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Abstract. To improve the understanding of trends in extreme flows related to flood events at the global scale, historical and 23 

future changes of annual maximum streamflow are investigated, using a comprehensive streamflow archive and six global 24 

hydrological models. The models’ capacity to characterise trends in annual maximum streamflow at the continental and global 25 

scale is evaluated across 3,666 river gauge locations over the period from 1971 to 2005, focusing on four aspects of trends: (i) 26 

mean, (ii) standard deviation, (iii) percentage of locations showing significant trends and (iv) spatial pattern. Compared to 27 

observed trends, simulated trends driven by observed climate forcing generally have a higher mean, lower spread, and a similar 28 

percentage of locations showing significant trends. Models show a moderate capacity to simulate spatial patterns of historical 29 

trends, with approximately only 12-25% of the spatial variance of observed trends across all gauge stations accounted for by the 30 

simulations. Interestingly, there are significant differences between trends simulated by GHMs forced with historical climate and 31 

forced by bias corrected climate model output during the historical period, suggesting the important role of the stochastic natural 32 

(decadal, inter-annual) climate variability. Significant differences were found in simulated flood trends when averaged only at 33 

gauged locations compared to when averaged across all simulated grid cells, highlighting the potential for bias toward well-34 

observed regions in the state-of-understanding of changes in floods. Future climate projections (simulated under RCP2.6 and 35 

RCP6.0 greenhouse gas concentration scenario) suggest a potentially high level of change in individual regions, with up to 35% 36 

of cells showing a statistically significant trend (increase or decrease) and greater changes indicated for the higher concentration 37 

pathway. Importantly, the observed streamflow database under-samples the percentage of high-risk locations under RCP6.0 38 

greenhouse gas concentration scenario by more than an order of magnitude (0.9% compared to 11.7%). This finding indicates a 39 

highly uncertain future for both flood-prone communities and decision makers in the context of climate change. 40 
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1 Introduction 41 

Global hydrological models (GHMs) are critical tools for diagnosing factors of rising trends in flood risk (Munich Re, 2015;Swiss 42 

Re, 2015;Miao, 2018;Smith, 2003;Guha-Sapir et al., 2015;CRED, 2015), and can help identify the contribution of changing flood 43 

hazard characteristics relative to the changing exposure of human assets to floods. GHMs are also used to project future changes 44 

in flood hazard, owing to their ability to simulate streamflow under projected atmospheric forcing. Using GHM simulations, 45 

several studies have found more regions showing increasing trends than decreasing trends in flood hazards at the global scale, and 46 

have attributed these changes to anthropogenic climate change (Dankers et al., 2014;Arnell and Gosling, 2014;Alfieri et al., 47 

2015;Kettner et al., 2018;Willner et al., 2018;Asadieh and Krakauer, 2017). The pattern of increasing trends obtained from GHM 48 

simulations is consistent with observations of increases in precipitation extremes (Westra et al., 2013;Westra et al., 2014;Donat et 49 

al., 2013;Guerreiro et al., 2018) that have been used by a number of studies as a proxy to suggest that flood hazard may increase 50 

as a result of climate change (Alfieri et al., 2017;Pall et al., 2011;IPCC, 2012;Forzieri et al., 2016).  51 

The inference of changes in flood hazard following the same direction as extreme precipitation may be appropriate over specific 52 

regions (Hoegh-Guldberg et al., 2018;Mallakpour and Villarini, 2015;Mangini et al., 2018), but recent evidence based on 53 

instrumental trends in flood hazard suggests it is not necessarily globally applicable. This is due to a ‘dichotomous relationship’ 54 

between trends exhibited in extreme precipitation and extreme streamflow (Sharma et al., 2018), highlighted in recent 55 

observation-based studies of trends in streamflow magnitudes (Wasko and Sharma, 2017;Do et al., 2017;Hodgkins et al., 56 

2017;Gudmundsson et al., 2019). The hypothesised reason for this potentially inconsistent relationship is the complexity of the 57 

drivers of flood risk (Johnson et al., 2016;Blöschl et al., 2017;Berghuijs et al., 2016), with the implication that historical and 58 

future changes to flood hazard at the global scale are unlikely to be reflected by changes to a single proxy variable alone, such as 59 

annual maximum rainfall. For example, even though trends in extreme flows are highly correlated to changes in extreme rainfall 60 

when rainfall plays the dominant role (Mallakpour and Villarini, 2015;Blöschl et al., 2017), snowmelt-related flood magnitude 61 

has been found to decrease in a warmer climate, potentially due to a shift in snowmelt timing (Burn and Whitfield, 62 

