
Response to the editor and to the Referees for the paper

“An Ensemble Square Root Filter for the joint assimilation of surface
soil moisture and leaf area index within LDAS-Monde: application over

the Euro-Mediterranean region”

We would like to thank the editor and the two anonymous Referees for their supportive appreciation
of our work and for their thorough review. Their comments and suggestions have led to an improved
version of the manuscript. Our response is organised as follows:

• We first issue a point-by-point response to both reviews. Comments and suggestions from the
Referees are in black and responses are in blue. Please note that, following a suggestion from
Referee #2, section 5.1 has been merged with section 4. Nevertheless, every correction/suggestion
for section 5.1 has been issued when remaining applicable.

• Then, the updated manuscript with highlighted modifications is appended after the point-by-point
response.

• Finally, we provide, as supplementary material, the justification of the patch formulation of the
SEKF as suggested by Referee #2.

Review Anonymous Referee #1

The paper by Bonan et al., describes the application of an ensemble Kalman filter (EnKF) for the joint
assimilation of surface soil moisture and leaf area index over the Euro-Mediterranean region using the
LDAS-Monde land surface data assimilation framework. The authors compare the skill of the EnKF with
the skill of the well-tested simplified extended Kalman filter (SEKF). This is done by assimilating surface
soil moisture and leaf area index, and compare the corresponding effect of the analysis on unobserved
variables, such as evapotranspiration (from GLEAM) and gross primary production (from FLUXCOM).
In addition, the authors investigate how the ensemble from the EnKF can transfer information between
variables by the ensemble covariances and compare this to the SEKF Jacobians.

The paper provides a good starting point for future work on joint assimilation of surface soil moisture
and leaf area index. The paper is well organized and it discusses the current difficulties in assimilating
leaf area index using the EnKF. It would have been interesting to see if the joint assimilation (using the
EnKF) could have improved over the open loop when compared to in situ soil moisture data, however,
I leave this for the authors to include in future work. I recommend that the paper is published in HESS
after a careful proofread by the authors and after taking care of the following minor comments.

We thank the Referee for her/his positive comments about our work and for her/his detailed review that
has helped us to improve the quality of our manuscript. Responses to comments and subsequent changes
are detailed below in blue.

Minor comments:

Title: “moiture” to “moisture”

Correction done.

L1: Skip “a deterministic ensemble Kalman filter”

Correction done.

L7: Missing “filter”

Correction done.

L7: Unclear sentence, suggested change: “, which has been well studied within the LDAS-Monde frame-
work over the Euro-Med. region, see for example...”
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We have replaced the sentence by “..., the EnSRF is compared with the Simplified Extended Kalman
Filter, which has been well studied within the LDAS-Monde framework. The comparison is carried out
over the Euro-Mediterranean region at a 0.25o spatial resolution between 2008 and 2017.”

L9: “The SEKF”

Correction done.

L11: How is this assessed, there is no validation of the root-zone analysis?

The sentence is misleading. We just meant here to compare the influence of the EnSRF and the SEKF
on unobserved control variables, i.e. root-zone soil moisture, which is done in section 4.4. The SEKF has
been widely used in LDASs and showing if results obtained with the EnSRF are close or not to SEKF
estimates is in itself interesting. As acknowledged by the Referee, validating (root-zone) soil moisture
with in situ measurements is left for future work. We have replaced the sentence by the following one:
“The comparison between the two data assimilation approaches is also carried out on unobserved soil
moisture in the other layers of soil.”

L14: Please change wording “exhibited” to “is found” or something along those lines.

Correction done.

L15: Is this correlation/anti-correlation seasonally dependent?

The correlation/anti-correlation between LAI and soil moisture is indeed seasonally dependent with their
absolute values peaking in summer while being close to zero during winter. The sentence in the abstract
has been rephrased to reflect that point:“Moderate correlation and anti-correlations are also noticed be-
tween LAI and soil moisture, varying in space and time. Their absolute value, reaching their maximum
in summer and their minimum in winter, tends to be larger for soil moisture in root-zone areas ...”

L18-19: Please change wording “and GPP, but a highly positive...”. Also what skill metric is considered
for the river discharge.

We consider root-mean square difference and correlation as skill metrics for evapotranspiration and GPP
and the Nash-Sutcliffe efficiency score for river discharge. The corresponding sentence has been rephrased
as follows: “The EnSRF shows a systematic albeit moderate improvement of root-mean square differ-
ences and correlations for evapotranspiration and GPP products, but its main improvement is observed
on river discharges with a high positive impact on Nash-Sutcliffe efficiency scores. Compared to the
EnSRF, the SEKF displays a more contrasting performance.”

L23: “.. the earth’s water and carbon cycles”

The sentence has been rephrased as: “Land surface variables (LSVs) are key components of the Earth’s
water, vegetation and carbon cycles.”

L26: Please specify what goals?

The sentence containing “these goals” has been rephrased as: “Land surface models (LSMs) play an
important role in improving our knowledge of land surface processes and their interactions with the
other components of the climate system such as the atmosphere.”

L28: “initialization” and please find other wording than “misspecified” forcing.

We have replaced “initialisation” by “initialization” (both being correct in British English) and “mis-
specified forcing” by “flawed forcing”.

L30: “Generally provide sparse spatial coverage...”

Correction done.
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L31: “ranging from the km scale to the meter scale”

Correction done.

L32: Please specify why this is the case.

The sentence line 32 is not accurate. We meant that not all key LSVs are observed directly from space.
Passive satellite sensors used in the case of soil moisture are sensible only to the near-surface (0–2 cm
depth) moisture content. Methodologies such as the exponential filter (Albergel et al., 2008) have been
developed to provide estimates of root-zone soil moisture from satellite data but they are indirect ap-
proaches. We have rephrased the sentence line 32 has follows:“Not all key LSVs are also observed directly
from space. For example, passive microwave satellite sensors used traditionally to estimate soil moisture
are sensible only to the near-surface (0–2 cm depth) moisture content (Schmugge, 1983) leading to the
development of indirect approaches to estimate root-zone soil moisture from satellite data (see e.g. Al-
bergel et al., 2008)”

References:

Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A.,
Piguet, B. and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: An
assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci.
12, 1323–1337, 10.5194/hess-12-1323-2008, 2008.

Schmugge, T. J.: Remote Sensing of Soil Moisture: Recent Advances, IEEE T. Geosci. Remote, GE21,
145–146, 10.1109/TGRS.1983.350563, 1983.

L33: “flaws in both approaches”

Correction done.

L35: “passive microwave brightness temperatures, microwave backscatter coeff...” and “obtained from
the aforementioned satellite observations”.

Correction done.

L39: “systems of both the . . .. and the UK Met office”.

Correction done.

L41: “rapidly extended”? Please clarify. It has undergone development from assimilating SSM only to
now also include LAI assimilation.

The sentence has been rephrased as: “The SEKF has also been applied to the sole assimilation of soil
moisture retrievals (Draper et al., 2009) then to the joint assimilation of soil moisture retrievals and leaf
area indices (Albergel et al., 2010; Barbu et al., 2011).”

L42: “the SEKF approach...”

Correction done.

L43-44: Please clarify this sentence, “thus limited their number”?

Indeed the sentence is unclear. It has been rephrased as follows: “It relies on a climatological back-
ground error covariance matrix assuming uncorrelated variables between grid points and involves the
computation of a Jacobian matrix to build covariances between control variables at the same location.
This Jacobian matrix is computed with finite differences, meaning that one model run is required per
control variable, thus limiting the size of the control vector.”

L45: “.., such as”
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Correction done.

L47: In what context?

We meant in the context of assimilating solely surface soil moisture retrievals. This has been added in
the manuscript.

L49: “Recently, ...”

Correction done.

L50: Please rephrase, “LAI is a key land biophysical variable, it is defined. . ...”

Correction done.

L51: Please rephrase, “One way to monitor LAI is to assimilate observations indirectly linked to LAI,
such as”

Correction done.

L56: Please rephrase: “Another way to constrain LAI is through the assimilation of direct LAI observa-
tions.”

Correction done.

L56-57: “...products benefit from...”

Correction done.

L58: “and at high-res...”

Correction done.

L58: Please rephrase: “..other studies have assimilated LAI in crop models and at a more local scale..”

Correction done.

L60: “Succeeded in introducing such an approach. . ..”

Correction done.

L64: CNRM is already introduced.

Agreed, we have removed the definition of CNRM from the sentence.

L65: “allows for...”

Correction done.

L65: “Building on that work...”

Correction done.

L66: Remove “have”

Correction done.

L67: On a site? Please specify

The site is the SMOSREX site located in South West France. This has been added in the revised version
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of the manuscript.

L67: “Their study...”

Correction done.

L68: “Leading to the development of LDAS-Monde.”

Correction done.

L68-69: “The LDAS-Monde is available through the CNRM modelling platform. . . and it has been
successfully...”

Correction done.

L72: “For example, ...”

Correction done.

L72: Drop “has”

Correction done.

L73-74: “while Ling et al (2019) compared...”

Correction done.

L74: Drop “has”

Correction done.

L76: Drop “water and carbon cycles”.

Correction done.

L77-78: Rephrase: “These studies did not update both SM and LAI, as we will do in this study”.

Correction done.

L79: “in the LDAS-Monde...”

Correction done.

L79-82: Very long sentence, please consider to rephrase.

The sentence has been rewritten for clarity: “To that end, it will build upon the work of Fairbairn et al.
(2015), that introduced an Ensemble Square Root Filter (EnSRF, Whitaker and Hamill, 2002) in the
LDAS-Monde in the context of assimilating SSM solely. The EnSRF is one of the many deterministic
formulations of the EnKF (see e.g. Tippett et al., 2003; Livings et al., 2008; Sakov and Oke, 2008).
Fairbairn et al. (2015) compared the performance of the EnSRF with the SEKF, routinely used in the
LDAS-Monde, over 12 sites in South-West France ...”

L82: Please make it clear that this is not the current study but the study of Fairbairn et al. (2015).

See response above.

L85: “used”

Correction done.
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L85: SMAP acronym not defined.

The acronym SMAP (for Soil Moisture Active Passive) has been defined in the revised version of the
manuscript.

L89: “the LDAS-Monde...”

Correction done.

L89: Replace “to” with “on”.

Correction done.

L90: “..and its ability to...”

Correction done.

L90: “To achieve these...”

Correction done.

L105: “such as”

Correction done.

L105: “or for evaluation”? Please rephrase.

The sentence has been rephrased as follows: “... such as atmospheric forcing or assimilated observations.
Sect. 3 also details the datasets used to assess the performance of the EnSRF and the SEKF. ...”

L106: “Finally,...”

Correction done.

L107: “. . ..prospects for future work.”

Correction done.

L110: “by the Meteo-France research centre CNRM”.

Correction done.

L110-L113: Very long sentence, please rephrase.

The sentence has been rephrased as follows: “Embedded within the open-access SURFEX surface mod-
elling platform (Masson et al., 2013, https://www.umr-cnrm.fr/surfex/), LDAS-Monde involves the ISBA
land surface model coupled with the CTRIP river routing system and data assimilation routines. Those
routines assimilate routinely satellite-based products of SSM and LAI to analyse and update soil mois-
ture and LAI modelled by ISBA.”

L114: Replace “conduct” with “in”

Correction done.

L119-L121: Please consider to rephrase to make this sentence easier to read. For example: “In this
paper we use the ISBA multilayer diffusion scheme (ref) which solves Richards equations (ref) for water
transport and the one-dimensional Fourier equation for heat. The soil is discretized in 14 layers over a
depth of 12 m.”

We have rewritten L.119–123 as follows: “We use in this paper the ISBA multilayer diffusion scheme
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which solves the mixed form of Richards equations (Richards, 1931) for water and the one-dimensional
Fourier law for heat (Boone et al., 2000; Decharme et al., 2011). The soil is discretized in 14 layers over
a depth of 12m. The lower boundary of each layer is 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0,
5.0, 8.0, and 12 m depth (see Fig. 1 of Decharme et al., 2013). The chosen discretization minimizes the
errors from the numerical approximation of the diffusion equations.”

L123: “..minimize the errors from the numerical approximation of the diffusion equations”.

See previous response.

L124: “the water and carbon...”

Correction done.

L141: “simulated runoff into simulated river discharge”.

Correction done.

L144: “The coupling between ISBA. ...”

Correction done.

L145: “groudwater” to “groundwater”

Correction done.

L146 “to CTRIP, while the. ...”

Correction done.

L149: “. . .assimilation system with a 24 h assimilation window”.

Correction done.

L155: “...covariances are considered).”

Correction done.

L156: “..from a time t to t + 24 h.”

Correction done.

L156-L157: Please rephrase, maybe: “The update of patch p is denoted...”

We have rewritten L.156–157 for clarity: “The forecast step consists of propagating the state of the
system from a time t to t+ 24h using ISBA. Patches in each ISBA grid cell do not interact between each
other. This implies that, for a patch p, the forecast of x[p], denoted xf

[p](t + 24h), only depends on the

analysis at time t, xa
[p](t), and the ISBA LSM using the parametrization for patch p, denoted by M[p].

It gives: ...”

L161-L162: Please describe what y0 is, and also what you mean by available at the grid cell level (instead
of at the individual patches?).

To improve readability, we have rewritten the whole paragraph L.161–165 as follows: “LDAS-Monde uses
routinely a Simplified Extended Kalman Filter for the analysis step (Mahfouf et al., 2009). Observations
(SSM and/or LAI) are interpolated on the ISBA grid for assimilation (see Sect. 3.2 for more informa-
tion). For each ISBA grid cell, we consider the vector yo containing all the observations available for
that grid cell at the time of assimilation. The SEKF analysis step is in two-step. First we calculate the
model equivalent, denoted by yf , at the ISBA grid cell level. This is performed by aggregating control
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variables from each patch of the ISBA grid cell using a weighted average: ...”

L162: Suggested change: “.., we first calculate model equivalents of the observations. This is done sep-
arately for each individual grid cell.”

See previous response.

L168: “.., it replaces the forecast error covariance matrix (B) with a fixed error covariance matrix. Please
rephrase from and uses as...” Product of what? The model state evolution and?

The whole paragraph L.168–171 has been rewritten as follows:“Then, the SEKF analysis step is per-
formed for each ISBA grid cell. We further assume that there are no covariances between the patches.
Therefore, each patch is updated separately. For each patch, the SEKF analysis follows the traditional
Kalman update. It replaces the forecast error covariance matrix with a fixed prescribed error covariance
matrix B. The observation operator is the product of the model state evolution from t to t + 24h and
the conversion of the model state into the observation equivalent. Thus, the Jacobian of the observation
operator involves H and M[p], the Jacobian matrix of M[p]. In the end, for each patch p, we have:”

In addition to the previous modification, we have added the full detail on how to obtain eq. (4) and (5)
of the manuscript following a suggestion from Referee #2.

L170: “..that there are no covariances between the patches.”

See previous response.

L177: “column of can...” of what?

We meant columns of M[p]. Correction done in the manuscript.

L182: “The EnKF approximates the classical Kalman Filter equations using the ...”

Correction done.

L187: “..where X p = [] is the ensemble perturbation matrix.”

Correction done.

L188: Please change “The forecast step is simple...” to “In the forecast step we propagate. ...” and
“...from time t to t + 24 h using the ISBA LSM.”

Correction done.

L189: “The analysis step then updates. ...”

Correction done.

L190: “of the observations...”

Correction done.

Equation (8): Missing punctuation.

Correction done.

L193-194: Given certain conditions?

The EnsRF analysis indeed produces an analysed ensemble whose mean and ensemble covariance matrix
matches the Kalman filter analysis. The only condition is the linearity of the observation operator. This
has been added in the manuscript. Contrary to other deterministic EnKFs, such as the ETKF, the
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formulation of the EnSRF ensures to produce automatically ensemble perturbations for the analysis that
have a zero mean (see Sakov and Oke, 2008).

Reference:

Sakov, P. and Oke, P. E.: Implications of the Form of the Ensemble Transformation in the Ensemble
Square Root Filters, Mon. Weather Rev., 136, 1042–1053, 10.1175/2007MWR2021.1, 2008

L195: “We choose to neglect the ensemble. . ..”

Correction done.

L195-L196: “This assumption is in line with the SEKF method and it ensures a fair comparison between
the two approaches.”

Correction done.

L196-L198: Please rephrase from “It also allows. . ..” This is already given since you are working on
a 1D EnKF. Maybe change to: “The approach outlined here is in line with other studies (ref) showing
that the 1D-EnKF can achieve promising results with around 20 ensemble members.”

Correction done.

L201: “... patch p ...”

Correction done.

Equation (11): is subscript k defined?

Equation (11) should be:

CEnSRF =

12∑
k=1

α2
[k]HPf

[k]H
T + R (1)

The error has been corrected in the updated version of the manuscript.

L210: Please rephrase, maybe: “This ensures that information from the analysis is stored in the ensemble
and is propagated forward in time.”

Correction done.

L213-L214: This should be placed in the “Experimental setup” section.

The sentence has been moved to Sec. 3.4.

L218-L219: “The ERA-5. . ..” and “. . .. 31 km horizontal spatial resolution.”

Correction done.

L219: Please change “To be used,...”

To be used has been removed.

L221: “or wind speed” is wind speed optional? “...interpolated to the ISBA 0.25 spatial resolution using
bilinear interpolation.”

Wind speed is not optional, we meant here an “and” rather than an “or”. Correction done.

L222-L223: Please rephrase this sentence “...reanalysis improves the quality of LSVs reanalyses.”

The sentence has been replaced by the following: “Replacing ECMWF’s atmospheric ERA-Interim re-
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analysis by ERA5 has been shown beneficial in the context of LSVs reanalyses with LDASs (Albergel et
al. 2018a,b)”.

L226: Remove space between end of sentence and punctuation.

Correction done.

L226: “These satellite-derived products have already been successfully assimilated in the LDAS-Monde...”

Correction done.

L230: “..in order to measure..”? Please clarify what you mean by “measure” in this context.

We have replaced “measure” by “estimate”.

L232: “Prior to the assimilation, the SWI. ...”

Correction done.

L234: “..the soil...”

We are sorry but we have not been able to understand what Referee #1 meant here.

L235: Please clarify, you say that you use a linear rescaling but you also use a CDF method? The linear
rescaling corrects the mean and variance while the CDF matching corrects all modes of the distribution?

We use in this paper a seasonal linear rescaling. Linear rescaling was introduced by Scipal et al. (2008)
and has been shown giving results that are very similar to an exact CDF matching. Nevertheless, to
avoid any confusion, we have rewritten the sentence as follows: “Introduced by Scipal et al. (2008), this
rescaling gives in practice very similar results to CDF (cumulative distribution function) matching. The
linear rescaling is performed on a seasonal basis (with a 3-month moving window).” Further mentions
of CDF matching in the manuscript have been replaced by “seasonal linear rescaling”.

L238: Please define GEOV1.

GEOV1 stands for GEOLAND2 Version 1. This has been added to the manuscript.

L239: “10 days.. with the finest spatial resolution being 1 km.”

Correction done.

L251: Pleas define GPP at first occurrence (L245).

Correction done.

L252: “...from eddy-covariance flux towers...”

Correction done.

L253: “The FLUXCOM data are available. . ..”

Correction done.

L256: Please make clear that this is model output data. “River discharge output from the CTRIP is.
...” and “data obtained from the Global. ...”

