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Abstract 24 

Tracer data have been successfully used for hydrograph separation in glacierized basins. 25 

However, uncertainties in the hydrograph separation are large in these basins, caused by the 26 

spatio-temporal variability in the tracer signatures of water sources, the uncertainty of water 27 

sampling and the mixing model uncertainty. In this study, we used electrical conductivity (EC) 28 

measurements and two isotope signatures (δ18O and δ2H) to label the runoff components, 29 

including groundwater, snow and glacier meltwater, and rainfall, in a Central Asia glacierized 30 

basin. The contributions of runoff components (CRC) to the total runoff, as well as the 31 

corresponding uncertainty, were quantified by two mixing approaches: a traditional end-32 

member mixing approach (abbreviated as EMMA) and a Bayesian end-member mixing 33 

approach. The performance of the two mixing approaches was compared in three seasons, 34 

distinguished as cold season, snowmelt season and glacier melt season. Results show that: 1) 35 

The Bayesian approach generally estimated smaller uncertainty ranges for the CRC compared 36 

to the EMMA. 2) The Bayesian approach tended to be less sensitive to the sampling 37 

uncertainties of meltwater than the EMMA was. 3) Ignoring the model uncertainty caused by 38 

the isotope fractionation likely led to an overestimated rainfall contribution and an 39 

underestimated meltwater share in the melt seasons. Our study provides the first comparison of 40 

the two end-member mixing approaches for hydrograph separation in glacierized basins, and 41 

gives insights for the application of tracer-based mixing approaches in similar basins.   42 
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1. Introduction 43 

Glaciers and snowpack store a large amount of fresh water in glacierized basins, thus 44 

providing an important water source for downstream human societies and ecosystems (Barnett 45 

et al., 2005; Viviroli et al., 2007; He et al., 2014; Penna et al., 2016). Seasonal meltwater and 46 

rainfall play significant roles in shaping the magnitude and timing of runoff in these basins 47 

(Rahman et al., 2015; Pohl et al., 2017). Quantifying the seasonal contributions of the runoff 48 

components (CRC), including groundwater, snowmelt, glacier melt and rainfall, to the total 49 

runoff is therefore highly needed for the understanding of the dynamics of water resources in 50 

glacierized basins under the current climate warming (La Frenierre and Mark, 2014; Penna et 51 

al., 2014; He et al., 2015). 52 

The traditional end-member mixing approach (abbreviated as EMMA) has been widely 53 

used for hydrograph separation in glacierized basins across the world (Dahlke et al., 2014; Sun 54 

et al., 2016a; Pu et al., 2017). For instance, studies in the Italian glacierized Alpine catchments 55 

indicate the successful application of the EMMA to estimate the proportions of groundwater, 56 

snow and glacier meltwater based on water stable isotopes and electric conductivity (EC) (e.g., 57 

Chiogna et al. 2014, Engel et al. 2016 and Penna et al. 2017). Li et al. (2014) confirmed 58 

significant contributions of snow and glacier melt runoff to total runoff in the Qilian Mountains 59 

using EMMA. Maurya et al. (2011) reported the contribution of glacial ice meltwater to the 60 

total runoff in a Himalayan basin on δ18O and EC, using a three-component EMMA.  61 

However, uncertainties in CRC quantified by EMMA in glacierized basins are typically 62 

high (Klaus and McDonnell, 2013; Rahman et al., 2015), because of the following reasons: (1) 63 

The catchment elevation generally extends over a large range, leading to strong spatial 64 

variability in climate forcing (precipitation and temperature) and the tracer signatures of water 65 

sources; (2) The number of end-member water sources for runoff is typically high, additionally 66 

including snow and glacier meltwater; (3) Water sampling in high-elevation glacierized 67 

catchment is difficult due to logistical limitations, resulting in small sample sizes for the 68 

application of EMMA. The uncertainties in CRC can be categorized into statistical uncertainty 69 

and model uncertainty. Statistical uncertainty refers to the spatio-temporal variability of the 70 

tracer signatures, sampling uncertainty and laboratory measurement error (Joerin et al., 2002). 71 

Model uncertainty is determined by the assumptions of the EMMA, which might not agree with 72 

reality in the basin (Joerin et al., 2002; Klaus and McDonnell, 2013). For example, the 73 

fractionation effect on isotope ratios caused by evaporation during the mixing process can result 74 

in significant errors given the constant tracer assumption in the EMMA (Moore and Semmens, 75 

2008). 76 
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The Gaussian error propagation technique has been typically applied along with EMMA 77 

to estimate the statistical uncertainty for hydrograph separation, assuming the uncertainty 78 

associated with each source is independent from the uncertainty of other sources (Genereux, 79 

1998; Pu et al., 2013). The spatio-temporal variability of the tracer signatures is estimated by 80 

multiplying the t values of the Student’s t distribution at the selected significance level with the 81 

standard deviations (Sd) of the measured tracer signatures (Pu et al., 2013; Penna et al., 2016; 82 

Sun et al., 2016b). Although this approach has been successfully used in various glacierized 83 

basins, some recurring issues remain. These include (1) inappropriate estimation of the 84 

variability of tracer signatures of water sources when only a few water samples are available 85 

(Dahlke et al., 2014). The used Sd values of the measured tracer signatures likely fail to 86 

represent the variability of tracer signatures of individual water sources across the basin, due to 87 

the small water sample sizes; (2) The correlation of tracer signatures and runoff components 88 

are inevitably ignored, due to the assumption of independence of the multiple uncertainty 89 

sources. The correlation between δ18O and δ2H of each water source, as well as the interaction 90 

between runoff components could provide additional constraints on the uncertainty in the 91 

quantification of runoff components, which however are typically ignored in the Gaussian error 92 

propagation technique. Further, the model uncertainty caused by the fractionation effect on 93 

isotope ratios during the mixing process is also often ignored. 94 

The Bayesian end-member mixing approach (abbreviated as Bayesian approach) shows 95 

the potential to estimate the proportions of individual components to the mixing variable in a 96 

more rigorous statistical way (Parnell et al., 2010). For hydrograph separation, the tracer 97 

signatures of the water sources are first assumed to obey specific prior distributions. Their 98 

posterior distribution are then obtained by updating the prior distributions with the likelihood 99 

observations derived from water samples. In the last step, CRC to the total runoff are estimated 100 

based on the balance of the posterior tracer signatures. The posterior distributions of the CRC 101 

are typically estimated in a Markov Chain Monte Carlo (MCMC) procedure. In the Bayesian 102 

approach, both the statistical and model uncertainties are represented by the posterior 103 

distributions of parameters. The parameter uncertainty is estimated based on likelihood 104 

observations using MCMC. 105 

Although the Bayesian approach can be applied in cases when the sample sizes are small 106 

(Ward et al., 2010), it has been rarely used for hydrograph separation in glacierized basins. To 107 

the authors’ knowledge, there have been only four studies, including Brown et al. (2006), who 108 

conducted the hydrograph separation in a glacierized basin in the French Pyrenees using a three-109 

component Bayesian approach. Further, Cable et al. (2011) quantified the CRC to total runoff 110 
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in a glacierized basin in the American Rocky Mountains. They used a hierarchical Bayesian 111 

framework to incorporate temporal and spatial variability in the water isotope data into the 112 

mixing model. Rodriguez et al. (2016) investigated the effects of tracer measurements and 113 

mixing model parameters on the quantification of CRCs in a Chile glacierized basin, using an 114 

informative-Bayesian framework. Recently, Beria et al. (2019) used a classic Bayesian 115 

approach to estimate the uncertainty in CRC in a Swiss alpine catchment. However, the 116 

performance of the Bayesian approach has not been evaluated in comparison to the EMMA. 117 

Moreover, the sensitivity of the Bayesian approach to the water sampling uncertainty associated 118 

with the representativeness of the water samples caused by the limited sample site and sample 119 

size is still not clear. Benefiting from the prior assumptions for changes in isotope signatures 120 

during the mixing process, the Bayesian approach bears the potential to estimate the 121 

fractionation effect on isotopic signatures (Moore and Semmens, 2008), which however, has 122 

not been investigated either. 123 

In this study, we compare EMMA and the Bayesian approach for hydrograph separation 124 

in a Central Asia glacierized basin, using water isotope and EC measurements. In Central Asia, 125 

glacierized catchments provide important fresh water supply for downstream cities and irrigated 126 

agriculture. Quantifying the contributions of multiple runoff components to total runoff is 127 

important for understanding the dynamics of water resource availability at the regional scale. 128 