2016;Cunderlik and Ouarda, 2009). The sign of change is also unclear for locations where antecedence soil moisture plays an 63 

important role (Woldemeskel and Sharma, 2016;Sharma et al., 2018), owing to the combined influences of seasonal/annual 64 

precipitation, potential evaporation and extreme precipitation (Bennett et al., 2018;Ivancic and Shaw, 2015;Leonard et al., 65 

2008;Wasko and Nathan, 2019).  66 

To better understand historical and future trends in streamflow, the emphasis has therefore moved to analysing trends directly in 67 

streamflow measurements. Investigations using streamflow observations at global, continental and regional scales (see Do et al. 68 

(2017) and references therein) have generally detected a mixed pattern of trends, with some global-scale studies finding more 69 

stations having decreasing trends than increasing trends (Do et al., 2017;Hodgkins et al., 2017;Kundzewicz et al., 2004). These 70 
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conclusions appear prima facie to be inconsistent with model-based evidence, which generally suggests the opposite (more 71 

locations showing increasing trends). However, varying sampling strategies, statistical techniques and reference periods make it 72 

difficult to derive a common perspective of trends in global flood hazards from a composite of observational and modelling 73 

studies. In addition, data coverage limitations (Hannah et al., 2011;Gupta et al., 2014;Do et al., 2018b) remain a barrier to reliably 74 

benchmarking trends over some areas such as the flood-prone regions of South and East Asia.  75 

GHMs, with the advantage of better spatial coverage, remain an important line of evidence about historical and future trends. 76 

GHMs also enable ‘factorial’ experiments to explore the individual roles of atmospheric forcing, land use change and other 77 

drivers of change on streamflow trends. However, unlike climate models, for which the performance in terms of reproducing 78 

trends of extreme precipitation has been evaluated substantially (Kiktev et al., 2003;Kiktev et al., 2007;Kumar et al., 79 

2013;Sakaguchi et al., 2012), the performance of GHMs has been assessed mostly on their capacity to represent physical features 80 

of the hydrological regime, such as streamflow percentiles, the seasonal cycle or the timing of peak discharge (Gudmundsson et 81 

al., 2012a;Zaherpour et al., 2018;Beck et al., 2017;Zhao et al., 2017;Veldkamp et al., 2018;Pokhrel et al., 2012;Biemans et al., 82 

2011;Giuntoli et al., 2018). Streamflow variability can be subject not only to long-term changes in atmospheric forcing, but also 83 

to climate variability (e.g. inter-annual, inter-decadal) as well as human activities across the drainage basin (Zhang et al., 84 

2015;Zhan et al., 2012). Thus, the GHMs’ capacity to represent physical features of a hydrological regime is not necessarily 85 

sufficient to determine their performance in simulating characteristics of trends in extremes.  86 

To better understand the capacity of GHMs in simulating historical trends in extreme streamflow and potential implications for 87 

the development of projections, this study focusses on three research objectives. The first objective is to evaluate the capacity of 88 

GHMs, available at http://www.isimip.org through the Inter-Sectoral Impact Model Intercomparison Project ISIMIP phase 2a and 89 

2b (Warszawski et al., 2014), to simulate trends in observed streamflow extremes during the 1971-2005 historical period. The 90 

particular interest is in reconciling observed and simulated trends in historical streamflow extremes at the global and continental 91 

scale using the Global Streamflow Indices and Metadata (GSIM) archive (Do et al., 2018a;Gudmundsson et al., 2018b), to-date 92 

the largest possible streamflow observations database. GSIM has been used in recent global scale investigations and is also an 93 

important source for the production of GRUN, a data-driven century long runoff reconstruction (Ghiggi et al., 2019). The second 94 

objective is to determine the representativeness of observation locations (streamflow gauges) in GHM simulations by comparing 95 

trends simulated at these locations to trends simulated across all land grid points of GHMs. This objective is motivated by the 96 

sparse coverage of streamflow observations over several regions (e.g. South and East Asia), which could lead to biased inferences 97 

over large spatial domains wherever gauges are not a representative sample. The third and final objective is to assess the 98 

implication of model uncertainty for projections of flood hazard, focusing on the uncertainty of the mean/spread of trends together 99 

with the spatial pattern of trends in annual maximum streamflow.  100 
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2 Data and methods 101 

2.1 Observed and simulated streamflow datasets 102 

The GSIM archive is used as daily observational discharge for this analysis. Daily streamflow simulations available through the 103 

ISIMIP are used, with historical simulations (ISIMIP2a) spanning from 1971 to 2005 (Gosling et al., 2019) and future simulations 104 