Correction done.

L261: Change “efficiency” to “skill”?
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Correction done.

L269: “...for the soil moisture variable.” Who are “They”, the perturbations?

Indeed “They” means soil moisture perturbations. This has been corrected in the updated version of
the manuscript.

L270: Please consider moving this sentence for after the SM perturbations.

Modification done.

L271: “covariance ,” remove space

Correction done.

L272: “..dynamic range of soil moisture.”

Correction done.

L274: Drop “successful”

Correction done.

L276: “..and using B for the covariance matrix.” What does this mean?

We meant here that we sample the initial ensemble of the EnSRF from a multivariate Gaussian distri-
bution using the prescribed B matrix of the SEKF as covariance matrix for that multivariate Gaussian
distribution. We have rewritten L.275–276 as follows:“About the EnSRF configuration, the initial ensem-
ble is obtained by perturbing the initial state using perturbations sampled from a multivariate Gaussian
distribution with a zero-mean and using the prescribed B covariance matrix used in the SEKF as the
covariance matrix of that multivariate Gaussian distribution.”

L276: What do you mean by “underestimate ensembles” ensemble spread?

We meant indeed ensemble spread. Correction done.

L277: “..artificially small ensemble spread...”

Correction done.

L278: “have”?

“have” is correct if we consider the authors separately but “has” is also correct if we consider Whitaker
and Hamill (2005) as one scientific publication.

L280: White noise of what?

We meant here a Gaussian noise. The manuscript has been corrected accordingly.

L281: Please define and use the SM acronym earlier.

The SM acronym is defined in the introduction. We have replaced “soil moisture” by “SM”.

L283: White noise of what?

We meant here a Gaussian noise. The manuscript has been corrected accordingly.

L284: “This is similar to the work of. ...”

Correction done.
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L287: Reference to these studies?

References to Albergel et al.(2017), Leroux et al. (2018) and Tall et al. (2019) have been added.

L290: Please drop “sanity”

Correction done.

L290: “open loop counterparts”

Correction done.

L291: Please clarify, what is “those two LSVs”?

Correction done.

L295: “the ensemble...”

Correction done.

L299: “response to SM6”? Do you mean they have the same behavior?

We meant indeed that SM5, SM6 and SM7 have the same behaviour. This has been clarified in the
manuscript.

L300: “Potential improvements in EnSRF and SEKF estimates of evapotranspiration. ...”

Correction done.

L307: What do you mean by “accuracy”?

We meant here that, when NSE = 0, it means that the simulated or analysed river discharges Qs
t provide

a similar NSE as the observed averaged river discharge Q
o

(see Eq. 13). We have rewritten the sentence
as follows: “A NSE value of 0 means that the model/analysis has the same NSE as the observed averaged
river discharge.”

L308: “open loop run”

Correction done.

L312: Suggest you change this to something like this: “Figure 2 displays the open loop, SEKF, EnSRF
and observed LAI 10-day time series...”

Correction done.

L319: Please use “open loop” for the rest of the text.

We have replaced the expression “model run” by “open loop” in the whole manuscript (including Tables
and Figures) when it was appropriate.

L319-L320: The numbers show that the SEKF is closer than the EnSRF, this is the opposite of what
you say in L317?

The expression L. 317 “with EnSRF estimates getting closer to observations than SEKF ones” was only
valid for autumn (while not being obvious from Figure 2). This has been removed from the manuscript
to avoid any confusion.

L320: Please make it clear that this is no longer independent validation data, as you compute the skill
between the analyses and the observations assimilated in the analyses.
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The following sentence has been added in the paragraph: “As expected, both DA approaches produce
estimates that are closer to the assimilated LAI observations than their open loop counterpart.”

Figure 3: Please provide masked regions with different color coding than zero values.

Figure 3 has been modified to change color coding for masked regions.

L344: “Strongest” to “Largest”, “... occur for both cases. ...”

Correction done.

Figure 6: Does this figure not also show the spatial std, since it is averaged over the whole domain?

Indeed, that is why we have written “Figure 6 displays the seasonal evolution of ensemble standard
deviations averaged over the whole domain and for grid cells dominated by one type of vegetation.”

L355: Linear rescaling not CDF matching?

“CDF matching” has been replace by “seasonal linear rescaling”.

L362: “southeast” and “northern”

Correction done.

Figure 7 (a), change title to “RMSD open loop”.

Correction done.

L369: Note that this is for a single open loop run? An ensemble open loop run might improve more?

Correlations are indeed for a single open loop run. An ensemble open loop run might improve or degrade
correlations with observed SSM depending on how model perturbations are generated. However, this
remains out of scope of the current paper.

Figure 8: Please provide different color coding for masked regions vs zero value regions.

Figure 8 has been modified accordingly.

L376: “..the Jacobian is replaced by correlations sampled. ...”

Correction done.

L382: “..and correlations with SM2.”?

Expression removed, it did not mean anything.

L283: “extend” to “extent”

Correction done.

L385: “western”, “spring” and “summer”. Please double check this spelling throughout the text e.g.,
L396-L398.

The spelling has been corrected throughout the manuscript.

L402: “Nevertheless we discern seasonal tendencies”? Please explain this sentence.

Section 4.4 has been fully rewritten and the sentence removed.

L402: What about SM6 and the abrupt change close to the Arctic circle?
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We thank the Referee for her/his excellent question. The abrupt change close to the Arctic circle is
due to modified hydraulic and thermal soil properties in ISBA for arctic regions. This module has been
developed by Decharme et al. (2016) in order to include a dependency on soil organic carbon content
for ISBA’s hydraulic and thermal soil properties. We have added a comment on this subject in section
2.1 dedicated to ISBA and another comment in section 4.4.

Reference:

Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., and Morin, S.: Impacts of snow and
organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA
land surface model, The Cryosphere, 10, 853877, 10.5194/tc-10-853-2016, 2016.

L403: “... increments in SM4 ...”

Correction done.

L404: “tends” to “tend”

Correction done.

L406: “..disparity over arid regions is...”

Correction done.

L408: “estimates” to “increments”?

We meant here SM4 estimates.

L410: Please rephrase this sentence, start with: “The SM4 estimates and analyses increments for the
SEKF and EnSRF tend to be similar, except for arid regions.”

Section 4.4 has been fully rewritten to avoid that confusion.

L413-L418: Please rephrase this paragraph. What do you mean by “cycling”? “...does not modify di-
rectly estimates as correlations. ...” estimates of what?

Section 4.4 has been completely re-organised to issue those questions.

L423: Please define ET acronym earlier and GPP is already defined.

Correction done.

L428-L429: “..for almost all grid cells.”

Correction done.

L436: “best” to “biggest” or “largest” and remove “on”

Correction done.

L441: Please rephrase “..., thus validating our approach.”

The expression has been removed.

L445: How do you decide on this 3% limit?

We agree this 3% limit is arbitrary. It is just similar to what has been used previously for NIC in others
of our publications, see e.g. Albergel et al. (2018b). This limit also allows a better visualisation of the
NIC improvement or degradation in Figure 14.
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L446: Maybe state that the rest of the stations (20) showed a neutral impact?

Agreed. A sentence has been added in the paragraph.

L457: What are these favorable atmospheric conditions?

We meant here that LAI dynamics depends more on atmospheric forcing than on initial conditions during
the growing phase. This implies that, while assimilating observed LAI can add LAI and biomass, the
effect of assimilation will fade quickly. On the contrary, during the senescence, LAI dynamics is driven by
the rate of mortality, thus making assimilation more efficient. We have modified the sentence L. 456–458
as follows: “During the growing phase, modelled LAI is more sensible to atmospheric conditions than to
initial LAI conditions. This implies that, while DA can artificially add LAI and biomass, its impact can
be limited by the atmospheric forcing.”

L461: “on” to “in” and what do you mean by “LAI dynamics is weak in those places”?

We meant there that the amplitude of the LAI annual cycle is smaller in those places than for places
dominated by deciduous trees. This has been clarified in the updated version of the manuscript.

L464: “.., model perturbations can introduce. ...” remove “thus showing its influence.”

Correction done.

L469: Please rephrase, for example: “Model perturbations can lead to LAI values below this threshold...”

Correction done.

L470: “when this is the case it can lead to. ...”

Correction done.

L475-L478: What does “more uncertainty in the additive model error” mean? It increases the size of
the increments and therefore the EnSRF is closer to the observations than the SEKF? Please clarify this
section.

We meant here that the prescribed model error in the EnSRF leads to ensembles with bigger standard
deviations (SD) than the prescribed SD for soil moisture in the second layer of soil (1–4 cm depth). This
implies that observations of SSM have a bigger weight in the EnSRF than in the SEKF. Thus, EnSRF
estimates are closer to SSM observations than SEKF estimates. This has been clarified in the updated
version of the manuscript.

L479: “CDF match” to “CDF matching”, are you sure that this is the approach you are using?

We have replaced “CDF match” by “seasonal linear rescaling” (see previous comment on that subject).

L479: “This shows that the short-term variability of the observations is different from what we model
with ISBA in this region.”

Correction done.

L480: Check CDF matching.

We have replaced “CDF matching” by “seasonal linear rescaling” (see previous comment on that sub-
ject).

L482: Maybe change to: “Further studies of such aspects are beyond the scope of this paper.”

Correction done.
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L483: “...both DA approaches...”

Correction done.

L484: “model error” to “model perturbations”

Correction done.

L486: Change “fatally” to “could potentially...”

Correction done.

L488: “..by the model perturbations...”

Correction done.

L491: “summer”

Correction done.

L493: “southwest”

Correction done.

L494: Please rephrase to make it clear that covariances between the ensemble members explain the
relationship between e.g., soil moisture in different soil layers in ISBA.

This sentence has been rewritten following the merge of Section 4 and Section 5.1.

L494: Maybe change to: “Another type of model error...” and “...different characteristics of the covari-
ances between the ISBA variables.”

Correction done.

L496: “also provides”

Correction done.

L497: “their” to “the”?

Correction done.

L500: Remove “Considered out of scope for this paper.”

Correction done.

L501: “...dams, . . .) can potentially modify soil moisture, streamflow and river discharge.” Maybe
provide a reference for this?

Correction done. The following reference has been added:

Milano, M., Ruelland, D., Dezetter, A., Fabre, J., Ardoin-Bardoin, S. and Servat, E.: Modeling the
current and future capacity of water resources to meet water demands in the Ebro basin, J. Hydrol., 500,
114-126, 10.1016/j.jhydrol.2013.07.010, 2013.

L506: “more physical states”? Do you mean “...ensemble of land surface states”?

We meant here that by using perturbed atmospheric forcings, it would lead to more physical model
perturbations and to an ensemble with covariance that are more physically-based. We have modified the
sentence to reflect that point.
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L514: “the model error.”

Correction done.

L517: Include a reference to the original Desroziers paper.

Reference added.

L521: “...processes, etc)..”

Correction done.

L524: “such ideas have”

Correction done.

L526: Please simplify section heading. For example, “The question of 1D or 3D filtering”

Correction done.

L529: “to” to “in correlated...”

Correction done.

L530: Provide reference for this statement. Same for line L531.

A reference to the upcoming paper on ERA5 reanalysis from Hersbach et al. (2019) has been added.
The paper will include a description of associated uncertainties.

L532: I dont understand, could you please clarify this section? You say that the SEKF cannot include
covariances, but it relies on ISBA to calculate covariances. Why does the SEKF need covariances from
ISBA when it cannot include them?

Indeed the SEKF relies on ISBA to calculate covariances. But, since patches in ISBA do not inter-
act between each other, the Jacobian cannot build those covariances between patches from the model.
Therefore to include covariances between patches, they have to be prescribed in the fixed background
error covariance matrix in the SEKF. The same problem occur for spatial covariances as ISBA grid cells
do not interact with each others. This has been clarified in the updated version of the manuscript.

L537: “...12 times the size...”?

If someone wants to consider covariances between patches, she/he has to consider in the control vector
LAI and soil moisture from each patch. Since each ISBA grid cell is divided into 12 patches, it means
that the control vector would have to be 12 times bigger than the one we used in this paper.

L549: Please rephrase, for example: “approach, because of the 1D nature of the ISBA LSM.”

Correction done.

L550: “applications”

Correction done.

L553: “based on spatial characteristics and it...”

Correction done.

L559: “Results show”

Correction done.
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L563: “..the model error perturbations.”

Correction done.

L565 “surface. The EnSRF...” Please rephrase after this, what are those estimates and what are those
layers?

We have replaced “those estimates” by “soil moisture estimates” and “those layers” by “soil layers either
near the surface or in the root zone”.

L569: “for the two previous”? Please make it clear what the two previous are.

This has been clarfied in the updated version of the manuscript.

L569: Please clarify “While involving a crude model error”, the sentence feels a bit out of context.

We have removed the expression for clarity.

L572: Maybe change to: “(for CGLS products). This only allows for an update of LAI every 10-days,
as the assimilation of surface soil moisture is found to have negligible impact on the LAI analyses.”

Correction done.

L573: “for the radar backscatter...”

Correction done.

L574: What do Livens (2017) and Shamambo (2019) show?

These two papers show how radar backscatter coefficients can be linked to LAI or vegetation optical depth
through a water cloud model. Assimilating radar backscatter coefficients in LDAS-Monde would imply
developing an observation operator linking modelled LAI and surface soil moisture to radar backscatter
coefficients and the water cloud model seems to be a good candidate for the observation operator. This
has been clarfied in the updated version of the manuscript.
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Review Anonymous Referee #2

General Comments:

This paper presents the LDAS-Monde EnSRF adapted to multivariate soil moisture and LAI assimila-
tion. Results are presented and compared to the SEKF and to the model in the Euro-Mediterranean
region for 2008-2017. The paper provides substantial contribution to scientific progress in the field of
land surface data assimilation which is relevant for HESS. The analysis is very thorough, the paper is
very well written and presented. I suggest it is published after the following comments are taken into
account.

We thank the Referee for her/his positive comments about our work and for her/his insightful review
that has helped us to improve the quality of our manuscript. Responses to comments and subsequent
changes are detailed below in blue.

Specific comments:

line 52, sentence starting by “Both brightness temperature...” is too vague: not all brightness tem-
perature are influenced by vegetation dynamics. The authors should indicate specify that it is for low
microwave frequencies

We thank the Referee for mentioning that point, this has been added in the manuscript.

line 91-92: I find it too detailed to give the latitude and longitude min and max of the studied area in
the introduction. These details are given in Section 3 and this is enough.

We have removed these details from the introduction in the revised version of the manuscript.

line 97: You should perhaps add the reference to the peer reviewed ERA5 paper submitted to by Hers-
bach et al. in 2019. Same comment line 218.

Agreed, the reference has been added.

line 170-175: it would be very useful to give more details on the patch formulation in equations 3-4 as it
was not provided in any of the previous papers describing the SURFEX SEKF. It could be added as an
annex.

To that purpose, we have decided to add the full details on the patch formulation in supplementary ma-
terial. The justification is too long to be put in appendix. For information, the supplementary material
has been added at the end of this response.

line 317: It is not very clear on this figure that the EnSRF estimates get closer to observation than the
SEKF ones. Please revise the sentence.

“with EnSRF estimates getting closer to observations than SEKF ones” has been removed from the
sentence.

line 320-323: The authors should refer to Table 1 at this stage of the results presentations. Table 1 is
only used in support of the results presentation in section 4.5 line 430). It would be very useful to refer
to it everywhere its statistics are discussed. Same comment applies for example line 360, lines 368-369, .

Following Referee #2’s suggestion, Section 4 has been modified to include references to Table 1 when
statistics are discussed.

Figure 3, caption is not clear. Replace “and difference between nRMSD for SEKF (b) and EnSRF (c) vs
nRMSD Model.” by “and nRMSD difference between assimilation experiments (SEKF in a, and EnSRF
in b) and Model”.

The caption for Figures 3, 7, 8, 12 and 13 has been modified following Referee #2’s suggestion.
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lines 332-345: This analysis and corresponding figures are interesting to understand the performance of
the assimilation systems for the different vegetation types. It does not help to understand the EnSRF
degradation in NW Spain and in the Alps shown in Figure 3. The authors should investigate further
and present in the paper results in these areas.

This analysis explains indirectly the EnSRF degradation in NW Spain and in the Alps. In those places,
coniferous trees represent around 40% of the vegetation and grasslands around 30%. They are the two
types of vegetations for which the EnSRF performs poorly. In practice, in both places, the ensemble
collapses for the coniferous trees patch and the ensemble for grasslands cannot compensate for such
collapse due to a too-small ensemble spread. Few sentences have been added in section 4.1 to explain
the issue.

line 321-323: The authors should comment on the fact that the model bias is the lowest also because
the winter and summer negative bias is partly compensated by positive bias in autumn, whereas DA
experiments correct for the autumn positive bias only.

We thank the Referee for her/his interesting remark. We have added few lines on that subject in section
4.1 of the manuscript.

line 371: It would be useful to comment on the negative correlations shown between model output and
observed SSM in arid areas. The explication (short term variability) is given later and discussed in
Section 5.1 (lines 479-480). It should be briefly mentioned already when the correlation map are shown.

Instead and as suggested, we have merged Section 5.1 with Section 4. The following sentences have been
added to Section 4.2: “ Finally we observe negative correlations between the open loop and observed
SSM (even with the seasonal linear rescaling) in arid places such as deserts in Sahara and the Arabian
Peninsula. This shows that the short-term variability of the observations is different from what we model
with ISBA in this region. It raises the question of the quality of ISBA and/or SSM observations (after
seasonal linear rescaling) in arid places. Stoffelen et al. (2017) has shown that observed SSM derived
from scatterometers can have a poor quality in arid places.”

line 388: the authors should explain or clarify in the text why SM2 and SM6 are uncorrelated in summer
over Spain and Northern Africa?

We have added in Section 4.3 the following sentence for clarification: “This decorrelation between surface
and root-zone soil moisture occurs during very dry conditions such as occured in Spain and northern
Africa during summer.”

line 396: explain here the meaning of larger LAI leading to drier soil. It is pretty obvious that it is
related to more evaporation, meaning that LAI influences soil moisture in this case, but it would be
interesting to discuss here as the previous sentence is the other way around, with positive correlation
and soil moisture influencing LAI. As commented above, it is not optimal to have the results presented
here, but only partly explained, with the full explanation later in section 5.1. When reading Section
5.1, we have to go back in the paper to match the figure description and the figure interpretation given
several pages later in Section 5.1. Please revise the text by merging section 5.1 with the presentation of
the results in Section 4.

We have, as suggested, merged Section 5.1 with Section 4. Negative correlations between LAI and soil
moisture occurs for dry soils due to evaporation. But for wetter areas, evaporation is far less important
and correlations between LAI and soil moisture are instead positive.

line 400-411: This paragraph starts with Figure 10, but then the second and third sentences “We observe
that the SEKF has the same averaged SM4 as the model. Nevertheless we discern seasonal tendencies.”
are clearly not related to Figure 10. Then it discussed Figure 11, but line 404-405 (“EnSRF estimates..”)
content does not match Figure 11, but it is more adapted to Figure 10. So, this paragraph needs to be
slightly reorganized.

20



Section 4.4 was poorly written. It has been re-organised as follows to improve clarity:

• Averaged estimates of SM4 and SM6 depicted in Figure 10 are first studied. We have highlighted
the wet bias introduced by EnSRF model perturbations in places where assimilation of SSM and
LAI plays no role (no correlation with SM4 or SM6).