However, uncertainty in the quantification of runoff components in the glacierized catchments 129 

are particularly large as mentioned before. Our research questions are two-fold: 1) How do 130 

EMMA and Bayesian approaches compare with respect to the quantification of CRC? 2) What 131 

is the influence of the different uncertainty sources (including variability of the tracer signatures, 132 

sampling uncertainty, and model uncertainty) on the estimated CRC in the two mixing 133 

approaches?  134 

The paper is organized as follows: Details on the study basin and water sampling are 135 

introduced in Section 2; Assumptions of the two mixing approaches are described in Section 3; 136 

Section 4 estimates the CRC, as well as the corresponding uncertainties; Discussion and 137 

conclusion finalize the paper in Sections 5 and 6, respectively. 138 

2. Study area and data 139 

2.1 Study area 140 

Located in Kyrgyzstan, Central Asia, the Ala-Archa basin drains an area of 233 km2, 141 

(Fig. 1), and glaciers cover around 17% of the basin area. The elevation of the study basin 142 

extends from 1560 m to 4864 m a.s.l., and the elevation range of the glacierized area extends 143 

from 3218 to 4857 m a.s.l., with about 76% located between 3700 and 4100m a.s.l.. The 144 
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Golubin glacier has an area of ~5.7 km2 and extends over an elevation range from 3232 to 4458 145 

m a.s.l. (Fig. 1). Both the elevation range and the mean elevation (3869 m a.s.l.) of the Golubin 146 

glacier are close to those of the entire glacierized area (mean elevation is 3945 m a.s.l.). The 147 

Golubin glacier represents about 14.4% of the entire glacierized area, while its elevation range 148 

covers around 95.6% of the entire glacier range. The annual mean precipitation and air 149 

temperature measured at the Baitik meteorological station during 2012-2017 are 538 mm yr-1 150 

and 7.2 ℃, respectively. The mean daily streamflow during 2012-2017 is about 6.3 m3/s (Fig. 151 

S1). The seasonal dynamics of runoff in the river play an important role in the water availability 152 

for downstream agricultural irrigation. The generation of snow and glacier melt runoff generally 153 

shows the largest effect on the runoff seasonality (Aizen et al., 2000; Aizen et al., 2007). In 154 

particular, the snowmelt runoff mainly occurs in the warm period from early March to middle 155 

September, and the glacier melt typically generates runoff from the high-elevation areas during 156 

July to September (Aizen et al., 1996; He et al., 2018; He et al., 2019). We subsequently defined 157 

three runoff generation seasons as follows. Cold season: from October to February, in which 158 

the streamflow is fed mainly by groundwater and to a smaller extent by snowmelt and rainfall; 159 

Snowmelt season: from March to June, in which the streamflow is fed chiefly by snowmelt and 160 

groundwater and additionally by rainfall; Glacier melt season: from July to September, in which 161 

the streamflow is fed by significant glacier melt and groundwater, rainfall and snowmelt.  162 

Two meteorological stations (Fig. 1), i.e., Alplager (at elevation of 2100 m a.s.l.) and 163 

Baitik (at elevation of 1580 m a.s.l.), have been set up in the basin since the 1960s to collect 164 

daily precipitation and temperature data. The Ala-Archa hydrological station has been set up at 165 

the same site of the Baitik meteorological station to collect daily average streamflow data since 166 

the 1960s. The dynamics of glacier mass balance and snow mass balance in the accumulation 167 

zone have been surveyed in summer field campaigns through 2012-2017. Daily precipitation, 168 

temperature and streamflow measured at the basin outlet during 2012-2017, are presented in 169 

Fig. S1 in the supplement file. 170 

2.2  Tracer data 171 

Since July of 2013, stream water samples have been collected weekly by local station 172 

operators, from the river channel close to the Alplager and Baitik meteorological sites, using 173 

pure 50 ml high-density polyethylene (HDPE) bottles (He et al., 2019). The sampling time 174 

slightly varied around noon every Wednesday. Precipitation samples were collected during 175 

2012-2017 at four sites across the basin (Fig. 1). At the Alplager and Baitik meteorological sites, 176 

the precipitation samples were first collected from fixed rain collectors (immediately after the 177 

rainfall/snowfall events), and then accumulated in two indoor rain containers over one month. 178 
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The mixed water in the containers were then sampled for isotopic analysis every month. The 179 

indoor rain containers were filled with thin mineral oil layers for monthly precipitation 180 

accumulation and stored in cold places. Additionally, two plastic rain collectors PALMEX (as 181 

in Gröning et al., 2012), specifically designed for isotopic sampling to prevent evaporation, 182 

were set up at elevations of 2580 m a.s.l. and 3300 m a.s.l. to collect precipitation in high-183 

elevation areas (Fig. 1). Precipitation samples were collected monthly from these two rain 184 

collectors during the period from May to October when the high-elevation areas were accessible. 185 

Glacier meltwater was sampled during the summer field campaigns in each year of 186 

2012-2017. Samples of meltwater flowing on the Golubin glacier in the ablation zone and at 187 

the glacier tongue were collected by pure 50 ml HDPE bottles and then stored in a cooling box 188 

(Fig. 1, the elevation of the sampling sites ranges from 3280 m to 3805 m a.s.l.). We only 189 

collected glacier meltwater samples from the Golubin glacier due to the logistic limitations in 190 

the remaining glacierized area. Snow samples were collected from early March to early October 191 

during 2012-2017, as the sampling sites are generally not accessible due to the heavy snow 192 

accumulation in the remaining months. The elevation of the multiple snow sampling sites 193 

ranges from 1580 m to 4050 m a.s.l. (Fig. 1). The whole snow profile at each sampling site was 194 

collected through drilling a 1.2 m pure plastic tube into the snowpack. The snow in the whole 195 

tube were then collected by plastic bags and stored in a cooling box. After all the snow in the 196 

plastic bags melted out, the mixed snow meltwater samples were then collected by pure HDPE 197 

bottles. Groundwater samples were also collected through March to October during 2012-2017, 198 

from a spring draining to the river (Fig. 1, 2400 m a.s.l.) using pure HDPE bottles. The spring 199 

is located at the foot of a rocky hill, around 60 meters away from the river channel. 200 

All samples were stored at 4 ℃ and then delivered to the laboratory at Helmholtz Center 201 

for Environmental Research (UFZ) in Halle of Germany by flight. Isotopic compositions of 202 

water samples were measured using a Laser-based infrared spectrometry (LGR TIWA 45, 203 

Picarro L1102-i). A correction procedure has been carried out to minimize the effects of drifts 204 

and sample-to-sample memory following the LIMS (Laboratory Information Management 205 

System) for Lasers 2015 developed by Coplen and Wassenaar (2015). The measurement 206 

precisions of both LGR TIWA 45 and Picarro L1102-i for δ18O and δ2H are ±0.25 ‰ and 207 

±0.4 ‰, respectively, after the calibration against the common VSMOW standard. We used the 208 

Hanan Instruments HI-9813 PH EC/TDS portable meter to measure the EC values of water 209 

samples, with a measurement precision of 0.1 μs/cm. EC data has been widely used for 210 

hydrograph separation, due to its easy use and quick measurement. While EC of water source 211 

is not a conservative tracer when transporting along the subsurface path, this may have only 212 
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small effects on the application of hydrograph separation in our case. The measured EC values 213 

of water sources (rainfall, snow and glacier melt) primarily label the surface direct runoff which 214 

has weak interaction with mineral soil. The EC indicator measured from the spring water is 215 

assumed as the mean EC value of the groundwater contributing to the streamflow, because the 216 

elevation of the sampled spring is close to the mean elevation of the basin and areas of the 217 

regions upper and below the spring are very close. Abnormal isotopic compositions caused by 218 

evaporation and abnormal EC values caused by impurities were discarded. We used threshold 219 

values to identify abnormal values of δ18O and EC, defined as values located more than 5% 220 

away from the sample clusters. For δ18O, sample values higher than 5‰ were excluded. For 221 

EC, sample values higher than 210 μs/cm were excluded. Tracers data of individual water 222 

sources at the sampled date are presented in Fig. S1. 223 

3. Methodology 224 

The hydrograph separation is carried out in each of the three seasons (i.e., cold season, 225 

snowmelt season and glacier melt season). Water samples collected in the period from 2012 to 226 

