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This study examines the spatial patterns in skill of seasonal scale dynamical 

precipitation forecasts from the NMME models. By examining the spatial clusters of 

skill the study concludes that in general the skill pattern are spatially coherent – in 

other words regions with higher/positive [lower/negative] skills are typically 

surrounded by the pixels with higher/positive [lower/negative] skills. The study also 

finds the spatial pattern of the forecasts from the same climate center to be similar and 

that use of diverse models helps improve the regions with higher skill because of 

complementary skills. 

This is a very useful study, as the authors argue that screening of forecast skill based 

on spatial pattern can help identify the regions with coherent high skill and hence the 

regions where the forecasts are likely to be most useful for decision-making. In addition 

to this implication, I think spatial pattern of regions with high skills can help with the 

attribution of skill. For example, presumably, the regions with known ENSO 

teleconnection would show spatial coherence in high skill. 

Thank you very much for the positive comments. We are encouraged by the comments 

and shall explore more in this area. 

 

I think this study is certainly suitable for publication however I would like to suggest 

some additional analysis in the hopes of further improving this manuscript. 

We are grateful to you for the constructive comments and have improved the paper 

accordingly. 

 

(1) The figure 4 and 5 are great as they summarize several relevant information on the 

skill for the JJA season, I think it would be good to add similar figures for other seasons 

here in the main manuscript rather than in supplementary material. As of now the main 

manuscript has only 5 figures so the manuscript certainly has space for it. 

Thank you very much for the insightful comment. We have added a new section and 

illustrated the results of the other three seasons: 

“4.5 Frequency of the case HH in SON, DJF, and MAM 

Besides JJA, spatial clustering has been performed for the anomaly correlation of GCM 

seasonal forecasts of total precipitation in SON, DJF, and MAM. Similarly, it is 



observed that the anomaly correlation varies across the globe (Figures S1, S4, and S7 

in the supplementary material), correlates with its spatial lag (Figures S2, S5, and S8), 

and exhibits significant spatial patterns (Figures S3, S6, and S9). In addition to Figures 

4 and 5, the frequency of the case HH is counted for the other three seasons and shown 

in Figures 6 and 7. 

ENSO is one of the most important drivers of global climate [Mason and Goddard, 

2001; Saha et al., 2014; Bauer et al., 2015], and the CPC of NOAA has summarized the 

correlation between ENSO and global precipitation in different seasons 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/regressions/geplr.sht

ml). In this paper, the results in Figure 6 are associated with the global effects of ENSO. 

In SON, the CPC shows that ENSO correlates negatively with precipitation in Eastern 

Australia and Southeast Asia, and positively with precipitation in part of Middle East 

and East Africa. From the upper part of Figure 6, it is observed that the frequency of 

the case HH is high in these regions. In DJF, ENSO is shown to correlate positively 

with precipitation in Southern North America and negatively with precipitation in 

Northern South America. In these two regions, the frequency of the case HH is high 

(middle part of Figure 6). In MAM, ENSO is illustrated to correlate negatively with 

precipitation in part of Southeast Asia, Eastern Brazil, and Eastern Australia. Therein, 

the frequency of the case HH seem to be high (lower part of Figure 6). Therefore, as 

previous studies found that GCMs in NMME generate skilful forecasts of ENSO [e.g., 

Kirtman et al., 2014; Saha et al., 2014; Zhang et al., 2017], Figure 6 suggests that the 

skill, as is indicated by anomaly correlation, of GCM forecasts in NMME can also be 

related to ENSO. In Figure 7, the percentage and cumulative percentage of the 

frequency of the case HH are illustrated for SON, DJF, and MAM. Similar to Figure 5, 

the results show the complementarity among the ten sets of forecasts. 

Besides ENSO, there are other drivers of global climate. For example, North Atlantic 

Oscillation (NAO) and Arctic Oscillation (AO) extensively affect the climate in Europe, 

Asia, and North America [Hurrell et al., 2001; Ambaum et al., 2002]. Several sea 

surface temperature indices of the Atlantic and Indian Oceans and ENSO jointly impact 

the climate in Africa [Rowell, 2013]. As can be observed from Figures 4, 5, 6, and 7, 

there is still substantial room for improvement of seasonal precipitation forecasts for 

large parts of Europe, Asia, and Africa. The overall neutrally skilful precipitation 

forecasts in these regions can possibly be due to that GCM formulations of other climate 

drivers are not as effective as the formulations of ENSO. In the meantime, the difficulty 

of global climate forecasting due to spatially-temporally varying teleconnections 

between regional precipitation and global climate drivers is noted [Merryfield et al., 

2013; Saha et al., 2014; Jia et al., 2015; Hudson et al., 2017; Kushnir et al., 2019]. 