(ISIMIP2b) covering 2006-2099 period (Frieler et al., 2017). Six GHMs are considered: H08 (Hanasaki et al., 2008a, b), LPJmL 105 

(Schaphoff et al., 2013), MPI-HM (Stacke and Hagemann, 2012), ORCHIDEE (Guimberteau et al., 2014;Guimberteau et al., 106 

2018), PCR-GLOBWB (Wada et al., 2014;Sutanudjaja et al., 2018), and WaterGAP (Müller Schmied et al., 2014;Mueller 107 

Schmied et al., 2016). To assess the model structural uncertainty across GHMs, trends in streamflow extremes simulated under 108 

observational atmospheric forcing, available through the Global Soil Wetness Project Phase 3 (GSWP3) reanalysis (Kim, 2017), 109 

were compared to observed trends. The influence of the acknowledged high uncertainty in climate models (Kumar et al., 110 

2013;Kiktev et al., 2003) on streamflow simulations was assessed by comparing observed trends and trends simulated when using 111 

atmospheric forcing from four General Circulation Models (GCMs) for the historical period (‘hindcast’ simulations). These GCM 112 

were bias corrected but their simulations have different sub-monthly, inter-annual and decadal variability and thus the hindcast 113 

simulations reflect both GHM and GCM uncertainty. To quantify the implication of model uncertainty for future projections of 114 

flood hazard, trends simulated under projected climate change by the end of this century (using the same four GCMs) were also 115 

assessed. As a result, four simulation settings were used in this study, denoted by the atmospheric forcing; an overview is given in 116 

Table 1. These settings comprise two historical runs (GSWP3 and GCMHIND runs), and two future runs (GCMRCP2.6 and 117 

GCMRCP6.0), collectively amounting to a total of 69 simulations (see Table S2 in supplementary with full list of simulations).  118 

For GSWP3 simulations, naturalised runs (i.e. human water management not taken into account) were chosen, since this setting is 119 

available for more GHMs when compared to the human impact setting (i.e. human water management inputs were used). A 120 

preliminary analysis (see section 4 of supplementary material) shows that both ‘naturalised runs’ and ‘human impact runs’ exhibit 121 

similar characteristic of trends in peak discharge. Although significant efforts were made by ISIMIP to keep the setting across 122 

simulations as consistent as possible, there were some differences in model versions and input data (e.g. WaterGAP was used in 123 

ISIMIP2a while WaterGAP2 was used in ISIMIP2b; ORCHIDEE (Guimberteau et al., 2014) was used in ISIMIP2a while 124 

ORCHIDEE-MICT (Guimberteau et al., 2018), with improvements on high latitude processes, was used in ISIMIP2b). As a 125 

result, there are potential effects of technical discrepancies to the findings which cannot be checked in the context of this study. In 126 

addition, owing to technical requirements across GHMs, the number of land grid cells with available data is also different across 127 

simulations. 128 

 129 
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Table 1. Summary of streamflow observation and simulation datasets used in this study. GSIM was used as the observed 130 

streamflow database. Streamflow simulations were obtained from six GHMs (H08, LJPmL, MPI-HM, ORCHIDEE, PCR-131 

GLOBWB and WaterGAP). One observational atmospheric forcing dataset (GSWP3) and outputs of four GCMs were used as 132 

input for streamflow simulations.  133 

Reference 

window 

Streamflow 

obs./sim. 

No. of 

GCM-GHM 

combination 

Description Note 

Historical  

(1971-2005) 

GSIM - 
Observational streamflow selected from 

GSIM archive.  

Streamflow daily 

observations for 3,666 

unique locations 

GSWP3 

(ISIMIP 2a) 

6 
Historical simulation forced by 

observational atmospheric forcing.  

Model did not use human 

water management input. 

GCMHIND 

(ISIMIP 2b) 

21 

Historical simulation using atmospheric 

forcing from four GCMs: GFDL-ESM2M, 

HadGEM2-ES, IPSL-CM5A-LR and 

MIROC5. 

No HadGEM2-ES 

simulation for MPI-HM. 

 

No HadGEM2-ES and 

MIROC5 simulations for 

ORCHIDEE. 

Projection 

(2006-2099) 

GCMRCP2.6 

(ISIMIP 2b) 

21 

Future simulation forced by projected 

atmospheric forcing under greenhouse gas 

concentration scenario RCP2.6. Four GCMs 

were used: GFDL-ESM2M, HadGEM2-ES, 

IPSL-CM5A-LR and MIROC5. 