2017 are split into each of the three seasons for the hydrograph separation. The CRC estimated 227 

by the mixing approaches refer to the mean contributions in each of the three seasons during 228 

the period of 2012-2017. The mixing approaches applied for the hydrograph separation in each 229 

season are summarized in Table 2. Considering the groundwater and snowmelt samples were 230 

rarely collected in the cold season, we used all available groundwater and snowmelt samples 231 

from the three seasons for hydrograph separation in the cold season. Tracer signatures of rainfall 232 

are assumed as same as the measured tracer signatures of precipitation samples in all the three 233 

seasons. 234 

3.1 Traditional end-member mixing approach (EMMA) 235 

The main assumptions of EMMA are as follows (Kong and Pang, 2012): (1) The tracer 236 

signature of each runoff component is constant during the analyzed period; (2) The tracer 237 

signatures of the runoff components are significantly different from each other; (3) Tracer 238 

signatures are conservative in the mixing process. In the cold and snowmelt seasons, a three-239 

component EMMA method (EMMA_3, Table 2) is used. Since the precision of δ18O (±0.25 ‰) 240 

measured in the lab is higher than that of δ2H (±0.4 ‰) and both are strongly correlated, the 241 

EMMA_3 is based on δ 18O and EC. In the glacier melt season, both the EMMA_3 and the four-242 

component EMMA (EMMA_4, Table 2) are used. In the EMMA_3, glacier melt and snowmelt 243 

are assumed as one end-member, considering their similar tracer signatures. In the EMMA_4, 244 

glacier melt and snowmelt are treated as two end-members separately, and δ 18O and δ 2H are 245 
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used as two separate tracers. The following equations (Eqs. 1-5) are used to estimate CRC (f1-246 

3) and the corresponding uncertainty in the EMMA_3 (Genereux, 1998).  247 
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where the subscripts 1-3 refer to the three runoff components (i.e., groundwater, 252 

snowmelt/meltwater and rainfall), and A1-A3 (B1-B3) refers to the mean δ18O (EC) values of 253 

runoff components. A and B stand for the mean δ18O and EC values of the stream water. The 254 

mean isotope and EC values of precipitation are calculated as the monthly precipitation 255 

weighted average values. Similarly, the mean isotope and EC values of stream water are 256 

calculated as the weekly streamflow weighted average values.  257 

Assuming the uncertainty of each variable is independent from the uncertainty in others, 258 

the Gaussian error propagation technique is applied to estimate the uncertainty of the CRC (f1-259 

3) using the following equation (Genereux, 1998):  260 

1 2 3 1 2 3

2 2 2 2 2 2 2 2

1 2 3 1 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

i i i i i i i i
f A A A A B B B B

f f f f f f f f
W W W W W W W W W

A A A A B B B B

       
       

       
                   (5)                                261 

where fi stands for the contribution of a specific runoff component, and W is the uncertainty 262 

in the variable specified by the subscript. For the uncertainty of tracer signatures (WAi and 263 

WBi), we multiply the Sd values of the measured tracer signatures with t values from the 264 

Student’s t value table at the confidence level of 95%. The degree of freedom for the 265 

Student’s t distribution is estimated as the number of water sample for each water source 266 

minus one. Analytical measurement errors are not considered in this approach, which, 267 

however, are minor compared to the uncertainty generated from tracer variations (Penna et 268 

al., 2017; Pu et al., 2017). The lsqnonneg function in Matlab is used to solve Eqs. 1-4, which 269 

solves the equations in a least squares sense, given the constraint that the solution vector f 270 

has nonnegative elements. The EMMA_4 uses the equations similar to Eqs. 1-5. The values 271 

of δ18O and δ2H are typically correlated for each water source. However, the coefficients 272 

representing the correlation between δ18O and δ2H (typically calculated as the deuterium 273 
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excess values) vary among the water sources in glacierized catchment, thus providing a 274 

basis for the EMMA_4 to quantify four runoff components. When quantifying four runoff 275 

components using three tracers, four conservative equations for water volume, EC, δ18O 276 

and δ2H are used (similar to Eq.1). The contributions of runoff components (f), as well as 277 

the partial derivatives used to calculate the uncertainty are solved from the four conservative 278 

equations using Matlab. However, the solutions are too lengthy to show in the text. 279 

3.2 Bayesian mixing approach 280 

The Bayesian approaches applied for each season are summarized in Table 2. Similar 281 

to the EMMA, we apply a three-component Bayesian approach to all seasons, and additionally 282 

a four-component Bayesian approach in the glacier melt season. The three-component Bayesian 283 

approach has two types: the Bayesian_3_OHcor approach considers the correlation between 284 

δ18O and δ2H, whereas the Bayesian_3_OHind approach assumes independence. The four-285 

component Bayesian approach also has two types: Bayesian_4_OHcor considering the 286 

correlation, and Bayesian_4_OHind assuming independence between δ18O and δ2H. A 287 

Kolmogorov-Smirnov test has been carried out for both isotope and EC tracers of all water 288 

sources before the applicaiton of Bayesian approaches. The tracer data of runoff components 289 

(i.e., rainfall, snowmelt, groundwater and glacier melt) pass the normal distribution test at 290 

significance levels of p-values > 0.3, apart from the EC data of glacier melt. The low glacier 291 

melt sample size for the EC measurement probably provides insufficient data for the 292 

distribution test. The tracer data of stream water also fail to pass the normal distributions test 293 

partly caused by the extreme isotope and EC values (see Figs. S1a-b). Thus, the prior 294 

assumptions for the Bayesian approaches are listed as follows (similarly to Cable et al. 2011): 295 

In approaches considering the correlation between δ18O and δ2H, the prior distributions of δ18O 296 

and δ2H of runoff components are assumed as bivariate normal distributions with means and 297 

precision matrix as μ18O, μ2H and Ω, respectively (Eq.6a). The precision matrix (Ω, i.e. the 298 

inverse of the covariance matrix) for the two isotopes is assumed as Wishart prior (Eq. 6b). 299 

When assuming independence between δ18O and δ2H, the prior distributions of δ18O (δ2H) of 300 

runoff components are assumed as normal distributions with means and variance of μ18O and 301 

λ18O (μ2H and λ2H, Eqs. 6c-d). The mean values of the isotopes of runoff components (i.e., μ18O 302 

and μ2H) are further estimated by independent normal priors (Eq. 7, Cable et al. 2011), which 303 

is assumed to consider the spatial variability of μ18O and μ2H.   304 
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where, λ18O, γ18O and σ18O (λ2H, γ2H and σ2H) are parameters used to describe the normal priors 307 

of δ18O and μ18O (δ2H and μ2H, see Table 3), which are estimated by likelihood observations. 308 

V is a 2*2 unit positive-definite matrix, and ‘2’ stands for the degree of freedom in the Wishart 309 

prior distribution.  310 

The priors of EC values of runoff components are assumed as normal distributions (Eq. 311 

8a), with mean ɛ and variance τ. Similarly, the spatial variability of the mean EC values of 312 

runoff components (ɛ) are assumed to follow a normal distribution with mean θ and variance ω 313 

(Eq. 8b).  τ, θ and ω are parameters estimated by likelihood observations (Table 3). 314 
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   315 

The prior distributions of stream water are calculated in two steps. First, the prior 316 

distributions of δ18O, δ2H and EC of stream water are assumed as same as those of runoff 317 

components in Eqs. 6 and 8a. Second, the mean isotopes (μ18O and μ2H) and EC (ɛ) of stream 318 

water are constrained by a mixing model (Eqs. 9a-b), which estimates the isotope and EC mean 319 

values of stream water by  multiplying the contribution of each runoff component (fi) with the 320 

corresponding mean isotope and EC values of each runoff component (Eq. 9a). 321 
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where, N is the number of runoff components. The contribution vector (f) is represented by a 323 

Dirichlet distribution with an index vector α (Eq. 9b), in which the sum of contributions of all 324 

runoff components (∑𝑓𝑖) equals one. The index vector α is estimated by two variable vectors ρ 325 

and ψ (Eq.9c), considering the temporal and spatial variability in the CRC (Cable et al. 2011). 326 
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ρ and ψ are assumed as bivariate normal distribution with means and precision matrix β and Ω 327 

(Eq.9d). β is a parameter vector estimated by likelihood observations (Table 3).                                                      328 

The value ranges for the parameters need to be estimated in Eqs. 6-9 are summarized in 329 

Table 3. The posteriors of parameters describing the spatial variability of tracer signatures in 330 

