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Dear editor, 1 

In this revised version, we addressed all comments from the reviewers. We modified 2 

some expressions and added more explanations to our methods and results, as requested by the 3 

reviewers. We also modified the discussions on the uncertainty of the quantification of runoff 4 

components in this manuscript. Some tables and figures were modified in response to the 5 

reviewers’ comments. We renamed all the mixing approaches in this revised version. In 6 

particular, the traditional end-member mixing approach was abbreviated as EMMA. The 7 

Bayesian approaches considering the correlation between δ18O and δ2H were renamed as 8 

Bayesian_3_OHcor (for three runoff components) and Bayesian_4_OHcor (for four runoff 9 

components). Bayesian_3_OHind and Bayesian_4_OHind were used to name the Bayesian 10 

approaches assuming δ18O and δ2H are independent from each other. The Bayesian approaches 11 

considering the isotope fractionation during the mixing process were renamed as 12 

Bayesian_3_OHcor_Frac and Bayesian_4_OHcor_Frac. 13 

Changes from the original manuscript were labeled in the following change marks 14 

version. We thank the three reviewers for their constructive comments, which are extremely 15 

helpful for the improvement of this paper. Also, we are much appreciated for your handling of 16 

the review of this paper. 17 

 18 

Sincerely, 19 

Zhihua He 20 

zhh624@mail.usask.ca  21 
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Reviewer 1: 22 

1. Summary: This paper provides an interesting comparison of traditional end-member 23 

mixing analysis approaches versus Bayesian statistical approaches for estimating 24 

contributions of different runoff components in a glacierized basin in Central Asia. The 25 

paper provides an interesting in-depth analysis of the effect of different sources of 26 

uncertainty on the Bayesian modeling results. The results clearly highlight that the 27 

Bayesian approaches predict more or less the same runoff contributions as the EMMA 28 

model when both models have a large sample size, but the Bayesian approach reaches a 29 

much smaller uncertainty that is about 50-60% of the EMMA approach. The results 30 

further show that the Bayesian approach is superior to the EMMA approach in situations 31 

where sample numbers are low and end members look very similar (e.g. snow and glacier 32 

melt signature is similar). The results further show that explicitly considering the 33 

correlation between 2H and 18O in the mixing model, further reduces the uncertainty in 34 

the results. The paper is well motivated, and the introduction provides a comprehensive 35 

overview of the current research on isotope hydrograph separation of runoff components 36 

in glacierized basins. The authors explain well the limitations of existing “traditional” 37 

approaches such as end-member-mixing-analysis and describe clearly the advantages that 38 

Bayesian approaches provide to this problem. My only recommendation would be to add 39 

a figure showing the time series of the isotope and EC data and to clarify the 40 

“fractionation effect” in the methods and results section. It is currently not clear what this 41 

Bayesian modeling scenario encompasses and because of that the section that describes 42 

the results of this scenario analysis is confusing. Other than that, the paper, overall, is well 43 

written and easy to comprehend. The authors made all relevant code available. 44 

Reply: Thanks for your positive comments on this paper. We have addressed all your concerns 45 

in the revised manuscript. A figure has been added to the supplement to show the time series of 46 

water isotope and EC data along with temperature, precipitation and streamflow data. The 47 

fractionation effect has been explained in more details, and the related expressions have been 48 

refined to reduce confusion. 49 

2. Line 146: Please specify what “pure plastic bottles” are? Typically, we state the type 50 

(e.g. HDPE or glass) and size of the bottle used to sample water. 51 

Reply: We specified the bottles as 50 ml high-density polyethylene (HDPE) bottles in the revised 52 

manuscript. 53 
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3. Line 108: Please be more specific. What do you mean by “water sampling uncertainty” 54 

here? Do you mean the uncertainty associated with having just a few samples? 55 

Reply: Specified this as “water sampling uncertainty associated with the representativeness of 56 

the water samples caused by the limited sample site and sample size”. See lines 120-121.  57 

4. Line 159: What is the size of the Golubin glacier in the watershed? You mention that 58 

glaciers cover about 17% of the watershed. What is the fraction that the Golubin glacier 59 

represents in the 17%? What is the streamflow (volume) contribution of the glacier to the 60 

entire basin? Is the Golubin glacier representative of the elevation range and snow 61 

accumulation of the other glacierized areas in the basin? Did you take grab samples from 62 

the other glaciers for comparison? I am a bit concerned that the glacier melt contribution 63 

of the Golubin glacier is too small to really make a difference isotopically. 64 

Reply: The Golubin glacier has an area of ~5.7 km2 and extends over an elevation range from 65 

3232 to 4458 m a.s.l.. The elevation range of the entire glacierized area extends from 3218 to 66 

4857 m a.s.l., with about 76% located between 3700 and 4100m a.s.l.. Both the elevation range 67 

and the mean elevation (3869 m a.s.l.) of the Golubin glacier are close to those of the entire 68 

glacierized area (mean elevation is 3945m a.s.l.). The Golubin glacier represents about 14.4% 69 

of the entire glacierized area, while its elevation range covers around 95.6% of the entire 70 

glacier range. We only collected meltwater samples from the Golubin glacier, due to the logistic 71 

limitations in the remaining glacierized area. Considering the isotopic compositions of snow 72 

and glacier meltwater are particularly dependent on the elevation of glacierized area, the 73 

sampled meltwater from the Golubin glacier could represent meltwater originated from the 74 

primary melting locations in the entire glacierized area. We added these explains in the revised 75 

manuscript. See lines 146-150 and 617-622. 76 

5. Line 177: Please specify the model and manufacturer of the pH, EC and TDS meter 77 

used in this study. Please indicate the precision that this instrument can achieve. 78 

Reply: Specified as “We used the Hanan Instruments HI-9813 PH EC/TDS portable meter to 79 

measure the EC values of water samples, with a measurement precision of 0.1 μs/cm”. TDS 80 

and pH values of water sample were not recorded. See lines 209-210. 81 

6. Line 178: How did you determine what constitutes an “abnormal isotopic 82 

compositions”? Please describe the method/approach you used. 83 

Reply: We used threshold values to identify abnormal values of δ18O and EC located far away 84 

from the sample clusters. For δ18O, sample values higher than 5‰ were excluded. For EC, 85 
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sample values higher than 210 μs/cm were excluded. We specified that in the revised manuscript. 86 

See lines 214-216. 87 

7. Line 185: It would be helpful if the authors could add text on how much rainfall and 88 

streamflow the Ala-Archa basin typically gets and what the mean annual temperature is. 89 

In addition, I would like to suggest providing a graph of the temperature, precipitation 90 

and streamflow observed in the Ala-Archa basin between 2012 and 2017 so that the reader 91 

can evaluate the interannual variability in the hydro-climate. Since the authors decided 92 

to average isotope and EC values across 5 years of observations, this information might 93 

help explaining some of the uncertainty in the data. 94 

Reply: A figure for the daily precipitation, temperature and streamflow measured at the basin 95 

outlet during 2012-2017 has been added in the supplement (also see the following Figs. S1c-e). 96 

Related sentences have been added to describe the hydro-climate data: “The annual mean 97 

precipitation and temperature measured at the Baitik meteorological station during 2012-2017 98 

are 538 mm yr-1 and 7.2 ℃, respectively. The mean daily streamflow during 2012-2017 is about 99 

6.3 m3/s.” The CRC estimated by the mixing approaches refer to the mean contributions in each 100 

of the three seasons during the period of 2012-2017. See lines 150-152 and 222. 101 
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 102 

Figure S1. (a)-(b) Tracer signatures of water samples during the sample period of 2012-103 

2017;(c)-(d) Daily precipitation and temperature measured at the Baitik meteorological 104 

station in 2012-12017; (e) Daily streamflow measured at the Ala-Archa hydrologic station 105 

during 2012-2017.   106 

8. Line 185: Please add a time series graphs of your isotope and EC, pH and TDS 107 

measurements. This graph does not have to be in the main text but could be provided as 108 

supplemental material so that the reader can see how the collected data looks like. 109 

Reply: Please, see the last response. The pH and TDS data were not recorded. 110 

9. Line 250: Please show the histograms of the isotope and EC data. The Bayesian 111 

approach assumes that the data is normally distributed, however, based on the data range 112 

shown in Figure 3, it looks like that some data might not have been normally distributed? 113 

You could report results from a normality test to be sure. 114 
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Reply: Figure 3 only shows the maximum and minimum tracer signatures of each water source. 115 

It is not related to the distributions of measured water tracers. The histograms of isotope and 116 

EC data in the glacier melt season have been presented in Fig. 5 in the manuscript. A 117 

Kolmogorov-Smirnov test has been carried out for both isotope and EC tracers of all water 118 

sources. The tracer data of runoff components (i.e., rainfall, snowmelt, groundwater and 119 

glacier melt) generally pass the normal distribution test at significance levels of p-values > 0.3, 120 

while the tracer data of stream water fail to pass the normal distributions test partly caused by 121 

the extreme isotope and EC values. The EC data of glacier melt also fail to pass the normal 122 

distribution test, which can be caused by the low sample size. We thus assume the prior 123 

distributions of tracers of runoff components are normal in Eqs. 6-8. The prior distributions of 124 

tracers of stream water are first assumed as normal in Eqs. 6a and 8a, and the mean tracer 125 

signatures are then calculated by the mixing of tracers of runoff components in Eq. 9. We 126 

reported the test results in the revised manuscript. See lines 282-288. 127 

10. Line 300: It is not quite clear what you mean by “the fractionation effect”. Could you 128 

be more specific and clarify to the reader when, where this fractionation effect might 129 

occur and how it could impact the observed values? 130 

Reply: The water sources for runoff, such as rainfall and meltwater, are subject to evaporation 131 

before reaching the basin outlet, especially in summer. However, the isotopic composition of 132 

stream water was measured at the basin outlet, and the contributions of runoff components are 133 

quantified for the total runoff at the basin outlet. After the long routing path from the sampled 134 

sites to the basin outlet, the isotopic compositions of rainfall and meltwater mixing at the basin 135 

outlet could be different from those measured at the sampled sites, caused by the evaporation 136 

fractionation effect. The isotopic composition of water sources at the sample sites are assumed 137 

to be normally distributed in Eqs. 6-7, and the changes in the isotopic compositions of water 138 

sources caused by the evaporation fractionation effect are represented by the modification 139 

variables ξ18O and ξ2H in Eq. 10. The evaporation fractionation has no effects on the observed 140 

isotopic compositions, but does have one on the quantification of runoff components, which is 141 

considered as a source of model uncertainty in the study. We added a more detailed explanation 142 

for that in the revised manuscript. See lines 377-392. 143 

11. Line 435: The results section on the fractionation effect is confusing. This is mainly 144 

because it is not clear what the fractionation effect is and how it is estimated in the sample 145 

groups. I would recommend clarifying this in the methods. 146 
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Reply: Please, see the last response. We added a more detailed explanation in the method 147 

section. See lines 383-392. The quantification of runoff components in two Bayesian scenarios 148 

are compared. In the first scenario (using Bayesian_3_OHcor and Bayesain_4_OHcor), the 149 

fractionation effect on isotopic compositions of water sources are ignored, i.e., the isotopic 150 

compositions of water sources at the basin outlet are assumed as same as those measured from 151 

the sample sites. In the second scenario (using Bayesian_3_OHcor_Frac and 152 

Bayesian_4_OHcor_Frac), the evaporation fractionation effect on the isotopic compositions of 153 

water sources have been considered. The mixing of water tracers of stream water are 154 

represented by Eq. 10. Figure 9 illustrates the effects of fractionation on the quantification of 155 

runoff components in all three seasons. The estimated changes in δ18O of each water source 156 

are presented in Figs. 9a-c, and the contributions of runoff components quantified by the two 157 

scenarios are compared in Figs. 9d-f. 158 

12. Line 463: I would suggest rephrasing to: “The TEMMA estimated similar CRCs for 159 

most mixing models but at a larger uncertainty than the Bayesian approaches.” 160 

Reply: Done. Thanks. 161 

13. Figure 3: During the glacier melt season the snowmelt end member has a much lower 162 

EC value than what was estimated for the cold and snowmelt seasons. Can you explain 163 

why the EC is all the sudden so much lower? Since it is most likely not fresh snow that is 164 

melting during the glacier melt season, this trend is somewhat surprising. 165 

Reply: In the cold and snowmelt seasons, some snowmelt samples also have EC values as low 166 

as those in the glacier melt season (see Fig. 3). The snow samples in the glacier melt season 167 

were only collected from the accumulation zone of the glacier, thus resulting in small variability 168 

in the EC values. The snowpack in the accumulation zone is accumulated by fresh snow in the 169 

snow period (summer type accumulation glacier).This leads to low EC values in the snowmelt 170 

samples.  We added this discussion in the revised manuscript. See lines 432-437. 171 

14. Minor comments: Line 43: Should be “led” instead of “leaded”. Line 114: Use “of” 172 

instead of “for the”. Line 124: Should be “glaciers cover” instead of “glacier covers” 173 

unless you only have one glacier: : : Line 127: Should be “shows”. Line 129: Word missing. 174 

Please insert “runoff” after “generates”. Line 138: Should be “since the 1960s”. Line 158: 175 

