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Abstract: Fully-coupled global climate models (GCMs) generate a vast amount of high-dimensional forecast data of the global 10 

climate; therefore, interpreting and understanding the predictive performance is a critical issue in applying GCM forecasts. 

Spatial plotting is a powerful tool to identify where forecasts perform well and where forecasts are not satisfactory. Here we 

build upon the spatial plotting of anomaly correlation between forecast ensemble mean and observations to derive significant 

spatial patterns to illustrate the predictive performance. For the anomaly correlation derived from the ten sets of forecasts 

archived in the North America Multi-Model Ensemble (NMME) experiment, the global and local Moran’s I are calculated to 15 

associate anomaly correlation at neighbouring grid cells to one another. The global Moran’s I associates anomaly correlation 

at the global scale and indicates that anomaly correlation at one grid cell relates significantly and positively to anomaly 

correlation at surrounding grid cells. The local Moran’s I links anomaly correlation at one grid cell with its spatial lag and 

reveals clusters of grid cells with high, neutral, and low anomaly correlation. Overall, the forecasts produced by GCMs of 

similar settings and at the same climate center exhibit similar clustering of anomaly correlation. In the meantime, the forecasts 20 

in NMME show complementary performances. About 80% of grid cells across the globe fall into the cluster of high anomaly 

correlation under at least one of the ten sets of forecasts. While anomaly correlation exhibits substantial spatial variability, the 

clustering approach serves as a filter of noise to identify spatial patterns and yields insights into the predictive performance of 

GCM seasonal forecasts of global precipitation. 

1 Introduction 25 

Global climate models (GCMs) have been steadily improved over the past decades and are being employed by major climate 

centers around the world to generate operational long-range forecasts [Doblas-Reyes et al., 2013; Saha et al., 2014; Bauer et 

al., 2015; Hudson et al., 2017; Kushnir et al., 2019], providing physically-based forecasts in comparison to conventional 

statistical forecasts [Mason and Goddard, 2001; Wu et al., 2009; Schepen et al., 2012]. In particular, the fully-coupled GCMs 

assimilate world-wide observational information to predict the global hydrological cycle [Merryfield et al., 2013; Saha et al., 30 
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2014; Jia et al., 2015]. Equipped with physical and dynamical laws, GCMs can potentially make forecasts of longer lead time 

and higher skill than statistical models [Kirtman et al., 2014; Becker et al., 2014; Chen et al., 2017]. In terms of computation, 

global climate forecasting is as complex as the simulation of the human brain and of the evolution of the early Universe [Bauer 

et al., 2015]. Advances in super-computing facilitate the forecasting and make GCM forecasts readily available for 

hydrological, environmental, and agricultural modelling [Sheffield et al., 2014; Vecchi et al., 2014; Bellprat et al., 2019; 35 

Pappenberger et al., 2019; Zhao et al., 2019a]. 

GCMs generate a vast amount of high-dimensional forecast data, including retrospective forecasts of past climate and real-

time forecasts [Kirtman et al., 2014; Saha et al., 2014; Jia et al., 2015]. Due to the complexity of atmospheric processes and 

model physics, the predictive performance of GCM forecasts is not uniform but varies considerably across the globe [Yuan et 

al., 2013; Tian et al., 2017; Zhao et al., 2018]. Therefore, interpreting and understanding the predictive performance is a critical 40 

issue in the applications of GCM forecasts [Doblas-Reyes et al., 2013; Saha et al., 2014; Jia et al., 2015; Hudson et al., 2017; 

Wang et al., 2019a]. There are various metrics to verify the attributes of forecasts [Murphy, 1993]. For example, bias in 

percentage indicates the extent to which the forecasts are persistently higher, or lower, than the corresponding observations; 

probability integral transform (PIT) evaluates the reliability of the spread of ensemble forecasts in capturing the distribution 

of observations; and the continuous ranked probability score (CRPS) is a probability-weighted measure of the errors of 45 

ensemble members in relation to the observations [Murphy, 1993; Hersbach, 2000; Gneiting et al., 2007; Tian et al., 2018; 

Wang et al., 2019b]. The anomaly correlation that indicates how well large (small) values of forecasts correspond to large 

(small) values of observations is one of the most popular metrics [e.g., Yuan et al., 2011; Saha et al., 2014; Crochemore et al., 

2016; Hudson et al., 2017; Zhao et al., 2017a]. Compared to PIT that requires a diagnostic plot and CRPS that relies on 

numerical integration, anomaly correlation is conceptually simple, easy to implement, and also robust to missing and censored 50 

values [Yuan et al., 2011; Luo et al., 2014; Slater et al., 2017]. 

Spatial plotting with latitude and longitude has been extensively used to handle the dimensionality for the verification of GCM 

forecasts [Kirtman et al., 2014; Hudson et al., 2017; Slater et al., 2017]. The fact that forecasts are commonly generated by 

GCMs as grid-based data makes spatial plotting a particular tool of choice for verification [Merryfield et al., 2013; Saha et al., 

2014; Jia et al., 2015]. As to anomaly correlation, spatial plotting overcomes tedious eyeball search by grid cell and is effective 55 

in locating where there is a good correspondence between forecasts and observations and where the correspondence is not 

satisfactory [Luo et al., 2013; Saha et al., 2014; Crochemore et al., 2016; Zhao et al., 2018, 2019b]. Similarly, spatial plotting 

applies to other verification metrics, such as bias and CRPS, and facilitates the examination of forecast attributes [Hersbach, 

2000; Gneiting et al., 2007; Kirtman et al., 2014]. 