Eqs. 7 and 8b are first estimated by the mean tracer signatures of runoff components measured 331 

at different spatial locations. Parameters describing the overall variability of tracer signatures 332 

in Eqs. 6 and 8a are then constrained by the likelihood observations of tracer signatures from 333 

all water samples at different times and locations. The posterior distribution of CRC (f) are 334 

estimated by Eq. 9, based on the posterior tracer signatures of runoff components and the 335 

measured tracer signatures from stream water samples. The posteriors of parameters and 336 

contributions are estimated by the R software package Rstan. We run four parallel Markov 337 

Chain Monte Carlo (MCMC) chains with 2000 iterations for each chain. The first 1000 338 

iterations are discarded for warm-up, generating a total of 4*1000 samples for the calculation 339 

of the posterior distributions. Uncertainties are presented as the 5-95 percentile ranges from the 340 

iterative runs. The parameter values are assumed to follow uniform prior distributions within 341 

the value ranges to initialize the MCMC procedure. 342 

To be noted, the four-components approaches (EMMA_4, Bayesian_4_OHcor and 343 

Bayesian_4_OHind) are developed in our study to investigate the two following questions: (1) 344 

Is the EMMA able to quantify four runoff components just using δ18O, δ2H, and EC? (2) Does 345 

the correlation between δ18O and δ2H help to reduce the uncertainty in the quantification of 346 

runoff components? The correlation between δ18O and δ2H is ignored in Bayesian_4_OHind. 347 

We used independent prior distributions for δ18O and δ2H of each water source. In 348 

Bayesian_4_OHcor, the posterior parameters describing the correlation between δ18O and δ2H 349 

vary among the water sources, thus providing a basis for the quantification of four runoff 350 

components using four mixing equations of tracer signatures (similar to Eq.9). 351 

3.3 Effects of the uncertainty in the meltwater sampling 352 

Due to limited accessibility, meltwater samples are typically difficult to collect in high-353 

elevation glacierized areas. Often, only a few water samples are available to represent the tracer 354 

signatures of meltwater generated from the entire glacierized area. Hence, the 355 

representativeness of collected meltwater samples implies an additional uncertainty source in 356 

the hydrograph separation 357 

We thus define three virtual sampling scenarios to evaluate the effect of meltwater 358 

sampling on the EMMA and Bayesian mixing approaches. Scenario I is used to evaluate the 359 

effects of sample size of meltwater, in which four groups of meltwater sample are tested. The 360 
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four sample groups have the same mean value and Sd of δ18O or EC, but different sample sizes. 361 

Mean and Sd values of δ18O or EC are calculated for all used meltwater samples in each group, 362 

referring to the spatial-temporal variability (same in the two following scenarios). Scenario II 363 

is used to evaluate the effects of sampled mean value of δ18O (or EC) of meltwater. The four 364 

sample groups have the same sample size and Sd, but different mean values of δ18O (or EC). 365 

Scenario III is used to investigate the effects of Sd values of sampled δ18O (or EC). The four 366 

sample groups have the same sample size and mean tracer signature, but different Sd values. 367 

We investigated the effects of the meltwater sampling uncertainty on the mixing approaches in 368 

the glacier melt season, since meltwater is particularly difficult to collect and is the dominant 369 

runoff component in this season. For the water samples of other runoff components and stream 370 

water, we used all the available measurements in the glacier melt season for the three virtual 371 

scenarios, keeping the same sample characteristics. We investigated the effects of sampling 372 

uncertainty only in the glacier melt seasons because of the following reasons: (1) Runoff in the 373 

glacier melt season contributes the largest part to annual runoff in our study basin. Accurate 374 

quantification of each runoff component in this season is extremely important for the 375 

understanding of dynamics of water availability in the study area. Quantifying the uncertainty 376 

in the contributions of runoff components caused by sampling uncertainty of meltwater is 377 

highly needed in this season; (2) There are more meltwater samples available in this season (15 378 

snowmelt samples and 23 glacier melt samples) than in the snowmelt season (only 15 snowmelt, 379 

Table 1), thus providing a good observation data basis for the investigation. 380 

3.4 Effects of water isotope fractionation on hydrograph separation 381 

The water sources for runoff, such as rainfall and meltwater, are subject to evaporation 382 

before reaching the basin outlet, especially in summer. However, the isotopic composition of 383 

stream water was measured at the basin outlet, and the contributions of runoff components are 384 

quantified for the total runoff at the basin outlet. After the long routing path from the sampled 385 

sites to the basin outlet, the isotopic compositions of rainfall and meltwater mixing at the basin 386 

outlet could be different from those measured at the sampled sites, caused by the evaporation 387 

fractionation effect. To consider the changes in the isotope signatures of water sources caused 388 

by the fractionation effect during the mixing process, we set up two modified Bayesian 389 

approaches, i.e., Bayesian_3_OHcor_Frac and Bayesian_4_OHcor_Frac (Table 2). The 390 

fractionation effect on the estimated CRC is quantified by comparing two Bayesian scenarios. 391 

In the first scenario (using Bayesian_3_OHcor and Bayesain_4_OHcor), the isotopic 392 

compositions of water sources at the basin outlet are assumed the same as those measured from 393 

the sample sites even though the water sources have suffered evaporation before reaching the 394 
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basin outlet (using Eqs. 6-9). In the second scenario (using Bayesian_3_OHcor_Frac and 395 

Bayesian_4_OHcor_Frac), the evaporation fractionation effect on the isotopic compositions of 396 

water sources is considered, and the mixing of water tracers for stream water is represented by 397 

Eq.10. We modify the mean values in Eq. 9a using fractionation factors ξ18O and ξ2H. The 398 

priors for ξ18O and ξ2H are assumed as bivariate normal distributions in Eq.11. 399 
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where, η18O and η2H are parameters describing the mean values of the changes in isotopes 402 

caused by the fractionation effect. Ω is the inverse of the covariance matrix defined in Eq. 6b. 403 

The parameters in Eqs. 6-11 are then re-estimated by the measurements of tracer signatures 404 

using the MCMC procedure. In particular, parameters describing the prior distributions of 405 

isotopic compositions at the sample sites in Eqs. 6-7 are estimated by the likelihood 406 

observations of isotope signatures of runoff components. The fractionation factors ξ18O and ξ2H 407 

are estimated by the likelihood observations of isotope signatures of stream water.  408 

4. Results 409 

4.1 Seasonality of tracer signatures  410 

Tracer measurements from all the water samples are summarized in Table 1 and Fig. 2 411 

(see also Fig. S1). The mean values in Table 1 indicate that precipitation is most depleted in 412 

heavy water isotopes (18O and 2H) in the cold season among the water sources. In the melt 413 

seasons, snow and glacier meltwater show the most depleted heavy isotopes. The EC values are 414 

highest in groundwater in all seasons, followed by stream water and precipitation. Among the 415 

water sources, snowmelt and glacier melt tend to have the lowest EC values. Figure 2 shows 416 

that the slope of the local meteoric water line (LMWL) is lower than that of the global meteoric 417 

water line (GMWL). The δ18O of precipitation and snowmelt range from -22.82‰ to 1.51‰ 418 

and from -17.31‰ to -6.95‰, respectively. The isotopic composition of glacier meltwater is 419 

more depleted than those of groundwater and stream water. Stream water shows a similar 420 

isotopic composition to groundwater. Three samples from the stream water are far below the 421 

LMWL, which is likely caused by the evaporation effect. 422 

CV values in Table 1 and boxplots in Figs. 3a-f show that the δ18O and δ2H of 423 

precipitation generally shows the largest variability in all seasons, followed by the isotopes of 424 

snowmelt. Groundwater and stream water show the smallest CV values for δ18O in all three 425 
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seasons. The stream water presents the lowest CV value for EC in all seasons, followed by the 426 

groundwater. The snowmelt EC shows high CV values in the snowmelt and glacier melt seasons, 427 

which may be attributed to variable dust conditions at the sampling locations (from downstream 428 

gauge station to upper glacier accumulation zone). The highest CV value of EC for glacier melt 429 

indicates large variability in the glacier melt samples (see also Figs. 3g-i). This is because the 430 

glacier melt water samples were collected from a rather clean location (EC value is only 1.5 431 