• Then analysis increments from the SEKF and EnSRF are compared for SM4 using Figure 11.

• Finally we write few lines on increments from the SEKF and EnSRF for SM6 (no figure associated).

line 413-415: “...in Figure 10. We identify these patterns for every month without any seasonality (not
shown). For SEKF drier estimates are obtained through cycling as analysis increments are close to zero.
For EnSRF, cycling is also responsible to this drying but analysis increments are not negligible (-0.01
m3.m−3 for biggest values) and compensate the wet bias from model error in SM6 (not shown).” This
suggest that SM6 negative increments have a larger amplitude in EnSRF than in EKF, however this is
not obvious from Figure 10.

Indeed, Figure 10 shows roughly similar SM6 estimates for the SEKF and the EnSRF. But they are not
entirely obtained through the same process. Differences between SEKF and open loop SM6 estimates
are solely due to the joint effect of the ISBA LSM and the updated LAI and soil moisture near the
surface (SEKF increments are close to zero). In the EnSRF case, increments, which are not shown for
SM6, have a bigger size (in absolute value) because DA compensates the wet bias introduced by model
perturbation. So in the EnSRF, both analysis and the joint effect of the ISBA LSM and the updated
LAI and soil moisture near the surface play a role for SM6. This point has been hopefully clarified in
Section 4.4.

Section 5: The discussion provided in Sections 5.2 and 5.3 is excellent, it discusses the limits of the
proposed EnSRF approach and perspectives to improve the system. Section 5.1 is less relevant to the
discussion as it mainly supports of the results description and it provides information that was actually
missing when reading Section 4 (see comments above). So, Section 4.1 (or most of it) should be merged
with corresponding paragraphs Section 4.

We thank the Referee for her/his kind comments. Following her/his advice, we have merged Section 5.1
with Section 4 in the updated version of the manuscript.

line 576-577: the last sentence of the conclusion, starting with “Once fully tested, it should, hopefully,
provide daily...” sounds technical and hazardous. Replace by something like “It will open the possibility
to have access to daily...”

Correction done.

Technical corrections:

- line 49: ”Recently,” (add a comma)

Correction done.

- line 71: replace “has” by “have”. Also line 74 twice.

Referee #1 suggested to drop “have” and “has” in those sentences. We followed her/his advice.

- line 109: move the reference to Albergel at al. and the end of the sentence. Same comment for the
references given line 118 and line 119.

Modification done.

- line 121: “The lower boundary of the 14 soil layers (0.01...) .. was chosen to” is not clear. A more
accurate language would perhaps be “The vertical soil discretization into 14 layers (0.01...) .. was chosen
to”
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Following suggestions from both Referees, we have rewritten L.119–123 as follows: “We use in this paper
the ISBA multilayer diffusion scheme which solves the mixed form of Richards equations (Richards, 1931)
for water and the one-dimensional Fourier law for heat (Boone et al., 2000; Decharme et al., 2011). The
soil is discretized in 14 layers over a depth of 12m. The lower boundary of each layer is 0.01, 0.04, 0.1,
0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, 5.0, 8.0, and 12 m depth (see Fig. 1 of Decharme et al., 2013). The
chosen discretization minimizes the errors from the numerical approximation of the diffusion equations.”

-line 177: remove “of”

We meant columns of M[p]. Correction done in the manuscript.

-line 222: remove “ISBA”

Correction done.

- line 404: add “particularly” as follow: “..in July, particularly in Northern Europe...”

Correction done.

-line 413: “For the SEKF, ...”

Section 4.4 has been fully rewritten instead.

-line 462: “introduce a larger negative bias”

Section 5.1 has been merged with Section 4 instead.

-line 539-540: the sentence starting by “However, if we take ...” sounds familiar, reformulate it.

The sentence has been replaced by the following one:“However, including covariances between patches
or between grid cells would make undersampling and spurious covariances more likely to occur due to
the increased size of the state vector.”

-line 541: what caveats?

We meant by “caveats” undersampling and spurious covariances. We have replaced the word “caveats”
by the expression “potential issues”.
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Abstract. This paper introduces an Ensemble Square Root Filter (EnSRF), a deterministic Ensemble Kalman Filter, to the

context of assimilating jointly observations of surface soil moisture (SSM) and leaf area index (LAI) in the Land Data Assim-

ilation System LDAS-Monde. By ingesting those satellite-derived products, LDAS-Monde constrains the Interaction between

Soil, Biosphere and Atmosphere (ISBA) land surface model (LSM), coupled with the CNRM (Centre National de Recherches

Météorologiques) version of the Total Runoff Integrating Pathways (CTRIP), to improve the reanalysis of land surface variables5

(LSVs). To evaluate its ability to produce improved LSVs reanalyses, the EnSRF is compared with the Simplified Extended

Kalman
::::
Filter, which has been routinely operated in

:::
well

::::::
studied

::::::
within

:::
the LDAS-Monde , in a real case over the well-studied

:::::::::
framework.

::::
The

::::::::::
comparison

::
is

::::::
carried

:::
out

::::
over

:::
the Euro-Mediterranean region at a 0.25º spatial resolution between 2008 and

2017. Both data assimilation approaches provide a positive impact on SSM and LAI estimates with respect to the model alone,

putting them closer to assimilated observations. SEKF and
::::
The

:::::
SEKF

:::
and

:::
the

:
EnSRF have a similar behaviour for LAI show-10

ing performances that are influenced by the vegetation type. For SSM, EnSRF estimates tend to be closer to observations than

SEKF. The impact of assimilating SSM and LAI is also assessed
:::::::::
comparison

:::::::
between

:::
the

::::
two

::::
data

::::::::::
assimilation

::::::::::
approaches

:
is
::::

also
::::::
carried

::::
out on unobserved soil moisture in the other layers of soil. Unobserved control variables are updated in the

EnSRF through covariances and correlations sampled from the ensemble linking them to observed control variables. In our

context, a strong correlation between SSM and soil moisture in deeper soil layers is exhibited
:::::
found, as expected, showing15

seasonal patterns that vary geographically. Moderate correlation and anti-correlations are also noticed between LAI and soil

moisturein spring, summer and autumn, their absolute value tending ,
:::::::
varying

::
in

::::
space

::::
and

::::
time.

:::::
Their

:::::::
absolute

:::::
value,

::::::::
reaching

::::
their

::::::::
maximum

::
in
:::::::

summer
::::

and
::::
their

:::::::::
minimum

::
in

::::::
winter,

:::::
tends to be larger for soil moisture in root-zone areas, showing that

assimilating LAI can have an influence on soil moisture. Finally an independent evaluation of both assimilation approaches

is conducted using satellite estimates of evapotranspiration
::::
(ET) and gross primary production (GPP) as well as measures of20

river discharges from gauging stations. The EnSRF shows a systematic albeit moderate improvement for evapotranspiration

and GPP and a highly
::
of

::::::::
root-mean

::::::
square

:::::::::
differences

::::
and

::::::::::
correlations

:::
for

::
ET

::::
and

::::
GPP

::::::::
products,

:::
but

::
its

:::::
main

:::::::::::
improvement

::
is

:::::::
observed

:::
on

::::
river

:::::::::
discharges

::::
with

:
a
::::
high positive impact on river discharges, while the SEKF exhibits

:::::::::::
Nash-Sutcliffe

:::::::::
efficiency

:::::
scores.

:::::::::
Compared

::
to
:::
the

:::::::
EnSRF,

:::
the

:::::
SEKF

:::::::
displays

:
a more contrasting performance.
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1 Introduction

Land surface variables (LSVs) are key components of the Earthsystem taking part, for example, in the
:
’s
:
water, vegetation and

carbon cycles. Understanding their behaviour and simulating their evolution is a challenging task that has significant impli-

cations on various topics, from vegetation monitoring to weather prediction and climate change (Bonan, 2008; Dirmeyer et

al., 2015; Schellekens et al., 2017). Land surface models (LSMs) play an important role in achieving these goals
:::::::::
improving30

:::
our

:::::::::
knowledge

:::
of

::::
land

::::::
surface

:::::::::
processes

::::
and

::::
their

::::::::::
interactions

::::
with

::::
the

:::::
other

::::::::::
components

:::
of

:::
the

::::::
climate

:::::::
system

::::
such

:::
as

::
the

::::::::::
atmosphere. Forced by atmospheric data and coupled with river-routing models, they aim to simulate LSVs such as soil

moisture (SM), biomass and leaf area index (LAI). However, LSMs are prone to errors owing to innacurate initialisation,

misspecified forcing and parameters
:::::::::::
initialization,

:::::::::::
misspecified

:::::::::
parameters,

::::::
flawed

:::::::
forcing or inadequate model physics. An-

other way to monitor LSVs is to use observations either from in situ networks or satellites. While in situ networks are generally35

sparse
:::::::
generally

:::::::
provide

:::::
sparse

::::::
spatial

::::::::
coverage, remote sensing provides a global coverage of LSVs at spatial resolutions rang-

ing from 25 km x 25 km to 300 m x 300 m
:::
the

::::::::
kilometre

::::
scale

::
to

:::
the

:::::
metre

::::
scale

:
but at a daily frequency at best (Lettenmaier et

al., 2015; Balsamo et al., 2018). Also satellites do not observe every LSV such as
:::
Not

::
all

::::
key

:::::
LSVs

:::
are

:::
also

::::::::
observed

:::::::
directly

::::
from

::::::
space.

:::
For

::::::::
example,

::::::
passive

::::::::::
microwave

:::::::
satellite

::::::
sensors

:::::
used

::::::::::
traditionally

:::
to

:::::::
estimate

:::
soil

::::::::
moisture

:::
are

:::::::
sensible

:::::
only

::
to

:::
the

::::::::::
near-surface

::::
(0–2

:::
cm

::::::
depth)

::::::::
moisture

::::::
content

::::::::::::::::::::::
(Schmugge, 1983) leading

::
to

:::
the

:::::::::::
development

::
of

:::::::
indirect

::::::::::
approaches

::
to40

:::::::
estimate root-zone soil moisture

::::
from

:::::::
satellite

::::
data

::::::::::::::::::::::::
(see e.g. Albergel et al., 2008).

Combining observations with LSMs can overcome flaws of
::
in both approaches. This is the objective of Land Data Assimi-

lation Systems (LDASs). Many of them focus on assimilating observations related to surface soil moisture (SSM), either using

::::::
passive

:::::::::
microwave

:
brightness temperatures,

:::::::::
microwave backscatter coefficients or soil moisture retrievals obtained from the

two previous
:::::::::::::
aforementioned

:::::::
satellite

::::::::::
observations, to estimate soil moisture profiles (Lahoz and De Lannoy, 2014; Reichle et45

al., 2014; De Lannoy et al., 2016; Maggioni et al., 2017, and references therein). One popular approach has been the Simplified

Extended Kalman Filter (SEKF). Introduced at Meteo-France by Mahfouf et al. (2009), it was initially designed for assimi-

lating screen level observations to correct soil moisture estimates in the context of numerical weather prediction and is now

involved in the operational systems of e.g.
:::
both

:
the European Centre for Medium range Weather Forecast (ECMWF, Drusch

et al., 2009; de Rosnay et al., 2013) and
:::
the UK Met Office. The SEKF has also been rapidly extended to the

::::::
applied

::
to

:::
the50

:::
sole

:
assimilation of soil moisture retrievals (Draper et al., 2009)

:::
then

::
to

:::
the

:::::
joint

::::::::::
assimilation

::
of

::::
soil

:::::::
moisture

::::::::
retrievals

:
and

leaf area indices (Albergel et al., 2010; Barbu et al., 2011). Even though the
:::::
SEKF

:
approach has provided good results, it suf-

fers from several limitations. It involves in particular
::::
relies

:::
on

:
a
::::::::::::
climatological

::::::::::
background

:::::
error

:::::::::
covariance

::::::
matrix

::::::::
assuming

::::::::::
uncorrelated

::::::::
variables

:::::::
between

:::
grid

::::::
points

:::
and

:::::::
involves

:
the computation of a Jacobian matrix obtained by

:
to

:::::
build

::::::::::
covariances

:::::::
between

::::::
control

::::::::
variables

::
at

:::
the

:::::
same

::::::::
location.

::::
This

:::::::
Jacobian

::::::
matrix

::
is
:::::::::
computed

::::
with

:
finite differences, meaning that one55

model run is required per control variable, thus limiting their number
::
the

::::
size

::
of

:::
the

::::::
control

::::::
vector. That is why SEKF has been

in competition with more flexible approaches,
:
such as the Ensemble Kalman Filter (EnKF) (Reichle et al., 2002; Fairbairn et
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al., 2015; Blyverket et al., 2019, among others) and particle filters (see e.g. Pan et al., 2008; Plaza et al., 2012; Zhang et al.,

2017; Berg et al., 2019) for estimating soil moisture profiles. Those various approaches have been extensively compared in that

context
:::
the

::::::
context

::
of

:::
the

::::
sole

::::::::::
assimilation

::
of

:::
soil

::::::::
moisture

::::::::
retrievals (Reichle et al., 2002; Sabater et al., 2007; Fairbairn et al.,60

2015).

LDASs are, however, not restricted to soil moisture. Recently
:
, monitoring vegetation dynamics through LDASs has gained

attention. Defined
:::
LAI

::
is

:
a
::::
key

::::
land

:::::::::
biophysical

::::::::
variable,

:
it
::
is

::::::
defined

:
as half the total area of green elements of the canopy per

unit horizontal ground area, the LAI is a key land biophysical variable. One way to monitor LAI is to assimilate observations

already used for surface soil moisture and link them to LAI. Both brightness temperature
::::::::
indirectly

:::::
linked

:::
to

::::
LAI,

::::
such

:::
as65

::::::::
brightness

::::::::::
temperature

::::
for

:::
low

::::::::::
microwave

::::::::::
frequencies (see e.g. Vreugdenhil et al., 2016) and radar backscatter coefficient

(Lievens et al., 2017; Shamambo et al., 2019, among others)are influenced by vegetation dynamics. This is the approach

followed by Sawada et al. (2015) and Sawada (2018) who assimilate brightness temperatures using a particle filter to jointly

estimate soil moisture profiles and LAI in the Coupled Land Vegetation LDAS (CLVLDAS).

Another way to monitor LAI through LDASs is to assimilate observations of LAI
::::::::
constrain

:::
LAI

::
is

:::::::
through

:::
the

::::::::::
assimilation

::
of70

:::::
direct

:::
LAI

:::::::::::
observations

::
in

::::::
LDASs. Satellite derived LAI products have benefited

:::::
benefit

:
from recent advances in remote sensing

(Fang et al., 2013; Baret et al., 2013; Xiao et al., 2013) and datasets are now available at the global scale and
::
at high resolution.

While assimilating LAI has been done very often with crop models to estimate crop yields
::::
other

::::::
studies

::::
have

::::::::::
assimilated

::::
LAI

::
in

::::
crop

::::::
models

:::
and

::
at

::
a

::::
more

:::::
local

::::
scale

:
(see e.g. Pauwels et al., 2007; Ines et al., 2013; Jin et al., 2018), such assimilation has

been, to our knowledge, seldom performed by LDASs. Jarlan et al. (2008) and Sabater et al. (2008) have succeeded introducing75

such
::
in

::::::::::
introducing

::::
such

::
an

:
approach in LDASs. The latter study has notably shown that assimilating jointly observations of

SSM and LAI can improve the quality of root-zone SM estimates for one location in South West
::::::::
southwest France. This work

has been carried out with the CO2-responsive version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM

(Calvet et al., 1998, 2004; Gibelin et al., 2006) developed by Meteo-France research centre (Centre National de Recherches

Météorologiques, CNRM)
::::::
CNRM. This version of ISBA allows

::
for

:
the simulation of vegetation dynamics including biomass80

and LAI. Stemming from
:::::::
Building

:::
on

:
that work, Albergel et al. (2010), Rüdiger et al. (2010) and Barbu et al. (2011) have

introduced a SEKF assimilating jointly SSM and LAI and tested the approach on a site . This
:::
the

::::::::::
SMOSREX

:::
site

:::::::
located

::
in

::::::::
southwest

:::::::
France.

:::::
Their study has been extended to a series of locations over France (Dewaele et al., 2017) and to France

(Barbu et al., 2014; Fairbairn et al., 2017) leading to
::
the

:::::::::::
development

:::
of LDAS-Monde (Albergel et al., 2017). Available

through
:::
The

::::::::::::
LDAS-Monde

::
is

:::::::
available

:::::::
through

:::
the

:
CNRM modelling platform SURFEX (SURFace EXternalisée, Masson et85

al., 2013) , LDAS-Monde
:::
and

:
it
:
has been successfully applied to various parts of the globe: Europe and the Mediterranean

basin (Albergel et al., 2017, 2019; Leroux et al., 2018), contiguous United States (Albergel et al., 2018b) and Burkina Fasso

(Tall et al., 2019).

Lately other LDASs have started assimilating LAI using an EnKF assimilation approach. For exampleFox et al. (2018) has

:
,
::::::::::::::
Fox et al. (2018) assimilated LAI and biomass in order to reconstruct the vegetation and carbon cycles for a site in Mexico,90

and Ling et al. (2019) has
::::
while

:::::::::::::::
Ling et al. (2019) compared various approaches for the assimilation of LAI at global scale. In

addition Kumar et al. (2019) has assimilated LAI with an EnKF in the North American Land Data Assimilation System phase
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2 (NLDAS-2) and studied its impact not only on vegetation but also soil moisture, water and carbon cycles, those LSVs being

updated indirectly through the model using the updated LAI. Nevertheless these studies , contrary to LDAS-Monde, have not

considered soil moisture estimation, i.e. no soil moisture variables were in the control vector
:::::
These

::::::
studies

:::
did

:::
not

::::::
update

::::
both95

:::
SM

:::
and

:::::
LAI,

::
as

:::
we

:::
will

:::
do

::
in

:::
this

:::::
study.

This paper aims to develop an EnKF approach for the joint assimilation of LAI and SSM in
::
the

:
LDAS-Monde. While

the SEKF has been routinely employed in LDAS-Monde,
:::
To

:::
that

::::
end,

::
it

::::
will

::::
build

:::::
upon

:::
the

:::::
work

::
of

:::::::::::::::::::
Fairbairn et al. (2015),

:::
that

:::::::::
introduced

:
an Ensemble Square Root Filter (EnSRF, Whitaker and Hamill, 2002) ,

::
in

:::
the

::::::::::::
LDAS-Monde

::
in

:::
the

:::::::
context

::
of

::::::::::
assimilating

:::::
SSM

:::::
solely.

::::
The

:::::::
EnSRF

::
is one of the many deterministic formulations of the EnKF (see e.g. Tippett et al.,100

2003; Livings et al., 2008; Sakov and Oke, 2008), has been proposed by Fairbairn et al. (2015) for the assimilation of SSM

only in order to estimate soil moisture profiles. This study has also .
:::::::::::::::::::
Fairbairn et al. (2015) compared the performance of the

EnSRF with the SEKF
:
,
::::::::
routinely

::::
used

::
in

:::
the

::::::::::::
LDAS-Monde,

:
over 12 sites in South-West

::::::::
southwest

:
France. While performing

better on synthetic experiments, the EnSRF provides results that are equivalent to the SEKF for real cases. Related to that

work, Blyverket et al. (2019) uses
::::
used another deterministic EnKF to assimilate SMAP satellite derived SSM

::::
from

:::
the

::::
Soil105

:::::::
Moisture

::::::
Active

::::::
Passive

:::::::
satellite

:::::::
(SMAP)

:
over contiguous United States with the ISBA LSM focusing on soil moisture in the

near surface while not updating root-zone soil moisture directly through data assimilation.