The extensive use of spatial plotting underlines the importance of testing the significance of spatial patterns. In spatial statistics, 60 

one of the fundamental issues is “are the spatial patterns displayed by the spatial plots significant in some sense and therefore 

worth interpreting?” [Cliff and Ord, 1981; Anselin, 1995; Getis, 2007]. However, the test of significance is commonly missing 

in the spatial plotting of GCM forecasts. In other words, verification metrics, such as anomaly correlation, are calculated for 

each grid cell and then shown as they are. To some extent, the interpretation of predictive performance depends on the color 
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schemes, which are selected subjectively to represent the scale of verification metrics. There is the first law of geography – 65 

“everything is related to everything else, but near things are more related than distant things” [Tobler, 1970]. As to spatia l 

plotting, the indication is that when verifying forecasts at one grid cell, attention also needs to be paid to forecasts at 

surrounding grid cells. For anomaly correlation, a grid cell with high correlation between forecasts and observations can be 

surrounded by grid cells with similarly high correlation, or by grid cells with low correlation. In the former case, the grid cell 

is located in a region where the GCM forecasts tend to perform well. But in the latter case, the high correlation can be a 70 

suspicious outlier. Moreover, previous studies observed grid cells with negative anomaly correlation, i.e., large (small) values 

of forecasts correspond to small (high) values of observations [Zhao et al., 2017b, 2018, 2019b]. In such a case, forecasts are 

cautiously wrong. Therefore, it is critical to characterize the different cases in spatial plotting and test whether the spatial 

patterns are significant and worth further attention. 

In this paper, we are motivated to introduce spatial statistics [e.g., Di Luzio et al., 2008; Lu and Wong, 2008; Woldemeskel et 75 

al., 2013] to investigate the spatial plotting of anomaly correlation at the global scale. As will be shown later in this paper, the 

technique of spatial clustering facilitates the identification of significant patterns of high, neutral, and low anomaly correlation 

and provides an objective approach to interpreting the predictive performance of GCM forecasts. For the purpose of inter-

comparison, the examination of significant patterns in spatial plotting has been conducted for ten sets of GCM seasonal 

precipitation forecasts in the North American Multi-Model Ensemble (NMME) experiment [Kirtman et al., 2014; Ma et al., 80 

2016; Zhang et al., 2017]. In the remainder of the paper, the dataset of GCM seasonal forecasts is illustrated in Section 2; the 

spatial clustering using global and local Moran’s I is detailed in Section 3; the results of anomaly correlation at the global scale 

and its clustering are shown in Section 4; the discussion and conclusions are respectively presented in Sections 5 and 6. 

2 Data description 

The NMME builds on existing GCMs in North America to provide quality-controlled forecast data to the community of climate 85 

research and applications. More than ten sets of GCM precipitation forecasts have been spatially regridded and temporally 

aggregated to form a consistent dataset [Kirtman et al., 2014]. Each set of forecasts overall has 5 dimensions. They are 1) start 

time s, when the forecasts are initialised; 2) lead time l, whose unit is month for the forecasts; 3) ensemble member n, which 

is meant to represent forecast uncertainty; 4) latitude y; and 5) longitude x. Taking the precipitation forecasts of the Climate 

Forecast System version 2 [CFSv2, Saha et al., 2014] in NMME as an example, s is the beginning of each month and its value 90 

represents the number of months since January 1960; l is 0, 1, …, 9, i.e., the forecasts are for month 0 head (current month), 

month 1 ahead, …, and month 9 ahead; n is numbered from 1 to 24, i.e., 24 ensemble members; y is from -90 to 90 while x is 

from 0 to 359, i.e., the spatial resolution is 1 degree by 1 degree (approximately 100 kilometres). In the meantime, NMME 

provides precipitation observations corresponding to the forecasts. Specifically, the Climate Prediction Center (CPC)’s merged 

analysis of precipitation [CMAP; Xie and Arkin, 1997; Xie et al., 2007], which is monthly, has been regridded to 1-degree 95 

resolution to verify GCM forecasts [Kirtman et al., 2014; Chen et al., 2017; Zhao et al., 2018]. 
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Table 1: Basic information on the ten sets of GCM forecasts from the NMME experiment 

Climate Centre GCM 

Number of 

ensemble 

members 

Lead time 

(month) 

Canadian Meteorological Center (CMC) 

Canadian coupled model version 3 

(CanCM3) 
10 0–11 

Canadian coupled model version 4 

(CanCM4) 
10 0–11 

Center for Ocean-Land-Atmosphere Studies, 

Rosenstiel School of Marine and Atmospheric 

Science (COLA-RSMAS) 

Community climate system model 

version 3 (CCSM3) 
6 0–11 

Community climate system model 

version 4 (CCSM4) 
10 0–11 

Geophysical Fluid Dynamics Laboratory 

(GFDL) 