μs/cm) and a relatively dusty location (EC value is 33.4 μs/cm).  432 

For each water source except groundwater, the tracer signatures show a significant 433 

seasonality (Table 1 and Fig. 3). In particular, the δ18O and δ2H of precipitation are most 434 

depleted in the cold season and reach the highest values in the glacier melt season, partly caused 435 

by the seasonality in temperature. Stream water shows higher values of δ18O and EC in the cold 436 

season when groundwater dominates the streamflow, and has lower values in the melt seasons 437 

when meltwater has a dominant contribution. Snowmelt has a lower EC value in the glacier 438 

melt season than in the cold and snowmelt seasons. In the cold and snowmelt seasons, some 439 

snowmelt samples also have EC values as low as those in the glacier melt season. The snow 440 

samples in the glacier melt season were only collected from the accumulation zone of the glacier, 441 

thus resulting in small variability in the EC values. The snowpack in the accumulation zone is 442 

accumulated by fresh snow in the snowy period (summer type accumulation glacier).This leads 443 

to low EC values in the snowmelt samples. The tracer signature of groundwater is relatively 444 

stable across the seasons.  445 

Figures 3j-l shows the δ18O-EC mixing space of runoff components in the three seasons. 446 

The ranges of solid lines indicate the minimum and maximum tracer values of individual water 447 

samples. In the cold season, the δ18O and EC values of stream water are very close to those of 448 

groundwater (Fig. 3j), whereas the snowmelt and precipitation tracer signatures show much 449 

difference. These results indicate the dominance of groundwater on streamflow during the cold 450 

season. In the snowmelt and glacier melt seasons (Figs. 3k-l), the stream water samples are 451 

clearly located within the triangle formed by the samples of runoff components. The tracer 452 

signatures of glacier meltwater and snowmelt water are similar. The precipitation samples are 453 

farther away from the stream water samples compared to the meltwater and groundwater 454 

samples. The stream water samples are located nearly in the middle between the meltwater and 455 

groundwater samples. This indicates that the contribution of rainfall to total runoff is smallest 456 

and the contributions of meltwater and groundwater are similar, in the melt seasons.  457 

4.2 Contributions of runoff components estimated by the mixing approaches 458 
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Table 4 and Fig. 4 compare the CRC estimated by the mixing approaches. In the cold 459 

season (Fig. 4a), the EMMA_3 estimated the mean contributions of groundwater and snowmelt 460 

as 83% and 17%, respectively. The mean contribution of rainfall is zero. The mean 461 

contributions of groundwater, snowmelt and rainfall were estimated as 86% (87%), 13% (12%) 462 

and 1% (1%) by the Bayesian_3_OHind (Bayesian_3_OHcor) approach. As shown in Fig. 3j, 463 

the tracer signature of stream water in this season is close to that of groundwater, while 464 

obviously different from that of rainfall. Meanwhile, the stream water samples are outside of 465 

the triangle formed by the runoff components, leading to the zero contribution of the rainfall 466 

estimated by the EMMA_3.  467 

In the snowmelt season (Fig. 4b and Table 4), the EMMA_3 estimated the mean 468 

contributions of groundwater, rainfall and snowmelt as 44%, 36% and 20%, respectively. The 469 

Bayesian_3_OHind estimated similar mean CRC to EMMA_3, whereas the 470 

Bayesian_3_OHcor delivered a lower contribution of snowmelt (32%). When treating the 471 

glacier melt and snowmelt as one end-member (i.e. meltwater) in the glacier melt season (Fig. 472 

4c), the EMMA_3 estimated the mean contributions of groundwater, meltwater and rainfall as 473 

45%, 46% and 9%, respectively. The Bayesian_3_OHind and Bayesian_3_OHcor estimated a 474 

lower contribution of groundwater (43-44%) and a higher contribution of rainfall (11%) 475 

compared to EMMA_3. The ranges and Sd values of CRC in Table 4 indicate the uncertainty 476 

in the estimates associated with the corresponding mixing approaches, showing that the 477 

EMMA_3 produced the highest uncertainty in CRC in all the three seasons, followed by 478 

Bayesian_3_OHind. The Bayesian_3_OHcor slightly reduced the uncertainty compared to 479 

Bayesian_3_OHind, benefiting from the consideration of the correlation between δ18O and δ2H. 480 

When treating glacier melt and snowmelt as two separate end-members in the glacier 481 

melt seasons (Fig. 4d), the EMMA_4 failed to separate the hydrograph in the glacier melt 482 

season, given the large uncertainty range in the contributions of snowmelt and rainfall (0-100%). 483 

The tracer signatures of snow and glacier meltwater are rather close to each other, that violates 484 

the second assumption of the EMMA (see Sec. 3.1). In contrast, the Bayesian_4_OHcor and 485 

Bayesian_4_OHind estimated the shares of glacier melt and snowmelt as 25-24% and 21-25%, 486 

respectively. Considering the significant snow cover area in September in the study basin (He 487 

et al. 2018; He et al. 2019), the contribution of snowmelt in the glacier melt season should be 488 

higher than zero. Again, the Bayesian_4_OHcor produced smaller uncertainty ranges and Sd 489 

values for the contributions of groundwater and meltwater compared to Bayesian_4_OHind and 490 

EMMA_4 (Table 4). 491 
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The posterior distributions of tracer signatures estimated by the Bayesian_4_OHcor in 492 

the glacier melt season are compared with the measured histograms of tracer signatures in Fig. 493 

5. The Bayesian_4_OHcor generally produced similar distributions of water isotopes to the 494 

measured distributions, in terms of the similar mean values. The estimated posterior Sd values 495 

of the water isotopes are smaller than Sd values of the measurements. This can be explained by 496 

the incorporation of prior distributions by the Bayesian_4_OHcor, thus reducing the variability 497 

of water isotopes. The posterior Sd values for EC of water sources are also smaller than the 498 

measured Sd values. However, the posterior distributions of EC show some deviations from the 499 

distributions of measured EC (Figs. 5k-o), partly due to the very small sample sizes (see Table 500 

1). The comparison between the posterior distributions of tracer signatures estimated by the 501 

Bayesian_3_OHcor and the measured distributions in the other seasons generally shows a 502 

similar behavior (not shown for brevity).     503 

 The Bayesian_4_OHind estimated similar posterior distributions of tracer signatures to 504 

the Bayesian_4_OHcor (except the glacier melt isotopes, Fig. 6), with similar mean tracer 505 

values and Sd. It is noted that the Bayesian_4_OHcor estimated smaller Sd values for most 506 

water sources than the Bayesian_4_OHind (e.g., Figs. 6f-g and 6i-j). Benefiting from the prior 507 

information and the consideration of the correlation between δ18O and δ2H, the 508 

Bayesian_4_OHcor tended to produce the smallest variability in the posterior tracer signatures 509 

among all the mixing approaches (Figs. 5-6), thus resulting in the smallest uncertainty for CRC 510 

(Fig. 4d). Figure 7 compares the correlation between δ18O and δ2H of the measured tracers and 511 

the posterior estimates by Bayesian approaches. The Bayesian_4_OHcor reproduced the 512 

correlation between δ18O and δ2H well in comparison to the measured data, whereas the 513 

Bayesian_4_OHind failed to capture the correlation. 514 

4.3 Uncertainty of hydrograph separation caused by sampling uncertainty of meltwater 515 

Figure 8 shows the sensitivity of the Bayesian_3_OHcor and EMMA_3 approaches to 516 

the sampled δ18O of meltwater in the glacier melt season. The mean CRC quantified by the two 517 

mixing approaches shows minor sensitivity to the sample size (scenario I). However, the 518 

uncertainty ranges of contributions tend to decrease with increasing sample size, especially for 519 

EMMA_3. When assuming only two meltwater samples, the EMMA_3 resulted in very large 520 

uncertainty ranges (0-100%, Fig. 8d), due to the very wide confidence interval for the Sd at a 521 

sample size of two. The mean contributions of groundwater and meltwater estimated by the two 522 

mixing approaches decrease with  increasing mean δ18O of the adopted meltwater sample 523 

(scenario II), while the estimated contribution of rainfall increases with the increasing mean 524 

δ18O (Fig. 8k). Variations in the mean CRC quantified by EMMA_3 are larger than those 525 
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estimated by the Bayesian_3_OHcor. Using EMMA_3, both the mean contributions of 526 

groundwater and meltwater declined by 9% with the assumed increase of the mean δ18O (Figs. 527 

8e and 8h), and the contribution of rainfall increased by 17%. Using Bayesian_3_OHcor, the 528 

reduction of contributions of groundwater and snowmelt are 4% and 7%, respectively, and the 529 

increase of contribution of rainfall is only 11% (Fig. 8k). In scenario III, the uncertainty ranges 530 

of CRC (especially for rainfall, Fig. 8l) increase with increasing Sd of the sampled δ18O. Again, 531 

the increases in the uncertainty ranges estimated by EMMA_3 tend to be larger than those 532 

estimated by the Bayesian_3_OHcor. The sensitivity of the mixing approaches to the sampled 533 