GCMRCP6.0 

(ISIMIP 2b) 

21 

Future simulation forced by projected 

atmospheric forcing under greenhouse gas 

concentration scenario RCP6.0. Four GCMs 

were used: GFDL-ESM2M, HadGEM2-ES, 

IPSL-CM5A-LR and MIROC5. 

 134 

2.2 Simulated streamflow extraction and catchment selection for observation-model comparison 135 

To enable an observation-model comparison, simulated discharge needs to be extracted from gridded model output. Large‐scale 136 

hydrological models, however, generally do not simulate discharge accurately over small-to-medium size catchments due to the 137 

coarse resolution of river network datasets in their routing schemes (Hunger and Döll, 2008). To address this limitation, previous 138 

GHMs evaluations usually selected large catchments (a threshold of 9,000 km2 was adopted, approximating the size of a one-139 

degree longitude/latitude grid cell) and routed discharge (units: m3/s) at the outlet of the catchment was used as simulated 140 

streamflow for a specific catchment (Zhao et al., 2017;Veldkamp et al., 2018;Zaherpour et al., 2018;Liu et al., 2017;Zaherpour et 141 

al., 2019). For evaluation studies that used relatively small catchments (e.g. area less than 9,000 km2), the un-routed runoff 142 
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simulation (units: mm/day) was extracted while observed discharge was converted to runoff using catchment area prior to 143 

comparison (Gudmundsson et al., 2012b;Beck et al., 2017). To increase the sample size for the model-observation comparison 144 

(the first objective), the present study used both daily (i) un-routed runoff for small catchments and (ii) routed discharge 145 

simulations for large ones, and thus two extraction procedures were adopted. A summary of these extraction procedures is 146 

provided below while detailed technical descriptions are provided in section 2 of supplementary material.  147 

 For catchments with area from 0 to 9,000 km2: un-routed runoff (mm/day) was extracted and then converted into 148 

discharge (m3/s) by multiplying averaged runoff with catchment area. Specifically, catchment boundaries were 149 

superimposed on the GHM grid to obtain the weighted-area tables, which were then used to derive averaged runoff from 150 

the un-routed runoff simulation. To avoid double counting runoff from the same grid points, runoff for catchments that 151 

share similar weighted-area tables (i.e. similar simulated streamflow would be extracted – see supplementary section 2 152 

for detail description) was averaged (using catchment areas as weights) and a single ‘averaged time series’ was used in 153 

place of the runoff from the component catchments.  154 

 For catchments with area greater than 9,000 km2: the ‘discharge output’ approach (Zhao et al., 2017) was adopted to 155 

extract routed discharge (m3/s) from the GHM cell corresponding to the outlet of each catchment.  156 

To ensure sufficient data is available for historical trend analysis, only GSIM stations with at least 30 years of data available 157 

during the 1971-2005 period were considered (each year having at least 335 days of available records). These relatively strict 158 

selection criteria also enable a comparison between this study and preceding observation-based investigations (Gudmundsson et 159 

al., 2019;Hodgkins et al., 2017). As catchment boundary shapefiles (Do et al., 2018b) were used to extract simulated streamflow 160 

for small catchments, stations were further filtered using two criteria: (i) availability of reported catchment area, and (ii) 161 

catchment boundary was accompanied with a “high” or “medium” quality flag (i.e. the discrepancy between reported and 162 

estimated catchment area is less than 10%).  163 

A total of 4,595 stations satisfied the quality selection criteria, of which large catchments (i.e. area greater than 9,000 km2) where 164 

no suitable grid cell could be identified were further removed (11 catchments). For cases of two or more small catchments (i.e. 165 

area less than or equal to 9,000km2) having similar weighted-area tables, the ‘averaged time series’ (using catchment areas as 166 

weights) was calculated. A total number of 1,542 time series fell in this category and were aggregated into 624 ‘averaged time 167 

series’. Figure 1 shows the spatial distribution of the final dataset for model-observation comparison, containing data for 3,666 168 

locations (3,042 non-averaged time series and 624 averaged time series). The majority of available catchments are located in 169 

North America and Europe, with some regions over Asia, Oceania and South America are also covered.  170 
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 171 