Building upon the work of Fairbairn et al. (2015), the
:::
The present paper aims to (1) adapt the EnSRF to the joint assimilation

of LAI and SSM within
::
the

:
LDAS-Monde, (2) study the impact of assimilating LAI and SSM to

::
on

:
LSVs using an ensemble

approach, and (3) compare the EnSRF with the routinely used SEKF on
:::
and its ability to provide improved LSV estimates. To110

achieve such
::::
these goals, LDAS-Monde with EnSRF and SEKF is applied on the Euro-Mediterranean region (longitude from

11.5ºW to 62.5ºE, latitude from 25.0ºN to 75.5ºN, see Fig. 1 for the extent of the domain) for
::
for

:
a 10 year experiment (from

2008 to 2017):

– using the vegetation interactive ISBA-A-gs LSM (Calvet et al., 1998, 2004; Gibelin et al., 2006) with the multi-layer soil

diffusion scheme from Decharme et al. (2011),115

– coupled daily with CNRM version of the Total Runoff Integrating Pathways river routing model (CTRIP, Decharme et

al., 2019) to simulate hydrological variables such as river discharges,

– forced by the latest ERA-5 atmospheric reanalysis from ECMWF (Hersbach and Dee, 2016)
:::::::::::::::::::::::::::::::::::::::
(Hersbach and Dee, 2016; Hersbach et al., 2019),

– and assimilating satellite derived Soil Water Index (SWI, as a proxy for SSM) and LAI products from the Copernicus

Global Land Service (CGLS).120

The performance of both DA approaches is assessed with (i) satellite-driven model estimates of land evapotranspiration
::::
(ET)

from the Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2011; Martens et al., 2017), (ii) upscaled

ground-based observations of gross primary production (GPP) from the FLUXCOM project (Tramontana et al., 2016; Jung

et al., 2017), and (iii) river discharges from the Global Runoff Data Centre (GRDC). The paper is organised as follows: Sect.

2 details the various components involved in LDAS-Monde including the data assimilation schemes. Sect. 3 describes the125
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experimental setup and the different datasets used in the experiment
::::
such

:
as atmospheric forcing , assimilated observationsor

for evaluation.
::
or

:::::::::
assimilated

::::::::::::
observations.

::::
Sect.

::
3

:::
also

::::::
details

:::
the

:::::::
datasets

::::
used

:::
to

:::::
assess

:::
the

:::::::::::
performance

::
of

:::
the

::::::
EnSRF

::::
and

::
the

::::::
SEKF.

:
The impact of the EnSRF on LSVs is then assessed in Sect. 4, including the comparison with the SEKF. Finally

:
,

the paper discusses the issues encountered during the experiment and provides prospects
:::
for

:::::
future

:::::
work

:
in Sect. 5, before

concluding in Sect. 6.130

2 LDAS-Monde

LDAS-Monde (Albergel et al., 2017) is the offline, global scale and sequential data assimilation system dedicated to land sur-

faces developed by
::
the

:
Meteo-France research centre CNRM

:::::::::::::::::
(Albergel et al., 2017). Embedded within the open-access SUR-

FEX surface modelling platform (Masson et al., 2013, https://www.umr-cnrm.fr/surfex/), it consists of the ISBA land surface

model coupled with the CTRIP river routing system and data assimilationroutines that assimilates
:
.
:::::
Those

:::::::
routines

:::::::::
assimilate135

routinely satellite-based products of SSM and LAI to analyse and update soil moisture and LAI modelled by ISBA. The most

recent SURFEX_v8.1 implementation is used to conduct
::
in our experiments. We quickly recall the main components of LDAS-

Monde and subsequently detail the novel EnSRF approach for the joint assimilation of SSM and LAI. More information can

be found in Albergel et al. (2017), see also https://www.umr-cnrm.fr/spip.php?article1022&lang=en.

2.1 ISBA land surface model140

The ISBA (Noilhan and Planton, 1989; Noilhan and Mahfouf, 1996) LSM aims to simulate the evolution of LSVs such as

soil moisture, soil heat or biomass
::::::::::::::::::::::::::::::::::::::::::::::
(Noilhan and Planton, 1989; Noilhan and Mahfouf, 1996). We use in this paper the soil

::::
ISBA

:
multilayer diffusion scheme version (Boone et al., 2000; Decharme et al., 2011) involving a discretization of 14 layers

of soil over 12 m depth to solve
:::::
which

::::::
solves the mixed form of Richards equations (Richards, 1931) for water and the

one-dimensional Fourier law for heat . The
:::::::::::::::::::::::::::::::::::
(Boone et al., 2000; Decharme et al., 2011).

::::
The

::::
soil

::
is

:::::::::
discretized

:::
in

::
14

::::::
layers145

:::
over

::
a
:::::
depth

:::
of

:::::
12m.

::::
The lower boundary of

:::
each

:::::
layer

::
is
:::::

0.01,
:::::
0.04,

::::
0.1,

:::
0.2,

::::
0.4,

::::
0.6,

::::
0.8,

::::
1.0,

:::
1.5,

::::
2.0,

::::
3.0,

::::
5.0,

::::
8.0,

:::
and

::
12

:::
m

:::::
depth

::::::::::::::::::::::::::::::
(see Fig 1. of Decharme et al., 2013).

::::
The

::::::
chosen

:::::::::::
discretization

:::::::::
minimizes

:::
the

::::::
errors

::::
from

:
the 14 soil layers

(0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, 5.0, 8.0 and 12.0 m depth, see also Fig 1. of Decharme et al., 2013) was chosen

to minimise errors coming from solving numerically the
::::::::
numerical

:::::::::::::
approximation

::
of

:::
the diffusion equations.

Regarding vegetation dynamics and interactions between
:::
the water and carbon cycles, we use the ISBA-A-gs configuration150

(Calvet et al., 1998, 2004; Gibelin et al., 2006). This CO2-responsive version represents the relationship between the leaf-level

net photosynthesis rate (A) and stomatal aperture (gs). Dynamics of vegetation variables such as LAI or biomass are induced

by photosynthesis in response to atmospheric variations. LAI growing phase from a prescribed threshold (1.0 m2.m−2 for

coniferous trees, 0.3 m2.m−2 for every other type of vegetation) results from an enhanced photosynthesis and CO2 uptake. On

the contrary, a deficit of photosynthesis leads to higher mortality rates and a decreased LAI. Leaf biomass is determined from155

LAI (and vice-versa) through dividing LAI by the specific leaf area (one of the ISBA parameters depending on the vegetation
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type).
:::
For

:::::
arctic

:::::::
regions,

::::::::
hydraulic

::::
and

::::::
thermal

::::
soil

::::::::
properties

:::
are

::::::::
modified

::
in

:::::
order

::
to

:::::::
include

:
a
::::::::::
dependency

:::
on

:::
soil

:::::::
organic

:::::
carbon

:::::::
content

::::::::::::::::::::
(Decharme et al., 2016).

From a practical point of view, ISBA is run in this paper at a regular 0.25o spatial resolution. Each ISBA grid cell is divided

into 12 generic patches: 9 representing different types of vegetations (deciduous forests, coniferous forests, evergreen forests,160

C3 crops, C4 crops, C4 irrigated crops, grasslands, tropical herbaceous and wetlands), and three others depicting bare soils,

bare rocks and permanent snow or ice surfaces. Each patch covers a varying percentage of grid cells. Denoted α[p] for patch

p of a given grid cell, this percentage is also known as the patch fraction. Vegetation and soil parameters for each patch and

grid cell of ISBA are derived from the ECOCLIMAP II land cover database (Faroux et al., 2013) that is fully integrated in

SURFEX.
:
jj
:

165

2.2 CTRIP river routing model

The ISBA LSM is coupled with CTRIP to simulate hydrological variables at continental scale. Based originally on the work

of Oki and Sud (1998), CTRIP aims to convert simulated runoff into
:::::::
simulated

:
river discharges. The model is fully described

in the following papers: Decharme et al. (2010), Decharme et al. (2012), Vergnes and Decharme (2012), Vergnes et al. (2014)

and Decharme et al. (2019).170

CTRIP is available at a 0.5o spatial resolution. Coupling
:::
The

:::::::
coupling

:
between ISBA and CTRIP occurs on a daily basis

through the OASIS3-MCT coupler (Voldoire et al., 2017). ISBA provides updated runoff, drainage, groudwater
::::::::::
groundwater

and floodplain recharges to CTRIP,
:
while the river routing model returns the water table depth or rise, floodplain fraction and

flood potential infiltration to the LSM.

2.3 Data assimilation175

LDAS-Monde is a sequential data assimilation system working on
::::
with

:
a 24h assimilation window. Each cycle is divided in

two steps: forecast and analysis. Quantities produced during the forecast step (analysis step) are denoted with a superscript f

(superscript a). The state of the studied system is described by x[p] the control vector that contains every prognostic variable of

the ISBA LSM for a patch p and a given grid point. In this paper, we consider LAI and soil moisture from layer 2 (1-4 cm depth
:
,

::::
SM2) to 7 (60-80 cm depth

:
,
::::
SM7) in the control vector, soil moisture in layer 1 being driven mostly by atmospheric forcings180

(Draper et al., 2011; Barbu et al., 2014). As in many LDASs, LDAS-Monde perform DA for each grid point independently (no

spatial covariances
::
are

:
considered).

The forecast step consists of propagating the state of the system from a time t to 24h later. Since patches and grid cells

::::::
t+24h

:::::
using

::::::
ISBA.

::::::
Patches

::
in
:::::

each
:::::
ISBA

::::
grid

:::
cell

:
do not interact between each otherin ISBA, denoted byM[p] for

:
.
::::
This

::::::
implies

::::
that,

:::
for

:
a
:
patch p, the forecast step can be written as:

::
of

::::
x[p],:::::::

denoted
::
by

::::::::::::
xf
[p](t+ 24h),

::::
only

:::::::
depends

:::
on

:::
the

:::::::
analysis185

:
at
::::
time

::
t,
:::::::
xa
[p](t), :::

and
:::
the

:::::
ISBA

::::
LSM

:::::
using

:::
the

:::::::::::::
parametrization

:::
for

:::::
patch

::
p,

:::::::
denoted

::
by

::::::
M[p]. :

It
:::::
gives:

:

xf
[p](t+ 24h

:::
24h) =M[p]

(
xa
[p](t)

)
(1)

The analysis step then corrects forecast estimates by assimilating observations of LAI and SSM.
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2.3.1 Simplified Extended Kalman Filter

LDAS-Monde uses routinely a Simplified Extended Kalman Filter for the analysis step (Mahfouf et al., 2009). Observations190

(SSM and/or LAI) yo are available at a grid cell level. To compute the analysis, we first need to calculate model equivalents

of observations at the same
::
are

::::::::::
interpolated

:::
on

:::
the

:::::
ISBA

::::
grid

:::
for

::::::::::
assimilation

::::
(see

::::
Sect.

:::
3.2

:::
for

:::::
more

:::::::::::
information).

:::
For

:::::
each

::::
ISBA

::::
grid

::::
cell,

:::
we

:::::::
consider

:::
the

::::::
vector

::
yo

:::::::::
containing

:::
all

::
the

:::::::::::
observations

::::::::
available

::
for

::::
that

::::
grid

:::
cell

::
at

:::
the

::::
time

::
of

:::::::::::
assimilation.

:::
The

:::::
SEKF

:::::::
analysis

::::
step

::
is

::
in

::::::::
two-step.

::::
First

:::
we

:::::::
calculate

:::
the

::::::
model

:::::::::
equivalent,

::::::
denoted

:::
by

:::
yf ,

::
at

:::
the

:::::
ISBA

::::
grid

:::
cell level. This

is performed by aggregating control variables from each patch to obtain the model equivalent yf
:
of

:::
the

:::::
ISBA

::::
grid

::::
cell using a195

weighted average:

yf =

12∑
k=1

α[k]Hxf
[k] (2)

H denotes the linear operator selecting model equivalent from each patch (modelled LAI for observed LAI, modelled soil

moisture in layer 2 for SSM).

The
::::
Then,

:::
the SEKF analysis step then

::
is

::::::::
performed

:::
for

::::
each

:::::
ISBA

::::
grid

::::
cell.

:::
We

:::::
further

:::::::
assume

:::
that

:::::
there

:::
are

::
no

::::::::::
covariances200

:::::::
between

:::
the

:::::::
patches.

:::::::::
Therefore,

::::
each

:::::
patch

::
is
:::::::
updated

:::::::::
separately.

::::
For

::::
each

:::::
patch,

::::
the

:::::
SEKF

:::::::
analysis

:
follows the traditional

Kalman update,
:
.
::
It

:
replaces the forecast error covariance matrix by a fixed

::::
with

:
a
:::::

fixed
:::::::::
prescribed

:::::
error

:::::::::
covariance

:
matrix

Band uses as observation operator
:
.
:::
The

::::::::::
observation

:::::::
operator

::
is

:
the product of the model state evolution over the 24h window

::::
from

:
t
::
to

::::::
t+24h

:
and the conversion of the model state into observation equivalents. We further suppose that the fixed B matrix

is diagonal. This implies that there is no covariances between patches.
::
the

::::::::::
observation

::::::::::
equivalent.

:::::
Thus,

:::
the

:::::::
Jacobian

:::
of

:::
the205

:::::::::
observation

:::::::
operator

::::::::
involves

::
H

:::
and

:::::
M[p],:::

the
::::::::
Jacobian

:::::
matrix

:::
of

:::::
M[p]. In the end, for

::::
each patch pit gives: ,

:::
we

:::::
have:

:

xa
[p] = xf

[p] +α[p]B
(
HM[p]

)T
C−1

SEKF

(
yo−yf

)
(3)

and

CSEKF =

12∑
k=1

α2
[k]

(
HM[k]

)
B
(
HM[k]

)T
+R (4)

with R the observation error covariance matrixand M[p] the Jacobian matrix ofM[p]. In practice, columns of M[p] are calcu-210

lated by finite differences using perturbed model runs. For each component xj of the control vector and its perturbation δxj ,

the j-th column of
::::
M[p] can be written as:

[
M[p]

]
j
=
∂xf (t+24h)

∂xj
≈
M[p] (x

a(t)+ δxj)−xf (t+24h)

δxj
(5)

::::::
Details

::
on

::::
how

::
to

::::::
obtain

:::
eq. (3)

:::
and (4)

:::
can

::
be

:::::
found

::
in
:::::::::::::
supplementary

:::::::
material.

:

2.3.2 Ensemble Square Root Filter215

We adapt the EnSRF from Whitaker and Hamill (2002) to the context of LDAS-Monde following the work of Fairbairn et al.

(2015). The EnSRF is an EnKF-based approach in which the state of a system and associated uncertainties are described by
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an ensemble of Ne control vectors
{
x
(i)
[p] , i= 1, . . . ,Ne

}
for patch p of a given grid cell.The EnKF as a Monte Carlo approach

approximates the classical Kalman Filter
::::::::
equations using the ensemble mean

x[p] =

Ne∑
i=1

x
(i)
[p] (6)220

to describe the state of the system and the ensemble covariance matrix

P[p] =
1

Ne− 1
X[p]X

T
[p] (7)

with
:::::
where

:
X[p] =

[
x
(1)
[p] −x[p], . . . ,x

(Ne)
[p] −x[p]

]
:
is
:

the ensemble perturbation matrix, to describe the uncertainties of the

estimation.

The forecast stepis simple
::
In

:::
the

:::::::
forecast

::::
step, we propagate as in Eq. (1) each ensemble member from a time to 24h later225

::::
time

:
t
::
to

::::::
t+24h using the ISBA LSM. The analysis step then corrects the ensemble mean and the ensemble perturbation matrix

by assimilating observations. To that end, we first calculate the model equivalent of
:::
the observations by aggregating the mean

of the forecast ensemble over all the patches

yf =

12∑
k=1

α[k]Hxf
[k] . (8)

Then the EnSRF analysis creates an analysed ensemble whose
:::
The

::::::::
analysis

:::
step

::::
then

:::::::
updates

:::
the

::::::::
ensemble

::::::
whose

::::::::
analysed230

mean and covariance matrix matches exactly the analysis of the Kalman Filter
::::
when

:::
the

::::::::::
observation

:::::::
operator

::
is

:::::
linear.

We choose to neglect here
:::
the ensemble covariances between patches in the analysis step of the EnSRF. This asumption

:::::::::
assumption

:
is in line with the succesfull methodology of the SEKF and

:::::
SEKF

:::::::
method

:::
and

::
it
:
ensures a fair comparison be-

tween both approaches. It also allows control variables from each patch to be updated independently. This places our approach

in a similar context as others EnKFs involved in LDASs where ensembles with no more than
:::
the

:::
two

:::::::::::
approaches.

::::
The235

:::::::
approach

::::::::
outlined

::::
here

::
is

::
in

::::
line

::::
with

:::::
other

::::::
studies

::::::::::::::::::::::::::::::::::::::::::
(Fairbairn et al., 2015; Carrera et al., 2015) showing

::::
that

:::::::::
1D-EnKFs

::::
can

::::::
achieve

:::::::::
promising

:::::
results

::::
with

::::::
around

:
20 members have achieved satisfactory results. For example, Fairbairn et al. (2015) and

Carrera et al. (2015) have shown that sampling errors from the finite ensemble size were not significant for ensembles greater

than 20
::::::::
ensemble members.

Following this asumption, for a given patch p
:
p,

:
the analysed mean and perturbation matrix are given by the following240

equations:

xa
[p] = xf

[p] +α[p]P
f
[p]H

TC−1
EnSRF

(
yo−yf

)
(9)

and

Xa
[p] =

(
I−α[p]K̃[p]H

)
Xf

[p] (10)

with245

CEnSRF =

12∑
k=1

α2
[k]HPf

[p][k]
:
HT +R (11)
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and

K̃[p] = α[p]P
f
[p]H

T
(
CT

EnSRF

)−1/2
(
C

1/2
EnSRF +R1/2

)−1

(12)

Such an approach, contrary to the SEKF, updates the state covariance matrix that will evolve in time. This ensures that

statistics of the estimates keep information from past observations
:::::::::
information

:::::
from

:::
the

:::::::
analysis

::
is
::::::

stored
::
in

:::
the

:::::::::
ensemble250

:::
and

::
is

:::::::::
propagated

:::::::
forward

::
in

::::
time.

3 Experimental setup and data sets

The effect of SEKF and EnSRF on LSVs is compared over the Euro-Mediterranean region (longitude from 11.5oW to 62.5oE,

latitude from 25.0oN to 75.5oN) at a 0.25o spatial resolution during the decade 2008 – 2017. We detail in the following

subsections the atmospheric forcing, the assimilated observations, the validation data sets employed in this comparison
:::::
paper255

before detailing the experimental setup.