Climate model version 2.1 (CM2p1) 10 0–11 

Climate model version 2.1 (CM2p1-

aer04) 
10 0–11 

Climate model version 2.5 with 

forecast-oriented low ocean resolution 

(CM2p5-FLOR-A06) 

12 0–11 

Climate model version 2.5 with 

forecast-oriented low ocean resolution 

(CM2p5-FLOR-B01) 

12 0–11 

National Center for Atmospheric Research 

(NCAR) 

Community earth system model 

version 1 (CESM1) 
10 0–11 

National Centers for Environmental Prediction 

(NCEP) 

Climate forecast system version 2 

(CFSv2) 
24 0–9 

 

Ten sets of precipitation forecasts, as well as CMAP observations, in the NMME are downloaded from the International 100 

Research Institute at the Columbia University (https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). Their 

retrospective forecasts are complete in the period from 1982 to 2010 [Merryfield et al., 2013; Saha et al., 2014; Jia et al., 2015]. 

In the meantime, their real-time forecasts are updated periodically in a slightly different setting; for example, CFSv2 forecasts 

are generated since January 2011 using initial conditions of the last 30 days, with 4 runs from each day 

(https://www.cpc.ncep.noaa.gov/products/CFSv2/CFSv2_body.html). Basic information on the forecasts are provided in 105 

Table 1. In the analysis, the attention is paid to the retrospective forecasts 

, , , ,GCM s l n y x GCM
F f =    

(1)  

In Eq. (1), f represents forecast values that are specified by the 5 dimensions; F, which is the set of forecasts, is marked by the 

GCM that generates the forecasts. It is noted that in NMME, FGCM are raw forecasts generated by GCMs and are not bias-

corrected or downscaled. 

The observed precipitation corresponding to the forecasts is denoted as 110 

, , ( )t y xO o t s l = = +   
(2)  

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://www.cpc.ncep.noaa.gov/products/CFSv2/CFSv2_body.html
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As shown in Eq. (2), the observation in total has three dimensions: time t, whose value is the addition of lead time l to start 

time s in the alignment of observations with forecasts; latitude y; and longitude x. It is pointed out that while F differs by GCM, 

O is the same across the ten sets of forecasts. 

The start time s in Eqs. (1) and (2) comprises year k, i.e., 1982, 1983, …, 2010, and month m, i.e., January, February, …, and 

December. The predictive performance of GCM forecasts exhibits seasonality [Zhao et al., 2017a, 2017b, 2018]. Accordingly, 115 

in the analysis, forecasts are selected by fixing m while varying k, e.g., pooling forecasts initialised in June 1982, June 1983, …, 

June 2010. The anomaly correlation is calculated by relating forecasts to the corresponding observations 

( )( )

( ) ( )
2 2

k kk

k kk k

rf rf ro ro
r

rf rf ro ro

− −
=

− −



 
 

(3)  

The above formulation deals with k and omits other dimensions, including m, l, y and x, for the sake of simplicity. In Eq. (3), 

rfk (rok) is the rank of year k’s forecast ensemble mean (observation) in the 29 years’ ensemble mean (observations); and rf  

( ro ) is the mean value of rfk (rok). In general, the anomaly correlation characterises how well large (small) values of ensemble 120 

mean correspond to large (small) values of observations. Good (poor) correspondence makes r tend towards 1 (–1). 

With Eq. (3), the set of anomaly correlation between FGCM and O is evaluated 

, , ,GCM m l y x GCM
R r =    (4)  

In which r and R are respectively the correlation coefficients and the set of correlation. R, which differs by GCM, has four 

dimensions: 1) month m, which substitutes start time s in Eq. (1); 2) lead time l; 3) latitude y; and 4) longitude x. Comparing 

Eq. (4) to Eq. (1), the dimension n of ensemble member is eliminated since the forecast ensemble mean is taken in the 125 

calculation of anomaly correlation (Eq. 3). 

For selected GCM forecasts in month m and at lead time l, the anomaly correlation between ensemble mean and observation 

forms a two-dimensional array by latitude and longitude. Here, spatial plotting applies to the presentation of anomaly 

correlation at the global scale. Following Eq. (4), the set of anomaly correlation is denoted as 

, , ,GCM m l y xR r =    
(5)  

In Eq. (5), y and x specify the location of grid cells. Denoting grid cell as i, the subscripts of latitude y and longitude x are 130 

merged into i for the purpose of simplicity 

 , ,GCM m l iR r=
 

(6)  

In which ri represents the anomaly correlation at grid cell i, of which the latitude is yi and the longitude is xi. 
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3 Methods 

The spatial plotting employs certain pre-selected colour schemes to represent the value of anomaly correlation and show the 

grid cell-wise anomaly correlation as it is [e.g., Yuan et al., 2011; Kirtman et al., 2014; Ma et al., 2016]. Spatial patterns that 135 

represent clusters of grid cells with high anomaly correlation have been observed and highlighted in peer studies [e.g., Saha et 

al., 2014; Jia et al., 2015; Slater et al., 2017]. The spatial clustering associates anomaly correlation at neighbouring grid cells 

to one another and tests the significance of the patterns by random permutation [Anselin, 1995, 2006; Rey and Anselin, 2010]. 