Figure 1. Locations of 3,666 streamflow observations (brown dots: 3,024 non-averaged time series; green dots: 624 averaged 172 

time series, where geographical coordinates were averaged from all component gauging coordinates) selected from GSIM archive 173 

for the model-observation comparison. Grey dots indicate GSIM time series that were removed due to insufficient data 174 

availability or quality.  175 

2.3 Detecting trends in annual maximum streamflow 176 

For each streamflow dataset, daily discharge was smoothed to 7-day averages to reduce variability in simulated streamflow, 177 

which can arise from the coarse routing parameters of GHMs (Dankers et al., 2014). The annual maximum time series of 7-day 178 

averaged discharge (labelled as the MAX7 index in the GSIM archive) was then derived to represent peak flow events. For 179 

gridded datasets, the ‘centre averaged approach’ (e.g. averaged streamflow of Jan 7th is the mean value of Jan 4 – 10th) was used 180 

(the common setting of the CDO software, freely available at https://code.mpimet.mpg.de/projects/cdo), and the MAX7 181 

timeseries was therefore derived for each GSIM station using this same approach. As a result, the derived value of the MAX7 182 

index is slightly different to the value available in the online version of GSIM (Gudmundsson et al., 2018a), which applied a 183 

‘backward-moving average’ technique (e.g. averaged streamflow of Jan 7th is the mean value of Jan 1 – 7th). Our preliminary 184 

analysis (not shown), however, indicated that this difference did not lead to substantial changes in the key findings. 185 

The magnitude of trends in the MAX7 index at a specific catchment or grid cell was quantified using the normalised Theil-Sen 186 

slope (Gudmundsson et al., 2019;Stahl et al., 2010) and the results are expressed in % change per decade. The significance of the 187 

local trend was assessed using a Mann-Kendall test at the 10% two-sided significance level (Wilks, 2011). The null hypothesis 188 

(no trend) is rejected if the two-sided p-value of the test statistic (Kendall’s τ) is lower than 0.1, while the direction of the trend 189 

(i.e. increasing or decreasing) was determined using the sign of τ.  190 

2.4 Statistical techniques 191 

To address the three identified objectives, trends in streamflow extremes obtained from GSIM (observed trends) and ISIMIP 192 

simulations (simulated trends) are analysed. The observed trends were available for 3,666 observation locations.  Simulated trends 193 
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were available for all 59,033 GHM grid cells (estimated from routed discharge of each grid cell; Antarctica and Greenland were 194 

removed). To enable a model-observation comparison, we also extract a subset of simulated trends over the 3,666 observation 195 

locations (described in section 2.2). 196 

2.4.1 A hypothesis-test approach for comparison of trend characteristics  197 

A range of hypothesis tests (summarised in Table 2; GSWP3 simulations were used to assess GHM uncertainty while GCMHIND 198 

simulations were used to assess the combined GCM-GHM uncertainty) was applied to address the first two objectives, which 199 

require comparing trend characteristics exhibited from different streamflow datasets. Four characteristics of trends were assessed: 200 

- Trend mean: The mean (% change per decade) of trends in streamflow extremes across all gauge-/cell-based time series 201 

over a spatial domain. A hypothesis test was adopted to assess whether the trend means exhibited from two specific 202 

streamflow datasets (e.g. model vs. observed) are significantly different from each other. 203 

- Trend standard deviation: The standard deviation (% change per decade) of trends in streamflow extremes across all 204 

gauge-/cell-based time series over a spatial domain. A hypothesis test was adopted to assess whether the trend of 205 

standard deviations exhibited from two specific streamflow datasets are significantly different from each other. 206 

- Percentage of significant trends (%): The percentage of trends in a domain that are statistically significant, with gauge- 207 

or cell-based significance calculated using the Mann-Kendall test at the 10% significance level. To assess whether the 208 

percentage of significant (increasing/decreasing) trends exhibited from a specific streamflow dataset is produced by 209 

random chance, a field significance test (Do et al., 2017) was adopted. 210 

- Trend spatial pattern: The spatial distribution of trends in streamflow extremes over a spatial domain. Pearson’s (spatial) 211 

correlation between trends of two datasets was used as a measure of similarity in the trend spatial structure. The 212 

hypothesis test (pattern similarity test) was adopted to assess whether: (i) the correlation between simulated trends 213 

introduced by GHMs and observed trends is significantly higher than zero; and (ii) the correlation between trends 214 

simulated under hindcast atmospheric forcing and observed trends is significantly lower than that between trends 215 

simulated under observational atmospheric forcing and observed trends. 216 
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2.4.2 Estimating uncertainty of trend characteristics across ensemble members 218 

The third and final objective, which focused on the implications of GCM-GHM uncertainty on projected changes in 219 

flood hazard, was addressed by quantifying the spread of trend characteristics (i.e. trend mean, trend standard 220 

deviation, and percentage of significant trends) exhibited from routed discharge projections under two representative 221 

concentration pathways.  222 

The spatial uncertainty of projected trends (GCMRCP2.6 and GCMRCP6.0) was also quantified by calculating intra-223 