Should be “was” instead of “were”. Line 162: Suggest using “from early March”. Line 176 

163: Suggest using “due to” instead of “caused by”. Line 168: Please add “meltwater 177 

samples”. Line 172: “at Helmholtz” Line 183: “split” would be a better word than 178 

“distributed”. Line 292: please delete “keeping”. Line 309: Language! Please rephrase the 179 

second part of this sentence. Line 469: Replace “occasionally” with “sporadically”. Line 180 
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499: Replace “though” with “despite”. Line 520: replace “spring points” with “springs”. 181 

Figure 1: Please remove the underscore for the Rain collector label in the legend. 182 

Reply: All done. Thanks.  183 
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Reviewer 2: 184 

1. This is a very interesting and well written manuscript that compares the traditional 185 

tracer-based end-member mixing model approach with different versions of a Bayesian 186 

mixing model to quantify water sources to runoff in a glacierized catchment in Kyrgyzstan. 187 

The findings of this work may have practical implications when applying these 188 

approaches to other catchments and are therefore surely interesting to the readers of 189 

HESS. The manuscript is logically organized, it is nicely illustrated, the interpretation is 190 

well supported by the data, and the discussion is coherent and with relevant and updated 191 

references. However, there are some moderate and minor issues that need to be clarified 192 

and that I invite the Authors to consider. Please, find these comments, suggestions, and a 193 

few corrections in the attached annotated manuscript. I hope they can be useful to the 194 

Authors to improve their work. 195 

Reply: Thanks a lot for the positive comments. We have addressed all your concerns in this 196 

revised manuscript. 197 

2. Lines 29 and 143: ‘water tracer’ to ‘tracers’ or ‘hydrological tracers’; line 38: ‘were’ 198 

to ‘was’; line 181: ‘clod’ to ‘cold’; line 418: ‘show’ to ‘shows’; line 490: ‘rely’ to ‘relies’; 199 

line 726: Change the sentence into "CV stands for coefficient of variation"; line 734: 200 

‘snowmlet’ to ‘snowmelt’. 201 

Reply: All done, thanks. 202 

3. Lines 37 and 57: No need to make up a new acronym ‘TEMMA’. EMMA is enough, 203 

there is no risk to confound it with the other approach. 204 

Reply: The traditional end-member mixing approach is renamed as EMMA. 205 

4. Line 70: These are sources of uncertainty that are important in any catchment, not 206 

necessarily glacierized catchments. Please, specify why the latter are particularly prone 207 

to difficult application of HS (e.g., multiple water sources, high spatio-temporal variability 208 

of water sources etc.). 209 

Reply: The glacierized catchments are challenging for application of the end-member mixing 210 

approaches because of the following reasons: (1) The catchment elevation generally extends 211 

over a large range, leading to strong spatial variability in climate forcing (precipitation and 212 

temperature) and the tracer signatures of water sources; (2) The number of end-member water 213 

sources for runoff is high, additionally including snow and glacier meltwater; (3) Water 214 

sampling in high-elevation glacierized catchment is difficult due to the logistical limitations, 215 



 

10 
 

resulting in small sample sizes for the application of EMMA. We specified these in the revised 216 

manuscript. See lines 67-73. 217 

5. Line 77:  But only the statistical uncertainty! Please, specify. 218 

Reply: Specified as the “statistical uncertainty” in this manuscript. 219 

6. Lines 83-87: This two issues are important but not very clearly explain. Please, clarify. 220 

Reply: We refined these sentences as follows: These include (1) inappropriate estimation of the 221 

variability of tracer signatures of water sources when only few water samples are available. 222 

The used Sd values of the measured tracer signatures likely fail to represent the variability of 223 

water tracer signature of individual water source across the basin, due to the small water 224 

sample sizes; (2) The correlation of tracer signatures and runoff components are inevitably 225 

ignored, due to the assumption of independence of the multiple uncertainty sources. The 226 

correlation between δ18O and δ2H of each water source, as well as the interaction between 227 

runoff components could provide additional constraints on the uncertainty in the quantification 228 

of runoff components, which however are typically ignored in the Gaussian error propagation 229 

technique. See lines 88-97. 230 

7. Line 93: In this paragraph it's important, in my opinion, to add a description on how 231 

uncertainty is treated in the Bayesian approach. This is particularly important for the 232 

research question #2. 233 

Reply:  In the Bayesian approach, both the statistical and model uncertainty are represented by 234 

the posterior distributions of parameters. The parameter uncertainty is estimated based on 235 

likelihood observations using a Markov Chain Monte Carlo procedure. This explanation has 236 

been added in the revised manuscript. See lines 106-109. 237 

8. Line 109: How do Bayesian mixing models estimate the isotopic fractionation? I suggest 238 

to add a sentence here. 239 

Reply:  Modified as “Benefiting from the prior assumptions for changes in isotope signatures 240 

during the mixing process, the Bayesian approach bears the potential to estimate the 241 

fractionation effect on isotopic signatures, which however, has not been investigated either.” 242 

See lines 122-124. 243 

9. Line 113: In the two research questions outlined here it is not adequately 244 

stressed/explained why a glacierized catchment has been chosen for addressing these 245 

questions. Indeed, they can be applied to any catchment. Please, specify this. 246 

Reply: We added a more detailed explanation here: “In Central Asia, glacierized catchments 247 

provide important fresh water supply for downstream cities and irrigated agriculture. 248 

Quantifying the contributions of multiple runoff components to total runoff is important for 249 
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understanding the dynamics of water resource availability at the regional scale. However, 250 

uncertainty in the quantification of runoff components in the glacierized catchments are 251 

particularly large because of the following reasons: (1) The catchment elevation generally 252 

extends over a large range, leading to strong spatial variability in climate forces (precipitation 253 

and temperature) and the tracer signatures of water sources; (2) The number of end-member 254 

water sources is large, additionally including snow and glacier meltwater; (3)Water sampling 255 

in high-elevation glacierized catchments is difficult due to the logistical limitations, resulting 256 

in small sample sizes to represent the tracer signatures of water sources.”  See lines 127-131. 257 

10. Line 143: As we know, EC is not as conservative as tracers. However, due to its easy 258 

use it has been often applied in catchment studies. Please, include a short discussion on 259 

the possible issue related to the lack of conservative behaviour (e.g., not so relevant at the 260 

catchmen scale, or at the runoff event scale etc.) 261 

Reply: We added related discussion on this issue as follows: “EC data has been widely used 262 

for hydrograph separation, due to its easy use and quick measurement. While EC is not a 263 

conservative tracer, this may have only small effects on the application of hydrograph 264 

separation at the catchment scale.” See lines 210-213. 265 

11. Line 175: Any procedure to minimize memory effect (carry over effect) was performed?  266 

Reply: Added: “A regular re-calibration procedure has been carried out for the isotope 267 

analysis.” See line 206. 268 

12. Line 176: First time it's mentioned...define electrical conductivity. 269 

Reply: Defined on line 61. 270 

13. Line 177: Can you quantify the term "abnormal"? 271 

Reply: We used threshold values to identify abnormal values of δ18O and EC located far away 272 

from the sample clusters. For δ18O, sample values higher than 5‰ were excluded. For EC, 273 

sample values higher than 210 μs/cm were excluded. We specified that in the revised manuscript. 274 

See lines 214-217. 275 

14. Line 227: It's not clear to me how 4-component HS can be performed using two tracers 276 

only. Indeed, due to the collinearity of 18oxygen and deuterium, these two tracers cannot 277 

be treated independently. So, how are mixing approaches TEMMA4, Bay4 and Bay4cor 278 

defined? Please, this parts need to be extremely clear to the readers.  279 

Reply: Yes, the values of δ18O and δ2H are typically correlated for each water source. However, 280 

the coefficients representing the correlation between δ18O and δ2H vary among the water 281 

sources in glacierized catchment (see Fig. 2), thus providing a basis for the EMMA_4 to 282 

quantify four runoff components. When quantifying four runoff components using three tracers, 283 
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four conservative equations for δ18O, δ2H, EC, and water volume are used (similar to Eq.1). 284 

The contributions of runoff components (f), as well as the partial derivatives used to calculate 285 

the uncertainty are solved from the four conservative equations using Matlab. However, the 286 

solutions are too lengthy to show in the text. As expected, results in Table 4 show that the 287 

EMMA_4 failed to distinguish snowmelt and glacier melt runoff, due to the similar tracer 288 

signatures of these two runoff components, but succeeded in quantifying the contributions of 289 

rainfall and groundwater. The Bayesian_4_OHind and Bayesian_4_OHcor estimated the 290 

contributions of four runoff components based on the prior distributions of δ18O, δ2H and EC. 291 

The correlation between δ18O and δ2H is ignored in Bayesian_4_OHind. We used independent 292 

prior distributions for δ18O and δ2H of each water source. In Bayesian_4_OHcor, parameters 293 

describing the correlation between δ18O and δ2H of each water source were estimated by 294 

likelihood observations of the corresponding water source, which also vary among the water 295 

sources, thus providing a basis for the quantification of four runoff components using four 296 

mixing equations of tracer signatures (similar to Eq.9). The four-components approaches are 297 

developed in our study to investigate the following two questions: (1) Is the EMMA able to 298 

quantify four runoff components just using δ18O, δ2H, and EC? (2) Does the correlation between 299 

δ18O and δ2H help to reduce the uncertainty in the quantification of runoff components? We 300 

added these explains in the revised manuscript. See lines 266-273 and 336-344.  301 

15. Line 288: The three scenarios are not immediately clear. Does the mean refer to the 302 

spatial value or the temporal value, or the spatial-temporal value? The same question 303 

applies to sd. Then, different compared to what? Please, specify. 304 

Reply: Meltwater sampling in glacierized catchments is typically difficult due to the logistic 305 

limitations. Thus, a small number of samples from a few sites are usually used for hydrograph 306 

separation. The uncertainty in the representativeness of meltwater samples implies an 307 

additional uncertainty source for quantification of runoff components. To investigate the effects 308 

of this type of sampling uncertainty, we set up three virtual sampling scenarios. Scenario I is 309 

used to evaluate the effects of meltwater sample size, in which four groups of meltwater sample 310 

are tested. The four sample groups have the same mean value and Sd of δ18O or EC, but different 311 

sample sizes. Mean and Sd values of δ18O or EC are calculated for all used meltwater samples 312 

in each group, referring to the spatio-temporal variability (same in the following two scenarios). 313 

Scenario II is used to evaluate the effects of sampled mean value of δ18O (or EC) of meltwater. 314 

The four sample groups have the same sample size and Sd, but different mean values. Scenario 315 

III is used to investigate the effects of Sd values of sampled δ18O (or EC). The four sample 316 
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groups have the same sample size and mean tracer signature, but different Sd values. See lines 317 

346-365. 318 

16. Line 330: This is not clearly understandable from the table. Consider replacing it with 319 

a boxplot. 320 

Reply: Done.  See Figs. 3 in the revised manuscript. 321 

17. Line 346: So, do the bars represent the spatio-temporal standard deviation? 322 

Reply: The bars just represent the minimum and maximum values of each tracer signature. 323 

18. Line 356: This sentence is not clear. Please, specify. 324 

Reply: Modified as “Tracer signatures of rainfall are assumed as the same as the tracer 325 

signatures of precipitation samples in all the three seasons”. See line 227. 326 

19. Line 466: This holds true for this specific study and perhaps for other catchments (not 327 

only glaicerized) but not necessarily for all. This should be noted in the discussion. 328 

Reply: Modified as “Sd values are likely overestimated in this study due to small sample sizes, 329 

and thus insufficiently representing the variability of the tracer signatures of the corresponding 330 

water sources across the basin.” See lines 560-561. 331 

20. Line 469: Sampling occasionally not necessarily lead to sharp changes! Please, explain. 332 

Reply: Modified as “Due to the limited accessibility of the sampled sites caused by snow cover, 333 

the samples of meltwater and groundwater are often collected sporadically. The small sample 334 

size and strong variability in sampled tracers likely lead to a large Sd value.” See lines 562-335 

564. 336 

21. Table 1: This table is quite long and dense. Please, consider replacing it with box-plots. 337 

Reply: This table has been split into three sub-tables. Boxplots have been added to present the 338 

variability of tracer signatures. 339 

22. Table 4: Perhaps reporting the mean and the SD is clearer than reporting the mean 340 

and the range. Please, consider this possible change. 341 

Reply: The ranges of minimum and maximum contributions are used to represent the 342 

uncertainty ranges. Sd values have been added in the table. See Table 4.   343 
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Reviewer 3: 344 

1. General comments: The study of He and his co-authors presents novel insights into 345 

tracer-based hydrograph separation using a comparative approach of evaluating 346 

traditional against Bayesian EMMA. In this context, the study aims at filling this 347 

important research gap in tracer hydrology both from a methodological and process-348 

oriented point of view. The study shows that the Bayesian approach estimates smaller 349 

uncertainties and is less sensitive to sampling uncertainties. The study approach also 350 

accounts for isotope fractionation, when using EMMA. Beside only minor comments, I 351 

think that the study is mature and presents a concise story line to the readership. The 352 

references are with up-to-date and a good use of English can be attributed. After revision 353 

of few comments, I can recommend this manuscript for further acceptance in this journal. 354 