3.1 Atmospheric forcing

The ISBA LSM is forced with the ERA-5 atmospheric reanalysis (Hersbach and Dee, 2016)
:::::
ERA5

:::::::::::
atmospheric

:::::::::
reanalysis

:::::::::::::::::::::::::::::::::::::::
(Hersbach and Dee, 2016; Hersbach et al., 2019) developed by ECMWF. ERA-5 reanalysis is available with an hourly fre-

quency at a 31-km spatial horizontal
::
31

:::
km

::::::::
horizontal

::::::
spatial resolution. To be used, surface atmospheric variables such as air260

temperature, surface pressure, solid and liquid precipitations, incoming shortwave and longwave radiations or
:::
and

:
wind speed

are interpolated to ISBA 0.25º spatial resolution with a
::::
using bilinear interpolation. Albergel et al. (2018a, b) have shown that

forcing ISBA with ERA-5 compared to ECMWFprevious ERA-Interim atmospheric reanalysis improves the quality
::::::::
Replacing

:::::::::
ECMWF’s

::::::::::
atmospheric

:::::::::::
ERA-Interim

:::::::::
reanalysis

::
by

::::::
ERA5

:::
has

:::::
been

:::::
shown

:::::::::
beneficial

::
in

:::
the

::::::
context

:
of LSVs reanalyses

::::
with

::::::
LDASs

:::::::::::::::::::::
(Albergel et al., 2018a, b).265

3.2 Observations for assimilation

In this paper we assimilate observations from the SWI-001 and GEOV1 LAI data sets, both being distributed by the Copernicus

Global Land Service. These satellite-derived products have been already
::::::
already

::::
been

:
successfully assimilated in

::
the

:
LDAS-

Monde (e.g. Leroux et al., 2018; Albergel et al., 2019).

The SWI-001 product consists of Soil Water Indices (SWI) obtained through a recursive exponential filter (Albergel et al.,270

2008) using backscatter observations from the ASCAT C-band radar (Wagner et al., 1999; Bartalis et al., 2007). A one-day

time scale is used in the recursive filter in order to measure
:::::::
estimate the wetness of the first centimetres of the soil. This product

is available daily at a 0.1o spatial resolution. The raw SWI-001 averaged over the 2008-2017 period can be seen in Figure 1 (a).

To be assimilated
::::
Prior

:::
to

:::
the

::::::::::
assimilation, the SWI-001 product needs to be rescaled to the model climatology to avoid

introducing any bias in the LDAS system (Reichle and Koster, 2004; Drusch et al., 2005). We apply a linear rescaling to SWI-275

001 to match the observation mean and variance to the mean and variance of the modelled soil moisture in the second layer
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of soil (1-4 cm). Introduced by Scipal et al. (2008), this rescaling also known as
::::
gives

::
in

:::::::
practice

::::
very

::::::
similar

::::::
results

::
to

:
CDF

(cumulative distribution function) matching
:
.
::::
The

:::::
linear

::::::::
rescaling is performed on a seasonal basis (with a 3-month moving

window). Draper et al. (2009) and Barbu et al. (2014) have highlighted the importance of allowing seasonal variability in the

rescaling.280

The
:::::::::::
GEOLAND2

::::::
Version

::
1
:
(GEOV1

:
) LAI product is obtained through a neural network algorithm (Baret et al., 2013)

transforming observations of reflectance from SPOT-VGT and PROBA-V satellites into LAI. This dataset is available every 10

days at best at a one kilometre spatial resolution
::::
with

:::
the

::::
finest

::::::
spatial

:::::::::
resolution

:::::
being

:
1
:::
km. The GEOV1 LAI averaged over

the 2008-2017 period can be seen in Figure 1 (b).

Following Barbu et al. (2014), both observation datasets are interpolated on the model grid (0.25o spatial resolution) where285

and when at least half of observation grid points are available. As in previous LDAS-Monde studies, we use a 24h assimilation

window and observations are assimilated at 9:00 UTC.

3.3 Validation data sets

We consider independent datasets of evapotranspiration
::::
(ET), gross primary production

:::::
(GPP)

:
and river discharges to assess

the validity of our approach and measure the influence of the EnSRF on the improvement of LSV reanalyses.290

Satellite-derived estimates of evapotranspiration
:::
ET come from the GLEAM v3.3b product (Miralles et al., 2011; Martens

et al., 2017). Daily estimates available for the period 1980 – 2018 at a 0.25o spatial resolution are fully driven by satellite

observations and, as such, are independent from LDAS-Monde estimates. Figure 1 (c) displays GLEAM evapotranspiration

::
ET

:
averaged over the period 2008–2017 considered for validation in this paper.

Observations of Gross Primary Production (GPP )
::::
GPP are derived from the FLUXCOM project. This dataset is obtained295

by merging upscaled measurements from eddy
:::::::::::::
eddy-covariance

::::
flux towers and satellite observations using machine learning.

More details can be found in Tramontana et al. (2016) and Jung et al. (2017). They
:::
The

::::::::::
FLUXCOM

::::
data

:
are available at a

0.5o spatial resolution on a monthly basis for the period 1982 – 2013. Figure 1 (d) shows FLUXCOM GPP averaged over the

period 2008–2013 considered for validation in this paper.

River discharges obtained with CTRIP
::::::::
discharge

::::::
output

::::
from

:::
the

::::::
CTRIP

::::
river

:::::::
routing

:::::
model

:
are compared to daily stream-300

flow data
:::::::
obtained

:
from the Global Runoff Data Centre (https://www.bafg.de/GRDC). Due to the low resolution of CTRIP

(0.5o spatial resolution), we only consider data for sub-basins with rather large drainage areas (greater than 10 000 km2) with

a long enough time series (4 complete years or more over 2008 – 2017).

3.4 Experimental setup

To assess the impact of EnSRF on LSV reanalyses and compare its efficiency
::::
skill with the routinely used SEFK, we have305

run LDAS-Monde over the Euro-Mediterranean region for the period 2008 –
::::::::
(longitude

::::
from

:::::::
11.5oW

::
to

:::::::
62.5oE,

::::::
latitude

:::::
from

::::::
25.0oN

::
to

:::::::
75.5oN)

::
at

::
a

::::
0.25o

::::::
spatial

:::::::::
resolution

::::::
during

:::
the

::::::
decade

:::::
2008

:
–
:
2017 for three different configurations: one model

run without assimilation (i.e. open loop), one using the SEKF and another one using the EnSRF with a 20-members ensemble.

This size of the ensemble is consistent with Fairbairn et al. (2015) and Carrera et al. (2015). All three configurations start from

10
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the same initial state obtained after spinning-up ISBA-CTRIP twenty times over 2008. This provides an initial state for which310

the system has reached equilibrium.

For the SEKF configuration, the Jacobian matrix Eq. (5) is obtained by finite differences using perturbed model runs. Fol-

lowing Draper et al. (2009) and subsequent studies, perturbations are taken proportional to the dynamic range (difference

between the volumetric field capacity wfc and the wilting point wwilt) for soil moisture variable. In practicethey are set to

10−4× (wfc−wwilt). For LAI, perturbations ,
:::::::::::
perturbations

:::
for

:::
SM are set to following Rüdiger et al. (2010)

::::::::::::::::
10−4× (wfc−wwilt).315

Regarding the fixed background error covariance, we prescribe a mean volumetric standard deviation (SD) of 0.04 m3.m−3

for soil moisture
:::
SM in the second layer and 0.02 m3.m−3 for soil moisture

:::
SM

:
in deeper layers, both are then scaled

by the dynamic range . LAI
:
of

:::::
SM.

:::
For

:::::
LAI,

:::::::::::
perturbations

::::
are

:::
set

::
to

::
a
:::::::
fraction

::::::::
(0.001)of

::::
the

::::::::
modelled

::::
LAI

:::::::::
following

:::::::::::::::::
Rüdiger et al. (2010).

::::
LAI

:
background error SD is set to 20% of the LAI value for modelled values above 2.0 m2.m−2 and

to a constant 0.4 m2.m−2 for modelled values below 2.0 m2.m−2. This SEKF configuration is the same as the successful one320

detailed in Albergel et al. (2017).

About the EnSRF configuration, the initial ensemble is obtained by perturbing the initial state using Gaussian perturbations

:::::::::::
perturbations

:::::::
sampled

::::
from

:
a
::::::::::
multivariate

::::::::
Gaussian

:::::::::
distribution

:
with a zero-mean and using

::
the

:::::::::
prescribed

:
B for the covariance

matrix
:::::::::
covariance

::::::
matrix

::::
used

:::
in

:::
the

::::::
SEKF

::
as

:::
the

::::::::::
covariance

::::::
matrix

::
of

::::
that

::::::::::
multivariate

:::::::::
Gaussian

::::::::::
distribution. Ensemble

Kalman Filters tend to underestimate variances and ensembles
::::::
spreads. This brings about an artificially shrunk

::::
small

:
spread325

leading ultimately to filter divergence if not counteracted. Hamill and Whitaker (2005) has shown that adding random pertur-

bations to each ensemble member (additive inflation) at the start of each assimilation cycle can overcome this issue. It can

also be used to represent model error. As in Fairbairn et al. (2015) we use time-correlated model errors using a first-order

auto-regressive model. We prescribe an associated white
::::::::
Gaussian noise with zero mean and a SD of λ(wfc−wwilt) for soil

moisture (SM)
:::
SM, with λ= 0.5 for SM in layer 2 (1-4 cm depth), 0.2 for SM in layer 3 (4-10 cm depth), 0.05 for SM in layer 4330

(10-20 cm depth) and 0.02 for SM in deeper layers. These values are in line with Fairbairn et al. (2015). For LAI, we prescribe

a white
::::::::
Gaussian noise with zero mean and a SD of 0.5 m2.−2. We also fix the time correlation to 1 day for SM in the second

layer and 3 days for SM in deeper layers. This is similar to
::
the

:::::
work

::
of

:
Reichle et al. (2002) and Mahfouf (2007). For LAI, a

rather small 1-day time correlation has to be used in order to avoid a collapse of the ensemble during the winter season due to

the LAI threshold in ISBA.335

For both SEKF and EnSRF configurations, we follow previous LDAS-Monde studies and set soil moisture
::::
SSM

:
observa-

tional errors to 0.05 m3.m−3 scaled to the dynamic range and LAI observational errors to 20% of the observed LAI values

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(see e.g Albergel et al., 2017; Leroux et al., 2018; Tall et al., 2019).

3.5 Evaluation strategy

As a sanity check, we first verify that EnSRF estimates of SSM and LAI are closer to observations than their model free run340

::::
open

::::
loop

:
counterparts. We also compare the impact of EnSRF and SEKF on those two LSVs

:::
SM

::
in

:::::
layer

:
2
::::
(1-4

:::
cm

::::::
depth,

:::::
SM2)

:::
and

::::
LAI. This is achieved using scores such as biases, correlation coefficients (R), root mean square differences (RMSD)

and normalised root mean square differences (nRMSD, RMSD divided by the averaged value of the studied variable).

11



The impact of assimilation on unobserved control variables (SM in deeper layers) is then assessed using daily analysis

increment. Moreover, we study the evolution of
::
the

:
ensemble correlations between unobserved and observed variables in the345

EnSRF configuration. They drive (as Jacobian values in the SEKF configuration) the influence of observations on unobserved

control variables. We focus on SM in layer 4 (10-20 cm depth, SM4) and layer 6 (40-60 cm depth, SM6) as SM in layer 3 (4-10

cm depth) exhibits the same behaviour as SM4 and soil moisture in layer 5 (20-40 cm depth) and layer 7 (60-80 cm depth)

have a similar response to
:::
the

::::
same

:::::::::
behaviour

::
as SM6 (not shown).

Potential improvements on
::
in

:
EnSRF and SEKF estimates for evapotranspiration

:
of

:::
ET

:
and GPP are measured using the350

same metrics as for SSM and LAI.

Finally the influence on river discharges for both DA approaches is measured by the Nash-Sutcliffe efficiency (NSE) score:

NSE = 1−

T∑
t=1

(Qs
t −Qo

t )
2

T∑
t=1

(
Qo

t −Q
o
)2 (13)

with Qs
t the simulated or analysed river discharge at time t, Qo

t the observed river discharge at the same time and Q
o

the

observed averaged river discharge. The NSE is a quantity between−∞ and 1. A NSE value of 1 means that the model/analysis355

matches perfectly observations. A NSE value of 0 means that the model/analysis has the same accuracy
::::
NSE as the observed

averaged river discharge. Improvements or degradations caused by the SEKF or the EnSRF compared to the model run
::::
open

::::
loop is measured with the Normalised Information Contribution Index (NIC):

NICNSE = 100×
NSEanalysis−NSEmodel

1−NSEmodel
(14)

4 Results360

4.1 Impact of assimilation on LAI

Figure 2 displays for the model run
::
the

:::::
open

::::
loop, SEKF and EnSRF analyses and for observations,

:::::::
observed

::::
LAI 10-days time

series of LAI averaged over Europe and the Mediterranean basin
:::
and spanning the period 2008 – 2017. It shows that the model

simulation underestimates LAI compared to observations during winter and summer. The growing phase of vegetation occurs

at a slower pace with averaged LAI reaching its maximum early August instead of late June – early July for observations. The365

senescence phase subsequently takes place later in the autumn compared to observations. Both data assimilation
:::
DA systems

correct efficiently model simulations for that latter phasewith EnSRF estimates getting closer to observations than SEKF ones.

However, both SEKF and EnSRF fail to compensate the slower LAI dynamics of the model during spring. Nevertheless, both

approaches reduce RMSD
:::
This

::
is

::
in

::::::::::
compliance

::::
with

::::
what

:::::::::::::::::::::
Albergel et al. (2017) and

:::::::::::::::::::::
Leroux et al. (2018) have

::::::::
observed

::::
over

::
the

:::::::::::::::::
Euro-Mediterranean

::::::
region.

:::::::
During

:::
the

:::::::
growing

::::::
phase,

::::::::
modelled

:::
LAI

::
is
:::::
more

:::::::
sensible

::
to

:::::::::::
atmospheric

:::::::::
conditions

::::
than

::
to370

:::::
initial

::::
LAI

:::::::::
conditions.

:::::
This

::::::
implies

::::
that,

::::::
while

:::
DA

::::
can

:::::::::
artificially

:::
add

::::
LAI

::::
and

::::::::
biomass,

::
its

::::::
impact

::::
can

::
be

:::::::
limited

:::
by

:::
the

::::::::::
atmospheric

:::::::
forcing.

::::::
During

:::
the

::::::::::
senescence,

:::
LAI

:::::::::
dynamics

:
is
::::::
driven

::
by

:::
the

::::
rate

::
of

::::::::
mortality,

::::
thus

:::::::
making

:::
DA

::::
more

::::::::
efficient.
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::
As

::::::::
expected,

::::
both

::::
DA

:::::::::
approaches

:::::::
produce

::::::::
estimates

:::
that

:::
are

::::::
closer

::
to

::
the

::::::::::
assimilated

::::
LAI

::::::::::
observations

::::
than

::::
their

:::::
open

::::
loop

::::::::::
counterpart.

:::::::
RMSDs

:::
are

::::::
reduced

:
from 0.880 m2.m−2 for the model

::::
open

::::
loop to 0.671 m2.m−2 for SEKF and 0.694 m2.m−2

for EnSRFand increase correlations with observations (.
:::::::::::
Correlations

::::
with

:::::::::
assimilated

:::::::::::
observations

:::
are

::::::::
increased

:
from 0.593375

for the model to 0.732 for SEKF and 0.723 for EnSRF).
:
.
::
A

:::
full

::::::::
summary

:::
of

:::::::
statistics

:::
for

::::
LAI

:::
can

:::
be

:::::
found

::
in
:::::
Table

::
1.
:

We

also note that the maximum LAI for EnSRF is smaller than the model or the SEKF maxima. This is due in part to a systematic

negative bias introduced by EnSRF model perturbations leading to an averaged bias of -0.201
:::
The

::::::::
averaged

:::
bias

:::
for

:::
the

:::::
open

::::
loop

:
is
::::::
rather

::::
small

:::::
with

:::::
-0.020

:
m2.m−2compared to a bias of -0.020

:
,
:::
but,

::
it

:::::
hides

:
a
:::::::
negative

::::
bias

::::::
during

:::::
winter

::::
and

:::::::
summer

:::
that

::
is

:::::::::::
compensated

::
by

::
a
:::::::
positive

:::
bias

::::::
during

:::::::
autumn.

:::
DA

::::::::::
approaches

::::::
mostly

::::::
correct

:::
the

:::::::
positive

::::::::
autumnal

::::
bias,

::::
thus,

:::::::
making380

::
the

::::::::
averaged

::::
bias

:::::
more

:::::::
negative,

::::::
-0.116

:
m2.m−2 for the model and -0.116

:::::
SEKF

:::
and

::::::
-0.201

:
m2.m−2 for the SEKF.

::::::
EnSRF.

:::
The

::::
bias

::
is

::::
more

::::::::
negative

::
for

:::
the

:::::::
EnSRF

::::
than

:::
for

:::
the

:::::
SEKF

:::
for

:::::
every

::::::
season.

::::
This

::
is

::::
due

::
in

:::
part

::
to
::
a
:::::::::
systematic

:::::::
negative

::::
bias

:::::::::
introduced

::
by

:::
the

:::::::
EnSRF

:::::
model

::::::::::::
perturbations.

::::
This

::::
bias

::::
can

:::::::::
sometimes

::::
lead

::
to

::::::::
degraded

::::::::::::
performances.

:::
As

:::::::
pointed

:::
out

:::
by

::::::::::::::::::
Fairbairn et al. (2015),

::::::
model

:::::::::::
perturbations

:::
can

::::::::
introduce

:
a
::::
bias

::::
into

:::
the

::::::
system

::
in

:::::::
LDASs.

Figure 3 shows nRMSD calculated over 2008 – 2017 for model outputs
::
the

::::
open

::::
loop

:
(a) and the difference between nRMSD385

for the model
::::
open

::::
loop

:
and the estimates produced with SEKF (b) and EnSRF (c). On average nRMSD is reduced from 0.57

(model
::::
open

::::
loop) to 0.42 (EnSRF) and 0.40 (SEKF). Both assimilation approaches display the same geographical patterns

reducing significantly nRMSD over most parts of the Euro-Mediterranean region (in blue in Figure 3). For example, roughly

20% of the domain has a nRMSD reduced by 0.25. We note that largest nRMSD reductions occur in places where nRSMD

are large. The main differences between the two methods occur in Scandinavia, around the arctic circle, Ireland and Western390

Great Britain
:::::::
Ireland,

::::::
western

:::::
Great

:::::::
Britain,

::::::::
northwest

::::::
Spain,

:::
the

::::
Alps,

:::::::::::
Scandinavia

:::
and

:::::
arctic

::::::
regions, where the SEKF shows

greater positive impact than EnSRF, the latter even providing slightly degraded estimates compared to the model run
::::
open

::::
loop

for 3% of the total domain (in red in Figure 3 (c)).

The geographical patterns identified in Figure 3 can be explained in part by the type of vegetation covering grid cells.

We investigate the impact of DA for each of the four main vegetation types encountered in the Euro-Mediterranean region:395

deciduous forests, coniferous forests, C3 crops and grasslands. To that end, we consider only grid cells (g.c.) in which at least

50% of their surface is covered by one of these vegetation types. Figure 4 displays the spatial distribution of those grid cells:

1589 g.c. for deciduous forests (5.7% of the domain), 4223 g.c. for coniferous forests (15.2%), 1672 g.c. for C3 crops (6.0%)

and 1725 g.c. for grasslands (6.2%).