EC values of the meltwater are similar to the sensitivity to the sampled δ18O (not shown). 534 

4.4 Effect of isotope fractionation on the hydrograph separation 535 

The changes of δ18O caused by the fractionation effect (referring to ξ18O in Eq. 10) 536 

during the mixing process are estimated in Figs. 9a-c. The fractionation has the smallest effect 537 

on the δ18O of groundwater, while the largest effect on the δ18O of rainfall.  On average, the 538 

δ18O of rainfall increased by around 2.8‰ through fractionation in all the three seasons. The 539 

CRC estimated by the Bayesian_3_OHcor_Frac and Bayesian_4_OHcor_Frac are compared 540 

with those estimated by the Bayesian_3_OHcor and Bayesian_4_OHcor in Figs. 9d-f, 541 

respectively. The mean contribution of groundwater estimated by the Bayesian_3_OHcor_Frac 542 

in the cold season is around 9% lower than that estimated by the Bayesian_3_OHcor (Fig. 9d), 543 

while the mean contributions of snowmelt and rainfall are 3% and 5% higher, respectively. The 544 

reduction of groundwater contribution is compensated by the increased contributions of 545 

snowmelt and rainfall caused by the fractionation effect. In the snowmelt season, the mean 546 

contributions of groundwater and rainfall are 1% and 7% lower (Fig. 9e), while the mean 547 

contribution of snowmelt estimated by the Bayesian_3_OHcor_Frac is 8% higher. In the glacier 548 

melt season, the mean contributions of groundwater and meltwater estimated by the 549 

Bayesian_4_OHcor_Frac are higher than those estimated by the Bayesian_4_OHcor (Fig. 9f), 550 

and are compensated by the 6% lower contribution of rainfall.  551 

The fractionation effect also produced visible changes on the posterior distributions of 552 

δ18O and δ2H of runoff components (Fig. 10 shows the example in the glacier melt season). The 553 

mean isotopic compositions of runoff components are increased by the fractionation effect. The 554 

Sd values of the posterior isotopes estimated by the Bayesian_4_OHcor_Frac tend to be higher 555 

than those estimated by the Bayesian_4_OHcor, due to the increased parameter space in the 556 

prior assumptions (Eq. 11), thus leading to the larger uncertainty ranges in the contributions of 557 

glacier melt and snowmelt (Fig. 9f). As expected, the estimates of posterior distributions of 558 

isotopic compositions of stream water are less sensitive to the fractionation effect of runoff 559 
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components (Figs. 10e and 10j). The fractionation also has minor effects on the estimates of 560 

posterior distributions of EC values (Figs. 10k-o). 561 

5. Discussion 562 

5.1 Uncertainty in the contributions of runoff components  563 

The EMMA estimated similar CRC but with a larger uncertainty than the Bayesian 564 

approaches. The reasons for this are two-fold. First, the EMMA estimated the uncertainty 565 

ranges of CRC using the standard deviations (Sd) of the measured tracer signatures. Sd values 566 

are likely overestimated in this study due to the small sample sizes (i.e., low number of water 567 

samples), and thus insufficiently representing the variability of the tracer signatures of the 568 

corresponding water sources across the basin. Due to the limited accessibility of the sample 569 

sites caused by snow cover, the water samples of meltwater and groundwater are often collected 570 

sporadically. The small sample size and strong variability in sampled tracer signatures likely 571 

led to a large Sd value in the measurement. Second, the EMMA assumes that the uncertainty 572 

associated with each water source is independent from the uncertainty of other water sources 573 

(Eq.5), which increases the uncertainty ranges for CRC. 574 

In contrast, the Bayesian approaches estimated smaller variability of tracer signatures in 575 

the posterior distributions compared to the measured tracer signatures, by updating the prior 576 

probability distributions. The posterior distributions were sampled continuously from the 577 

assumed value ranges by the MCMC runs, thus reducing the sharp changes and yielding lower 578 

variability for the tracer signatures. Moreover, the uncertainty ranges for CRC were quantified 579 

using Eqs. 6-10, instead of calculating independently as in the EMMA. Additionally, the 580 

assumed prior distributions of tracer signatures and the CRC take into account the correlation 581 

between the tracer signatures and the dependence between the runoff components in the 582 

Bayesian approaches, thus resulting in smaller uncertainty ranges (Soulsby et al., 2003). For 583 

example, the Bayesian approaches considering the correlation between δ18O and δ2H generally 584 

estimated smaller uncertainty ranges for CRC compared to those without considering this 585 

correlation.  586 

The Gaussian error propagation technique is only capable of considering the uncertainty 587 

of CRC resulting from the variation in the tracer signatures (Uhlenbrook and Hoeg, 2003). The 588 

uncertainty of CRC originated from the sampling uncertainty of meltwater was then 589 

investigated in separate virtual sampling experiments. The EMMA produces large uncertainty 590 

ranges and Sd values for CRC in the glacier melt season, when the meltwater sample size is 591 

rather small. The mean CRC quantified by the EMMA relies more heavily on the mean tracer 592 
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values of the sampled meltwater, as the mean tracer values are directly used in Eqs. 1-4, in 593 

comparison to the mean CRC estimated by the Bayesian approach.  594 

The EMMA assumes that the tracer signature of each runoff component is constant 595 

during the mixing process, thus is unable to estimate the uncertainty of CRC caused by the 596 

isotope fractionation effect. The virtual fractionation experiments using the modified Bayesian 597 

approaches show that the isotope fractionation could increase the contribution of snowmelt by 598 

8%, and reduce the contribution of rainfall by 7% in the snowmelt season. We assume the mean 599 

CRC estimated by the Bayesian approaches considering the isotope fractionation are more 600 

plausible, despite the larger uncertainty ranges. Along the flow path from the source areas to 601 

the river channel, the isotopic compositions of meltwater and rainfall are likely increased by 602 

the evaporation fractionation effect, especially in the warm seasons. The increased isotopic 603 

compositions of meltwater and rainfall during the routing process need to be considered in the 604 

mixing approaches for hydrograph separation. 605 

In general, the uncertainty of CRC is visibly caused by the spatio-temporal variability 606 

in the tracer signatures, the water sampling uncertainty and the isotope fractionation during the 607 

mixing process. The uncertainty caused by the water sampling of meltwater tends to be smaller 608 

than the uncertainty caused by the variations of the tracer signatures in both the EMMA and 609 

Bayesian mixing approaches. This is consistent to the findings that the Sd values of the tracer 610 

measurements of water samples are the main uncertainty sources for the quantification of CRC 611 

(Schmieder et al., 2016; Schmieder et al., 2018). The Bayesian approach tends to be superior 612 

on narrowing the variability of posterior tracer signatures benefiting from the prior assumptions 613 

and the consideration of the dependence between tracer signatures and runoff components 614 

compared to EMMA. 615 

5.2 Limitations 616 

The representativeness of the water samples is one of the limitations of this study. The 617 

groundwater was only sampled from a single spring located at the elevation of 2400 m a.s.l, 618 

which is rather close to the average altitude of the entire river network in the study basin (2530 619 

m a.s.l.). We thus assume that the measured isotopic composition of the spring water represents 620 

the mean isotopic composition of groundwater feeding the river in the basin (see also He et al., 621 

2019). Collecting samples from a few springs to represent the groundwater end-member has 622 

been proposed before (such as Ohlanders et al., 2013 and Mark and McKenzie, 2007), as the 623 

accessibility and availability of more potential springs are hampered. Again, for the snow and 624 

glacier meltwater samples, we assume that meltwater occurring at similar elevations have 625 

similar tracer signatures (He et al., 2019). The sampled elevation ranges from 1580 m to 4050 626 
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m a.s.l., matching with the elevation range where meltwater mainly occurs in the basin (from 627 