/inter-model correlation of the trend patterns across all ensemble members available under the two projections. Intra-224 

model correlation represents spatial uncertainty introduced by the GCM and was calculated from simulated trends 225 

introduced by the same GHM (using different simulated atmospheric forcing). Inter-model correlation represents the 226 

combined GCM-GHM spatial uncertainty, and was calculated for each pair of simulated trends that were: (i) 227 

introduced by the different GHMs; and (ii) forced with different projected atmospheric forcing. This assessment also 228 

identified regions that were consistently detected with a significant increasing trend across at least 11 simulations, 229 

which can be used as an indication of potential ‘hot-spots’ of future flood hazard.  230 

To assess the robustness of GHMs in projecting changes in flood hazard, each grid-cell of the discharge simulation 231 

grid was then categorised into one of the five ‘flood-risk’ groups based on the number of GCMRCP2.6/GCMRCP6.0 232 

simulation members projecting a significant increasing trend (Group 1: no members, Group 2: from 1 to 5 members, 233 

Group 3: from 6 to 10 members, Group 4: from 11 to 15 members and Group 5: from 16 to 18 members). Each GSIM 234 

gauge was also allocated into one of these five groups based on the gauge’s geographical coordinates. The allocation 235 

of gauges into these groups was then analysed to determine whether the most comprehensive global database of daily 236 

streamflow records to-date was evenly distributed across the five ‘flood risk regions’. 237 

3 Results and Discussion 238 

3.1 Capacity of GHMs to reproduce observed trends in flood hazards 239 

Visual inspection of the normalised Theil-Sen slope across the GSIM time series (top panel of Figure 2; regional 240 

maps provided in Supplementary Figure S4) shows a spatial pattern that is consistent with recent findings on trends in 241 

observed flood magnitude (Mangini et al., 2018;Do et al., 2017;Mallakpour and Villarini, 2015;Gudmundsson et al., 242 

2019;Burn and Whitfield, 2018;Ishak et al., 2013). Specifically, decreasing trends tend to dominate Asia (most 243 

stations located in Japan and India), Australia, the Mediterranean, western/north-eastern US and northern Brazil, 244 

while increasing trends appear mostly over central North America, southern Brazil and northern Europe (including 245 

the UK). Note that the observation locations are not evenly distributed (86% in North America and Europe), and thus 246 

the confidence of this assessment varies substantially across continents.  247 
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The multi-model average of GSWP3 simulated trends (trends simulated under observational atmospheric forcing; 248 

middle panel of Figure 2) has generally good capacity to reproduce spatial patterns of observed trends. The multi-249 

model average of GCMHIND simulated trends (trends simulated under hindcast atmospheric forcing; lower panel of 250 

Figure 2), however, could not reproduce some spatial agglomerations of trends in streamflow maxima (e.g. the 251 

decreasing trends in south-eastern Australia, increasing trends over north-eastern Europe). This feature indicates the 252 

inconsistent climate variability between GCMs and the real world, suggesting GCM climate forcing cannot account 253 

for observed trends at sub-continental scale. In addition, GCMs uncertainty can potentially contribute to this 254 

inconsitency. Interestingly, the multi-model average of both GSWP3 and GCMHIND simulations generally exhibits a 255 

lower magnitude of changes (i.e. closer to ‘zero change’) compared to the observed trends. This feature is more 256 

prominent in GCMHIND (21 simulations available) compared to GSWP3 (six simulations available), and can be 257 

explained by two possibilities. The first possible explanation is the nature of averaging, which tends to smooth out 258 

variability in trend magnitude across ensemble members, leading to a relatively ‘close to zero’ change across the 259 

globe (given that each GCMs has stochastic decadal climate variability, so that averaging GCMs tends to cancel 260 

trends). An alternative explanation is that individual simulations also exhibit a lower magnitude of change relative to 261 

observation, which is not visible through Figure 2.  262 

To further explore GHMs’ performance, a more detailed comparative analysis between observed trends and 263 

individual simulated trends using both historical climate forcings (via GSWP3) and GCM hindcasts was conducted. 264 

Specifically, four characteristics of trends in extreme flows (i.e. trend mean, trend standard deviation, percentage of 265 

significant trends and trend spatial structure) were assessed for individual simulations and the results are reported in 266 

following sections. At the global scale, GSIM observed trends exhibit a mean and standard deviation of -2.4% and 267 