Reply: Thanks a lot for the positive comments. We have addressed all your concerns in this 355 

revised manuscript. 356 

2. Page 6, Line 153: Please use the PALMEX reference (see below). 357 

Reply: Done. Thanks. 358 

3. Page 6, Line 175: Please clarify if the measurement precision is the same for both LGR 359 

and Picarro instruments, otherwise add this details.  360 

Reply: Both measurement precisions of δ18O and δ2H are ±0.25 ‰ and ±0.4 ‰, respectively. 361 

Specified in the revised manuscript. See line 207. 362 

4. Page 6, Line 178: How did you define ‘obvious evaporation’? Did you use a deuterium 363 

excess threshold? Please insert further details here. Please add also at which EC limit you 364 

discarded samples. 365 

Reply: We used threshold values to identify abnormal values of δ18O and EC located far away 366 

from the sample clusters. For δ18O, sample values higher than 5‰ were excluded. For EC, 367 

sample values higher than 210 μs/cm were excluded. We specified that in the revised manuscript. 368 

See lines 214-217. 369 

5. Page 6, Line 181: Please correct to ‘cold season’; Page 15, Line 438: ‘In average’. 370 

Reply: Done. Thanks.  371 

6. Page 8, Line 225: Eqs. 1 -5 hold for 3-components and 2-tracer mixing models. Please 372 

provide further information on how you inferred 4 components using 3 tracers.  373 

Reply: When quantifying four runoff components using three tracers, four conservative 374 

equations for δ18O, δ2H, EC, and water volume are used (similar to Eq.1). The values of δ18O 375 

and δ2H are typically correlated for each runoff component. However, the coefficients 376 

representing the correlation between δ18O and δ2H vary among the runoff components in 377 



 

15 
 

glacierized catchment (see Figure 2), thus providing a basis for the EMMA_4 to quantify four 378 

runoff components using four conservation equations. The contributions of runoff components 379 

(fi) as well as the partial derivatives used to calculate the uncertainty are solved from the four 380 

conservative equations using Matlab. However, the solutions are too lengthy to show in the text. 381 

We specified these in the revised manuscript. See lines 267-273. 382 

7. Page 10, Line 293 – 295: Why did you not analyze the snowmelt uncertainty in the 383 

snowmelt period? Besides, the sentence is not clear to me: snowmelt is indeed more 384 

difficult to sample in the glacier melt season but easier to sample in the snowmelt period. 385 

Also its spatio-temporal variability is much higher in that period of time when most of the 386 

melting occurs.  387 

Reply: We investigated the effects of sampling uncertainty only in the glacier melt season 388 

because of the following two reasons: (1) Runoff in the glacier melt season contributes the 389 

largest part to annual runoff in our study basin. Accurate quantification of each runoff 390 

component in this season is extremely important for the understanding of dynamics of water 391 

availability in the study area. (2) In this season more meltwater samples are available (15 392 

snowmelt samples and 23 glacier melt samples) than in the snowmelt season (only 15 snowmelt, 393 

Table 1), thus providing a good observation data basis for the investigation experiment. 394 

Snowmelt sampling in the snowmelt season in the study basin is also difficult due to the heavy 395 

snow accumulation in March to April and the spring flood in May to June.  However, we believe 396 

the effects of snowmelt sampling uncertainty on the end-member mixing approaches in the 397 

snowmelt season should be similar to those of meltwater sampling in the glacier melt season. 398 

We explained this issue in the revised manuscript. See lines 365-373. 399 

8. Page 11, Line 308: Please provide more information on the fractionation effect and how 400 

you represented it in your analysis. 401 

Reply: The water sources for runoff, such as rainfall and meltwater, are subject to evaporation 402 

before reaching the basin outlet, especially in summer. However, the isotopic composition of 403 

stream water was measured at the basin outlet, and the contributions of runoff components are 404 

quantified for the total runoff at the basin outlet. After the long routing path from the sampled 405 

sites to the basin outlet, the isotopic compositions of rainfall and meltwater mixing at the basin 406 

outlet could be different from those measured at the sampled sites, caused by the evaporation 407 

fractionation effect. The isotopic composition of water sources at the sample sites are assumed 408 

to be normally distributed in Eqs. 6-7, and the changes in the isotopic compositions of water 409 

sources caused by the evaporation fractionation effect are represented by the modification 410 

variables ξ18O and ξ2H in Eq. 10.  Parameters describing the prior distributions of isotopic 411 
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compositions at the sample sites in Eqs. 6-7 are estimated by the likelihood observations of 412 

isotope signatures of water samples. The modification variables ξ18O and ξ2H are estimated by 413 

the likelihood observations of isotope signatures of stream water. The fractionation effect on 414 

the estimated CRC is quantified by comparing two Bayesian scenarios. In the first scenario 415 

(using Bayesian_3_OHcor and Bayesain_4_OHcor), the isotopic compositions of water 416 

sources at the basin outlet are assumed the same as those measured from the sample sites even 417 

though the water sources have suffered evaporation before reaching the basin outlet (using Eqs. 418 

6-9). In the second scenario (using Bayesian_3_OHcor_Frac and Bayesian_4_OHcor_Frac), 419 

the evaporation fractionation effect on the isotopic compositions of water sources is considered, 420 

and the mixing of water tracers of stream water is represented by Eq.10. We added these 421 

explains in the revised manuscript. See lines 375-392. Figure 9 illustrates the effects of 422 

fractionation on the quantification of runoff components in all three seasons. The estimated 423 

changes in δ18O of each water source are presented in Figs. 9a-c, and the contributions of 424 

runoff components quantified by the two scenarios are compared in Figs. 9d-f 425 

9. Page 11, Line 319: It seems that this sentence contradicts with the one in line 326-328. 426 

How can glacier melt have high EC if it has low interaction with mineralized surfaces? 427 

Please rephrase both parts accordingly.  428 

Reply: Line 319 has been modified as: “Among the water sources, snowmelt and glacier melt 429 

tend to have the lowest EC values.” Lines 326-328 have been rephrased as: “The highest CV 430 

value of EC for glacier melt indicates large variability in the glacier melt samples. This is 431 

because the glacier melt water samples were collected from a rather clean location (EC value 432 

is only 1.5 μs/cm) and a relatively dusty location (EC value is 33.4 μs/cm).” See lines 408-409 433 

and 422-425. 434 

10. Page 14, Line 379 –381: This sentence should be moved to the discussion part.  435 

Reply: Modified as: “The EMMA_3 estimated the largest uncertainty ranges and Sd values for 436 

CRC in all the three seasons, followed by Bayesian_3_OHind.” 437 

11. Page 16, Line 469: Please clarify. How can samples taken occasionally lead to sharp 438 

changes of the isotopic composition? Moreover, randomly taken samples may be part of 439 

a strategy to represent tracer variability. 440 

Reply: Modified as “Due to the limited accessibility of the sample sites caused by snow cover, 441 

the water samples of meltwater and groundwater are often collected sporadically. The small 442 

sample size and strong variability in sampled tracers likely lead to a large Sd value.” See lines 443 

562-564.  444 
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Abstract 472 

Water tracerTracer data have been successfully used for hydrograph separation in 473 

glacierized basins. However, uncertainties in the hydrograph separation are large in these basins, 474 

caused by the spatio-temporal variability in the tracer signatures of water sources, the 475 

uncertainty of water sampling and the mixing model uncertainty. In this study, we used 476 

electrical conductivity (EC) measurements and two isotope signatures (δ18O and δ2H) to label 477 

the runoff components, including groundwater, snow and glacier meltwater, and rainfall, in a 478 

Central Asia glacierized basin. The contributions of runoff components (CRC) to the total 479 

runoff, as well as the corresponding uncertainty, were quantified by two mixing approaches: a 480 

traditional end-member mixing approach (TEMMAabbreviated as EMMA) and a Bayesian 481 

end-member mixing approach. The performance of the two mixing approaches werewas 482 

compared in three seasons, distinguished as cold season, snowmelt season and glacier melt 483 

season. Results show that: 1) The Bayesian approach generally estimated smaller uncertainty 484 

ranges for the CRC compared to the TEMMAEMMA. 2) The Bayesian approach tended to be 485 

less sensitive to the sampling uncertainties of meltwater than the TEMMAEMMA was. 3) 486 

Ignoring the model uncertainty caused by the isotope fractionation likely leadedled to an 487 

overestimated rainfall contribution and an underestimated meltwater share in the melt seasons. 488 

Our study provides the first comparison of the two end-member mixing approaches for 489 

hydrograph separation in glacierized basins, and gives insights for the application of tracer-490 

based mixing approaches for similar basins.   491 
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1. Introduction 492 

Glaciers and snowpack store a large amount of fresh water in glacierized basins, thus 493 

providing an important water source for downstream human societies and ecosystems (Barnett 494 

et al., 2005; Viviroli et al., 2007; He et al., 2014; Penna et al., 2016). Seasonal meltwater and 495 

rainfall play significant roles in shaping the magnitude and timing of runoff in these basins 496 

(Rahman et al., 2015; Pohl et al., 2017). Quantifying the seasonal contributions of the runoff 497 

components (CRC), including groundwater, snowmelt, glacier melt and rainfall, to the total 498 

runoff is therefore highly needed for the understanding of the dynamics of water 499 

resourceresources in glacierized basins under the current climate warming (La Frenierre and 500 

Mark, 2014; Penna et al., 2014; He et al., 2015). 501 

The traditional end-member mixing approach (TEMMAabbreviated as EMMA) has 502 

been widely used for hydrograph separation in glacierized basins across the world (Dahlke et 503 

al., 2014; Sun et al., 2016a; Pu et al., 2017). For instance, studies in the Italian glacierized 504 

Alpine catchments indicate the successful application of the TEMMAEMMA to estimate the 505 

proportions of groundwater, snow and glacier meltwater based on water stable isotopes and 506 

electric conductivity (EC) (e.g., Chiogna et al. 2014, Engel et al. 2016 and Penna et al. 2017). 507 

Li et al. (2014) confirmed significant contributions of snow and glacier melt runoff to total 508 

runoff in the Qilian Mountains using TEMMAEMMA. Maurya et al. (2011) reported the 509 

contribution of glacial ice meltwater to the total runoff in a Himalayan basin on δ18O and EC, 510 

using a three-component TEMMAEMMA.  511 

However, difficulties in field sampling and seasonal inaccessibility often limit the 512 

application of TEMMA in high-elevation glacierized basins (Rahman et al., 2015). Moreover, 513 

uncertainties for thein CRC quantified by the TEMMA EMMA in glacierized basins are 514 

typically high (Klaus and McDonnell, 2013; Rahman et al., 2015), which can be caused by, 515 

because of the following reasons: (1) The catchment elevation generally extends over a large 516 

range, leading to strong spatial variability in climate forcing (precipitation and temperature) 517 

and the tracer signatures of water sources; (2) The number of end-member water sources for 518 

runoff is typically high, additionally including snow and glacier meltwater; (3) Water sampling 519 

in high-elevation glacierized catchment is difficult due to the logistical limitations, resulting in 520 

small sample sizes for the application of EMMA. Uncertainties in CRC quantified by the 521 

EMMA can be categorized into statistical uncertainty and model uncertainty. Statistical 522 

uncertainty refers to the spatio-temporal variability forof the tracer signatures, sampling 523 

uncertainty and laboratory measurement error (Joerin et al., 2002). Model uncertainty is 524 

determined by the assumptions of the TEMMAEMMA, which might not agree with reality 525 
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(Joerin et al., 2002; Klaus and McDonnell, 2013). For example, the fractionation effect on 526 

isotope ratios caused by evaporation during the mixing process can result in significant errors 527 

given the constant tracer assumption in the TEMMAEMMA (Moore and Semmens, 2008). 528 

The Gaussian error propagation technique has been typically applied along with 529 

TEMMAEMMA to estimate the statistical uncertainty for the hydrograph separation, assuming 530 

the uncertainty associated with each source is independent from the uncertainty of other sources 531 

(Genereux, 1998; Pu et al., 2013). The spatio-temporal variability forof the tracer signatures is 532 

estimated by multiplying the t values of the Student’s t distribution at the selected significance 533 

level with the standard deviations (Sd) of the measured tracer signatures (Pu et al., 2013; Penna 534 

et al., 2016; Sun et al., 2016b). Although this approach has been successfully used in various 535 

glacierized basins, some recurring issues remain. These include (1) inappropriate estimation of 536 

the variability of tracer signatures of water sources when only few water samples are available 537 

(Dahlke et al., 2014), and (2) negligence. The used Sd values of the measured tracer signatures 538 

likely fail to represent the variability of tracer signatures of individual water sources across the 539 

basin, due to the small water sample sizes; (2) The correlation of water tracerstracer signatures 540 

and runoff components caused by the are inevitably ignored, due to the assumption of 541 

independence of the multiple uncertainty sources. The correlation between δ18O and δ2H of 542 

each water source, as well as the interaction between runoff components could provide 543 

additional constraints on the uncertainty in the quantification of runoff components, which 544 

however are typically ignored in the Gaussian error propagation technique. Further, the model 545 

uncertainty caused by the fractionation effect on isotope ratios during the mixing process is also 546 

often ignored. 547 

The Bayesian end-member mixing approach (abbreviated as Bayesian approach) shows 548 

the potential to estimate the proportions of individual components to the mixing variable in a 549 

more rigorous statistical way (Parnell et al., 2010). For hydrograph separation, the water tracer 550 

signatures of the water sources are first assumed to obey specific prior distributions. Their 551 

posterior distribution are then obtained by updating the prior distributions with the observation 552 

likelihood observations derived from water samples. In the last step, the CRC to the total runoff 553 

are estimated based on the balance of the posterior water tracer signatures. The posterior 554 

distributions, expressing the uncertainties for of the CRC and parameters, are typically 555 

estimated in a Markov Chain Monte Carlo (MCMC) procedure. In the Bayesian approach, both 556 

the statistical and model uncertainties are represented by the posterior distributions of 557 

parameters. The parameter uncertainty is estimated based on likelihood observations using 558 