Following the standard formulations of spatial statistics, the global Moran’s I is calculated to examine the association among 

anomaly correlation at the global scale 140 

( )( )

( )

,

1 1,
,

1 1,

2

1

1

1

N N

i j i jN N
i j j i

i j

i j j i

N

i

i

w r r r r

w

I

r r
N

= = 

= = 

=

− −

=

−

 
 


 

(7)  

In which N is the number of grid cells indexed by i and j across the globe; r  is the mean value of anomaly correlation; and 

,i jw  is the spatial weighting coefficient that usually decays with the distance between i and j [Miller, 2004; Hao et al., 2016; 

Schmal et al., 2017]. At the right-hand side of Eq. (7), the denominator is the variance of ri across all the grid cells; and the 

numerator is the spatially-weighted and -averaged covariance between ri and rj. Generally, the value of the global Moran’s I 

ranges from -1 to 1. The similarity (dissimilarity) of ri to the surrounding rj makes I tend toward 1 (-1), while the random 145 

distribution of anomaly correlation makes I close to 0. 

The spatial weight 
,i jw  plays an important part in the calculation of I [Rey and Anselin, 2010]. Following the inverse distance 

weighting (IDW) interpolation in geosciences [Di Luzio et al., 2008; Lu and Wong, 2008; Woldemeskel et al., 2013], 
,i jw  is 

formulated as follows 

, 2

1

( , )
i jw

d i j
=

 
(8)  

In which d(i, j) is the Euclidean distance between grid cells i and j, i.e., 

2 2( , ) ( ) ( )i j i jd i j x x y y= − + −
. In addition, the 150 

cut-off threshold for d(i, j) is set as 10 degrees (approximately 1,000 kilometres) to reduce the computational burden. That is, 

,i jw  is set as 0 if d(i, j) exceeds 10. 

Adding to the global Moran’s I, the local Moran’s I is obtained to test whether ri at a certain grid cell i significantly relates to 

surrounding rj at the local scale [Anselin, 2006; Hao et al., 2016; Yuan et al., 2018] 
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(9)  

As shown in the above formulation, Ii is positive when ri and the surrounding rj are similarly high, or similarly low. On the 155 

other hand, Ii is negative when a high (low) value of ri correspond to low (high) values of neighbouring rj. Also, Ii can be close 

to zero when ri or the surrounding rj is close to the mean value. The significance of Ii is tested by random permutations [Rey 

and Anselin, 2010]. For each permutation, the values of rj are randomly rearranged, and then the local Moran’s I is re-calculated. 

The permutations obtained a reference distribution for Ii under the null hypothesis of randomly distributed anomaly correlation 

[Anselin, 1995, 2006; Rey and Anselin, 2010]. Given a significance level  , the quantiles /2I  and 1 /2I −  are retrieved 160 

from the reference distribution. Therefore, the two-tailed test of Ii along with the anomaly correlation ri facilitates spatial 

clustering and derives five cases: 

1 /2

/2

/2 1 /2

/2

1 /2

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

i i

i i

i i

i i

i i

HH I I r r

HL I I r r
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LH I I r r

LL I I r r





 





−

−

−

  


 


=  


 
    

(10)  

As illustrated in Eq. (9), the first case HH, which is short for high-high, indicates that a high value of ri is surrounded by high 

values of rj; the second case is HL – high-low – a high value of ri surrounded by low values of rj; the third case is NS – not 

significant – the local association of ri with surrounding rj is not significant; the fourth case is LH – low-high – a low value of 165 

ri surrounded by high values of rj; and the fifth case is LL – low-low – a low value of ri surrounded by low values of rj. In this 

way, the significance of patterns, which generally represent clusters of grid cells with high (low) anomaly correlation, is 

examined for spatial plotting of anomaly correlation.   is set to be 0.05 in this paper. 

4 Results 

The spatial clustering is performed for the anomaly correlation across the ten sets of forecasts in NMME. In the analysis, the 170 

attention is mainly paid to June, July, and August (JJA), which are generally boreal summer and Austral winter. Specifically, 

the start time of the forecasts is June, and the forecasts at the lead times of 0, 1, and 2 months are aggregated to form the 

seasonal forecasts. In the meantime, forecasts initialized in September of total precipitation in September, October, and 
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November (SON), forecasts initialized in December of total precipitation in December, (the next) January, and (the next 

February) (DJF), and forecasts initialized in March of total precipitation in March, April, and May (MAM) are also investigated, 175 

with the results presented in the supplementary material. 

4.1 Anomaly correlation in JJA 

The anomaly correlation between ensemble mean and observation is evaluated for the ten sets of seasonal precipitation 

forecasts. In Figure 1, the spatial plots employ a diverging red-blue colour scheme to represent the value of anomaly correlation. 

Red pixels indicate positive correlation, while blue pixels negative correlation. For each set of forecasts, many instances of red 180 

pixels can be observed. That is, forecasts exhibit promising performance with ensemble mean positively correlated with 

observation in many instances. Meanwhile, there also exist instances of blue pixels. In those instances, forecasts are generally 

not right because large (small) values of ensemble mean coincide with small (large) values of observation. While an inter-

comparison of the ten sets of GCM forecasts in terms of anomaly correlation is presented in Figure 1, the anomaly correlation 

exhibits considerable spatial variability that hinders the analysis across the different sets of forecasts. As a result, it is none too 185 

easy to identify regions where the forecasts persistently exhibit promising predictive performance. 