9.9% change per decade over the 1971-2005 historical period. Furthermore, there are 7.5% (12.1%) stations showing 268 

significant increasing (decreasing) trends (detected by the Mann-Kendall test at the 10% significance level). These 269 

numbers, however, are not statistically significant at the global scale. 270 
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  271 

Figure 2. Normalised Theil-Sen slope for historical trends in flood magnitude (MAX7 index) exhibited over 3,666 272 

locations across three streamflow datasets (top: GSIM; middle: GSWP3; bottom: GCMHIND). Multi-model average 273 

is shown for simulated trends. Trend is expressed in % change per decade. 274 

 275 

Table 3 shows the results of the global model-observation comparison using GSWP3 simulated trends across the six 276 

GHMs. Compared to observed trends, most simulated trends have a significantly higher global trend mean at the 277 

observed locations (ranging from -2.2% to 0.1% change per decade) and lower trend standard deviation (ranging from 278 

7.1% to 8.7% change per decade). The percentage of locations showing significant trends varies substantially across 279 

simulations, but the values were not statistically significant. All GHMs demonstrate moderate capacity in simulating 280 

the spatial pattern of trends (spatial correlation coefficients range from 0.35 to 0.50, indicating that GSWP3 simulated 281 
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trends account for between 12%-25% of the cross-location variability in the observed trend signal). There is, 282 

however, a notable difference in terms of the overall sign of trends simulated by each different GHM. This feature 283 

indicates that using different GHMs can lead to different interpretations about the overall change in flood hazard at 284 

the global scale, despite having a common boundary forcing. For example, PCR-GLOBWB suggests there are more 285 

locations showing significant increasing trends (9.6%) than decreasing trends (6.1%) while LPJmL shows the 286 

opposite pattern (4.5% and 7.3% of locations showing significant increasing and decreasing trends respectively). The 287 

variation of trends characteristics exhibited by different GHMs also indicates that the ‘closer to zero’ trends of 288 

ensemble averages (illustrated in Figure 2) likely reflects the implication of averaging rather than a systematic bias of 289 

GHMs toward a low magnitude of change. As an implication, ensemble averages even though useful, should not be 290 

used as a sole ground to infer change in floods, as this may undermine the actual magnitude of simulated trends.  291 

Table 3. Characteristics of trends in the MAX7 index over the 1971-2005 period across 3,666 locations for GSIM 292 

observed trends and GSWP3 simulated trends (six GHMs available). Trend mean and trend standard deviation are 293 

expressed in % change per decade. Correlation was obtained from GSIM observed trends and GSWP3 simulated 294 

trends for each GHM. Boldface texts represent values that reject the null-hypotheses outlined in Table 2 (hypothesis 1 295 

to 4).  296 

GHM 
Trend 

mean 

Trend stand. 

dev. 

% of sig. inc. 

trends 

% of sig. dec. 

trends 

Corr. 

obs. trend 

H08 -1.9 8.3 4.8 6.7 0.42 

LPJmL -2.2 7.1 4.5 7.3 0.37 

PCR-GLOBWB 0.1 7.7 9.6 6.1 0.46 

WaterGAP2 -0.3 8.2 8.5 4.2 0.49 

MPI-HM -2.1 8.7 5.6 7.5 0.50 

ORCHIDEE -1.4 8.6 7 8.2 0.35 

GSIM (observation) -2.4 9.9 7.5 12.1 - 

 297 

Table 4 provides the results of the model-observation comparison using GCMHIND simulated trends (intra-model 298 

averages are shown while results of individual simulations are reported in section 4 of supplementary material). 299 

Similar to GSWP3 trends, intra-model averages (i.e. calculated from simulations of one GHM) of GCMHIND trends 300 

tend to have a higher global mean (ranging from -2.3% to -0.4% change per decade with 19 out of 21 simulations 301 

suggesting a significantly different trend mean) and lower trend standard deviation (ranging from 7.4% to 8.7% 302 

change per decade, with all simulations suggesting a significantly different trend standard deviation) than observed. 303 

The composition between the percentages of locations showing significant trends varies substantially across 304 

simulations (ranging from 2.2%/4.1% to 12.2%/17.3% for significant increasing/decreasing trends) and statistical 305 

significance was found only for decreasing trends over three out of 21 simulations (two LPJmL simulations and one 306 
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MPI-HM simulation). The multi-model ranges encapsulate the observed trend mean and percentage of significant 307 

trends, while the observed trend standard deviation is clearly above the range exhibited from all GCMHIND 308 

simulations. The significantly lower simulated trend standard deviation can be partially attributable to the coarse 309 

resolution of GHMs’ atmospheric/land surface inputs, which may not sufficiently reflect the variation of hydrological 310 

processes across small-to-medium size catchments. 311 

Table 4. Characteristics of trends in the MAX7 index over the 1971-2005 period across 3,666 locations for 312 

GCMHIND simulated trends. Trend mean and trend standard deviation are expressed in % change per decade. Intra-313 

model averages of trend characteristics are shown for each GHM. Values in the parentheses show the number of 314 

simulations rejecting the null hypothesis (from 1 to 4) outlined in Table 2 (out of four GCMs). Multi-model 315 

min/max/average values together with those exhibited from GSIM are also provided. 316 

GHM 
Trend 

mean 

Trend stand. 

dev. 