MCMC. 559 
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Although the Bayesian approach can be applied in  cases when the sample sizes are 560 

small (Ward et al., 2010), it has been rarely used for hydrograph separation in glacierized basins. 561 

To the authors’ knowledge, there have been only three studies, including Brown et al. (2006), 562 

who conducted the hydrograph separation in a glacierized basin in the French Pyrenees using a 563 

three-component Bayesian approach. Further, Cable et al. (2011) quantified the CRC to total 564 

runoff in a glacierized basin in the American Rocky Mountains. They used a hierarchical 565 

Bayesian framework to incorporate temporal and spatial variability in the water isotope data 566 

into the mixing model. Recently, Beria et al. (2019) used a classic Bayesian approach to 567 

estimate the uncertainty for thein CRC in a Swiss alpine catchment. However, the performance 568 

of the Bayesian approach has not been comparedevaluated in comparison to the 569 

TEMMAEMMA. Moreover, the sensitivity of the Bayesian approach to the water sampling 570 

uncertainty associated with the representativeness of the water samples caused by the limited 571 

sample site and sample size is still not clear. The potential of the Benefiting from the prior 572 

assumptions for changes in isotope signatures during the mixing process, the Bayesian approach 573 

bears the potential to estimate the fractionation effect on isotopic signatures during the mixing 574 

process(Moore and Semmens, 2008), which however, has not been investigated either. 575 

In this study, we compare TEMMAEMMA and the Bayesian approach for hydrograph 576 

separation in a Central Asia glacierized basin, using water isotope and EC measurements. TheIn 577 

Central Asia, glacierized catchments provide important fresh water supply for downstream 578 

cities and irrigated agriculture. Quantifying the contributions of multiple runoff components to 579 

total runoff is important for understanding the dynamics of water resource availability at the 580 

regional scale. However, uncertainty in the quantification of runoff components in the 581 

glacierized catchments are particularly large as mentioned before. Our research questions are 582 

two-fold: 1) How do TEMMAEMMA and the Bayesian approaches compare with respect to 583 

the quantification for theof CRC? 2) What is the influence of the different uncertainty sources 584 

(including variability of the tracer signatures, sampling uncertainty, and model uncertainty) on 585 

the estimated CRC in the two mixing approaches?  586 

The paper is organized as follows: detailsDetails on the study basin and water sampling 587 

are introduced in Section 2; assumptionsAssumptions of the two mixing approaches are 588 

described in Section 3; Section 4 estimates the CRC, as well as the corresponding uncertainties; 589 

discussionDiscussion and conclusion finalize the paper in Sections 5 and 6, respectively. 590 

2. Study area and data 591 

2.1 Study area 592 
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Located in Kyrgyzstan, Central Asia, the Ala-Archa basin drains an area of 233 km2, 593 

(Fig. 1), and glacier covers around 17% of the basin area. The elevation of the study basin 594 

extends from 1560 m to 4864 m a.s.l..1), and glaciers cover around 17% of the basin area. The 595 

elevation of the study basin extends from 1560 m to 4864 m a.s.l., and the elevation range of 596 

the glacierized area extends from 3218 to 4857 m a.s.l., with about 76% located between 3700 597 

and 4100m a.s.l.. The Golubin glacier has an area of ~5.7 km2 and extends over an elevation 598 

range from 3232 to 4458 m a.s.l. (Fig. 1). Both the elevation range and the mean elevation 599 

(3869 m a.s.l.) of the Golubin glacier are close to those of the entire glacierized area (mean 600 

elevation is 3945 m a.s.l.). The Golubin glacier represents about 14.4% of the entire glacierized 601 

area, while its elevation range covers around 95.6% of the entire glacier range. The annual mean 602 

precipitation and air temperature measured at the Baitik meteorological station during 2012-603 

2017 are 538 mm yr-1 and 7.2 ℃, respectively. The mean daily streamflow during 2012-2017 604 

is about 6.3 m3/s (Fig. S1). The seasonal dynamics of runoff in the river play an important role 605 

in the water availability for downstream agricultural irrigation. The generation of snow and 606 

glacier melt runoff generally showshows the largest effect on the runoff seasonality (Aizen et 607 

al., 2000; Aizen et al., 2007). In particular, the snowmelt runoff mainly occurs in the warm 608 

period from early March to middle September, and the glacier melt typically generates runoff 609 

from the high-elevation areas during July to September (Aizen et al., 1996; He et al., 2018; He 610 

et al., 2019). We subsequently defined three runoff generation seasons as follows. Cold season: 611 

from October to February, in which the streamflow is fed mainly by groundwater and to a 612 

smaller extent by snowmelt and rainfall; Snowmelt season: from March to June, in which the 613 

streamflow is fed chiefly by snowmelt and groundwater and additionally by rainfall; Glacier 614 

melt season: from July to September, in which the streamflow is fed by significant glacier melt 615 

and groundwater, rainfall and snowmelt.  616 

Two meteorological stations (Fig. 1), i.e., Alplager (at elevation of 2100 m a.s.l.) and 617 

Baitik (at elevation of 1580 m a.s.l.), have been set up in the basin since the 1960s to collect 618 

daily precipitation and temperature data. The Ala-Archa hydrological station has been set up at 619 

the same site of the Baitik meteorological station to collect daily average dischargestreamflow 620 

data since the 1960s. The dynamics of glacier mass balance and snow mass balance in the 621 

accumulation zone have been surveyed in summer field campaigns through 2012-2017. Daily 622 

precipitation, temperature and streamflow measured at the basin outlet during 2012-2017, are 623 

presented in Fig. S1 in the supplement file. 624 

2.2  Water tracerTracers data 625 
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Since July of 2013, stream water samples have been collected weekly by local station 626 

operators, from the river channel close to the Alplager and Baitik meteorological sites, using 627 

pure plastic50 ml high-density polyethylene (HDPE) bottles (He et al., 2019). The sampling 628 

time slightly varied around noon every Wednesday. Precipitation samples were collected during 629 

2012-2017 at four sites across the basin (Fig. 1). At the Alplager and Baitik meteorological sites, 630 

the precipitation samples were first collected from fixed rain collectors (immediately after the 631 

rainfall/snowfall events), and then accumulated in two indoor rain containers over one month. 632 

The mixed water in the containers were then sampled for isotopic analysis every month. The 633 

indoor rain containers were filled with thin mineral oil layers for monthly precipitation 634 

accumulation and stored in cold places. Additionally, two plastic rain collectors PALMEX, 635 

(similar to Gröning et al., 2012), specifically designed for isotopic sampling to prevent 636 

evaporation, were set up at the elevations of 2580 m a.s.l. and 3300 m a.s.l. to collect 637 

precipitation in high-elevation areas (Fig. 1). Precipitation samples were collected monthly 638 

from these two rain collectors during the period from May to October when the high-elevation 639 

areas were accessible. 640 

Glacier meltwater werewas sampled during the summer field campaigns in each year of 641 

2012-2017. Samples of meltwater flowing on the Golubin glacier in the ablation zone and at 642 

the glacier tongue were collected by pure plastic50 ml HDPE bottles and then stored in a cooling 643 

box (Fig. 1, the elevation of the sampling sites ranges from 3280 m to 3805 m a.s.l.). We only 644 

collected glacier meltwater samples from the Golubin glacier due to the logistic limitations in 645 

the remaining glacierized area. Snow samples were collected throughfrom early March to early 646 

October during 2012-2017, as the sampling sites are generally not accessible caused bydue to 647 

the heavy snow accumulation in the remaining months. The elevation of the multiple snow 648 

sampling sites ranges from 1580 m to 4050 m a.s.l. (Fig. 1). The whole snow profile at each 649 

sampling site was collected through drilling a 1.2 m pure plastic tube into the snowpack. The 650 

snow in the whole tube were then collected by plastic bags and stored in a cooling box. After 651 

all the snow in the plastic bags melted out, the mixed snow meltwater samples were then 652 

sampledcollected by pure plasticHDPE bottles. Groundwater samples were also collected 653 

through March to October during 2012-2017, from a spring draining to the river (Fig. 1, 2400 654 

m a.s.l.) using pure plasticHDPE bottles. The spring is located at the foot of a rocky hill, around 655 

60 meters away from the river channel. 656 

All samples were stored at 4 ℃ and then delivered to the laboratory ofat Helmholtz 657 

Center for Environmental Research (UFZ) in Halle of Germany by flight. Isotopic compositions 658 

of water samples were measured using a Laser-based infrared spectrometry (LGR TIWA 45, 659 
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Picarro L1102-i). A regular calibration has been carried out to minimize the memory effect. 660 

The measurement precisions of both LGR TIWA 45 and Picarro L1102-i for δ18O and δ2H are: 661 

±0.25 ‰ and ±0.4 ‰, respectively, after the calibration against the common VSMOW standard. 662 

We used the Hanan Instruments HI-9813 PH EC/TDS portable meter to measure the EC values 663 

of the water samples were measured using portable PH/TDS/EC meters., with a measurement 664 

precision of 0.1 μs/cm. EC data has been widely used for hydrograph separation, due to its easy 665 

use and quick measurement. While EC is not a conservative tracer, this may have only small 666 

effects on the application of hydrograph separation at the catchment scale. Abnormal isotopic 667 

compositions caused by obvious evaporation and abnormal EC values caused by impurities 668 

were discarded. We used threshold values to identify abnormal values of δ18O and EC located 669 

far away from the sample clusters. For δ18O, sample values higher than 5‰ were excluded. For 670 

EC, sample values higher than 210 μs/cm were excluded. Tracers data of individual water 671 

sources at the sampled date are presented in Fig. S1. 672 

3. Methodology 673 

The hydrograph separation is carried out in each of the three seasons (i.e., clodcold 674 

season, snowmelt season and glacier melt season). Water samples collected in the period from 675 

2012 to 2017 are distributedsplit into each of the three seasons for the hydrograph separation. 676 

The CRC estimated by the mixing approaches refer to the mean contributions in each of the 677 

three seasons during the period of 2012-2017, i.e., the inter-annual variability of CRC were not 678 

considered.. The mixing approaches applied for the hydrograph separation in each season are 679 

summarized in Table 2. Considering the groundwater and snowmelt samples were rarely 680 

collected in the cold season, we used all available groundwater and snowmelt samples from the 681 

three seasons for hydrograph separation in the cold season. Tracer signatures of rainfall are 682 

assumed as same as the measured tracer signatures of precipitation samples in all the three 683 

seasons. 684 

3.1 Traditional end-member mixing approach (TEMMAEMMA) 685 

The main assumptions of TEMMAEMMA are as follows (Kong and Pang, 2012): (1) 686 

The water tracer signature of each runoff component is constant during the analyzed period; (2) 687 

The water tracer signatures of the runoff components are significantly different from each other; 688 

(3) Water tracerTracer signatures are conservative in the mixing process. In the cold and 689 

snowmelt seasons, a three-component TEMMAEMMA method (TEMMAEMMA_3, Table 2) 690 

is used. Since the precision of δ18O (±0.25 ‰) measured in the lab is higher than that of δ2H 691 

(±0.4 ‰) and both are strongly correlated, the TEMMAEMMA_3 is based on δ 18O and EC. In 692 

the glacier melt season, both the TEMMAEMMA_3 and the four-component TEMMA 693 
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(TEMMAEMMA (EMMA_4, Table 2) are used. In the TEMMAEMMA_3, glacier melt and 694 

snowmelt are assumed as one end-member, considering their similar tracer signatures. In the 695 

TEMMAEMMA_4, glacier melt and snowmelt are treated as two end-members separately, and 696 

δ 18O and δ 2H are used as two separate tracers. The following equations (Eqs. 1-5) are used to 697 

estimate CRC (f1-3) and the corresponding uncertainty in the TEMMAEMMA_3 (Genereux, 698 

1998).  699 

1 2 3

1 1 2 2 3 3

1 1 2 2 3 3
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A A f A f A f for water tracer A
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where the subscripts 1-3 refer to the three runoff components (i.e., groundwater, 704 

snowmelt/meltwater and rainfall), and A1-A3 (B1-B3) refers to the mean δ18O (EC) values of 705 

runoff components. A and B stand for the mean δ18O  and EC values of the stream water. The 706 

mean isotope and EC values of precipitation are calculated as the monthly precipitation 707 

weighted average values. Similarly, the mean isotope and EC values of stream water are 708 

calculated as the weekly streamflow weighted average values.  709 

Assuming the uncertainty of each variable is independent from the uncertainty in others, 710 

the Gaussian error propagation technique is applied to estimate the uncertainty of the CRC (f1-711 