The first row of Figure 1 is for the forecasts generated by two Canadian GCMs. Although CanCM3 and CanCM4 share the 

ocean components and have slightly different atmospheric components [Merryfield et al., 2013], their anomaly correlation 

shows differences. For example, in Asia and Africa, the clusters of red pixels do not seem to overlap but differ instead; and in 

Australia, the anomaly correlation is high in Southeast Australia and part of Western Australia for CanCM3 while it is high in 190 

East Australia for CanCM4. These results are in accordance with a previous finding that CanCM3 and CanCM4 tend to 

complement each other [Merryfield et al., 2013]. The second row of Figure 1 shows the performance of two sets of forecasts 

by COLA-RSMAS GCMs. Complementary performance is no longer seen. Instead, CCSM4 forecasts show higher anomaly 

correlation and largely outperform CCSM3 forecasts in North and South America, Africa, and Australia. The outperformance 

can be attributed to the developments in ocean, atmospheric, and land components and the new coupling infrastructure of 195 

CCSM4 [Gent et al., 2011]. 

The third and fourth rows of Figure 1 are for the forecasts produced by four GFDL GCMs. In the third row, CM2p1 and 

CM2p1-aer04 forecasts seem to exhibit similar anomaly correlation, which tends to be high in Northeast South America, 

Western Africa, and Southeast Australia. In the fourth row, CM2p5-FLOR-A06 and CM2p5-FLOR-B01 forecasts show 

similarly high anomaly correlation in Northeast and Southeast South America, Northeast Australia and part of West Australia. 200 

On the other hand, the anomaly correlation differs from the CM2p1/CM2p1-aer04 forecasts to the CM2p5-FLOR-

A06/CM2p5-FLOR-B01 forecasts. Jia et al. [2015] illustrated that CM2p5-FLOR GCMs have higher-resolution atmospheric 

and land components but coarser-resolution ocean components than CM2p1 GCMs. It is likely the changes in the setting of 

GCMs that lead to the difference in predictive performance. The fifth row of Figure 1 is for NCAR-CESM1 and NCEP-CFSv2 

forecasts. Compared to CESM1 forecasts, CFSv2 forecasts tend to exhibit similar anomaly correlation in South America and 205 

show higher anomaly correlation in Asia, Africa and Australia. 
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Figure 1: Anomaly correlation between forecast ensemble mean and observation for ten sets of GCM forecasts of seasonal 

precipitation. The forecasts are initialized in June and are for the total precipitation in June, July, and August 
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 210 

4.2 Anomaly correlation and its spatial lag in JJA 

In spatial analysis, one critical issue is how an attribute at one location relates to the attribute at neighbouring locations [Cliff 

and Ord, 1981; Anselin, 1995; Getis, 2007]. For anomaly correlation, the subplots of Figure 1 imply the existence of some 

relationships as there are clusters of red pixels and of blue pixels. As for the clusters, Figure 2 presents a statistical test of the 

relationships using the global Moran’s I. Specifically, for all the grid cells across the globe, the anomaly correlation at each 215 

grid cell is plotted against the spatially-weighted and -averaged anomaly correlation, i.e., spatial lag  [Miller, 2004; Hao et al., 

2016; Schmal et al., 2017], at the surrounding grid cells. 

Figure 2 uses a viridis heatmap to indicate the density of scatter points. It can be observed that the points frequently fall in the 

first quadrant under all the ten sets of forecasts. In accordance with clusters of red pixels in Figure 1, this result suggests that 

many grid cells are with positive anomaly correlation and that they tend to be surrounded by grid cells with positive anomaly 220 

correlation. Meanwhile, some points are in the third quadrant. It is due to that some grid cells are of negative anomaly 

correlation and are surrounded by grid cells with negative anomaly correlation. This outcome corresponds to the existence of 

clusters of blue grid cells in Figure 1. Also, there are a few points in the second and fourth quadrants. Overall, anomaly 

correlation at one grid cell positively relates to anomaly correlation at the neighbouring grid cells. The global Moran’s I is 

above 0.500, with the p-value far smaller than 0.01, for all the ten sets of NMME seasonal forecasts. Therefore, it is statistically 225 

verified that at the global scale, a grid cell with high (neutral, or low) anomaly correlation tends to be surrounded by grid cells 

with high (neutral, or low) anomaly correlation. 
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Figure 2: Scatter plots of anomaly correlation at one grid cell against the corresponding spatial lag, i.e., spatially-weighted and -

averaged anomaly correlation at surrounding grid cells. The density of points is estimated by kernel density function and shown by 230 
the viridis heatmap, with yellow (blue) colour indicating high (low) density 
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4.3 Spatial clustering in JJA 

Furthermore, the local Moran’s I classifies the grid cells across the globe into 5 cases under each of the ten sets of forecasts. 