 

 

Figure 6: As for Figure 4, but for SON, DJF, and MAM 

 



 

Figure 7: As for Figure 5, but for SON, DJF, and MAM” 

(Pages 16 to 19, Lines 311 to 345) 

 

(2) It would also be instructive to examine how figure 4 and 5 change with increase in 

the lead-time, as in general, for decision-making applications forecasts are most useful 

at higher lead times. It would be very interesting to see how spatially coherent high skill 

regions changes at higher lead times and how complementary the forecasts from 

different models are in increasing the overall multimodel skill. It would also be 

interesting to look into the attribution of the high skill spatially coherent regions. Of 

course there are several sources of skill but at the least, I would suggest the authors to 

contrast Figure 4 (for at least DJF and JJA seasons) with ENSO and precipitation 

teleconnection maps (maps showing correlation between the two). 

Thank you. The analysis is for seasonal forecasts that add monthly forecasts at three 



lead times. The CPC of NOAA has investigated the global effects of ENSO and posted 

the plots of correlation on its website. We have contrasted the results of seasonal 

forecasts to the plots on CPC’s website: 

“ENSO is one of the most important drivers of global climate [Mason and Goddard, 

2001; Saha et al., 2014; Bauer et al., 2015], and the CPC of NOAA has summarised the 

correlation between ENSO and global precipitation in different seasons 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/regressions/geplr.sht

ml). In this paper, the results in Figure 6 are associated with the global effects of ENSO. 

In SON, the CPC shows that ENSO correlates negatively with precipitation in Eastern 

Australia and Southeast Asia, and positively with precipitation in part of Middle East 

and East Africa. From the upper part of Figure 6, it is observed that the frequency of 

the case HH is high in these regions. In DJF, ENSO is shown to correlate positively 

with precipitation in Southern North America and negatively with precipitation in 

Northern South America. In these two regions, the frequency of the case HH is high 

(middle part of Figure 6). In MAM, ENSO is illustrated to correlate negatively with 

precipitation in part of Southeast Asia, Eastern Brazil, and Eastern Australia. Therein, 

the frequency of the case HH seem to be high (lower part of Figure 6). Therefore, as 

previous studies found that GCMs in NMME generate skilful forecasts of ENSO [e.g., 

Kirtman et al., 2014; Saha et al., 2014; Zhang et al., 2017], Figure 6 suggests that the 

skill, as is indicated by anomaly correlation, of GCM forecasts in NMME can also be 

related to ENSO. In Figure 7, the percentage and cumulative percentage of the 

frequency of the case HH are illustrated for SON, DJF, and MAM. Similar to Figure 5, 

the results show the complementarity among the ten sets of forecasts.” (Page 17, Lines 

317 to 330) 

 

(3) The results of this study, I think can be used to also highlight the minimum number 

of models required for majority of the skill, which could be very useful for numerically 

expensive operational applications when impacts models (such as hydrologic or crop 

yield models) are driven by dynamical forecasts. 

Thank you. The performances of the GCM forecasts vary from region to region. This 

result suggests that different sets of forecasts can have advantages/disadvantages in 

different regions: 

“While an inter-comparison of the ten sets of GCM forecasts in terms of anomaly 

correlation is presented in Figure 1, the anomaly correlation exhibits considerable 

spatial variability that hinders the analysis across the different sets of forecasts. As a 

result, it is none too easy to identify regions where the forecasts persistently exhibit 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/regressions/geplr.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/ENSO/regressions/geplr.shtml


promising predictive performance. 

The first row of Figure 1 is for the forecasts generated by two Canadian GCMs. 

Although CanCM3 and CanCM4 share the ocean components and have slightly 

different atmospheric components [Merryfield et al., 2013], their anomaly correlation 

shows differences. For example, in Asia and Africa, the clusters of red pixels do not 

seem to overlap but differ instead; and in Australia, the anomaly correlation is high in 

Southeast and part of Western Australia for CanCM3 while it is high in East Australia 

for CanCM4. These results are in accordance with a previous finding that CanCM3 and 

CanCM4 tend to complement each other [Merryfield et al., 2013]. The second row of 

Figure 1 shows the performance of two sets of forecasts by COLA-RSMAS GCMs. 

Complementary performance is no longer seen. Instead, CCSM4 forecasts show higher 

anomaly correlation and largely outperform CCSM3 forecasts in North and South 

America, Africa, and Australia. The outperformance can be attributed to the 

developments in ocean, atmospheric, and land components and the new coupling 

infrastructure of CCSM4 [Gent et al., 2011]. 

The third and fourth rows of Figure 1 are for the forecasts produced by four GFDL 

GCMs. In the third row, CM2p1 and CM2p1-aer04 forecasts seem to exhibit similar 

anomaly correlation, which tends to be high in Northeast South America, Western 

Africa, and Southeast Australia. In the fourth row, CM2p5-FLOR-A06 and CM2p5-

FLOR-B01 forecasts show similarly high anomaly correlation in Northeast and 

Southeast South America, Northeast Australia and part of West Australia. On the other 

hand, the anomaly correlation differs from the CM2p1/CM2p1-aer04 forecasts to the 

CM2p5-FLOR-A06/CM2p5-FLOR-B01 forecasts. Jia et al. [2015] illustrated that 

CM2p5-FLOR GCMs have higher-resolution atmospheric and land components but 

coarser-resolution ocean components than CM2p1 GCMs. It is likely the changes in the 

setting of GCMs that lead to the difference in predictive performance. The fifth row of 

Figure 1 is for NCAR-CESM1 and NCEP-CFSv2 forecasts. Compared to CESM1 

forecasts, CFSv2 forecasts tend to exhibit similar anomaly correlation in South America 

and show higher anomaly correlation in Asia, Africa and Australia.” (Page 8, Lines 181 

to 204) 

 

(4) Lastly, I can’t help but wonder how the results of HH regions over Africa would vary 

if a different precipitation dataset such as the Climate Hazards Center Infrared 

Precipitation with Stations (CHIRPS, https://chc.ucsb.edu/data/chirps) dataset used. 