1580 m to 3950 m a.s.l.). Considering the isotopic compositions of meltwater are particularly 628 

dependent on the elevation, the sampled meltwater could represent meltwater originated from 629 

the primary melting locations in the entire basin. The sampled sites thus bear the potential to 630 

provide tracer signatures of the major meltwater generated in the basin.  631 

We split the entire sampling period (years of 2012 to 2017) into three seasons, i.e. cold 632 

season, snowmelt season and glacier melt season, due to the low availability of water samples 633 

in each year. By concentrating water samples in the three seasons, we increased the sample 634 

sizes of each runoff component for each season, thus increasing the ability of water samples to 635 

represent the spatio-temporal variability of seasonal tracer signatures. We used all available 636 

groundwater and snowmelt samples from the three seasons for hydrograph separation in the 637 

cold season, due to the rather low number of samples collected in the cold season. This likely 638 

leads to overestimated contributions of groundwater and snowmelt in the cold season. However, 639 

the overestimation of groundwater contribution is probably small because the tracer signatures 640 

of groundwater generally show small seasonal variability. The estimated contributions of 641 

snowmelt in the cold season are a bit higher than the contribution modeled by He et al (2018) 642 

during winter months of December, January and February, but are still reasonable, considering 643 

the cold season here additionally includes October and November when snow is more prone to 644 

melt. 645 

The assumptions of the mixing approaches lead to another limitation of this study. The 646 

EMMA assumes the tracer signatures of water sources are constant during the mixing process, 647 

which is a common assumption for the practical application of EMMA. It thus fails to consider 648 

the uncertainty originating from the changes of tracer signatures. In the Bayesian approach, we 649 

assumed normal prior distributions for the tracer signatures of water sources and Dirichlet prior 650 

distribution for the CRC based on literature knowledge (Cable et al., 2011). To refine the 651 

description of the temporal and spatial variability of the CRC in the Dirichlet distribution, more 652 

hydrological data relating to the runoff processes in the basin are required. We acknowledge 653 

that the estimated CRC could be strongly affected by the assumptions of prior distributions. 654 

However, testing the effects of the prior assumptions goes beyond the scope of this study. We 655 

assume that collecting more water samples from various locations and at different time for each 656 

water source could improve the estimation of tracer signature distributions. 657 

6. Conclusions 658 

This study compared the Bayesian end-member mixing approach with a traditional end-659 

member mixing approach (EMMA) for hydrograph separation in a glacierized basin. The 660 
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contributions of runoff components (CRC) to the total runoff were estimated for three seasons, 661 

i.e. cold season, snowmelt and glacier melt seasons. The mean CRC estimated by the two 662 

mixing approaches are similar in all the three seasons. Uncertainty in these contributions caused 663 

by the variability of tracer signatures, water sampling uncertainty and isotope fractionation were 664 

evaluated as follows. 665 

(1) The Bayesian approach generally estimates smaller uncertainty ranges of CRC, in 666 

comparison to the EMMA. Benefiting from the prior assumptions on tracer signatures and CRC, 667 

as well as from the incorporation of the correlation between tracer signatures in the prior 668 

distributions, the Bayesian approach reduced the uncertainty. The Bayesian approach jointly 669 

quantified the uncertainty ranges of CRC. In contrast, the EMMA estimated the uncertainty of 670 

contribution of each runoff component independently, thus leading to higher uncertainty ranges. 671 

(2) The estimates of CRC in EMMA tend to be more sensitive to the sampling 672 

uncertainty of meltwater, compared to those in the Bayesian approach. For small sample sizes 673 

(e.g., two), EMMA estimated very large uncertainty ranges. The mean CRC quantified by 674 

EMMA are also more sensitive to the mean value of the tracer signature of the meltwater 675 

samples than those estimated by the Bayesian approach are. 676 

(3) Ignoring the isotope fractionation during the mixing process likely overestimates the 677 

contribution of rainfall and underestimates the contribution of meltwater in the melt seasons. 678 

The currently used EMMA is unable to quantify the uncertainty of CRC caused by the isotope 679 

fractionation during the mixing process, due to the underlying assumptions.   680 
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Code availability: The Rstan code for the Bayesian end-member mixing approach can be found 681 

at https://github.com/Zhihua-He/Bayesian-mixing-end-member-approach. 682 
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Table 1. Tracer signatures measured from water samples in three seasons. CV stands for 850 

coefficient of variation. 851 

Season Water source Tracer Sample size Mean Range CV 

Cold season 

(October to February) 

Groundwater 

18O (δ,‰) 23 -11.37 (-12.12, -10.61) 0.04 
2H (δ,‰) 23 -73.90 (-77.9, -68.2) 0.03 

EC(μs/cm) 13 126.80 (69.6, 167.2) 0.24 

      

Precipitation 

18O (δ,‰) 37 -15.93 (-22.82, -7.70) 0.21 
2H (δ,‰) 37 -111.50 (-168.8, -39.1) 0.27 

EC(μs/cm) 23 67.80 (21.3, 99.6) 0.34 

      

Snowmelt 

18O (δ,‰) 36 -12.51 (-17.31, -6.95) 0.19 
2H (δ,‰) 36 -84.60 (-120.7, -38.7) 0.23 

EC(μs/cm) 15 53.70 (8.8, 151.0) 0.96 

      

Stream water 

18O (δ,‰) 150 -11.33 (-11.82, -9.05) 0.03 
2H (δ,‰) 150 -74.20 (-77.5, -68.2) 0.03 

EC(μs/cm) 90 112.20 (80.3, 139.3) 0.13 
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Table 1 Continued. 853 

Season Water source Tracer Sample size Mean Range CV 

Snowmelt season 

(March to June) 

Groundwater 

18O (δ,‰) 9 -11.34 (-11.94, -11.06) 0.02 
2H (δ,‰) 9 -73.9 (-77.3, -72.4) 0.02 

EC(μs/cm) 8 133.1 (94.0, 167.2) 0.21 

      

Precipitation 

18O (δ,‰) 25 -7.89 (-16.81, -0.06) 0.46 
2H (δ,‰) 25 -49.2 (-120.5, -3.9) 0.52 

EC(μs/cm) 11 58.3 (25.8, 84.3) 0.34 

      

Snowmelt 

18O (δ,‰) 15 -13.87 (-16.74, -10.96) 0.11 
2H (δ,‰) 15 -95.9 (-119.3, -70.5) 0.13 

EC(μs/cm) 11 67.3 (11.0, 151.0) 0.80 

      

Stream water 

18O (δ,‰) 126 -11.58 (-12.91, -10.04) 0.04 
2H (δ,‰) 126 -76.1 (-86.4, -67.0) 0.04 

EC(μs/cm) 23 94.9 (80.1, 114.0) 0.09 

 854 
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Table 1 Continued. 856 

Season Water source Tracer Sample size Mean Range CV 

Glacier melt season 

(July to September) 

Groundwater 

18O (δ,‰) 14 -11.40 (-12.12, -10.61) 0.04 
2H (δ,‰) 14 -73.9 (-77.9, -68.2) 0.04 

EC(μs/cm) 5 116.7 (69.6, 142.6) 0.30 

      

Precipitation 

18O (δ,‰) 28 -6.72 (-13.02, 1.51) 0.56 
2H (δ,‰) 28 -42.6 (-94.9, 3.0) 0.58 

EC(μs/cm) 9 67.7 (26.7, 102.0) 0.39 

      

Snowmelt 

18O (δ,‰) 15 -12.70 (-17.31, -9.85) 0.15 
2H (δ,‰) 15 -85.6 (-120.7, -64.0) 0.17 

EC(μs/cm) 4 16.2 (8.8, 24.3) 0.51 

      

Glacier melt 

18O (δ,‰) 23 -13.11 (-14.96, -11.55) 0.10 
2H (δ,‰) 23 -87.2 (-100.4, -75.5) 0.11 

EC(μs/cm) 10 9.9 (1.5, 33.4) 1.28 

      

Stream water 

18O (δ,‰) 119 -11.75 (-12.97, -5.64) 0.07 
2H (δ,‰) 119 -77.2 (-86.7, -62.3) 0.05 

EC(μs/cm) 24 64.5 (33.4, 99.3) 0.25 
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Table 2. Mixing approaches used for hydrograph separation in different seasons. 858 

Mixing approach Description End-member Used tracers Seasons applied to 

EMMA_3 
Three-component traditional end-

member mixing approach 

Groundwater, 

snowmelt (or 

meltwater) and 

rainfall 

18O and EC 

Cold season, snowmelt 

season and glacier 

melt season 

     

EMMA_4 
Four-component traditional end-

member mixing approach 

Groundwater, 

snowmelt, glacier 

melt and rainfall 

18O, 2H and 

EC 
Glacier melt season 

     

Bayesian_3_OHind 

Three-component Bayesian 

approach, without considering the 

correlation between δ18O and δ2H 

Groundwater, 

snowmelt (or 

meltwater) and 

rainfall 

18O and EC 

Cold season, snowmelt 

season and glacier 

melt season 

     