In Figure 3, the five cases are marked by different colours. Specifically, the case HH is in orange, the case HL in red, the case 235 

NS in grey, the case LH in green, and the case LL in blue. A prominent finding from the subplots of Figure 3 is that the three 

cases of HH, NS, and LL have more instances than the other two cases of HL and LH. This result agrees to the spatial clustering 

of anomaly correlation in Figure 1 and to the distribution of scatter points in Figure 2. Comparing Figure 3 to Figure 1, it can 

be observed that orange regions generally correspond to clusters of red pixels, which represent positive anomaly correlation, 

and that blue regions coincide with clusters of blue pixels, which show negative anomaly correlation. In the meantime, in-240 

between orange and blue regions are grey regions. The implication is that regions with high and low anomaly correlation tend 

to be separated by regions with neutral anomaly correlation. While the spatial variability of anomaly correlation in Figure 1 is 

complicates the analysis of predictive performance, the classification in Figure 3 facilitates effective analysis across the ten 

sets of GCM forecasts. 

The orange regions that correspond to clusters of grid cells with high anomaly correlation are of particular interest. Three 245 

findings are made from the spatial extent of orange regions. First of all, they tend to be similar under forecasts generated by 

the same climate center. For example, orange regions exist in a large part of South America for the ten sets of forecasts. On 

the other hand, they are not as extensive in the Amazon Basin under the CMC1-CanCM3 and CMC2-CanCM4 forecasts while 

they tend to cover Amazon under the COLA-RSMAS-CCSM3 and COLA-RSMAS-CCSM4 forecasts. The similarity versus 

difference can be owing to that GCMs developed at the same climate center tend to share certain ocean, atmospheric, and land 250 

components [Gent et al., 2011; Merryfield et al., 2013; Jia et al., 2015]. Secondly, orange regions seem to be affected by the 

setting of GCMs. There are four sets of forecasts by GFDL. In Western United States, orange regions are extensive under the 

GFDL-CM2p1 and GFDL-CM2p1-aer04 forecasts but tend to be limited under the GFDL-CM2p5-FLOR-A06 and GFDL-

CM2p5-FLOR-B01 forecasts. This drastic difference can be due to the setting of FLOR, i.e., forecast-oriented low ocean 

resolution [Vecchi et al. 2014; Jia et al., 2015]. Thirdly, there are substantial regional variations possibly due to the 255 

predictability of seasonal precipitation [Doblas-Reyes et al., 2013; Becker et al., 2014; Zhang et al., 2017]. For example, orange 

regions cover large part of Australia, in particular Southwest and Southeast Australia. However, they are not as extensive in 

Europe, Asia and Africa. It is possibly owing to that the climate in Australia is strongly affected by ENSO [Schepen et al., 

2012; Wang et al., 2012; Hudson et al., 2017] and that the 10 GCMs in NMME tend to capture the effect of ENSO on the total 

precipitation in JJA. 260 

The blue regions correspond to clusters of grid cells with low anomaly correlation. They are generally indicative of locations 

where forecasts are not satisfactory. Under the ten sets of forecasts, blue regions can be observed in large parts of Europe, Asia, 

Africa, Canada, and Eastern United States. While orange regions show some relationships with the source and setting of GCMs, 
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blue regions are more varying. In addition, they tend to mix with grey regions, which are indicative of neutral anomaly 

correlation, and also with red and green regions. Generally, this outcome implies the difficulty of generating skilful climate 265 

forecasts at the global scale as there are complex land-ocean-atmosphere processes [Bauer et al., 2015; Kapnick et al., 2018; 

Kushnir et al., 2019]. It is noted that some red regions that represent the case HL are observed to be located inside blue regions. 

The implication is that some grid cells may happen to exhibit high anomaly correlation but their surrounding grid cells are of 

low anomaly correlation. From the perspective of spatial statistics, the high correlation is not trustworthy and can be outlier. 
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 270 

Figure 3: Classification of grid cells across the globe into five cases based on spatial clustering of anomaly correlation. The case HH 

is marked in orange, the case HL in red, the case NS in grey, the case LH in green, and the case LL in blue. H and L are respectively 

short for high and low; the case HH (HL, LH, and LL) indicates that a grid cell with high (high, low, and low) anomaly correlation 

is surrounded by grid cells with high (low, high, and low) anomaly correlation. NS is short for not significant; the case NS means 

that the anomaly correlation at a grid cell or surrounding grid cells is neutral 275 
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4.4 Frequency of the case HH in JJA 

While the orange regions of the case HH are indicative of promising predictive performance, grid cells classified as this case 

differ across the ten sets of forecasts. To deal with the spatial variation of the case HH, the frequency that a grid cell falls into 

orange regions is counted for Figure 3. For one grid cell, the frequency ranges from 0 to 10. That is, across the 10 sets of 280 

forecasts, one grid cell is with high anomaly correlation and is surrounded by grid cells with high anomaly correlation at the 

minimum for 0 times and at the maximum for 10 times. Figures 4 and 5 illustrate the spatial and statistical distributions of the 

frequency, respectively. 

Substantial regional variation can be observed for the frequency of the case HH from Figure 4. In North America, the frequency 

is evidently higher in Western United States than in Eastern United States, Canada, and Mexico. Globally, the frequency is 285 

higher in South America than in Europe, Asia, and Africa. Also, the frequency is high in Australia and Southeast Asia. Mason 

and Goddard [2001] elaborated on the relationship between ENSO and global seasonal precipitation anomalies: for the total 

precipitation in JJA, El Niño was shown to coincide with above-normal precipitation in parts of South and North America and 

below-normal precipitation in parts of Australia and Southeast Asia; by contrast, the impact of El Niño is not prominent for 

large parts of Europe, Asia, and Africa. With Mason and Goddard’s finding, it is speculated that the results in Figure 4 to some 290 

extent reflect the impact of ENSO at the global scale. 