We calculate the averaged seasonal RMSD for model outputs
:::
the

::::
open

::::
loop, SEKF and EnSRF analyses for the entire domain400

(Figure 5 (a)) and for each dominant vegetation type (Figure 5, (b)-(e)). The biggest impact of assimilating LAI occurs in

autumn for deciduous forests (Fig. 5 (e)). For example, RMSD is reduced from 2.69 m2.m−2 for the model
::::
open

::::
loop to 1.72

m2.m−2 for the SEKF and 1.45 m2.m−2 for the EnSRF. For C3 crops (Fig. 5 (c)) both assimilation approaches reduce RMSD

in a similar manner, the largest decrease happening between August and October. The SEKF and the EnSRF offer contrasting

performances in the case of grasslands (Fig. 5 (d)) as RMSDs are decreased by 0.18 m2.m−2 from model
:::
the

::::
open

:::::
loop to405

SEKF estimates but by 0.09 m2.m−2 for EnSRF estimates. Strongest
::::::
Largest RMSD reductions occur in

::
for

:
both cases in April

and September.
::::
This

:::::::
explains

:::
the

:::::::
reduced

:::::::::::
performance

::
of

:::
the

::::::
EnSRF

:::::::::
compared

::
to

:::
the

::::::
SEKF

::::
over

:::
the

::::::::::::::::::
grasslands-dominated
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::::::
Ireland,

:::::::
western

:::::
Great

::::::
Britain

:::
and

:::::
arctic

:::::::
regions.

:
For coniferous trees (Fig. 5 (b)), neither SEKF nor EnSRF has an

::
the

::::::
SEKF

:::
has

:
a
:::::
small

::::::
positive

:
impact on RMSDs .

:::
and

:::
the

::::::
EnSRF

:
a
:::::::
slightly

:::::::
negative

::::::
impact.

::::
This

:::::::
explains

:::
the

:::::
rather

::::
poor

:::::::::::
performance

::
of

::
the

:::::::
EnSRF

::::
over

::::::::::
Scandinavia.

::::
This

::::
also

:::::::
explains

:::::
what

:::::::
happens

::
in

::::::::
northwest

:::::
Spain

::::
and

::
in

:::
the

::::
Alps.

::::::
While

:::
not

:::::
being

:::::::::
dominated410

::
by

:::
one

::::
type

::
of

::::::::::
vegetation,

::::::::
coniferous

:::::
trees

:::
and

:::::::::
grasslands,

:::
the

::::
two

::::
types

:::
for

::::::
which

::
the

:::::::
EnSRF

:::::::
performs

::::::
poorly,

::::::::
represent

:::::
more

:::
than

:::
70

::
%

::
of

:::
the

:::::::::
vegetation

::
in

:::::
those

::::::
places.

The scale of reduction in RMSD for EnSRF analyses is directly connected to estimated variances and standard deviations

from the ensemble. The bigger the ensemble variances are, the larger are the weight of observations in the DA system. Figure 6

displays the seasonal evolution of ensemble standard deviations averaged over the whole domain and for grid cells dominated415

by one type of vegetation. Ensemble standard deviations are clearly larger in summer than in winter peaking in July for

c3 crops at 0.22 m2.m−2, in August for grasslands at 0.14 m2.m−2 and in September for coniferous forests at 0.07 m2.m−2.

The maximum standard deviation is observed for deciduous forests and reaches 0.35 m2.m−2 also in September.

:::::::
Standard

:::::::::
deviations

::
in

:::
the

::::::
EnSRF

:::::
relies

::::::
heavily

:::
on

::
the

::::::
model

:::::::::::
perturbations.

:::
In

:::
the

:::
case

:::
of

::::
LAI,

:::::
model

:::::::::::
perturbations

:::::::
applied

::
to

::::
LAI

::
in

:::::
every

:::::::::
vegetation

::::::
patch

:::
are

:::::::
sampled

:::::
from

:::
the

:::::
same

:::::::::::
distribution.

::::::::
However,

:::
the

:::::::::
behaviour

:::
of

::::::::
ensemble

::::::::
standard420

::::::::
deviations

::::::
varies

::::::
greatly

:::::::::
seasonally

::::
and

:::
for

::::
each

::::
type

:::
of

:::::::::
vegetation.

::::::::
Standard

:::::::::
deviations

:::
for

:::::::::
coniferous

:::::
trees

:::
are

::
so

::::
low

::
it

::::
leads

::
to

::::::
almost

:::
no

::::::
impact

::
of

::::
DA.

:::::
Such

::::::::
behaviour

:::
can

:::
be

::::::::
explained

:::
by

:::
two

:::::::
caveats:

:::::
first,

:::::
ISBA

::::::::
modelled

::::
LAI

::::::
evolves

::::
over

::
a

::::::::
prescribed

::::::::
threshold

::
(1

:::::::
m2.m−2

:::
for

:::::::::
coniferous

::::::
forests,

:::
0.3

:::::::
m2.m−2

:::
for

:::::
other

::::::::
vegetation

::::::::
patches).

::::::
Model

:::::::::::
perturbations

:::
can

::::
lead

::
to

:::
LAI

::::::
values

:::::
below

::::
this

::::::::
threshold.

:::
To

:::::
avoid

:::::
model

::::::
issues,

::::::::
estimated

::::
LAI

::
is

::::
reset

::
to

:::
that

::::::::
threshold

:::::
when

::::
this

:
is
:::
the

:::::
case.

:
It
::::
can

:::
lead

::
to

:::
an

::::::::
artificially

:::::::
reduced

::::::::
ensemble

:::::::
standard

::::::::
deviation

:::::
when

::::::::
modelled

::::
LAI

:
is
:::::
close

::
to

:::
that

::::::::
threshold

::
as
:::
in

:::::
winter.

:::::::::
Secondly,425

::::
since

::::
LAI

::::::::
dynamics

:::
are

:::::::
smooth,

:::::::
reduced

::::::::
ensemble

:::::::
standard

:::::::::
deviations

:::
due

::
to
:::

the
::::::
winter

::::::
season

:::
still

:::::
have

::
an

::::::
impact

::
in

::::::
spring

::::::
through

:::
the

:::::
ISBA

:::::
LSM.

:::
An

::::::::
approach

:::
for

:::::
model

:::::
errors

:::::::
tailored

:::
for

::::
each

::::::::
vegetation

:::::
patch

:::::
could

::::::::
overcome

:::
the

::::::::
observed

:::::::
caveats.

4.2 Impact of assimilation on SSM

This section studies the impact of assimilating jointly LAI and SSM on estimated SSM. We firstly recall that observed SSM is430

derived from the SWI-001 satellite product and is matched to the model climatology of soil moisture in the second layer of soil

(1-4 cm depth) using a seasonal CDF matching
::::
linear

::::::::
rescaling. This means that assimilating observed SSM mostly corrects

the short-term variability of estimated SSM and does not modify its climatological seasonal cycle. Results from either SEKF

or EnSRF experiments are in line with this statement. For example, the bias between observed and estimated SSM remains,

on average over 2008-2017, below 0.002 m3.m−3 all over the domain
:::
(see

::::
also

:::::
Table

:
1
:::
all

:::
the

:::::::
averaged

::::::
scores

::::
with

::::::::
observed435

:::::
SSM).

Figure 7 displays RMSD calculated over 2008 – 2017 for model outputs
:::
the

::::
open

::::
loop

:
(a) and the difference between RMSD

for the model
::::
open

::::
loop

:
and the estimates produced with SEKF (b) and EnSRF (c). On average, RMSD is reduced from 0.035

m3.m−3 (model
::::
open

::::
loop) to 0.032 m3.m−3 (SEKF) and 0.027 m3.m−3 (EnSRF). Model RMSD

::::::
RMSD

:::
for

:::
the

:::::
open

::::
loop

tends to be generally larger in wetter places than in drier places with the exception of South East
::::::::
southeast Spain and parts of440

Northern
:::::::
northern Africa where RMSDs can be larger than 0.050 m3.m−3. Both assimilation approaches reduce significantly
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RMSD in many places over the domain (in blue in Figure 7 (b-c)). The main reduction occurs for both approaches in the

southern part of the Euro-Mediterranean region where grid cells consists of bare soil and bare rocks. In those places, vegetation

is sparse, and SSM is the main source of information in assimilated observations making its impact more straightforward. We

also notice that the EnSRF tends to
::::::::::::
systematically produce estimates that are closer to observations than SEKF estimates.

::::
This445

:
is
::::

due
::
to

:::
the

::::::
model

:::::::::::
perturbations

:::
for

:::
the

:::::::
EnSRF

:::
and

::::
the

:::::::::
prescribed

::::::::::
background

::::
error

::::::::::
covariance

::::::
matrix

::
in

:::
the

::::::
SEKF.

::::
The

::::::::
prescribed

::::::
model

::::
error

:::
for

:::
the

::::::
EnSRF

:::::
leads

::
to

::::::::
ensembles

::::
with

::
a
:::::
bigger

::::::::
standard

:::::::
deviation

::::
than

:::
the

::::
one

::::::::
prescribed

::
in
:::
the

::::::
SEKF

::
for

:::::
SSM.

:::::
This

::::
leads

::
to
::
a
::::::
bigger

::::::
weight

::
to

::::
SSM

:::::::::::
observations

::
in

:::
the

::::::
EnSRF

::::
than

:::
in

:::
the

:::::
SEKF,

:::::
thus,

::::::
making

:::::::
EnSRF

::::::::
estimates

:::::
closer

::
to

::::
SSM

:::::::::::
observations

::::
than

:::::
SEKF

:::::::::
estimates.

Assimilation also improves correlations with observed SSM from 0.544 for model outputs
:::
the

::::
open

::::
loop

:
in average to 0.652450

for the SEKF and 0.760 for the EnSRF. Figure 8 illustrates correlations for model outputs
:::
the

::::
open

:::::
loop (a) and difference

between correlations for the model
:::
open

:::::
loop and SEKF (b) and EnSRF (c) outputs. From correlation results, similar conclu-

sions are drawn as from RMSDs. In particular the main improvement occurs in Northern
:::::::
northern

:
Africa for both approaches.

Finally we observe negative correlations between model outputs
:::
the

::::
open

:::::
loop and observed SSM

::::
(even

::::
with

:::
the

::::::::
seasonal

:::::
linear

::::::::
rescaling)

:
in arid places such as deserts in Sahara and the Arabian Peninsula.

:::
This

::::::
shows

:::
that

:::
the

:::::::::
short-term

:::::::::
variability455

::
of

:::
the

::::::::::
observations

::
is
::::::::

different
::::
from

:::::
what

:::
we

::::::
model

::::
with

:::::
ISBA

::
in

::::
this

::::::
region.

::
It

:::::
raises

:::
the

::::::::
question

::
of

:::
the

::::::
quality

:::
of

:::::
ISBA

:::::
and/or

:::::
SSM

::::::::::
observations

:::::
(after

::::::::
seasonal

:::::
linear

::::::::
rescaling)

::
in

::::
arid

::::::
places.

:::::::::::::::::::::
Stoffelen et al. (2017) has

::::::
shown

:::
that

::::::::
observed

:::::
SSM

::::::
derived

::::
from

::::::::::::
scatterometers

::::
can

::::
have

:
a
::::
poor

::::::
quality

::
in
::::
arid

::::::
places.

::::::
Further

::::::
studies

:::
of

::::
such

::::::
aspects

:::
are

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
paper.

4.3 Correlations between observed and unobserved control variables460

Examining Jacobians in the SEKF has provided interesting insights on the sensitivity of SSM and LAI on soil moisture in

deeper layers (see e.g. Albergel et al., 2017, covering the Euro-Mediterranean region between 2000 and 2012). In the En-

SRF, the role of Jacobian is devolved to
:::::::
Jacobian

::
is

:::::::
replaced

:::
by

:
correlations sampled from the ensemble covariance matrix.

Figure 9 shows maps of correlations between soil moisture in layer 2 (1-4 cm depth, SM2 used as a proxy for SSM) and

SM in layer 4 (10-20 cm depth, SM4) and layer 6 (40-60 cm depth, SM6) and correlations between LAI and SM2, SM4 and465

SM6. Correlations are averaged by season (December-January-February, March-April-May, June-July-August and September-

October-November) over the whole
:::::
period

:
2008 – 2017.

The first two rows of Figure 9 show the seasonal evolution of correlations between SM2 and SM4 and SM6. SM4 is highly

correlated to SM2 (in blue), R being above 0.5 for most places of the domain for each seasonand correlations with SM2. SM6

is also highly correlated to SM2 but to a lesser extend
:::::
extent

:
meaning that correlations with SSM decrease in absolute value470

when we reach deeper soil layers. We also notice seasonal tendencies. For example, correlations with SM2 tend to be larger

in Western Europe during Spring
:::::::
western

::::::
Europe

::::::
during

:::::
spring

:
while they reach their maximum during Summer

:::::::
summer in

Scandinavia. Negative correlations with SM2 (between -0.35 and -0.20) tend to appear during Winter
:::::
winter

:
over Russia. It

means that in those areas in winter, there is less liquid water in the surface when there is more liquid water in deeper layers.

This is linked to snow and freezing as we only compare liquid soil moisture from the different layers of soil. We further notice475
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that SM2 and SM6 are uncorrelated in Summer
:::::::
summer over Spain and Northern Africa. Finally we remark that in

:::::::
northern

::::::
Africa.

::::
This

:::::::::::
decorrelation

:::::::
between

::::::
surface

::::
and

::::::::
root-zone

::::
soil

:::::::
moisture

::::::
occurs

::::::
during

::::
very

:::
dry

:::::::::
conditions

::::
such

:::
as

:::::::
occured

::
in

:::::
Spain

:::
and

:::::::
northern

::::::
Africa

::::::
during

:::::::
summer.

::::
The

:::::
same

:::::::::::
phenomenon

:::::::
appears

::
in very arid places such as in Sahara SM2 is not

correlated to soil moisture in deeper layers (either SM4 and SM6)
::
for

::::
each

::::::
season. This implies that assimilating SSM in those

areas will not modify soil moisture in deeper layers as we will show in the next section.480

The last three rows of Figure 9 show the seasonal evolution of correlations between LAI and soil moisture in layers 2, 4

and 6. Soil moisture tends to be less correlated on average to LAI than to SSM nevertheless the values reached are relatively

large (between -0.5 and 0.5). It means that assimilating LAI has an impact on estimated soil moisture. In detail, correlations

between LAI and SM6 are larger in absolute value than with SM4 and with SM2 meaning that LAI is more correlated to

root-zone soil moisture than with SSM. We also observe seasonal geographical patterns. Positive correlations tend to appear in485

Summer in Northern
:::::::
summer

::
in

:::::::
northern

:
Europe where deciduous and coniferous forests are dominant meaning more water

in the soil leads to a greater LAI. On the contrary in Spring and Summer
:::::
spring

::::
and

:::::::
summer, negative correlations appear

around the Mediterranean basin.
:::
This

::::::
means

:
a
::::::

higher
::::
LAI

:::::
leads

::
to

:
a
:::::::

reduced
::::
soil

:::::::
moisture

::::
due

::
to

:::::
plant

::::::::::
transpiration

:::
in

::::
part.

::::::::::::::::::
Barbu et al. (2011) has

:::::::
already

:::::::::
highlighted

::::
this

::::
kind

::
of

::::::::
behaviour

:::
for

::::::::
Jacobians

:::
for

::::::::
grassland

::::::
places

::
in

::::::::
southwest

:::::::
France.

::::::
Overall

::::::::::
conclusions

::::::
drawn

::::
from

:::::::::::
correlations

:::
are

::
in

::::::::::
accordance

::::
with

:::::
those

::::::
derived

:::::
from

:::
the

:::::::
analysis

:::
of

:::::
SEKF

:::::::::
Jacobians490

:::::
drawn

::
in

::::::::::::::::::::::
Albergel et al. (2017) over

:::
the

:::::::::::::::::
Euro-Mediterranean

::::::
region

:::
and

::::::::::::::::::
Tall et al. (2019) over

:::::::::::::
Burkina-Fasso.

::::::::::::
Nevertheless,

::
we

:::::
note

:::
that

::::::::::
correlation

:::
can

:::
be

:::::::::
influenced

:::
by

:::
the

::::
way

:::
we

:::::
apply

::::::
model

:::::
error.

:::::::
Another

::::
type

:::
of

::::::
model

:::::
error,

:::::::::
perturbing

:::
for

:::::::
example

::::::::::
atmospheric

:::::::
forcing,

::::
may

::::
have

:::
led

::
to

:::::::
different

::::::::::::
characteristics

::
of

:::
the

::::::::::
covariances

:::::::
between

:::
the

:::::
ISBA

::::::::
variables.

:

4.4 Impact of assimilation on soil moisture in deeper layers

Figure 10 displays soil moisture for layers 4 and 6 averaged over 2008 – 2017 from the model
::::
open

::::
loop

:
(left) and the495

averaged difference with SEKF estimates (central panels) and EnSRF estimates (right). We observe that the SEKF has the

same
:::
and

:::
the

::::::
EnSRF

::::
have

:::::::
overall

::::::
similar averaged SM4 as the model. Nevertheless we discern seasonal tendencies. Figure

11 shows analysis increments for SM4 and SM6 for SEKF (top row) and EnSRF (bottom row) for May, July and September.

We see that increments on SM4 tend to be negative in May and September in most parts of the domain and positive in

July in Northern Europe for SEKF. EnSRF estimates for SM4 tends to be similar to SEKF estimates.
::::
open

::::
loop.

:
The main500

difference occurs in Northern
::::::
northern

:
Africa and in the Arabian peninsula where the soil is estimated wetter than in SEKF

with a difference reaching 0.02 m3.m−3. This disparity over arid zones
::::::
regions in due solely to a wet bias introduced by

model erroras assimilating SSM in those placeshas no influence due to negligible correlationsbetween SSM and SM4
:
.
::
In

:::::
those

:::::
places,

:::
the

:::::::
EnSRF

::::::
cannot

::::::
correct

:::
this

::::
bias

:::::
using

::::::::::
observations

::
of
:::::
SSM

::
or

:::::
LAI.

::
In

::::
other

::::::
places,

:::
the

:::::::
EnSRF

:::
can

::::::
correct

:::
the

::::
bias

:::::::::
potentially

:::::::::
introduced

::
by

::::
the

:::::
model

:::::::::::
perturbations

:::
to

:::::::::
unobserved

:::::::
control

::::::::
variables

::::::
through

::::
the

::::
help

::
of

::::::::::
correlations. We also505

identify greater EnSRF SM4 estimates over places such as Poland and Spain but the difference , being
:::
with

:::
the

:::::
open

::::
loop

::
is

always below 0.01 m3.m−3, comes from more positive increments during the summer period (as shown for July in Figure 11).

Except in arid areas, SM4 estimates and analysis increments for SEKF and EnSRF tend to be similar, thus, making our SM4

estimates less dependant on the data assimilation method. .
:
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Regarding SM6 estimates, both SEKF and EnSRF produce a drier soil layer than the model for most of the domain as shown510

in Figure 10. We identify these patterns for every month without any seasonality (not shown). For SEKF drier estimates are

obtained through cycling as analysis increments
::::
Also,

::::::
EnSRF

:::::
SM6

:
is
::::::
wetter

:::
for

::::::
regions

:::::
where

::::
bare

::::
soil

::::::::
dominates

::
in
::::::::
northern

:::::
Africa

::::
than

:::::
SM6

:::::::
obtained

::::
with

:::
the

::::::
SEKF

::
or

:::
the

::::
open

:::::
loop.