CHIRPS ingests a lot more local in-situ observations than other precipitation datasets 

largely based on global in-situ databases (e.g. GHCN), and hence tends to be better 



than other global datasets (see: https://www.nature.com/articles/sdata201566) 

Thank you very much for the insightful comment. We agree with you on the importance 

of testing the results with another precipitation dataset. The CHIRPS dataset is of 

different spatial coverage and spatial-temporal resolution. In the revision, we have 

applied the Global Precipitation Climatology Centre (GPCC)’s monthly precipitation 

dataset to the test: 

“To test whether the spatial patterns are robust, the observations of precipitation are 

also sourced from the Global Precipitation Climatology Centre (GPCC) [Becker et al., 

2011; Schamm et al., 2014]. The anomaly correlation is re-calculated, and the spatial 

clustering is re-conducted. The results of GPCC precipitation, which are shown in 

Figures S10 to 25 in the supplementary material, are overall similar to the results of 

CMAP precipitation. In particular, as to the two datasets of precipitation observations, 

the spatial distributions of the case HH resemble in JJA (Figures 4 and S10) and also in 

SON, DJF, and MAM (Figures 6 and S12). This outcome highlights the existence of 

significant spatial patterns and confirms that the spatial clustering can serve as an 

effective tool to yield insights into the predictive performance of GCM forecasts.” 

(Page 20, Lines 355 to 363) 

 

  



 

Figure 4: The spatial distribution of the frequency of the case HH across the globe for 

the ten sets of GCM forecasts of the total precipitation in JJA 

 

 

Figure S10: As for Figure 4, but for GPCC precipitation in JJA 

 



 

Figure 6: As for Figure 4, but for SON, DJF, and MAM 

 



 

Figure S12: As for Figure 6, but for GPCC precipitation in SON, DJF, and MAM 

 

In the meantime, the importance of tests with more datasets is noted in the discussion: 

“Given that the global and local Moran’s I are flexible and easy to compute, they are 

ready to be extended in future analysis to other datasets of forecasts, such as forecasts 

generated by GCMs in Europe and Asia or by regional climate models (RCMs) [Alfieri 

et al., 2013; Bellprat et al., 2019; Kushnir et al., 2019]. Also, the forecasts can be 

verified using global and regional datasets of precipitation [Funk et al., 2015; Zhao et 

al., 2017a, 2017b]. A more extensive investigation would contribute to better 

understanding of the predictive performance and illustrate the advantages of different 

sets of forecasts. Of particular interest is to explore which forecasts achieve promising 



predictive performance in large parts of Europe, Asia, and Africa. In the meantime, it is 

meaningful to account for the dynamics of global climate and investigate the model 

physics that leads to the improved performance.” (Page 20, Lines 368 to 375) 

 

Minor comments: 

(1) Abstract: Please briefly explain global and local Moran’s in the abstract as well. 

Thank you. 

“The global Moran’s I associates anomaly correlation at neighbouring grid cells to one 

another and indicates that at the global scale anomaly correlation at one grid cell relates 

significantly and positively to anomaly correlation at surrounding grid cells. The local 

Moran’s I links anomaly correlation at one grid cell with its spatial lag and reveals 

clusters of grid cells with high, neutral, and low anomaly correlation.” (Page 1, Lines 

14 to 17) 

 

(2) Figure 2 is missing a color bar. 

Thank you. 

“Figure 2: Scatter plots of anomaly correlation at one grid cell against the corresponding 

spatial lag, i.e., spatially-weighted and -averaged anomaly correlation at surrounding 

grid cells. The density of points is estimated by kernel density function and shown by 

the viridis heatmap, with yellow (blue) colour indicating high (low) density” (Page 11, 

Lines 227 to 229) 

 

(3) Figure 3: Please provide legends explaining the abbreviations HH, HL etc. 

Thank you. 

“Figure 3: Classification of grid cells across the globe into five cases based on spatial 

clustering of anomaly correlation. The case HH is marked in orange, the case HL in red, 

the case NS in grey, the case LH in green, and the case LL in blue. H and L are 

respectively short for high and low; the case HH (HL, LH, and LL) indicates that a grid 

cell with high (high, low, and low) anomaly correlation is surrounded by grid cells with 

high (low, high, and low) anomaly correlation. NS is short for not significant; the case 

NS means that the anomaly correlation at a grid cell or surrounding grid cells is neutral” 

(Page 14, Lines 269 to 273) 