 

 

Figure 4: The spatial distribution of the frequency of the case HH across the globe for the ten sets of GCM forecasts of the total 

precipitation in JJA 295 
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The percentage and cumulative percentage of the frequency of the case HH are shown by bar and line plots in Figure 5, 

respectively. The frequency of 0 corresponds to a percentage of nearly 20%. This outcome means that about 20% of the grid 

cells across the globe do not fall into the case HH in any of the ten sets of forecasts. Another interpretation of this result is that 

about 80% of the grid cells fall into the case HH in at least one of the ten sets of forecasts. This result is in contrast to Figure 300 

3 suggesting that orange regions are limited under each of the ten set of forecasts. It highlights the spatial complementarity 

among the multiple sets of GCM forecasts [Doblas-Reyes et al., 2013; Merryfield et al., 2013; Jia et al., 2015]. In the meantime, 

the percentages corresponding to the frequencies of 5, 6, …, 10 are all below 5% and the cumulative percentage reaches 80% 

at the frequency of 4. This result is due to that the performances of the different sets of forecasts are not the same. In other 

words, for certain regions, some sets of GCM forecasts may be not satisfactory while some other sets of GCM forecasts can 305 

be promising. Overall, Figure 5 suggests that GCM forecasts in NMME can complement each other [Wang et al., 2012; Becker 

et al., 2014; Kirtman et al., 2014]. 

 

 

Figure 5: Percentage (bar plot) and cumulative percentage (line plot) of the frequency of the case HH under the ten sets of GCM 310 
forecasts of the total precipitation in JJA 

 

4.5 Frequency of the case HH in SON, DJF, and MAM 

Besides JJA, spatial clustering has been performed for the anomaly correlation of GCM seasonal forecasts of total precipitation 

in SON, DJF, and MAM. Similarly, it is observed that the anomaly correlation varies across the globe (Figures S1, S4, and S7 315 

in the supplementary material), correlates with its spatial lag (Figures S2, S5, and S8), and exhibits significant spatial patterns 

(Figures S3, S6, and S9). In addition to Figures 4 and 5, the frequency of the case HH is counted for the other three seasons 

and shown in Figures 6 and 7. 
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ENSO is one of the most important drivers of global climate [Mason and Goddard, 2001; Saha et al., 2014; Bauer et al., 2015], 

and the CPC of NOAA has summarized the correlation between ENSO and global precipitation in different seasons 320 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/regressions/geplr.shtml). In this paper, the results in Figure 6 

are associated with the global effects of ENSO. In SON, the CPC shows that ENSO correlates negatively with precipitation in 

Eastern Australia and Southeast Asia, and positively with precipitation in part of Middle East and East Africa. From the upper 

part of Figure 6, it is observed that the frequency of the case HH is high in these regions. In DJF, ENSO is shown to correlate 

positively with precipitation in Southern North America and negatively with precipitation in Northern South America. In these 325 

two regions, the frequency of the case HH is high (middle part of Figure 6). In MAM, ENSO is illustrated to correlate 

negatively with precipitation in part of Southeast Asia, Eastern Brazil, and Eastern Australia. Therein, the frequency of the 

case HH seem to be high (lower part of Figure 6). Therefore, as previous studies found that GCMs in NMME generate skilful 

forecasts of ENSO [e.g., Kirtman et al., 2014; Saha et al., 2014; Zhang et al., 2017], Figure 6 suggests that the skill, as is 

indicated by anomaly correlation, of GCM forecasts in NMME can also be related to ENSO. In Figure 7, the percentage and 330 

cumulative percentage of the frequency of the case HH are illustrated for SON, DJF, and MAM. Similar to Figure 5, the results 

show the complementarity among the ten sets of forecasts. 

Besides ENSO, there are other drivers of global climate. For example, North Atlantic Oscillation (NAO) and Arctic Oscillation 

(AO) extensively affect the climate in Europe, Asia, and North America [Hurrell et al., 2001; Ambaum et al., 2002]. Several 

sea surface temperature indices of the Atlantic and Indian Oceans and ENSO jointly impact the climate in Africa [Rowell, 335 

2013]. As can be observed from Figures 4, 5, 6, and 7, there is still substantial room for improvement of seasonal precipitation 

forecasts for large parts of Europe, Asia, and Africa. The overall neutrally skilful precipitation forecasts in these regions can 

possibly be due to that GCM formulations of other climate drivers are not as effective as the formulations of ENSO. In the 

meantime, the difficulty of global climate forecasting due to spatially-temporally varying teleconnections between regional 

precipitation and global climate drivers is noted [Merryfield et al., 2013; Saha et al., 2014; Jia et al., 2015; Hudson et al., 2017; 340 

Kushnir et al., 2019]. 