:::::
Again

::::
this

::
is

:::
due

::::::
solely

::
to

:::
the

:::
wet

::::
bias

:::::::::
introduced

:::
by

:::::
model

::::
soil

:::::::
moisture

:::::::::::
perturbations

:::
as

::::
SM6

::::
and

::::
SM2

:::
are

:::::::::::
uncorrelated

::
in

:::::
those

::::::
places.

:::::
Then,

:::
we

::::
can

:::::::
observe

:::
for

::::
SM6

:::
an

:::::
abrupt

:::::::
change

::
in

:::
the

:::::
arctic

:::::
region

:::
for

:::::
both

:::::
SEKF

::::
and

::::::
EnSRF

::::::::
compared

:::
to

:::
the

::::
open

:::::
loop.

::::
This

:::::::::
difference

::
is

:::
due

::
to

::::::::
modified

::::::::
hydraulic

::::
and515

::::::
thermal

:::
soil

:::::::::
properties

::
in

:::::
ISBA

:::
for

:::::
arctic

::::::
regions.

::::
This

:::::::::::
modification

:::
has

::::
been

:::::::::::
implemented

:::
by

:::::::::::::::::::::
(Decharme et al., 2016) in

:::::
order

::
to

::::::
include

:
a
::::::::::
dependency

:::
on

:::
soil

:::::::
organic

::::::
carbon

:::::::
content.

:::::
Figure

:::
11

:::::
shows

:::::::
analysis

::::::::::
increments

::
in

::::
SM4

:::
for

::::::
SEKF

::::
(top

::::
row)

::::
and

::::::
EnSRF

:::::::
(bottom

::::
row)

:::
for

:::::
May,

::::
July

:::
and

::::::::::
September.

:::
We

:::
see

:::
that

::::::::::
increments

::
in

::::
SM4

:::::
tend

::
to

::
be

::::::::
negative

::
in

::::
May

:::
and

::::::::::
September

::
in

::::
most

:::::
parts

::
of

:::
the

:::::::
domain

:::
and

:::::::
positive

::
in
:::::

July,

:::::::::
particularly

::
in

::::::::
northern

::::::
Europe

:::
for

::::::
SEKF.

:::
The

:::::
SM4

:::::::
analyses

::::::::::
increments

:::
for

:::
the

:::::
SEKF

:::
and

:::::::
EnSRF

::::
tend

::
to

::
be

:::::::
similar,

::::::
except520

::
for

::::
arid

:::::::
regions.

::::
This

:::::
makes

:::
the

:::::
SM4

::::::::
estimates

:::
less

:::::::::
dependant

::
on

:::
the

::::
data

::::::::::
assimilation

:::::::
method.

:

:::::
About

:::::::
analysis

::::::::::
increments

:::
for

:::::
SM6,

:::::
SEKF

::::::::::
increments are close to zero . For EnSRF

::
for

::::::
every

::::::
season

:::
(not

:::::::
shown).

:::::
This

::::::
implies

:::
that

:::
the

:::::
drier

::::::::
estimates

:::
are

:::::
solely

:::
due

::
to
:::
the

:::::
joint

:::::
effect

::
of

:::
the

:::::
ISBA

::::
LSM

::::
and

:::
the

:::::::
updated

:::
LAI

::::
and

:::
soil

::::::::
moisture

::::
near

::
the

:::::::
surface.

::::
For

:::
the

::::::
EnSRF,

::::
this

::::
joint

:::::
effect

::::
also

::::::
occurs

:::
but, cycling is also responsible to this drying butanalysis increments

are not negligible (-0.01 m3.m−3 for biggest values)and
:
.
:::
The

:::::::
EnSRF

::::
SM6

:::::::
analysis

:::::::::
increments

:
compensate the wet bias from525

model error in SM6 (not shown) . As for SM4,
:::
and

::::
lead

::
to

:::::::
similar SM6 EnSRF estimates are larger than SEKF and model

estimates in Northern Africa, but this time only for places where bare soil dominates as for places where bare rocks dominates

the soil dries due to cycling. Again assimilation does not modify directly estimates as correlations are null.
:::::::
estimates

:::
as

:::
the

:::::
SEKF

::
in

::::
most

::::::
places

::
as

::::::
shown

:::::::::
previously.

Overall SEKF and EnSRF provide similar estimates for soil moisture in deeper layers for most places but not necessarily530

through the same mechanisms.

4.5 Evaluation using Evapotranspiration and Gross Primary Production

We now evaluate the performance of our data assimilation systems using independent satellite-based datasets of evapotranspiration

(ET ) and gross primary production (GPP)
::
ET

::::
and

::::
GPP.

The model
::::
open

::::
loop tends to underestimate ET leading to an averaged negative bias of -0.328 kg.m−2.day−1 reaching -0.8535

kg.m−2.day−1 in June and July. Both SEKF and EnSRF reduce this bias to -0.114 kg.m−2.day−1 and -0.059 kg.m−2.day−1,

respectively.
::::
More

:::::::
statistics

:::
on

:::
ET

:::
can

:::
be

:::::
found

::
in

:::::
Table

::
1. Figure 12 displays correlations between the GLEAM dataset and

model
::::
open

::::
loop estimates (a) and the difference between correlations for the model

::::
open

::::
loop

:
and the estimates produced

with SEKF (b) and EnSRF (c). Overall the correlation is increased on average from 0.789 to 0.803 (SEKF) and 0.823 (En-

SRF). EnSRF provides estimates that are more correlated with this independent dataset for almost everywhere
::
all

:::
grid

:::::
cells, it540

improves correlation (between 0.05 and 0.1) especially over Spain, Northern
::::::
northern

:
Africa or around the Caspian Sea where

correlations between the model
::::
open

::::
loop

:
and GLEAM were poorer than for the rest of the domain, showing its positive impact
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on ET. Similar conclusions can be drawn from geographical patterns observed for RMSD and nRMSD (not shown, see Table

1 for averaged results).

Figure 13 depicts correlation between GPP from the FLUXCOM dataset and model
::::
open

::::
loop

:
estimates (a) and the differ-545

ence between correlations for the model
::::
open

::::
loop and the estimates produced with SEKF (b) and EnSRF (c). As for ET, the

EnSRF provides GPP estimates that are more correlated to the FLUXCOM dataset than model
::::
open

::::
loop

:
and SEKF estimates

for almost everywhere, on average 0.817 compared to 0.784 for the model and 0.786 for the SEKF. The best
::::::
biggest improve-

ments are noticeable on around the Caspian Sea (above 0.05) where correlations between the model and FLUXCOM GPP were

poorer than for the rest of the domain. Also contrary to the SEKF, degradations are confined to only few places in Iraq, Iran550

and close to the Arctic circle. Again similar conclusions can be drawn from geographical patterns observed for RMSD and

nRMSD (not shown, see Table 1 for averaged results).

Overall the EnSRF exhibits moderate improvements for GPP and ET compared to SEKF, thus validating our approach.

4.6 Evaluation using river discharges

We limit our evaluation to 92 stations over Europe with a model NSE above -1. The NIC of EnSRF compared to the model555

::::
open

::::
loop is displayed for those stations in Figure 14. Most stations are located in France and Germany. Blue circles denote a

positive impact (above 3%) of EnSRF on estimated river discharges, red circles a negative one (below - 3%) and grey diamonds

a neutral impact (between -3 % and 3%). A positive NIC is observed for 61 stations and a negative NIC for only 11 stations.

:::
The

::::
rest

::
of

:::
the

::::::
stations

::::
(20)

:::::::
showed

:
a
:::::::
neutral

::::::
impact.

:
Largest NIC are noticed for German stations. Such a positive influence

for EnSRF constrasts with the rather neutral effect of SEKF on river discharges. In compliance with previous studies (Albergel560

et al., 2017; Fairbairn et al., 2017), we observe a significantly positive NIC of SEKF for only 15 stations and a negative NIC

for 3 stations (not shown).

5 Discussion

4.1 Is the EnSRF able to provide improved estimates of LSVs?

Section 4 shows overall the ability of the EnSRF to provide improved LSVs reanalyses when LAI and SSM are assimilated565

jointly.

For LAI, EnSRF estimates are on average as close as SEKF estimates to observations. We notice a stronger impact of both

data assimilation approaches during the senescence phase than during the growing phase. This is in compliance with what

Albergel et al. (2017) and Leroux et al. (2018) have observed over the Euro-Mediterranean region. During the growing phase,

the system can artificially add LAI and biomass, but if atmospheric conditions are not favourable, the modelled biomass cannot570

maintain its growing rate. During the senescence, LAI dynamics is driven by the rate of mortality, thus making DA more

efficient. We further notice that DA has an impact that varies with the type of vegetation. Impact tends to be larger when the

vegetation is dominated by deciduous forests. On the contrary, neither SEKF nor EnSRF has an impact on LAI for coniferous
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forests. But the model perfoms well on places where more than 50% of plants are coniferous trees and LAI dynamics is

weak in those places. Finally we observe that the EnSRF introduces a negative bias in LAI estimates compared to model575

or SEKF counterparts. This bias is caused by the ensemble perturbations coming from the model error. As pointed out by

Fairbairn et al. (2015), model error can introduce a bias into the system in LDASs, thus showing its influence.

In the case of LAI, model errors applied to LAI in every vegetation patch are sampled from the same distribution. However,

the behaviour of ensemble standard deviations varies greatly seasonally and for each type of vegetation. Standard deviations

for coniferous trees are so low it leads to almost no impact of DA. Such behaviour can be explained by two caveats: first, ISBA580

modelled LAI evolves over a prescribed threshold (1 m2.m−2 for coniferous forests, 0.3 m2.m−2 for other vegetation patches).

When perturbed using model error, estimated LAI can be below this threshold. To avoid model issues, estimated LAI is reset to

that threshold when it is the case leading to an artificially reduced ensemble standard deviation when modelled LAI is close to

that threshold as in winter. Secondly, since LAI dynamics are smooth, reduced ensemble standard deviations due to the winter

season still have an impact in spring through cycling. Overall we observe that ensemble standard deviations for LAI highly585

depend on the type of vegetation. An approach for model errors tailored for each vegetation patch could overcome the observed

caveats.

Regarding SSM, EnSRF estimates tend to be closer to observations than SEKF estimates. This behaviour is systematic and

is due to the prescribed model error for the EnSRF and the prescribed background error covariance matrix in the SEKF. We put

more uncertainty in the additive model error as we are unsure of our approach compared to the background error covariance590

matrix that has been routinely used in the SEKF. We also observe that in arid places such as the Sahara, observed and modelled

SSM are negatively correlated even after CDF match. This shows that the short-term variability of observations is completely

different from what we model in ISBA. It raises the question of the quality of ISBA and/or SSM observations (after CDF

matching) in arid places. Stoffelen et al. (2017) has shown that observed SSM derived from scatterometers can have a poor

quality in arid places. Studying further such aspects is however beyond the scope of the paper.595

About soil moisture in deeper layers, both approaches tend to provide similar estimates excepted in arid places where the

EnSRF provides a wetter soil than the SEKF. This difference is solely due to a wet bias introduced again by the model error.

When we perturb soil moisture, we ensure that soil moisture remains positive. In arid places where soil moisture is really low,

perturbations fatally add water. As soil moisture in deeper layers is not correlated to SSM or LAI in those places, DA cannot

correct this bias using observations of SSM or LAI. In other places, the EnSRF can correct the bias potentially introduced600

by model error to unobserved control variables through the help of correlations. They give insightful information on how

the system works. Conclusions drawn from correlations are in accordance with those derived from the analysis of SEKF

Jacobians drawn in Albergel et al. (2017) over the Euro-Mediterranean region and Tall et al. (2019) over Burkina-Fasso. We

further remark that in dry places in Summer, negative correlations between LAI and soil moisture appear. This means a higher

LAI leads to a reduced soil moisture due to plant transpiration in part. Barbu et al. (2011) has already highlighted this kind of605

behaviour for Jacobians for grassland places in South-West France. Correlations explain the links between variables in ISBA

LSM. However, they are influenced by the way we apply model error. Another model error, perturbing for example atmospheric

forcing, may have led to different correlations.
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Section 4 shows that EnSRF provides also improved estimates for evapotranspiration, gross primary production and river

discharges. In the case of river discharges, their rather systematic improvement may
:::
The

:::::
rather

:::::::::
systematic

:::::::::::
improvement

:::
of610

::::::
EnSRF

::::::::
estimates

::::::::
compared

:::
to

:::
the

::::
open

::::
loop

::::
may

:
be due in part to the assimilation of SSM and LAI. It may also be due in

part to a bias added by the EnSRF ensemble formulation (as observed for other LSVs) that compensates an existing bias due

to the coupling between ISBA and CTRIP. Further investigations have to be conducted to explore this question(out of scope).

Moreover, a negative NIC is observed for most Spanish stations, where anthropogenic effects (irrigation, importance of dams,

. . . ) dominate hydrological cycles
:::
can

:::::::::
potentially

::::::
modify

::::
soil

::::::::
moisture,

:::::::::
streamflow

::::
and

::::
river

:::::::::
discharges

:::::::::::::::::
(Milano et al. , 2013).615

Since CTRIP does not consider anthropogenic effects, this can explain poor performances of the LDAS-CTRIP system.

5
:::::::::
Discussion

5.1 How to deal with model errors in LDAS-Monde EnSRF?

As seen in the previous section, the quality of EnSRF estimates highly depends on the specified model error. We have seen

that our system would benefit from a more tailored approach. One way that has been followed in the LDAS community is to620

use perturbed atmospheric forcings to generate an ensemble of more physical states
::::
more

::::::::
physical

:::::
model

:::::::::::
perturbations

::::
and

::
to

:::::
obtain

:::
an

::::::::
ensemble

:::::
whose

::::::::::
covariances

:::
are

:::::
more

:::::::::
physically

:::::
based. This can be done by either perturbing precipitations only

(e.g. Fairbairn et al., 2015; Munier et al., 2015), operating a more complex system of perturbations that includes correlations

between precipitation, short wave and long wave radiations (see among others Reichle et al., 2007; Liu et al., 2011; Kumar

et al., 2014). Another possibility is to perturb land parameters such as the soil texture (Blyverket et al., 2019) or vegetation625

parameters. The main drawback of such approaches is that they tend to overcome underestimated ensemble variances by putting

too much uncertainty on atmospheric forcings or model parameters that might be far better known than assumed. They can

also induce a bias in model estimates (as shown by Fairbairn et al., 2015).

Model
:::
The

::::::
model error in Ensemble Kalman Filters aims to compensate insufficiencies of the model and forcings but is

difficult to prescribe as it aims to compensate something we do not know. One way to curb this issue is to estimate model630

error. Dee (2005) describes a range of approaches to account for model biases in data assimilation systems. The last decade has

also seen the development of techniques to estimate model error covariance matrices (see Tandeo et al., 2018, for a review of

existing approaches). Approaches based on Desroziers diagnostics
:::::::::
diagnostics

:::::::::
developed

:::::::::::::::::::::
inDesroziers et al. (2005) (Todling,

2015; Bowler, 2017) or on statistics of consecutive innovations (Berry et al., 2013; Harlim et al., 2014) seem affordable for

LDASs from a computational point of view.635

All these approaches help to estimate model deficiencies but do not necessarily provide the reasons of those caveats. For

land surface models, they can come not only from possibly inadequate atmospheric or soil and vegetation parameters but also

from inadequate model physics (missing processes, . . .
:::
etc.). Finding the reasons of those is a complex task. An interesting step

would be to assess the influence of atmospheric uncertainties on LSMs by using ensemble atmospheric forcings such as the

10-members atmospheric reanalysis included in ERA5 (available at a coarser spatial and temporal resolution though) or the640
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51 members of ECMWF ensemble medium-range forecasts. Such idea has
::::
ideas

:::::
have been explored over Spain in the case of

multi-models and multi-forcings ensembles by Ehsan Bhulyan et al. (2019).

5.2 The question of cross-covariances
:::
1D

::
or

:::
3D

:::::::
filtering

Both SEKF and EnSRF in this paper do not consider covariances between patches and between grid cells. However, those

covariances are likely to exists. For example, each patch of a given grid cell is forced with the same atmospheric forcing, errors645

in the forcing would result to
:
in
:

correlated errors for the state of each patch. The same thing could be said for the state of two

neighbouring grid cells since errors in atmospheric reanalyses are spatially correlated
::::::::::::::::::
(Hersbach et al., 2019). Including those

covariances could be beneficial to LSV reanalyses.

By construction, the SEKF cannot include these covariances
::
by

:::::
itself. Indeed the SEKF relies on the ISBA land surface

model to calculate covariances between variables
::
by

:::::::
building

:::
the

::::::::
Jacobian

:::::
matrix

:::
of

:::
the

:::::
model. Since each patch of each grid650

cell of the model run independently, it cannot create
::
do

::::
not

::::::
interact

::::
with

:::::
each

:::::
other,

:::
the

::::::::
Jacobian

:::::::
between

::::
two

:::::::
variables

:::
of

:::::::
different

::::::
patches

::
is

::::
zero.

::::
The

::::
same

:::::
occur

:::
for

::::::::
variables

:::::::
between

:::::::
different

::::
grid

::::
cells.

:::::::::
Therefore,

::
if

::
we

:::::
want

::
to

::::::
include covariances

between patches or between grid cells
:
,
::::
they

::::
have

::
to

::
be

:::::::::
prescribed

::
in

:::
the

:::::
fixed

::::::::::
background

::::
error

:::::::::
covariance

::::::
matrix.

On the contrary, Ensemble Kalman Filters can include this information automatically as estimated covariances are built from

the ensemble, thus making EnKFs more flexible than the SEKF. In our case, that would lead to a single state vector containing655

the LAI and SM in the various layers of soil of each patch and multiply by around 12 the size of this state. Fairbairn et al.

(2015) and Carrera et al. (2015) have shown that LDASs can use a small ensemble to provide good LSVs estimates without

experiencing the traditional undersampling issues or spurious ensemble covariances. However, if we take into account
::::::::
including

covariances between patches or between grid cells , this would be a different story. Nevertheless those two caveats
:::::
would

:::::
make

::::::::::::
undersampling

:::
and

::::::::
spurious

::::::::::
covariances

::::
more

:::::
likely

::
to
:::::

occur
::::

due
::
to

:::
the

::::::::
increased

::::
size

::
of

:::
the

::::
state

::::::
vector.

:::::::::::
Nevertheless

:::::
these660

:::
two

::::::::
potential

:::::
issues can be overcome. Inflation aims to compensate undersampling by artificially inflate the ensemble spread.

Approaches have been built to estimate inflation (under the form of a multiplicative coefficient). Anderson (2009) has proposed

to add inflation as a parameter in the control vector leading to inflation being updated at each EnKF analysis. Bauser et al.

(2018) has successfully applied this approach to a soil hydrology problem. Other approaches based on consistency diagnostics

developed by Desroziers et al. (2005) (Li et al., 2009; Miyoshi, 2011) or reformulated EnKFs (Bocquet, 2011; Bocquet and665

Sakov, 2012) have gained popularity.