3) using the following equation (Genereux, 1998):  712 

1 2 3 1 2 3

2 2 2 2 2 2 2 2

1 2 3 1 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

i i i i i i i i
f A A A A B B B B

f f f f f f f f
W W W W W W W W W

A A A A B B B B

       
       

       
                   (5)                                713 

where fi stands for the contribution of a specific runoff component, and W is the uncertainty 714 

in the variable specified by the subscript. For the uncertainty of water tracer signatures (WAi 715 

and WBi), we multiply the Sd values of the measured tracer signatures with t values from the 716 

Student’s t value table at the confidence level of 95%. The degree of freedom for the 717 

Student’s t distribution is estimated as the number of water sample for each water source 718 

minus one. Analytical measurement errors are not considered in this approach, which, 719 

however, are minor compared to the uncertainty generated from water tracer variations 720 

(Penna et al., 2017; Pu et al., 2017). The lsqnonneg function in Matlab is used to solve Eqs. 721 
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1-4, which solves the equations in a least squares sense, given the constraint that the solution 722 

vector f has nonnegative elements. The TEMMA_4 uses the equations similar to Eqs. 1-723 

5The EMMA_4 uses the equations similar to Eqs. 1-5. The values of δ18O and δ2H are 724 

typically correlated for each water source. However, the coefficients representing the 725 

correlation between δ18O and δ2H vary among the water sources in glacierized catchment, 726 

thus providing a basis for the EMMA_4 to quantify four runoff components. When 727 

quantifying four runoff components using three tracers, four conservative equations for 728 

δ18O, δ2H, EC, and water volume are used (similar to Eq.1). The contributions of runoff 729 

components (f), as well as the partial derivatives used to calculate the uncertainty are solved 730 

from the four conservative equations using Matlab. However, the solutions are too lengthy 731 

to show in the text. 732 

3.2 Bayesian mixing approach 733 

The Bayesian approaches applied for each season are summarized in Table 2. Similar 734 

to the TEMMAEMMA, we apply a three-component Bayesian approach to all seasons, and 735 

additionally a four-component Bayesian approach in the glacier melt season. The three-736 

component Bayesian approach has two types: the Bayesian_3_CorOHcor approach considers 737 

the correlation between δ18O and δ2H, whereas the Bayesian_3_OHind approach assumes 738 

independence. The four-component Bayesian approach also has two types: 739 

Bayesian_4_CorOHcor considering the correlation, and Bayesian_4_OHind assuming 740 

independence between δ18O and δ2H. TheA Kolmogorov-Smirnov test has been carried out for 741 

both isotope and EC tracers of all water sources before the applicaiton of Bayesian approaches. 742 

The tracer data of runoff components (i.e., rainfall, snowmelt, groundwater and glacier melt) 743 

generally pass the normal distribution test at significance levels of p-values > 0.3, while the 744 

tracer data of stream water fail to pass the normal distributions test partly caused by the extreme 745 

isotope and EC values (see Figs. S1a-b). The EC data of glacier melt also fail to pass the normal 746 

distribution test, which can be caused by the low sample size. Thus, the prior assumptions for 747 

the Bayesian approaches are listed as follows (similarly to Cable et al. 2011): In approaches 748 

considering the correlation between δ18O and δ2H, the prior distributions of δ18O and δ2H of 749 

runoff components and stream water are assumed as bivariate normal distributions with means 750 

and precision matrix as μ18O, μ2H and Ω, respectively (Eq.6a). The precision matrix (Ω, i.e. the 751 

inverse of the covariance matrix) for the two isotopes is assumed as Wishart prior (Eq. 6b). 752 

When assuming independence between δ18O and δ2H, the prior distributions of δ18O (δ2H) of 753 

runoff components and stream water are assumed as normal distributions with means and 754 

variance of μ18O and λ18O (μ2H and λ2H, Eqs. 6c-d). The mean values of the isotopes of runoff 755 
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components (i.e., μ18O and μ2H) are further estimated by independent normal priors (Eq. 7, 756 

Cable et al. 2011), which is assumed to consider the spatial variability of μ18O and μ2H.   757 
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where, λ18O, γ18O and σ18O (λ2H, γ2H and σ2H) are parameters used to describe the normal priors 760 

of δ18O and μ18O (δ2H and μ2H, see Table 3), which are estimated by likelihood observations 761 

(Table 3).. V is a 2*2 unit positive-definite matrix, and ‘2’ stands for the degree of freedom in 762 

the Wishart prior distribution.  763 

The priors of EC values of runoff components and stream water are assumed as normal 764 

distributions (Eq. 8a), with mean ɛ and variance τ. Similarly, the spatial variability of the mean 765 

EC values of runoff components (ɛ) are assumed to follow a normal distribution with mean θ 766 

and variance ω (Eq. 8b).  τ, θ and ω are parameters estimated by likelihood observations (Table 767 

3). 768 
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The prior distributions of stream water are calculated in two steps. First, the prior distributions 770 

of δ18O, δ2H and EC of stream water are assumed as same as those of runoff components in 771 

Eqs. 6 and 8a. Second, the    772 
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         773 

The mean isotopes (μ18O and μ2H) and EC (ɛ) of stream water are constrained by a 774 

mixing model (Eqs. 9a-b), which estimates the isotope and EC mean values of stream water by  775 

multiplying the contribution of each runoff component (fi) with the corresponding mean isotope 776 

and EC values of each runoff component (Eq. 9a). 777 
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 In this equationwhere, N is the number of runoff components. The contribution vector (f) is 779 

represented by a Dirichlet distribution with an index vector α (Eq. 9b), in which the sum of 780 

contributions of all runoff components (∑𝑓𝑖) equals one. The index vector α is estimated by 781 

two variable vectors ρ and ψ (Eq.9c), considering the temporal and spatial variability in the 782 

CRC (Cable et al. 2011). ρ and ψ are assumed as bivariate normal distribution with means and 783 

precision matrix β and Ω (Eq.9d). β is a parameter vector estimated by likelihood observations 784 

(Table 3).                                                      785 

The value ranges for the parameters need to be estimated in Eqs. 6-9 are summarized in 786 

Table 3. The posteriors of parameters describing the spatial variability of water tracerstracer 787 

signatures in Eqs. 7 and 8b are first estimated by the mean water tracer signatures of runoff 788 

components measured at different spatial locations. Parameters describing the overall 789 

variability of water tracer signatures in Eqs. 6 and 8a are then constrained by the likelihood 790 

observations of water tracer signatures from all water samples at different times and locations. 791 

The posterior distribution of CRC (f) are estimated by Eq. 9, based on the posterior water tracer 792 

signatures of runoff components and the measured water tracer signatures from stream water 793 

samples. The posteriors of parameters and contributions are estimated by the R software 794 

package Rstan. We run four parallel Markov Chain Monte Carlo (MCMC) chains with 2000 795 

iterations for each chain. The first 1000 iterations are discarded for warm-up, generating a total 796 

of 4*1000 samples for the calculation of the posterior distributions. Uncertainties are presented 797 

as the 5-95 percentile ranges from the iterative runs. The parameter values are assumed to 798 

follow uniform prior distributions within the value ranges to runinitialize the MCMC procedure. 799 

To be noted, the four-components approaches (EMMA_4, Bayesian_4_OHcor and 800 

Bayesian_4_OHind) are developed in our study to investigate the two following questions: (1) 801 

Is the EMMA able to quantify four runoff components just using δ18O, δ2H, and EC? (2) Does 802 

the correlation between δ18O and δ2H help to reduce the uncertainty in the quantification of 803 

runoff components? The correlation between δ18O and δ2H is ignored in Bayesian_4_OHind. 804 

We used independent prior distributions for δ18O and δ2H of each water source. In 805 

Bayesian_4_OHcor, the posterior parameters describing the correlation between δ18O and δ2H 806 
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vary among the water sources, thus providing a basis for the quantification of four runoff 807 

components using four mixing equations of tracer signatures (similar to Eq.9). 808 

3.3 Effects of the uncertainty in the meltwater sampling 809 

Due to limited accessibility, meltwater samples are typically difficult to collect in high-810 

elevation glacierized areas. Often, only small sample sizes are available to represent the tracer 811 

signatures of meltwater generated from the entire glacierized area. Hence, the 812 

representativeness of meltwater samples can have significant effects onimplies an additional 813 

uncertainty source in the hydrograph separation.  814 

ToWe thus define three virtual sampling scenarios to evaluate thisthe effect forof 815 

meltwater sampling on the TEMMAEMMA and Bayesian mixing approaches, we define three 816 

virtual sampling scenarios.. Scenario I: is used to evaluate the effects of sample size of 817 

meltwater, in which four groups of meltwater sample are tested. The meltwaterfour sample 818 

groups have different sample sizes, but the same mean value and Sd of the investigated 819 

tracer;δ18O or EC, but different sample sizes. Mean and Sd values of δ18O or EC are calculated 820 

for all used meltwater samples in each group, referring to the spatial-temporal variability (same 821 

in the two following scenarios). Scenario II: is used to evaluate the effects of sampled mean 822 

value of δ18O (or EC) of meltwater. The meltwaterfour sample groups have the same sample 823 

size and Sd, but different mean values of the investigated tracer, but the same sample size and 824 

Sd of the investigated tracer;δ18O (or EC). Scenario III: is used to investigate the effects of Sd 825 

values of sampled δ18O (or EC). The meltwaterfour sample groups have the same sample size 826 

and mean tracer signature, but different Sd of the investigated tracer, but keeping the same 827 

sample size and mean value of the investigated tracer. We onlyvalues. We investigated the 828 

effects of the meltwater sampling uncertainty on the mixing approaches in the glacier melt 829 

season, since meltwater is particularly difficult to collect and is the dominant runoff component 830 

in this season. For the water samples of other runoff components and stream water, we used all 831 

the available measurements in the glacier melt season for the three virtual scenarios, keeping 832 

the same sample characteristics. We investigated the effects of sampling uncertainty only in the 833 

glacier melt seasons because of the following reasons: (1) Runoff in the glacier melt season 834 

contributes the largest part to annual runoff in our study basin. Accurate quantification of each 835 

runoff component in this season is extremely important for the understanding of dynamics of 836 

water availability in the study area. Quantifying the uncertainty in the contributions of runoff 837 

components caused by sampling uncertainty of meltwater is highly needed in this season; (2) 838 

There are more meltwater samples available in this season (15 snowmelt samples and 23 glacier 839 
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melt samples) than in the snowmelt season (only 15 snowmelt, Table 1), thus providing a good 840 

observation data basis for the investigation. 841 

3.4 Effects of water isotope fractionation on hydrograph separation 842 

To consider the changes on the isotope signatures of runoff componentsThe water 843 

sources for runoff, such as rainfall and meltwater, are subject to evaporation before reaching 844 

the basin outlet, especially in summer. However, the isotopic composition of stream water was 845 

measured at the basin outlet, and the contributions of runoff components are quantified for the 846 

total runoff at the basin outlet. After the long routing path from the sampled sites to the basin 847 

outlet, the isotopic compositions of rainfall and meltwater mixing at the basin outlet could be 848 

different from those measured at the sampled sites, caused by the evaporation fractionation 849 

effect. To consider the changes in the isotope signatures of water sources caused by the 850 

fractionation effect during the mixing process, we set up two modified Bayesian approaches，, 851 

i.e.., Bayesian_3_Cor_FOHcor_Frac and Bayesian_4_Cor_FOHcor_Frac (Table 2). The 852 

effects of water isotope fractionation effect on the hydrograph separation are investigated in 853 

virtual experiments estimated CRC is quantified by comparing two Bayesian scenarios. In the 854 

first scenario (using the modified approaches.Bayesian_3_OHcor and Bayesain_4_OHcor), the 855 

isotopic compositions of water sources at the basin outlet are assumed the same as those 856 

measured from the sample sites even though the water sources have suffered evaporation before 857 

reaching the basin outlet (using Eqs. 6-9). In the second scenario (using 858 

Bayesian_3_OHcor_Frac and Bayesian_4_OHcor_Frac), the evaporation fractionation effect 859 

on the isotopic compositions of water sources is considered, and the mixing of water tracers for 860 

stream water is represented by Eq.10. We modify the mean values in Eq. 9a using fractionation 861 

factors ξ18O and ξ2H (Eq. 10).. The priors for ξ18O and ξ2H are assumed as bivariate normal 862 

distributions in Eq.11. 863 
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where, η18O and η2H are parameters describing the mean values of the changes in isotopes 866 

caused by the fractionation effect, which are parameters need to be estimated. . Ω is the inverse 867 

of the covariance matrix defined in Eq. 6b. The parameters in Eqs. 6-11 are then re-estimated 868 

by the measurements of water tracer signatures using the MCMC procedure.tracer signatures 869 

using the MCMC procedure. In particular, parameters describing the prior distributions of 870 
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isotopic compositions at the sample sites in Eqs. 6-7 are estimated by the likelihood 871 

observations of isotope signatures of runoff components. The fractionation factors ξ18O and ξ2H 872 

are estimated by the likelihood observations of isotope signatures of stream water.  873 

4. Results 874 

4.1 Seasonality of water tracer signatures  875 

Tracer measurements from all the water samples are summarized in Table 1 and Fig. 2. 876 