Bayesian_3_OHcor 

Three-component Bayesian 

approach, considering the correlation 

between δ18O and δ2H 

Groundwater, 

snowmelt (or 

meltwater) and 

rainfall 

18O, 2H and 

EC 

Cold season, snowmelt 

season and glacier 

melt season 

     

Bayesian_3_OHcor_Frac 

Three-component Bayesian 

approach, considering the correlation 

between δ18O and δ2H and the 

fractionation of δ18O and δ2H during 

the mixing process 

Groundwater, 

snowmelt  and 

rainfall 

18O, 2H and 

EC 

Cold season and 

snowmelt season  

     

Bayesian_4_OHind 

Four-component Bayesian approach, 

without considering the correlation  

between 18O and 2H 

Groundwater, 

snowmelt, glacier 

melt and rainfall 

18O, 2H and 

EC Glacier melt season 

     

Bayesian_4_OHcor 

Four-component Bayesian approach, 

considering the correlation between 

δ18O and δ2H 

Groundwater, 

snowmelt, glacier 

melt and rainfall 

18O, 2H and 

EC 
Glacier melt season 

     

Bayesian_4_OHcor_Frac 

Four-component Bayesian approach, 

considering the correlation between 

δ18O and δ2H and the fractionation of 

δ18O and δ2H during the mixing 

process 

Groundwater, 

snowmelt, glacier 

melt and rainfall 

18O, 2H and 

EC Glacier melt season 

     

859 
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Table 3. Parameters used for prior distributions in the Bayesian approaches. 860 

Parameter Description Applied Bayesian approach Value range Equation 

γ18O 
Mean of the prior normal distributions for the mean δ18O 

of runoff components  
All Bayesian approaches (-50,50) Eq.7a 

γ2H 
Mean of the prior normal distributions for the mean δ2H 

of runoff components  

All Bayesian approaches, 

except  Bayesian_3_OHind 
(-200,200) Eq.7b 

σ18O 
Variance of the prior normal distributions for the mean 

δ18O of runoff components  
All Bayesian approaches (0,50) Eq.7a 

σ2H 
Variance of the prior normal distributions for the mean 

δ2H of runoff components  

All Bayesian approaches, 

except  Bayesian_3_OHind 
(0,200) Eq.7b 

λ18O 
Variance of the prior normal distributions for the  δ18O of 

runoff components and stream water 

Bayesian_3_OHind and 

Bayesian_4_OHind  
(0,50) Eq.6c 

λ2H 
Variance of the prior normal distributions for the  δ2H of 

runoff components and stream water 
Bayesian_4_OHind (0,200) Eq.6d 

τ 
Variance of the prior normal distributions for the EC of 

runoff components and stream water 
All Bayesian approaches (0,400) Eq.8a 

𝜃 
Mean of the prior normal distributions for the mean EC of 

runoff components 
All Bayesian approaches (0,400) Eq.8b 

𝜔 
Variance of the prior normal distributions for the mean 

EC of runoff components 
All Bayesian approaches (0,400) Eq.8b 

β 

Mean of the prior bivariate normal distributions for 

parameters descripting the α value in the Dirichlet 

distribution of contributions of runoff components 

All Bayesian approaches (0,10) Eq.9d 

η18O 
Mean of the prior bivariate normal distributions for the 

fractionations of δ18O of runoff components 

Bayesian_3_OHcor_Frac and 

Bayesian_4_OHcor_Frac 
(0,5) Eq.11 

η2H 
Mean of the prior bivariate normal distributions for the 

fractionations of δ2H of runoff components 

Bayesian_3_OHcor_Frac and 

Bayesian_4_OHcor_Frac 
(0,5) Eq.11 
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Table 4. Contributions of runoff components (CRC) estimated by the different mixing 862 

approaches (percentage, %). The ranges (%) show the difference between the 95% and 5% 863 

percentiles. Sd values refer to the standard deviations. 864 

  
Mixing approach  

Groundwater Snowmelt Rainfall Glacier melt Meltwater 

  Mean Range Sd Mean Range Sd Mean Range Sd Mean Range Sd Mean Range Sd 

Cold season 

EMMA_3 83 41 0.12 17 46 0.17 0 10 0.12 - - - - - - 

Bayesian_3_OHind 86 28 0.01 13 28 0.09 1 3 0.09 - - - - - - 

Bayesian_3_OHcor 87 24 0.01 12 24 0.07 1 3 0.07 - - - - - - 

  
               

Snowmelt season 

EMMA_3 44 50 0.15 36 33 0.11 20 25 0.09 - - - - - - 

Bayesian_3_OHind 42 33 0.12 36 22 0.10 22 20 0.07 - - - - - - 

Bayesian_3_OHcor 46 30 0.12 32 20 0.09 22 19 0.06 - - - - - - 

                 

Glacier melt 

season (three-

component) 

EMMA_3 45 48 0.13 - - - 9 17 0.06 - - - 46 35 0.10 

Bayesian_3_OHind 43 25 0.11 - - - 11 13 0.06 - - - 46 18 0.08 

Bayesian_3_OHcor 44 24 0.11 - - - 11 12 0.05 - - - 45 17 0.07 

                 

Glacier melt 

season (four-

component) 

EMMA_4 45 48 0.14 0 100 0.33 11 100 0.35 44 78 0.20 - - - 

Bayesian_4_OHind 44 30 0.10 21 42 0.09 10 13 0.13 25 41 0.04 - - - 

Bayesian_4_OHcor 41 23 0.10 25 33 0.07 10 13 0.10 24 33 0.04  -  - - 
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 886 

Figure 1. Study area of the Ala-Archa basin (derived from the ESRI World Topographic Map) 887 

and the Golubin Glacier including the locations of the water sampling points.  888 
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 889 

Figure 2. Isotope signatures of water samples from the three seasons in the Ala-Archa basin.   890 
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 891 

Figure 3. (a)-(i) Boxplots of tracer signatures in three seasons. (j)- (l) δ18O-EC mixing space 892 

of the various water sources in the three seasons; the solid lines indicate the ranges of tracer 893 

signatures measured from water samples.  894 
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 895 

Figure 4. Contributions of runoff components (CRC) to total runoff estimated by different 896 

mixing approaches in three seasons. The Bayesian_3_OHind and Bayesian_3_OHcor were 897 

applied in the cold and melt seasons (a-c), and the Bayesian_4_OHind and 898 

Bayesian_4_OHcor were applied in the glacier melt season (d). The horizontal lines in the 899 

boxes refer to the median contributions, and whiskers refer to the 95% and 5% percentiles.   900 
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 901 

Figure 5. Posterior distributions of tracer signatures estimated by the Bayesian_4_OHcor in 902 

the glacier melt season. Measurement refers to the distributions of tracer signatures from the 903 

water samples. Row 1: distributions of δ18O; Row 2: distributions of δ2H; Row 3: distributions 904 

of EC.905 
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 906 

 907 
Figure 6. Comparison of the posterior distributions of tracer signatures estimated by the 908 

Bayesian approaches with (Bayesian_4_OHcor) and without (Bayesian_4_OHind) 909 

considering the correlation between δ18O and δ2H in the glacier melt season.  910 



43 
 

 911 

Figure 7. Correlation between posterior δ18O and δ2H estimated by the Bayesian_4_OHcor 912 

and the Bayesian_4_OHind approaches in the glacier melt season.913 
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  914 

 915 

Figure 8. Sensitivity of the CRC estimates to the sample size (Scenario I), the mean (Scenario 916 

II) and standard deviation (Scenario III) of δ18O of meltwater in the glacier melt season. Red 917 

boxes show the contributions estimated by the Bayesian_3_OHcor, and the blue boxes refer to 918 

the contributions estimated by the EMMA_3.  919 
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 920 

Figure 9. Effects of isotope fractionation on the estimates of CRC in the Bayesian approach 921 

for the three seasons. (a)-(c): Estimated changes in δ18O of runoff components caused by the 922 

fractionation effect; (d)-(e): Comparison of the CRC estimated by the Bayesian_3_OHcor and 923 

the Bayesian_3_OHcor_Frac; (f): Comparison of the CRC estimated by the 924 

Bayesian_4_OHcor and the Bayesian_4_OHcor_Frac.925 
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 926 

Figure 10. Effects of isotope fractionation on the posterior distributions of tracer signatures of 927 

water sources in the glacier melt season.  928 