Long-range spatial spurious covariances can be filtered out using localisation procedures either by artificially reducing

distant spurious correlation (Hamill et al., 2001; Houtekamer and Mitchell, 2001) or by assimilating observations locally (Ott

et al., 2004), LDAS-Monde could be seen as an extreme application of the second approach
:
,
:::::::
because

::
of

:::
the

:::
1D

:::::
nature

:::
of

:::
the

::::
ISBA

:::::
LSM. Localisation procedures are very efficient and are routinely used for a wide range of application

:::::::::
applications.670

Unfortunately, the problem of potentially spurious covariances between patches remains as we would need to fix a criterion to

determine which covariance has to be reduced. Recently Farchi and Bocquet (2019) has proposed a localisation procedure based

on augmented ensembles. Such formulation allows a covariance localisation not based on spatial criteria and
::::::::::::
characteristics

:::
and

::
it
:

could be used to include covariances between patches in LDAS-Monde EnSRF.
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6 Conclusions675

In this paper, we have adapted the Ensemble Square Root Filter used by Fairbairn et al. (2015) to the context of the joint

assimilation of surface soil moisture and leaf area index within LDAS-Monde. The validity of our approach has then be assessed

over the Euro-Mediterranean region for the period 2008 – 2017 and compared to a Simplified Extended Kalman Filter, that

is routinely used in LDAS-Monde. Results shows
::::
show that the EnSRF provides estimates of LAI of a similar quality to the

SEKF. Estimated EnSRF surface soil moistures tend to get closer to observations than their SEKF counterparts. We also have680

examined the impact of EnSRF on controlled soil moisture for deeper soil layers. For soil moisture in near-surface layers (4-20

cm depth), analysis increments are similar for both approaches but EnSRF estimates tend to be wetter especially for arid places

due to a bias introduced by the model error
:::::::::::
perturbations. For deeper layers (20-80 cm depth), SEKF and EnSRF estimates of

soil moisture are similar but are obtained through different mechanisms. While drier soil moisture in SEKF is obtained through

the model by transfering information from updated soil moisture in (near-)surface, the EnSRF produces those
:::
soil

::::::::
moisture685

estimates partly because of the data assimilation routine itself, acting like a bias correction procedure for those layers
:::
soil

:::::
layers

:::::
either

::::
near

:::
the

::::::
surface

::
or

::
in

:::
the

::::
root

::::
zone

:
to compensate for the wet model bias via the correlations between soil moisture in

deeper layers and surface soil moisture and LAI. Finally, validation of our approach has been carried out using datasets of

evapotranspiration, gross primary production
:::
ET,

::::
GPP

:
and river discharges, showing a moderate positive impact for the two

previous
:::
ET

:::
and

::::
GPP

:
but a marked positive one for the latter. While involving a crude model error, this

:::
river

::::::::::
discharges.

::::
This690

paper shows the potential of the EnSRF within LDAS-Monde and constitutes a good basis for further developments.

One limitation of assimilating LAI is that LAI products are only available every 10 days (for CGLS products)making their

estimates being correctly updated every ten days (assimilating .
:::::

This
::::
only

:::::
allows

:::
for

:::
an

::::::
update

::
of

::::
LAI

:::::
every

:::::::
10-days,

:::
as

:::
the

::::::::::
assimilation

::
of surface soil moisture has a

::
is

:::::
found

::
to

::::
have

:
negligible impact on LAI)

::
the

::::
LAI

::::::::
analyses. LDAS-Monde would

benefit from having observations linked to vegetation available every day. This is the case of radar backscatter coefficients695

as shown by Lievens et al. (2017) and Shamambo et al. (2019) that are already used in our system through the assimilated

ASCAT-derived soil water indices
::::
have

::::::
shown

:::
that

:::::::
ASCAT

::::
radar

::::::::::
backscatter

::::::::::
coefficients

:::
can

::
be

::::::
linked

::
to

::::::
surface

:::
soil

::::::::
moisture

:::
and

::::
LAI

:::
(or

:::::::::
vegetation

::::::
optical

::::::
depth)

:::::::
through

::
a
:::::
water

:::::
cloud

::::::
model. The development of an observation operator

:::
and

:::
the

:::::::::
calibration

::
of

:::
the

:::::
water

:::::
cloud

:::::
model linking surface soil moisture and LAI to those coefficients

:::::
radar

:::::::::
backscatter

:::::::::
coefficient is

currently under development at CNRM. Once fully tested, it should, hopefully, provide
::::::::::
Assimilating

:::::::
ASCAT

::::
radar

::::::::::
backscatter700

:::::::::
coefficients

::::::
would

::::::
replace

:::
the

::::::::::
assimilation

:::
of

:::::::::::::
ASCAT-derived

:::
soil

:::::
water

:::::::
indices.

::
It

:::::
would

:::::
open

:::
the

:::::::::
possibility

::
to

::::
have

::::::
access

::
to daily indirect observations of LAI and improve LDAS-Monde daily updates of LAI and soil moisture.

Code availability. LDAS-Monde is a part of the ISBA land surface model and is available as open source via the surface modelling platform

called SURFEX. SURFEX can be downloaded freely at http://www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French equivalent to

the L-GPL licence; http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt). It is updated at a relatively low frequency (every 3 to 6705

months). If more frequent updates are needed, or if what is required is not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid),

you are invited to follow the procedure to get a SVN account and to access real-time modifications of the code (see the instructions at the
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first link). The developments presented in this study stemmed on SURFEX version 8.1. LDAS-Monde technical documentation and contact

point are freely available at: https://opensource.umr-cnrm.fr/projects/openldasmonde/files
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Table 1. Statistics (Root Mean Square Difference (RMSD), normalized RMSD (nRSMD), correlation (R), and bias) between LDAS-Monde

estimates (Model run
::::
open

::::
loop, SEKF and EnSRF) and observations for CGLS SSM, CGLS LAI, GLEAM Evapotranspiration (E

::
ET) and

FLUXCOM GPP averaged over the Euro-Mediterranean region for the period 2008–2017 (for SSM, LAI and E) or 2008–2013 (for GPP).

Variable Exp. RMSD nRMSD R Bias

Model run
::::
open

:::
loop

:
0.880 m2.m−2 0.568 0.593 - 0.020 m2.m−2

LAI SEKF 0.671 m2.m−2 0.401 0.732 - 0.116 m2.m−2

EnSRF 0.694 m2.m−2 0.419 0.723 - 0.201 m2.m−2

Model run
::::
open

:::
loop

:
0.035 m3.m−3 0.161 0.544 0.002 m3.m−3

SSM SEKF 0.032 m3.m−3 0.138 0.652 0.001 m3.m−3

EnSRF 0.027 m3.m−3 0.117 0.760 0.001 m3.m−3

Model run
::::
open

:::
loop

:
0.833 kg.m−2.day−1 0.712 0.789 -0.328 kg.m−2.day−1

Evapotranspiration
:::
ET SEKF 0.778 kg.m−2.day−1 0.689 0.803 -0.114 kg.m−2.day−1

EnSRF 0.745 kg.m−2.day−1 0.678 0.823 -0.059 kg.m−2.day−1

Model run
::::
open

:::
loop

:
1.369 g(C).m−2.day−1 0.913 0.784 -0.412 g(C).m−2.day−1

GPP SEKF 1.393 g(C).m−2.day−1 0.962 0.786 -0.146 g(C).m−2.day−1

EnSRF 1.344 g(C).m−2.day−1 0.908 0.817 -0.105 g(C).m−2.day−1
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Figure 1. Satellite-derived products of (a) original Soil Water Index (SWI), (b) Leaf Area Index (LAI), (c) evapotranspiration
:::
(ET)

:
and (d)

Gross Primary Production (GPP). They are averaged over 2008-2017 for (a), (b) and (c) and over 2008-2013 for (d).
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Figure 2. 10-days time series of LAI averaged over the whole domain from the model
:::
open

::::
loop (blue line), the observations (green dots and

dotted line) and analyses obtained with the SEKF (dashed purple line) and the EnSRF (red line) for the period 2008-2017.
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Figure 3. (a) Normalized RMSD (nRMSD) between observed LAI and its model
::::
open

:::
loop

:
equivalent for the period 2008-2017 and

::::::
nRMSD

difference between nRMSD for
:::::::::
assimilation

:::::::::
experiments

:
(SEKF

:
in
:
(b) and EnSRF

:
in
:

(c)vs nRMSD Model
:
)
:::
and

::
the

::::
open

::::
loop.
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Figure 4. Grid cells of the domain where a vegetation type (or patch) is predominant (patch fraction above 50%). Coniferous trees are

dominant for around 15% of the domain that has plants (dark green), deciduous broadleaved trees (green), c3 crops (orange) and grasslands

(light green) are in majority for 6% of the domain each.
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Figure 5. Seasonal RMSD between LAI from observations and the model
:::
open

::::
loop (blue line), the SEKF analysis (dashed purple line) and

the EnSRF analysis (red line) averaged over: (a) the whole domain, and grid cells where (b) coniferous trees, (c) c3 crops, (d) grasslands, (e)

deciduous broadleaved trees represent more than 50% of plants for the period 2008-2017.
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Figure 6. Seasonal standard deviation of the ensemble from the EnSRF averaged over: the whole domain (thick blue line), and grid cells

where deciduous broadleaved trees (green squares), coniferous trees (black triangles), c3 crops (red circles) and grasslands (dashed purple

line) represent the majority of plants for the period 2008-2017.
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Figure 7. (a) Root mean square difference (RMSD) between observed (rescaled) SSM and its model
:::
open

::::
loop

:
equivalent for the period

2008-2017 and
:::::

RMSD difference between RMSD for
:::::::::
assimilation

:::::::::
experiments

:
(SEKF

::
in (b) and EnSRF

:
in

:
(c)vs RMSD Model

:
)
:::
and

:::
the

:::
open

::::
loop.
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Figure 8. (a) Correlation (R) between observed (rescaled) SSM and its model
::::
open

::::
loop equivalent for the period 2008-2017 and

:
R difference

between R for
::::::::
assimilation

::::::::::
experiments

:
(SEKF

::
in (b) and EnSRF

:
in (c)vs R Model)

:::
and

:::
the

::::
open

::::
loop.

:
.
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Figure 9. Correlation between the model variables sampled from ensembles and averaged seasonally (DJF=December-January-February,

MAM=March-April-May, JJA=June-July-August and SON=September-October-November). From top to bottom, correlation between soil

moisture in the second layer (1-4cm, SM2) and the fourth layer (10-20cm, SM4), between SM2 and soil moisture in the sixth layer (40-

60cm, SM6), between LAI and SM2, LAI and SM4 and LAI and SM6. Areas is blue exhibit positive correlations, areas in red exhibit

anti-correlations.
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Figure 10. From left to right, averaged soil moisture
::
for

:::
the

::::
open

:::
loop

:
(fourth layer, 10-20 cm, SM4 and sixth layer, 40-60 cm, SM6) over

2008-2017, averaged analysis impact for SEKF (central) and EnSRF (right).
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Figure 11. Averaged analysis increments for soil moisture in fourth layer (10-20cm, SM4) for SEKF and EnSRF for all months of May (left),

July (central) and September (right).
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Figure 12. (a) Correlation (R) between observed GLEAM Evapotranspiration
::
ET

:
and its model

::::
open

::::
loop equivalent for the period 2008-

2017 and
:
R
:
difference between R for

:::::::::
assimilation

:::::::::
experiments

:
(SEKF

:
in
:
(b) and EnSRF

:
in
:
(c)vs R Model

:
)
:::
and

:::
the

::::
open

:::
loop.

44



Figure 13. (a) Correlation (R) between observed FLUXCOM gross primary production and its model
:::
open

::::
loop

:
equivalent for the period

2008-2013 and
:
R
:

difference between R for
:::::::::
assimilation

:::::::::
experiments

:
(SEKF

::
in (b) and EnSRF

::
in (c)vs R Model

:
)
:::
and

:::
the

::::
open

:::
loop.
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Figure 14. Normalised Information Contribution Index (NIC) assessing the improvement of Nash-Sutcliffe efficiency indices for EnSRF

river discharge estimates compared to model
:::
open

::::
loop

:
counterparts. Blue circles assess a positive impact of DA, red circles a negative

impact and small diamonds a neutral impact.
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Supplementary material to

“An Ensemble Square Root Filter for the joint assimilation of surface
soil moisture and leaf area index within LDAS-Monde: application over

the Euro-Mediterranean region”

In this supplementary material, we detail how the equations of the SEKF are derived in the context
of patches and the ISBA land surface model.

1 Simplified Extended Kalman Filter

We first recall in this section the equations of the Simplified Extended Kalman Filter. Introduced by [1],
the SEKF is a simplified version of the Extended Kalman Filter. It is a sequential approach aiming to
give the estimation of the state x of a system at various times. We denote by nx the size of the state
vector.

The SEKF is a two-steps algorithm. For a given time tk, it provides a first estimate xf
k called the forecast

xf
k =Mk−1

(
xa
k−1

)
(1)

with Mk−1 a (nonlinear) model. The forecast step just aims to propagate the estimate xa
k−1 at the last

previous time tk−1 to the new time tk.

This forecast is then corrected by using observations yo
k of the system with Rk its associated error

covariance matrix. We denote by ny the size of yo
k. The observations are linked to the state through the

(possibly nonlinear) observation operator Hk. This correction step is called the analysis and provides a
new estimate xa

k with

xa
k = xf

k + Kk

(
yo
k −Hk

(
xf
k

))
(2)

Kk = BJT
k

(
Jk BJT

k + Rk

)−1
(3)

B is a prescribed background error covariance matrix of size nx×nx and Jk is a Jacobian matrix of size
ny × nx defined as

Jk =
∂
(
Hk

(
xf
k

))
∂ xa

k−1

=
∂
(
Hk

(
Mk−1

(
xa
k−1

)))
∂ xa

k−1

(4)

This Jacobian can be estimated using finite differences. In that case, we would need to run nx perturbed
model runs in addition to the model run used in the forecast step. If nx is too big, computing Jk with
finite differences is unaffordable.

2 First assumption: linearity of the observation operator

We now assume that the observation operator meaning that Hk = Hk. This implies that the Jacobian
matrix Jk can be rewritten as

Jk =
∂
(
Hkx

f
k

)
∂ xa

k−1

= Hk
∂ xf

k

∂ xa
k−1

= Hk

∂
(
Mk−1

(
xa
k−1

))
∂ xa

k−1

= Hk Mk−1 (5)

with Mk−1 the tangent linear operator of Mk−1 at xa
k−1.

Following this assumption, the analysis step of the SEKF is now:

xa
k = xf

k + Kk

(
yo
k −Hk x

f
k

)
(6)

Kk = B (Hk Mk−1)
T
(

(Hk Mk−1) B (Hk Mk−1)
T

+ Rk

)−1

(7)
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3 The case of LDAS-Monde, ISBA and patches

Until now, we have not assumed anything regarding the spatial distribution of state variables and ob-
servations.

The ISBA land surface model involved in LDAS-Monde owns features that can help to simplify the
SEKF. They are:

• At grid cell level: ISBA only consider vertical diffusion for soil moisture and temperature and
vegetations variables of different grid cells do not interact with each other.

• Each grid cell of ISBA is divided into 12 different patches representing different types of vegetation.
To each patch p is associated a patch fraction α[p] representing the proportion of the type of
vegetation associated to patch p in the grid cell.

• At patch level: variables (vegetation, soil moisture, soil temperature, ...) of different patches do
not interact with each other.

Second assumption: Observations are available at ISBA grid cell level and no spatial covariances are
taken into account in LDAS-Monde.

Following this second assumption, equations (6) and (7) can be applied directly at a grid cell level. This
allows an easy parallelisation of the SEKF analysis using domain decomposition.

Now we split the control vector x into 12 vectors x[p], p = 1, . . . , 12, each containing only control
variables relative to that particular patch. It means we have 12 LAI variables (one for each patch), 12
SM2 variables (soil moisture in layer 2, 1-4 cm depth), etc. x can be written as the concatenation of
these 12 vectors:

x =


x[1]

x[2]

...
x[12]

 (8)

While control variables are available at patch level, observations are available at grid cell level. It means
that variables at patch level need to be aggregated to grid cell level to obtain observation equivalents.

Third assumption: The observation operator Hk aggregates control variables at patch level averaging
them with patch fractions as weights:

Hkx =

12∑
j=1

α[j] H̃k x[j] (9)

H̃k is a matrix selecting directly the observed variable (either LAI and/or SM2) meaning that H̃ is full
of 0 and 1.

Following the third assumption, the observation operator Hk can also rewritten as:

Hk =
(
α[1] H̃k α[2] H̃k . . . α[12] H̃k

)
(10)

Since variables of different patches do not interact with each other in ISBA, it also simplifies the Jacobian
matrix Mk−1 making it block-diagonal as follows:

Mk−1 =


M[1],k−1 0 . . . 0

0 M[2],k−1

...
...

. . . 0
0 . . . 0 M[12],k−1

 (11)
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It leads that Hk Mk−1 can be now written as:

Hk Mk−1 =
(
α[1] H̃k M[1],k−1 α[2] H̃k M[2],k−1 . . . α[12] H̃k M[12],k−1

)
(12)

Fourth assumption: No covariances between patches are taken into account in LDAS-Monde.

This assumption leads to a block diagonal B matrix that can be defined as:

B =


B̃ 0 . . . 0

0 B̃
...

...
. . . 0

0 . . . 0 B̃

 (13)

with B̃ the prescribed covariance matrix for control variables within a patch. In practice B̃ is taken
diagonal.

Using this new definition of B and equation (12), B (Hk Mk−1)
T

can be written as:

B (Hk Mk−1)
T

=



α[1] B̃
(
H̃k M[1],k−1

)T
α[2] B̃

(
H̃k M[2],k−1

)T
...

α[12] B̃
(
H̃k M[12],k−1

)T


(14)

and

(Hk Mk−1)B (Hk Mk−1)
T

=

12∑
j=1

α2
[j]

(
H̃k M[j],k−1

)
B̃
(
H̃k M[j],k−1

)T
(15)

Using equations (14) and (15) into (7), it gives for the gain matrix:

Kk =



α[1] B̃
(
H̃k M[1],k−1

)T  12∑
j=1

α2
[j]

(
H̃k M[j],k−1

)
B̃
(
H̃k M[j],k−1

)T
+ Rk

−1

α[2] B̃
(
H̃k M[2],k−1

)T  12∑
j=1

α2
[j]

(
H̃k M[j],k−1

)
B̃
(
H̃k M[j],k−1

)T
+ Rk

−1

...

α[12] B̃
(
H̃k M[12],k−1

)T  12∑
j=1

α2
[j]

(
H̃k M[j],k−1

)
B̃
(
H̃k M[j],k−1

)T
+ Rk

−1


(16)

Using this formulation of the gain matrix and equation (10) into equation (6), it leads to the following
equations for the analysis in each patch p:

xa
[p],k = xf

[p],k + K[p],k

yo
k −

12∑
j=1

α[j]H̃ xf
[j],k

 (17)

K[p],k = α[p] B̃
(
H̃k M[p],k−1

)T  12∑
j=1

α2
[j]

(
H̃k M[j],k−1

)
B̃
(
H̃k M[j],k−1

)T
+ Rk

−1

(18)

These two equations are equivalent to equations (3) and (4) of the manuscript.

In practice, we do not compute M[p],k−1 but directly H̃k M[p],k−1 using finite differences.
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