(see also Fig. S1). The mean values in Table 1 indicate that precipitation is most depleted in 877 

heavy water isotopes (18O and 2H) in the cold season among the water sources. In the melt 878 

seasons, snow and glacier meltwater show the most depleted heavy isotopes. The EC values are 879 

highest in groundwater in all seasons, followed by stream water and precipitation. Among the 880 

water sources, snowmelt and glacier melt tend to have the lowest EC values. Figure 2 shows 881 

that the slope of the local meteoric water line (LMWL) is lower than that of the global meteoric 882 

water line (GMWL). The δ18O of precipitation and snowmelt range from -22.82‰ to 1.51‰ 883 

and from -17.31‰ to -6.95‰, respectively. The isotopic composition of glacier meltwater is 884 

more depleted than those of groundwater and stream water. Stream water shows a similar 885 

isotopic composition to groundwater. Three samples from the stream water are far below the 886 

LMWL, which is Snowmelt and glacier melt tend to have the lowest EC values, due to low 887 

interaction with mineral surface. likely caused by the evaporation effect. 888 

CV values in Table 1 and boxplots in Figs. 3a-f show that the δ18O and δ2H of 889 

precipitation generally shows the largest variability in all seasons, followed by the isotopes of 890 

snowmelt. Groundwater and stream water show the smallest CV values for δ18O in all three 891 

seasons. The stream water presents the lowest CV value for EC in all seasons, followed by the 892 

groundwater. The snowmelt EC shows high CV values in the snowmelt and glacier melt seasons, 893 

which may be attributed to variable dust conditions at the sampling locations (from downstream 894 

gauge station to upper glacier accumulation zone). The highest CV value of EC was observed 895 

for glacier melt, since indicates large variability in the glacier melt samples (see also Figs. 3g-896 

i). This is because the glacier melt water samples were collected at locations with different 897 

sediments conditions in the ice (from extremelya rather clean to heavilylocation (EC value is 898 

only 1.5 μs/cm) and a relatively dusty location (EC value is 33.4 μs/cm).  899 

For each water source except groundwater, the water tracer signatures show a significant 900 

seasonality (Table 1 and Fig. 3). In particular, the δ18O and δ2H of precipitation are most 901 

depleted in the cold season and reach the highest values in the glacier melt season, partly caused 902 

by the seasonality in temperature. Stream water shows higher values of δ18O and EC in the cold 903 

season when groundwater dominates the streamflow, and has lower values in the melt seasons 904 
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when meltwater has a dominant contribution. Snowmelt has a lower EC value in the glacier 905 

melt season than in the cold and snowmelt seasons. This can be explained by In the fact that the 906 

cold and snowmelt seasons, some snowmelt samples also have EC values as low as those in the 907 

glacier melt season. The snow samples in the glacier melt season were only collected from the 908 

accumulation zone of the glacier, thus resulting in small variability in the EC values. The 909 

snowpack in the accumulation zone is accumulated by fresh snow in the snowy period (summer 910 

type accumulation area.glacier).This leads to low EC values in the snowmelt samples. The 911 

water tracer signature of groundwater is relatively stable across the seasons.  912 

Figures 3j-lFigure 2 shows that the slope of the local meteoric water line (LMWL) is 913 

lower than that of the global meteoric water line (GMWL). The δ18O of precipitation and 914 

snowmelt range from -22.82‰ to 1.51‰ and from -17.31‰ to -6.95‰, respectively. The 915 

isotopic composition of glacier meltwater is more depleted than those of groundwater and 916 

stream water. Stream water shows a similar isotopic composition to groundwater. Three 917 

samples from the stream water are far below the LMWL, which is assumed to be caused by the 918 

evaporation effect. 919 

Figure 3 shows the δ18O-EC mixing space of runoff components in the three seasons. 920 

The uncertainty barsranges of solid lines indicate the minimum and maximum tracer values 921 

represent the temporal and spatial variabilityof individual water samples. In the cold season, 922 

the δ18O and EC values of stream water are very close to those of groundwater (Fig. 3a3j), 923 

whereas the snowmelt and precipitation tracer signatures are differentshow much difference. 924 

These results indicate the dominance of groundwater on streamflow during the cold season. In 925 

the snowmelt and glacier melt seasons (Figs. 3b-c3k-l), the stream water samples are clearly 926 

located clearly within the triangle formed by the samples of runoff components. The water 927 

tracer signatures of glacier meltwater and snowmelt water are similar. The precipitation samples 928 

are farther away from the stream water samples compared to the meltwater and groundwater 929 

samples. The stream water samples are located nearly in the middle between the meltwater and 930 

groundwater samples. This indicates that the contribution of rainfall to total runoff is smallest 931 

and the contributions of meltwater and groundwater are similar, in the melt seasons. We assume 932 

the tracer signatures of rainfall are represented by the measurements of precipitation samples 933 

in all three seasons. 934 

4.2 Contributions of runoff components estimated by the mixing approaches 935 

Table 4 and Fig. 4 compare the CRC estimated by multiplethe mixing approaches. In 936 

the cold season (Fig. 4a), the TEMMAEMMA_3 estimated the mean contributions of 937 

groundwater and snowmelt as 83% and 17%, respectively. The mean contribution of rainfall is 938 
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zero. The mean contributions of groundwater, snowmelt and rainfall were estimated as 86% 939 

(87%), 13% (12%) and 1% (1%) by the Bayesian_3_OHind (Bayesian_3_CorOHcor) approach. 940 

As shown in Fig. 3a3j, the water tracer signature of stream water in this season is close to that 941 

of groundwater, while obviously different from that of rainfall. Meanwhile, the stream water 942 

samples are outside of the triangle formed by the runoff components, leading to the zero 943 

contribution of the rainfall estimated by the TEMMA_3. The ranges for the CRC indicate the 944 

uncertainty in the estimates associated with the corresponding mixing approaches (Table 4). 945 

The TEMMA_3 produced the highest uncertainty for the CRC, followed by the Bayesian_3. 946 

The Bayesian_3_Cor slightly reduced the uncertainty compared to the Bayesian_3, benefiting 947 

from the consideration of the correlation between δ18O and δ2H.EMMA_3.  948 

In the snowmelt season (Fig. 4b and Table 4), the TEMMAEMMA_3 estimated the 949 

mean contributions of groundwater, rainfall and snowmelt as 44%, 36% and 20%, respectively. 950 

The Bayesian_3_OHind estimated similar mean CRC to the TEMMAEMMA_3, whereas the 951 

Bayesian_3_CorOHcor delivered a lower contribution of snowmelt (32%). When treating the 952 

glacier melt and snowmelt as one end-member (i.e. meltwater) in the glacier melt season (Fig. 953 

4c), the TEMMAEMMA_3 estimated the mean contributions of groundwater, meltwater and 954 

rainfall ofas 45%, 46% and 9%, respectively. The Bayesian_3_OHind and 955 

Bayesian_3_CorOHcor estimated a lower contribution of groundwater (43-44%) and a higher 956 

contribution of rainfall (11%) compared to the TEMMAEMMA_3. In general, the TEMMA_3 957 

estimated the largest The ranges and Sd values of CRC in Table 4 indicate the uncertainty forin 958 

the estimates associated with the corresponding mixing approaches, showing that the 959 

contributionsEMMA_3 produced the highest uncertainty in CRC in all the three seasons, 960 

followed by the Bayesian_3_OHind. The Bayesian_3_CorOHcor slightly reduced the 961 

uncertainty ranges compared to the Bayesian_3 (Table 4). _OHind, benefiting from the 962 

consideration of the correlation between δ18O and δ2H. 963 

When treating glacier melt and snowmelt as two separate end-members in the glacier 964 

melt seasons (Fig. 4d), the TEMMAEMMA_4 failed to separate the hydrograph in the glacier 965 

melt season, given the large uncertainty range forin the contributions of snowmelt and rainfall 966 

(0-100%). The tracer signatures of snow and glacier meltwater are rather close to each other, 967 

that violates the second assumption of the TEMMAEMMA (see Sec. 3.1). In contrast, the 968 

Bayesian_4_CorOHcor and Bayesian_4_OHind estimated the shares of glacier melt and 969 

snowmelt as 25-24% and 21-25%, respectively. Considering the significant snow cover area in 970 

September in the study basin (He et al. 2018; He et al. 2019), the contribution of snowmelt in 971 

the glacier melt season should be much higher than zero. Again, the Bayesian_4_CorOHcor 972 
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produced smaller uncertainty ranges and Sd values for the contributions of groundwater and 973 

meltwater compared to the Bayesian_4_OHind and TEMMAEMMA_4 (Table 4). 974 

The posterior distributions of water tracer signatures estimated by the 975 

Bayesian_4_CorOHcor in the glacier melt season are compared with the measured 976 

distributionshistograms of water tracerstracer signatures in Fig. 5. The Bayesian_4_CorOHcor 977 

generally produced similar distributions of water isotopes to the measured distributions, in 978 

terms of the similar mean values. The estimated posterior Sd values of the water isotopes are 979 

smaller than thoseSd values of the measured water isotopes.measurements. This can be 980 

explained by the incorporation of prior distributions by the Bayesian_4_CorOHcor, thus 981 

reducing the variability of water isotopes. The posterior Sd values for the EC of water sources 982 

are also smaller than the measured Sd values. However, the posterior distributions of EC show 983 

some deviations from the distributions of measured EC, (Figs. 5k-o), partly due to the very 984 

small sample sizes (see Table 1). The comparison between the posterior distributions of water 985 

tracerstracer signatures estimated by the Bayesian_3_CorOHcor and the measured distributions 986 

in the other seasons generally shows a similar behavior (not shown for brevity).     987 

 The Bayesian_4_OHind estimated similar posterior distributions of water tracer 988 

signatures to the Bayesian_4_CorOHcor (except the glacier melt isotopes, Fig. 6), with similar 989 

mean tracer values and Sd. It is noted that the Bayesian_4_CorOHcor estimated smaller Sd 990 

values for most water sources than the Bayesian_4_OHind (e.g., Figs. 6f-g and 6i-j). Benefiting 991 

from the prior information and the consideration of the correlation between δ18O and δ2H, the 992 

Bayesian_4_CorOHcor tended to produce the smallest variability in the posterior water 993 

tracerstracer signatures among all the mixing approaches (Figs. 5-6), thus resulting in the 994 

smallest uncertainty for CRC (Fig. 4d). Figure 7 compares the correlation between δ18O and 995 

δ2H inof the measured tracers and the posterior estimates by the Bayesian approaches. The 996 

Bayesian_4_CorOHcor reproduced the correlation between δ18O and δ2H well in comparison 997 

to the measured data, whereas the Bayesian_4_OHind failed to capture the correlation. 998 

4.3 Uncertainty forof hydrograph separation caused by sampling uncertainty of 999 

meltwater 1000 

Figure 8 shows the sensitivity of the Bayesian_3_CorOHcor and TEMMAEMMA_3 1001 

approaches to the sampled δ18O of meltwater in the glacier melt season. The mean CRC 1002 

quantified by the two mixing approaches showshows minor sensitivity to the sample size 1003 

(scenario I). However, the uncertainty ranges for theof contributions tend to decrease with 1004 

increasing sample size, especially for the TEMMAEMMA_3. When assuming only two 1005 

meltwater samples, the TEMMAEMMA_3 resulted in very large uncertainty ranges (0-1006 
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100%),%, Fig. 8d), due to the very wide confidence interval for the Sd at a sample size of two. 1007 

The mean contributions of groundwater and meltwater estimated by the two mixing approaches 1008 

decrease with  increasing mean δ18O of the adopted meltwater sample (scenario II), while the 1009 

estimated contribution of rainfall increases with the increasing mean δ18O. The variations (Fig. 1010 

8k). Variations in the mean CRC quantified by the TEMMAEMMA_3 are larger than those 1011 

estimated by the Bayesian_3_Cor. In the TEMMAOHcor. Using EMMA_3, both the mean 1012 

contributions of groundwater and meltwater declined by 9% with the assumed increase of the 1013 

mean δ18O, (Figs. 8e and 8h), and the contribution of rainfall increased by 17%. In theUsing 1014 

Bayesian_3_CorOHcor, the reduction for theof contributions of groundwater and snowmelt are 1015 

4% and 7%, respectively, and the increase for theof contribution of rainfall is only 11%.% (Fig. 1016 

8k). In scenario III, the uncertainty ranges for theof CRC (especially for rainfall, Fig. 8l) 1017 

increase with increasing Sd of the sampled δ18O. Again, the increases in the uncertainty ranges 1018 

estimated by the TEMMAEMMA_3 tend to be larger than those estimated by the 1019 

Bayesian_3_CorOHcor. The sensitivity of the mixing approaches to the sampled EC values of 1020 

the meltwater are similar to the sensitivity to the sampled δ18O (not shown). 1021 

