-based compliance with sustainability goals. The quality of 260 

water from the GWRS facility is monitored, as is the Santa Ana River and tributaries (OCWD, 2015). Performance of the 

seawater intrusion barrier is also monitored along with subsidence across the basin.  

Such sophisticated water management systems are uncommon in Asia. Yet, the island state of Singapore is home for an 

innovate collection of management activities creating near self-sufficiency from water imports from Malaysia (Irvine et al., 

2014).  Drinking and industrial waters come from capturing and treating rainwater captured with urban catchments, the 265 
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advanced purification of urban wastewater to a product called NEWater, and the addition of desalination plants (Irvine et al., 

2014).  

 

4 Planning for the Worst and Hoping for the Best: Groundwater Research Directions 

There are compelling arguments why it is unrealistic to expect groundwater to be managed sustainability in developing 270 

Asian countries. The indictment for India, “centuries of mismanagement, political and institutional incompetence; 

indifference at central, state, and municipal levels, and steadily increasing population” (Biswas et al., 2017) applies as well to 

other countries. Groundwater-related problems are largely invisible (Biswas et al., 2017) and seemingly irrelevant to a 

greater agenda. For China, India, and Iran, there is an undeniable focus on food production to support growing populations 

and changing food preferences of increasingly affluent societies (Young et al., 2019).  The continuing trend towards 275 

urbanization at all scales up to megacities is localizing water demands and exacerbating groundwater problems.  

Despite progress with satellite-remote sensing, particularly GRACE (Feng et al., 2018; Long et al., 2017; Rodell et al., 2009; 

Rodell et al., 2018), actions around evidence-based groundwater sustainability is at an early stage. In the case of the IGA 

aquifer system, the greatest present threat to long-term sustainability is not from over-pumping but from human activities 

that have led to groundwater salinization and urban/agricultural contamination (MacDonald et al., 2016). This experience in 280 

India and Pakistan and possibly China reveals how pervasive contamination can lead to the same unsustainable outcome as 

over-pumping. 

Adding water-quality issues to the sustainability mix reveals even greater deficiencies in data and needs for research in 

modeling and arid-zone geochemistry. For example, salinity problems are complicated because impacts can occur in so 

many ways. In Pakistan, saline water exists at depth in addition to salinized recharge caused by waterlogging. Moreover, this 285 

deep groundwater water can be remobilized by pumping (Foster et al., 2018). In China, shallow groundwater across the 

eastern half of the North China Plain is salinized (Foster and Garduno, 2004). This creates the possibility for eventual water 

quality impairment in the underlying deep freshwater aquifer as over-pumping there continues. Research is required to 

explore mechanisms, pathways and time scales of contaminant-related impacts on sustainability of aquifers. Another target 

of opportunity is the difficult field characterizations of the geochemistry of saline groundwaters in arid-zone settings.   290 

A pragmatic research agenda must also account for the risk that sustainable groundwater management will never happen. 

The necessary transition from a water policy of muddling along, stumbling from one crisis to the next without substantive 

actions to quantifiably sustainable systems, like those in Orange County or Singapore will be enormous. Further, it is 

doubtful whether the successful strategies in those two places with relatively small and economically advantaged populations 

are practically scalable to many millions of people in developing countries.  In any case, logistical constraints mean that it 295 

will be decades before sustainable systems are up and running. Such a delay increases the possibilities of predictable 

surprises – the problems (e.g., climate change) that are anticipated but ignored (Bazerman and Watkins, 2004).   
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It is worthwhile to consider research to support those sustainability initiatives that are likely to be undertaken. For example, 

India appears poised to invest in traditional MAR schemes (Dillon et al, 2018). There are significant opportunities in 

reimagining this overall approach by adapting modern practices to the design and restoration of traditional water-harvesting 300 

systems.   

Another possibility is for research to facilitate adaption to the worst outcomes. This idea came from a recent conference 

address (Siegel, 2019), which challenged the audience to contemplate a future where researchers are consumed in dealing 

with problems of adapting to unmitigated impacts of climate change. A population-modeling study gaging the future in-

country migration in arid countries due to climate change (Rigaud et al., 2018) is an interesting example. The results for 305 

South Asia suggested that by 2050, there could be 35.7 million in-country climate migrants under a pessimistic climate 

scenario.  

In the context of groundwater sustainability, we envision a need for research that would help with adapting to the ongoing 

decline in groundwater availability aggravated by climate change impacts. In other words, with groundwater sustainability 

unlikely to be achievable, research could help in understanding when the groundwater is likely to run out, possibilities for 310 

creatively stretching the supply, or envisioning ways to ease the impacts of inevitable declines in food and health. 

 

Data availability. The production of the digital elevation maps for Figure 2 used the following data sources: 

 SRTM 90m DEM Version 4, Accessed and download from:  http://srtm.csi.cgiar.org/srtmdata/  

GIS data for administrative area boundaries from: https://www.diva-gis.org/gdata 315 
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Figure 1: Map showing the Asian countries and cities discussed in the paper. 

 435 

 

 

Figure 2: Panel (a) is a shaded relief map of the core of the North China Plain. The red/orange colored areas have drawdowns >20 
m in the shallow aquifer (Cao et al., 2012). The yellow dots indicate areas with local drawdowns in the deep aquifer >80 m (Zheng 
et al., 2012). Panel (b) shows India, Pakistan and Bangladesh. The red dots generally indicate the locations of hard-rock aquifers. 440 
The yellow dots point to the general location of IGA system along the plains of the Indus and Ganges Rivers.   
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Text Box 1: Headlines and articles reacting to Delhi’s worsening groundwater problems. 

 

  

Delhi’s great water fall: Capital fears riots 
and water shortages as groundwater level 

hits dangerous low 
• S and SW Delhi water table declined 10-20 m last 10 

yrs 
• At 20-50 m water brackish or saline 
• Contamination by NO3, F  (Sharma, 2013) 

 
Delhi groundwater, a deadly cocktail 

• 42 of 124 samples salinity 2000 to 16,700 uS/cm 
• 6 of 122 NO3  800-1500 mg/L 
• 29 of 122 NO3 100 -800 mg/L  (Seth, 2015) 

 
Groundwater Plummets in Delhi, City of 29 

Million 
• Could reach “zero groundwater levels”  

 by 2020 
• 390 M m3/yr groundwater pumped vs. natural recharge 

310 M m3/yr 
• groundwater levels critical in 90% of city and demand 

is growing  (Ritter, 2019) 
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 465 
 

 

Figure 3: Conceptual model of a hypothetical coastal hydrologic system featuring a major river, cities, agricultural irrigation, an 
alluvial aquifer system being recharged using various MAR systems, and more. Complexities arise from (i) the number of different 
processes operating within the basin and their associated parameters, (ii) a need to quantify the diverse array of water exchanges 470 
within the hydrologic cycle, (iii) water uses that need to be metered, (iv) potential groundwater contamination from irrigation 
return flows, and (v) constraints dictated by sustainable groundwater management. (With permission, California Department of 
Water Resources, 2016).  
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 475 

 

 

 
Text Box: 2. The yellow and green boxes list some of the strategies for increasing aquifer storage of groundwater by increasing 
inflows through managed recharge and/or decreasing the quantity of water pumped, respectively. The red arrows indicate 480 
associated issues.  
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Figure 4: Facilities operated by the OCWD (With permission, Orange County Water District, 2015). 485 
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