 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/regressions/geplr.shtml
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Figure 6: As for Figure 4, but for SON, DJF, and MAM 
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 345 

 

Figure 7: As for Figure 5, but for SON, DJF, and MAM 
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5 Discussion 

This paper proposes to use spatial clustering to identify significant spatial patterns [Anselin, 1995; Miller, 2004; Schmal et al., 350 

2017] from spatial plots of anomaly correlation, which have been widely used to illustrate the predictive performance of GCM 

forecasts. The test of significance is based on global and local Moran’s I. The global Moran’s I indicates that at the global 

scale anomaly correlation at one grid cell significantly relates to anomaly correlation at neighbouring grid cells, and the local 

Moran’s I reveals clusters of grid cells with high anomaly correlation. Across the ten sets of GCM forecasts in NMME, the 

clusters are observed in different regions across globe, which suggests that the skill of forecasts differs from region to region; 355 

in the meantime, the clusters vary by season owing to the seasonality of the skill of GCM forecasts [Doblas-Reyes et al., 2013; 

Becker et al., 2014; Yuan et al., 2015; Hudson et al., 2017; Kushnir et al., 2019]. To test whether the spatial patterns are robust, 

the observations of precipitation are also sourced from the Global Precipitation Climatology Centre (GPCC) [Becker et al., 

2011; Schamm et al., 2014]. The anomaly correlation is re-calculated, and the spatial clustering is re-conducted. The results 

of GPCC precipitation, which are shown in Figures S10 to 25 in the supplementary material, are overall similar to the results 360 

of CMAP precipitation. In particular, as to the two datasets of precipitation observations, the spatial distributions of the case 

HH resemble in JJA (Figures 4 and S10) and also in SON, DJF, and MAM (Figures 6 and S12). This outcome highlights the 

existence of significant spatial patterns and confirms that the spatial clustering can serve as an effective tool to yield insights 

into the predictive performance of GCM forecasts. 

The spatial clustering ties anomaly correlation at neighbouring grid cells to one another and converts the continuous anomaly 365 

correlation into five categorical cases. Similar to the technique of moving average in time-series analysis, the categorical cases 

serve as a filter to reduce noise for the identification of spatial patterns. They handle the spatial variability of anomaly 

correlation and facilitate analysis across the ten sets of forecasts. It is illustrated that the forecasts produced by the same climate 

center tend to exhibit similar predictive performance and that changes in the setting of GCMs lead to changes in the predictive 

performance. Given that the global and local Moran’s I are flexible and easy to compute, they are ready to be extended in 370 

future analysis to other datasets of forecasts, such as forecasts generated by GCMs in Europe and Asia or by regional climate 

models (RCMs) [Alfieri et al., 2013; Bellprat et al., 2019; Kushnir et al., 2019]. Also, the forecasts can be verified using global 

and regional datasets of precipitation [Funk et al., 2015; Zhao et al., 2017a, 2017b]. A more extensive investigation would 

contribute to better understanding of the predictive performance and illustrate the advantages of different sets of forecasts. Of 

particular interest is to explore which forecasts achieve promising predictive performance in large parts of Europe, Asia, and 375 

Africa. In the meantime, it is meaningful to account for the dynamics of global climate and investigate the model physics that 

leads to the improved performance. 

The spatial clustering is a popular approach to geographical, ecological, and environmental modelling [e.g., Anselin, 1995, 

2006; Miller, 2004; Hao et al., 2016; Schmal et al., 2017]. Meanwhile, its use appears to be not popular in the forecasting area. 

A possible cause is that the objective of forecasting is usually location-specific. In other words, forecasts are produced for a 380 

certain site/watershed and then verified using the corresponding observations, of which the process does not involve other 
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sites/watersheds. In this paper, the analysis of GCM forecasts in NMME reveals that forecasts at neighbouring locations 

positively relate to one another. The indication is that the skill at one location can to some extent be inferred from adjacent 

locations. This result facilitates a new perspective for the verification of GCM forecasts. If a grid cell with high anomaly 

correlation is surrounded by grid cells with high anomaly correlation, the promising predictive performance at that grid cell 385 

can be confirmed. On the other hand, if the surrounding grid cells are with low, or even negative, anomaly correlation, then 

the high anomaly correlation is identified to be a suspicious outlier. Under that circumstance, further examination of the 

predictive performance is in demand to avoid undue optimism. 

6 Conclusions 

Fully-coupled GCMs perform physically-based forecasting of the global climate and generate a vast amount of spatial-390 

temporal forecast data. The predictive performance is of both societal and scientific importance in the applications of these 

GCM forecasts. Focusing on the anomaly correlation between forecast ensemble mean and observation, we have conducted 

in-depth spatial analysis for ten sets of GCM forecasts in NMME and identified significant patterns from the spatial plotting 

of anomaly correlation. In the analysis of spatial clustering, grid cells across the globe are classified into five categories – HH, 

HL, NS, LH, and LL – depending on the anomaly correlation at that grid cell and the surrounding grid cells. The regions of 395 

grid cells with high, neutral, and low anomaly correlation are effectively identified. Further, effective inter-comparison across 

multiple sets of GCM forecasts is facilitated. While the analysis is concentrated on the spatial plotting of anomaly correlation, 

the framework readily applies to other metrics of GCM forecasts, such as bias, reliability, and skill. Moreover, the framework 

can be extended to GCM forecasts of other climate variables, for example temperature and wind speed, serving as a tool to 

explore GCM forecasts and interpret the predictive performance. 400 
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