4.4 Effect of isotope fractionation on the hydrograph separation 1022 

The changes of δ18O caused by the fractionation effect (referring to ξ18O in Eq. 10) 1023 

during the mixing process are estimated in Figs. 9a-c. The fractionation has the smallest effect 1024 

on the δ18O of groundwater, while the largest effect on the δ18O of rainfall. Averagely On 1025 

average, the δ18O of rainfall was increased by around 2.8‰ through the fractionation. in all the 1026 

three seasons. The CRC estimated by the Bayesian_3_Cor_FOHcor_Frac and 1027 

Bayesian_4_Cor_FOHcor_Frac are compared with those estimated by the 1028 

Bayesian_3_CorOHcor and Bayesian_4_CorOHcor in Figs. 9d-f, respectively. The mean 1029 

contribution of groundwater estimated by the Bayesian_3_Cor_FOHcor_Frac in the cold 1030 

season is 9% lower than that estimated by the Bayesian_3_CorOHcor (Fig. 9d), while the mean 1031 

contributions of snowmelt and rainfall are 3% and 5% higher, respectively. The reduction of 1032 

groundwater contribution is the compensation forcompensated by the increased contributions 1033 

of snowmelt and rainfall caused by the fractionation effect. In the snowmelt season, the mean 1034 

contributions of groundwater and rainfall are 1% and 7% lower (Fig. 9e), while the mean 1035 

contribution of snowmelt estimated by the Bayesian_3_Cor_FOHcor_Frac is 8% higher. In the 1036 

glacier melt season, the mean contributions of groundwater and meltwater estimated by the 1037 

Bayesian_4_Cor_FOHcor_Frac are higher than those estimated by the Bayesian_4_CorOHcor 1038 

(Fig. 9f)), and are compensated by the 6% lower contribution of rainfall.  1039 
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The fractionation effect also produced visible changes on the posterior distributions of 1040 

δ18O and δ2H of runoff components (Fig. 10 shows the example in the glacier melt season). The 1041 

mean isotopic compositions of runoff components are increased by the fractionation effect. The 1042 

Sd values of the posterior isotopes estimated by the Bayesian_4_Cor_FOHcor_Frac tend to be 1043 

higher than those estimated by the Bayesian_4_CorOHcor, due to the increased parameter space 1044 

in the prior assumptions (Eq. 11), thus leading to the larger uncertainty ranges forin the 1045 

contributions of glacier melt and snowmelt (Fig. 9f). As expected, the estimates for theof 1046 

posterior distributions of isotopic compositions of stream water are less sensitive to the 1047 

fractionation effect of runoff components (Figs. 10e and 10j). The fractionation also has minor 1048 

effects on the estimates for theof posterior distributions of EC values (Figs. 10k-o). 1049 

5. Discussion 1050 

5.1 Uncertainty forof the contributions of runoff components  1051 

The TEMMAEMMA estimated similar CRCs but with a larger uncertainties for the 1052 

CRC in comparison touncertainty than the Bayesian approaches. The reasons for this are two-1053 

fold. First, the TEMMAEMMA estimated the uncertainty ranges for theof CRC using the 1054 

standard deviations (Sd) of the measured water tracer signatures. Sd isvalues are likely 1055 

overestimated, in this study due to the small sample sizesizes, and thus insufficiently 1056 

representsrepresenting the variability of the tracerstracer signatures of the corresponding water 1057 

sources. across the basin. Due to the limited accessibility of the sampledsample sites caused by 1058 

snow cover, the water samples of meltwater and groundwater are often collected occasionally, 1059 

thus leading to sharp changessporadically. The small sample size and strong variability in the 1060 

measured watersampled tracer signatures likely led to a large Sd value. Second, the 1061 

TEMMAEMMA assumes that the uncertainty associated with each water source is independent 1062 

from the uncertainty of other water sources (Eq.5), which increases the uncertainty ranges for 1063 

CRC. 1064 

In contrast, the Bayesian approaches estimated smaller variability of water tracer 1065 

signatures in the posterior distributions compared to the measured water tracer signatures, by 1066 

updating the prior probability distributions. The posterior distributions were sampled 1067 

continuously from the assumed value ranges by the MCMC runs, thus reducing the sharp 1068 

changes and yielding lower variability for the tracer signatures. Moreover, the uncertainty 1069 

ranges for CRC were quantified using Eqs. 6-10, instead of calculating independently as in the 1070 

TEMMAEMMA. Additionally, the assumed prior distributions for the water tracersof tracer 1071 

signatures and the CRC take into account the correlation between the water tracerstracer 1072 

signatures and the dependence between the runoff components in the Bayesian approaches, thus 1073 
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resulting in smaller uncertainty ranges (Soulsby et al., 2003). For example, the Bayesian 1074 

approaches considering the correlation between δ18O and δ2H generally estimated smaller 1075 

uncertainty ranges for CRC compared to those without considering this correlation.  1076 

The Gaussian error propagation technique is only capable of considering the uncertainty 1077 

for theof CRC resulting from the variation in the water tracer signatures (Uhlenbrook and Hoeg, 1078 

2003). The uncertainty forof CRC originated from the sampling uncertainty of meltwater was 1079 

then investigated in separate virtual sampling experiments. The TEMMAEMMA produces 1080 

large uncertainty ranges and Sd values for CRC in the glacier melt season, when the meltwater 1081 

sample size is rather small. The mean CRC quantified by the TEMMA relyEMMA relies more 1082 

heavily on the mean tracer values of the sampled meltwater, as the mean tracer values are 1083 

directly used in Eqs. 1-4, in comparison to the mean CRC estimated by the Bayesian approach.  1084 

The TEMMAEMMA assumes that the water tracer signature of each runoff component 1085 

is constant during the mixing process, thus is unable to estimate the uncertainty forof CRC 1086 

caused by the isotope fractionation effect. The virtual fractionation experiments using the 1087 

modified Bayesian approaches show that the isotope fractionation could increase the 1088 

contribution of snowmelt by 8%, and reduce the contribution of rainfall by 7% in the snowmelt 1089 

season. We assume the mean CRC estimated by the Bayesian approaches considering the 1090 

isotope fractionation are more plausible, thoughdespite the larger uncertainty ranges. Along the 1091 

flow path from the source areas to the river channel, the isotopic compositions of meltwater and 1092 

rainfall are likely increased by the evaporation fractionation effect, especially in the warm 1093 

seasons. The increased isotopic compositions of meltwater and rainfall during the routing 1094 

process need to be considered in the mixing approaches for hydrograph separation. 1095 

In general, the uncertainty for theof CRC is visibly caused by the spatio-temporal 1096 

variability in the water tracer signatures, the water sampling uncertainty and the isotope 1097 

fractionation during the mixing process. The uncertainty caused by the water sampling of 1098 

meltwater tends to be smaller than the uncertainty caused by the variations of the water tracer 1099 

signatures in both the TEMMAEMMA and Bayesian mixing approaches. This is consistent to 1100 

the findings that the Sd values inof the tracer measurements of water samples are the main 1101 

uncertainty sources for the quantification of CRC (Schmieder et al., 2016; Schmieder et al., 1102 

2018). The Bayesian approach tends to be superior inon narrowing the variability of posterior 1103 

water tracer signatures benefiting from the prior assumptions and the consideration of the 1104 

dependence between water tracer signatures and runoff components compared to the 1105 

TEMMAEMMA. 1106 

5.2 Limitations 1107 
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The representativeness of the water samples is one of the limitations of this study. The 1108 

groundwater was only sampled from a single spring located at the elevation of 2400 m a.s.l, 1109 

which is rather close to the average altitude of the entire river network in the study basin (2530 1110 

m a.s.l.). We thus assume that the measured isotopic composition of the spring water represents 1111 

the mean isotopic composition of groundwater feeding the river in the basin (similarly tosee 1112 

also He et al., 2019). Collecting samples from a few spring pointssprings to represent the 1113 

groundwater end-member has been proposed before (such as Ohlanders et al., 2013 and Mark 1114 

and McKenzie, 2007), as the accessibility and availability of more potential springs are 1115 

hampered. Again, for the snow and glacier meltwater samples, we assume that meltwater 1116 

occurring at similar elevations have similar water tracer signatures (He et al., 2019). The 1117 

sampled elevation ranges from 1580 m to 4050 m a.s.l., matching with the elevation range 1118 

where meltwater mainly occurs in the basin (from 1580 m to 3950 m a.s.l.). Considering the 1119 

isotopic compositions of meltwater are particularly dependent on the elevation, the sampled 1120 

meltwater could represent meltwater originated from the primary melting locations in the entire 1121 

basin. The sampled sites thus bear the potential to provide the water tracer signatures forof the 1122 

major share of the meltwater generated in the basin. We dividedsplit the entire sampling period 1123 

(years of 2012 to 2017) into three seasons, i.e. cold season, snowmelt season and glacier melt 1124 

season, due to the low availability of water samples in each year. By concentrating water 1125 

samples in the three seasons, we increased the sample sizes of each runoff component for each 1126 

season, thus increasing the ability of water samples to represent the spatio-temporal variability 1127 

of seasonal tracer signatures. We used all available groundwater and snowmelt samples from 1128 

the three seasons for hydrograph separation in the cold season, due to the rather low sample 1129 

sizes collected in the cold season. This likely leads to overestimated contributions of 1130 

groundwater and snowmelt in the cold season. However, the overestimation of groundwater 1131 

contribution is probably small because the tracer signatures of groundwater generally show 1132 

small seasonal variability. The estimated contributions of snowmelt in the cold season are a bit 1133 

higher than the contribution modeled by He et al (2018) during DJF (December, January and 1134 

February), but are still reasonable considering the cold season includes October and November 1135 

when snow is more prone to melt than DJF. 1136 

The assumptions of the mixing approaches lead to another limitation of this study. The 1137 

TEMMAEMMA assumes the tracer signatures of water sources are constant during the mixing 1138 

process, which is a common assumption for TEMMA.the practical application of EMMA. It 1139 

thus fails to consider the uncertainty originating from the changes of water tracers.tracer 1140 

signatures. In the Bayesian approach, we assumed normal prior distributions for the water 1141 
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tracerstracer signatures of water sources and Dirichlet prior distribution for the CRC bybased 1142 

on literature knowledge (Cable et al., 2011). To refine the description of the temporal and spatial 1143 

variability of the CRC in the Dirichlet distribution, more hydrological data relating to the runoff 1144 

processes in the basin are required. We acknowledge that the estimated CRC could be strongly 1145 

affected by the assumptions of prior distributions. However, testing the effects of the prior 1146 

assumptions goes beyond the scope of this study. We assume that collecting more water 1147 

samples from various locations and at different time for each water source could improve the 1148 

estimation for theof tracer signature distributions. 1149 

6. Conclusions 1150 

This study compared the Bayesian end-member mixing approach with a traditional end-1151 

member mixing approach (TEMMAEMMA) for hydrograph separation in a glacierized basin. 1152 

The contributions of runoff components (CRC) to the total runoff were estimated for three 1153 

seasons, i.e. cold season, snowmelt and glacier melt seasons. Uncertainty forof these 1154 

contributions caused by the variability of water tracer signatures, water sampling uncertainty 1155 

and isotope fractionation were evaluated as follows. 1156 

(1) The Bayesian approach generally estimates smaller uncertainty ranges for theof 1157 

CRC, in comparison to the TEMMAEMMA. Benefiting from the prior assumptions on water 1158 

tracer signatures and CRC, as well as from the incorporation of the correlation between tracer 1159 

signatures in the prior distributions, the Bayesian approach reduced the uncertainty. The 1160 

Bayesian approach jointly quantified the uncertainty ranges for theof CRC. In contrast, the 1161 

TEMMAEMMA estimated the uncertainty for theof contribution of each runoff component 1162 

independently, thus leading to higher uncertainty ranges. 1163 

(2) The estimates forof CRC in the TEMMAEMMA tend to be more sensitive to the 1164 

sampling uncertainty of meltwater, compared to those in the Bayesian approach. For small 1165 

sample sizes (e.g., two), the TEMMAEMMA estimated very large uncertainty ranges. The 1166 

mean CRC quantified by the TEMMAEMMA are also more sensitive to the mean value of the 1167 

tracer signature of the meltwater samples than those estimated by the Bayesian approach are. 1168 

(3) Ignoring the isotope fractionation during the mixing process likely overestimates the 1169 

contribution of rainfall and underestimates the contribution of meltwater in the melt seasons. 1170 

The currently used TEMMAEMMA is unable to quantify the uncertainty forof CRC caused by 1171 

the isotope fractionation during the mixing process, due to the underlying assumptions.   1172 
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Code availability: The R code for the Bayesian end-member mixing approach can be found at 1173 

https://www.dropbox.com/s/kf2xy3s4vt718s9/Bayesian%20mixing%20approach_four%20co1174 

mponents.stan?dl=0  1175 
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Table 1. Water tracerTracer signatures measured from water samples in three seasons. CV is 1340 

the ratio between the standard deviation and mean valueCV stands for coefficient of variation. 1341 

Season Water source Tracer Sample size Mean Range CV 

Cold season 

(October to February) 

Groundwater 

18O (δ,‰) 23 -11.37 (-12.12, -10.61) 0.04 
2H (δ,‰) 23 -73.990 (-77.990, -68.220) 0.03 

EC(μs/cm) 13 126.880 (69.660, 167.220) 0.24 

      

Precipitation 

18O (δ,‰) 37 -15.93 (-22.82, -7.70) 0.21 
2H (δ,‰) 37 -111.550 (-168.880, -39.110) 0.27 

EC(μs/cm) 23 67.880 (21.330, 99.660) 0.34 

      

Snowmelt 

18O (δ,‰) 36 -12.51 (-17.31, -6.95) 0.19 
2H (δ,‰) 36 -84.660 (-120.770, -38.770) 0.23 

EC(μs/cm) 15 53.770 (8.880, 151.00) 0.96 

      

Stream water 

18O (δ,‰) 150 -11.33 (-11.82, -9.05) 0.03 
2H (δ,‰) 150 -74.220 (-77.550, -68.220) 0.03 

EC(μs/cm) 90 112.220 (80.330, 139.330) 0.13 
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Table 1 Continued. 1343 

Season Water source Tracer Sample size Mean Range CV 

Snowmelt season 

(March to June) 

Groundwater 

18O (δ,‰) 9 -11.34 (-11.94, -11.06) 0.02 
2H (δ,‰) 9 -73.990 (-77.330, -72.440) 0.02 

EC(μs/cm) 8 133.110 (94.00, 167.220) 0.21 

      

Precipitation 

18O (δ,‰) 25 -7.89 (-16.81, -0.06) 0.46 
2H (δ,‰) 25 -49.220 (-120.550, -3.990) 0.52 

EC(μs/cm) 11 58.330 (25.880, 84.330) 0.34 

      

Snowmelt 

18O (δ,‰) 15 -13.87 (-16.74, -10.96) 0.11 
2H (δ,‰) 15 -95.990 (-119.330, -70.550) 0.13 

EC(μs/cm) 11 67.330 (11.000, 151.000) 0.80 

      

Stream water 

18O (δ,‰) 126 -11.58 (-12.91, -10.04) 0.04 
2H (δ,‰) 126 -76.110 (-86.440, -67.000) 0.04 

EC(μs/cm) 23 94.990 (80.110, 114.000) 0.09 

       

       

Glacier melt season 

(July to September) 
Groundwater 

18O (δ,‰) 14 -11.4 (-12.12, -10.61) 0.04 
2H (δ,‰) 14 -73.9 (-77.9, -68.2) 0.04 

EC(μs/cm) 5 116.7 (69.6, 142.6) 0.30 

 1344 
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Table 1 Continued. 1346 

Season Water source Tracer Sample size Mean Range CV 

Glacier melt season 

(July to September) 

Groundwater 

18O (δ,‰) 14 -11.40 (-12.12, -10.61) 0.04 
2H (δ,‰) 14 -73.90 (-77.90, -68.20) 0.04 

EC(μs/cm) 5 116.70 (69.60, 142.60) 0.30 

      

Precipitation 

18O (δ,‰) 28 -6.72 (-13.02, 1.51) 0.56 
2H (δ,‰) 28 -42.660 (-94.990, 3.000) 0.58 

EC(μs/cm) 9 67.770 (26.770, 102.000) 0.39 

      

Snowmelt 

18O (δ,‰) 15 -12.70 (-17.31, -9.85) 0.15 
2H (δ,‰) 15 -85.660 (-120.770, -64.000) 0.17 

EC(μs/cm) 4 16.220 (8.880, 24.330) 0.51 

      

Glacier melt 

18O (δ,‰) 23 -13.11 (-14.96, -11.55) 0.10 
2H (δ,‰) 23 -87.220 (-100.440, -75.550) 0.11 

EC(μs/cm) 10 9.990 (1.550, 33.440) 1.28 

      

Stream water 

18O (δ,‰) 119 -11.75 (-12.97, -5.64) 0.07 
2H (δ,‰) 119 -77.220 (-86.770, -62.330) 0.05 

EC(μs/cm) 24 64.550 (33.440, 99.330) 0.25 
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Table 2. Mixing approaches used for hydrograph separation in different seasons. 1348 

Mixing approach Description End-member Used tracers Seasons applied to 

TEMMAEMMA_3 
Three-component traditional end-

member mixing approach 

Groundwater, 

snowmelt (or 

meltwater) and 

rainfall 

18O and EC 

Cold season, snowmelt 

season and glacier 

melt season 

     

TEMMAEMMA_4 
Four-component traditional end-

member mixing approach 

Groundwater, 

snowmelt, 

glacier melt 

and rainfall 

18O, 2H and 

EC 
Glacier melt season 

     

Bayesian_3_OHind 

Three-component Bayesian 

approach, without considering the 

correlation between δ18O and δ2H 

Groundwater, 

snowmelt (or 

meltwater) and 

rainfall 

18O and EC 

Cold season, snowmelt 

season and glacier 

melt season 

     

Bayesian_3_CorOHcor 

Three-component Bayesian 

approach, considering the correlation 

between δ18O and δ2H 

Groundwater, 

snowmelt (or 

meltwater) and 

rainfall 

18O, 2H and 

EC 

Cold season, snowmelt 

season and glacier 

melt season 

     

Bayesian_3_Cor_FOHcor_Frac 

Three-component Bayesian 

approach, considering the correlation 

between δ18O and δ2H and the 

fractionation of δ18O and δ2H during 

the mixing process 

Groundwater, 

snowmelt  and 

rainfall 

18O, 2H and 

EC 

Cold season and 

snowmelt season  

     

Bayesian_4_OHind 

Four-component Bayesian approach, 

without considering the correlation  

between 18O and 2H 

Groundwater, 

snowmelt, 

glacier melt 

and rainfall 

18O, 2H and 

EC Glacier melt season 

     

Bayesian_4_CorOHcor 

Four-component Bayesian approach, 

considering the correlation between 

δ18O and δ2H 

Groundwater, 

snowmelt, 

glacier melt 

and rainfall 

18O, 2H and 

EC 
Glacier melt season 

     

Bayesian_4_Cor_FOHcor_Frac 

Four-component Bayesian approach, 

considering the correlation between 

δ18O and δ2H and the fractionation of 

δ18O and δ2H during the mixing 

process 

Groundwater, 

snowmelt, 

glacier melt 

and rainfall 

18O, 2H and 

EC Glacier melt season 
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Table 3. Parameters used for the prior distributions in the Bayesian approaches. 1350 

Parameter Description Applied Bayesian approach Value range Equation 

γ18O 
Mean of the prior normal distributions for the mean δ18O 

of runoff components  
All Bayesian approaches (-50,50) Eq.7a 

γ2H 
Mean of the prior normal distributions for the mean δ2H 

of runoff components  

All Bayesian approaches, 

except  Bayesian_3_OHind 
(-200,200) Eq.7b 

σ18O 
Variance of the prior normal distributions for the mean 

δ18O of runoff components  
All Bayesian approaches (0,50) Eq.7a 

σ2H 
Variance of the prior normal distributions for the mean 

δ2H of runoff components  

All Bayesian approaches, 

except  Bayesian_3_OHind 
(0,200) Eq.7b 

λ18O 
Variance of the prior normal distributions for the  δ18O of 

runoff components and stream water 

Bayesian_3_OHind and 

Bayesian_4_OHind  
(0,50) Eq.6c 

λ2H 
Variance of the prior normal distributions for the  δ2H of 

runoff components and stream water 
Bayesian_4_OHind (0,200) Eq.6d 

τ 
Variance of the prior normal distributions for the EC of 

runoff components and stream water 
All Bayesian approaches (0,400) Eq.8a 

𝜃 
Mean of the prior normal distributions for the mean EC of 

runoff components 
All Bayesian approaches (0,400) Eq.8b 

𝜔 
Variance of the prior normal distributions for the mean 

EC of runoff components 
All Bayesian approaches (0,400) Eq.8b 

β 

Mean of the prior bivariate normal distributions for 

parameters descripting the α value in the Dirichlet 

distribution of contributions of runoff components 

All Bayesian approaches (0,10) Eq.9d 

η18O 
Mean of the prior bivariate normal distributions for the 

fractionations of δ18O of runoff components 

Bayesian_3_Cor_FOHcor_Fr

ac and 

Bayesian_4_Cor_FOHcor_Fr

ac 

(0,5) Eq.11 

η2H 
Mean of the prior bivariate normal distributions for the 

fractionations of δ2H of runoff components 

Bayesian_3_Cor_FOHcor_Fr

ac and 

Bayesian_4_Cor_FOHcor_Fr

ac 

(0,5) Eq.11 
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Table 4. Contributions of runoff components (CRC) estimated by the different mixing 1352 

approaches (%).(percentage, %). The ranges (%) show the difference between the 95% and 1353 

5% percentiles. Sd values refer to the standard deviations. 1354 

  Mixing approach  

  

Groundwater   Snowmelt   Rainfall   Glacier melt   Meltwater 

  Mean Range  Sd Mean Range  Sd Mean Range  Sd Mean Range  Sd Mean Range Sd 

Cold season 

TEMMAEMMA_3 83 41 0.12 17 46 0.17 0 10 0.12 - - - - - - 

Bayesian_3_OHind 86 28 0.01 13 28 0.09 1 3 0.09 - - - - - - 

Bayesian_3_CorOHcor 87 24 0.01 12 24 0.07 1 3 0.07 - - - - - - 

  
               

SnowmletSnowmelt season 

TEMMAEMMA_3 44 50 0.15 36 33 0.11 20 25 0.09 - - - - - - 

Bayesian_3_OHind 42 33 0.12 36 22 0.10 22 20 0.07 - - - - - - 

Bayesian_3_CorOHcor 46 30 0.12 32 20 0.09 22 19 0.06 - - - - - - 

                 

Glacier melt season (three-
component) 

TEMMAEMMA_3 45 48 0.13 - - - 9 17 0.06 - - - 46 35 0.10 

Bayesian_3_OHind 43 25 0.11 - - - 11 13 0.06 - - - 46 18 0.08 

Bayesian_3_CorOHcor 44 24 0.11 - - - 11 12 0.05 - - - 45 17 0.07 

                 

Glacier melt season (four-
component) 

TEMMAEMMA_4 45 48 0.14 0 100 0.33 11 100 0.35 44 78 0.20 - - - 

Bayesian_4_OHind 44 30 0.10 21 42 0.09 10 13 0.13 25 41 0.04 - - - 

Bayesian_4_CorOHcor 41 23  0.10 25 33  0.07 10 13  0.10 24 33  0.04  -  - - 
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 1389 

Figure 1. Study area of the Ala-Archa basin (derived from the ESRI World Topographic Map) 1390 

and the Golubin Glacier including the locations of the water sampling points.  1391 
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 1392 

Figure 2. Isotope signatures of water samples from the three seasons in the Ala-Archa basin.   1393 
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 1394 
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 1395 

Figure 3. (a)-(i) Boxplots of tracer signatures in three seasons. (j)- (l) δ18O-EC mixing space 1396 

of the various water sources in the three seasons. The; the solid lines indicate the ranges of 1397 

tracer signatures measured from water samples.  1398 
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Figure 4. Contributions of runoff components (CRC) to total runoff estimated by different 1401 

mixing approaches in three seasons. The Bayesian_3_OHind and Bayesian_3_CorOHcor 1402 

were applied in the clodcold and melt seasons (a-c), and the Bayesian_4_OHind and 1403 

Bayesian_4_CorOHcor were applied in the glacier melt season (d). The horizontal lines in the 1404 

boxes refer to the median contributions, and whiskers refer to the 95% and 5% percentiles.   1405 
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 1406 

 1407 

Figure 5. Posterior distributions of water tracer signatures estimated by the 1408 

Bayesian_4_CorOHcor in the glacier melt season. Measurement refers to the distributions of 1409 
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water tracer signatures from the water samples. Row 1: distributions of δ18O; Row 2: 1410 

distributions of δ2H; Row 3: distributions of EC.1411 
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 1412 

1413 

 1414 
Figure 6. Comparison of the posterior distributions of water tracerstracer signatures estimated 1415 

by the Bayesian approaches with (Bayesian_4_CorOHcor) and without (Bayesian_4_OHind) 1416 

considering the correlation between δ18O and δ2H in the glacier melt season.  1417 
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 1418 

 1419 

Figure 7. Correlation between posterior δ18O and δ2H estimated by the Bayesian_4_CorOHcor 1420 

and the Bayesian_4_OHind approaches in the glacier melt season.1421 
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  1422 

 1423 
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 1424 

Figure 8. Sensitivity of the CRC estimates for CRC to the sample size (Scenario I), the mean 1425 

(Scenario II) and standard deviation (Scenario III) of δ18O of meltwater in the glacier melt 1426 

season. Red boxes show the contributions estimated by the Bayesian_3_CorOHcor, and the 1427 

blue boxes refer to the contributions estimated by the TEMMAEMMA_3.  1428 



 

67 
 

 1429 

 1430 

Figure 9. Effects of isotope fractionation on the estimates of CRC in the Bayesian approach 1431 

for the three seasons. (a)-(c): Estimated changes in δ18O of runoff components caused by the 1432 

fractionation effect; (d)-(e): Comparison of the CRC estimated by the Bayesian_3_CorOHcor 1433 

and the Bayesian_3_Cor_FOHcor_Frac; (f): Comparison of the CRC estimated by the 1434 

Bayesian_4_CorOHcor and the Bayesian_4_Cor_F.1435 
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 1436 

OHcor_Frac.1437 
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 1438 

Figure 10. Effects of isotope fractionation on the posterior distributions of tracer signatures of 1439 

water sources in the glacier melt season.  1440 

 1441 