% of sig. inc. 

trends 

% of sig. dec. 

trends 

Corr. 

obs. trend 

H08 -1.7 (4) 8.5 (4) 4.9 (0) 8.8 (0) 0.03 (2) 

LPJmL -2.3 (4) 7.9 (4) 4.2 (0) 12.6 (2) 0.09 (3) 

PCR-GLOBWB -1.1 (2) 7.4 (4) 7.5 (0) 9.4 (0) 0.06 (3) 

WaterGAP2 -1.3 (4) 8.4 (4) 5.4 (0) 8.0 (0) 0.02 (2) 

MPI-HM -1.8 (3) 8.7 (3) 5.7 (0) 9.9 (1) 0.05 (2) 

ORCHIDEE -0.4 (2) 8.6 (2) 6.9 (0) 7.0 (0) 0.04 (1) 

Multi-model min -4.2 7.0 2.2 4.1 -0.06 

Multi-model max 0.6 9.5 12.2 17.3 0.18 

Multi-model average -1.5 8.2 5.6 9.5 0.05 

GSIM (observation) -2.4 9.9 7.5 12.1 - 

 317 

Among 21 GCMHIND simulations, the ‘zero similarity’ hypothesis (hypothesis 5) was rejected over 13 simulations, 318 

indicating that GCM-GHM ensemble members possess some capacity to simulate the spatial structure of observed 319 

trends in streamflow extremes. The correlation between GCMHIND simulated trends and GSIM observed trends 320 

(ranging from -0.06 to 0.18), however, is significantly lower than that exhibited from GSWP3 simulated trends across 321 

all GHMs (reported at Table 3). The results of the similarity assessment are illustrated for a single GHM (H08; as the 322 

results were similar for other GHMs) in Figure 3, where the correlation between observed trends and GSWP3 323 

simulated trends is significantly different from zero. In contrast, the correlation between observed trends and each of 324 

the simulated trends under hindcast atmospheric forcing (GCMHIND simulations) is much lower, with two of the 325 

four not being statistically higher than zero. These results confirm the substantial influence of atmospheric forcing on 326 

the simulated trend pattern relative to GHMs structure.  327 
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 328 

Figure 3. Model-observation correlation between observed trends and simulated trends across all simulations 329 

(GSWP3 and four GCMHIND simulations) of a single model (H08; similar results for other GHMs). Coloured dots 330 

indicate actual correlation between a specific simulated trend pattern and observed trend pattern across 3,666 331 

locations. Colour lines represent the PDFs of correlation between simulated trend pattern and observed trend pattern 332 

obtained through a bootstrap resampling procedure (B = 2000). 333 

 334 

To further quantify changes at the regional scale, a model-observation comparison (identical to that at the global 335 

scale) was conducted over six continents and the results are summarised in Table 5 (multi-model averages are 336 

shown). The trend mean exhibited from GSIM ranges from -10.7% (Oceania) to 2.4% change per decade (Europe) 337 

while trend standard deviation ranges from 8.3% (Europe) to 15.8% change per decade (Oceania). The percentage of 338 

significant increasing (decreasing) trends exhibited from GSIM ranges from 3.2% to 22.6% (from 6.3% to 29.1%) 339 

and the composition of significant trends across the six continents is consistent to a previous investigation (Do et al., 340 

2017). The observed percentage of significant trends is found to be above random chance for Europe (increasing 341 

flood magnitude) and Australia (decreasing flood magnitude) and this feature is captured quite well by GSWP3 342 

simulated trends, with at least half of the simulations confirming field significances detected from GSIM.  343 
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Similar to the assessment at the global scale, most GSWP3 simulations generally exhibit a higher trend mean 344 

compared to the observed trend at the continental scale (see also Section 3.1 of the supplementary). Over data-345 

covered regions, a general lower trend standard deviation was also exhibited across all simulations, suggesting 346 

substantial uncertainty of trends in streamflow extremes introduced by GHMs at the continental scale. The spatial 347 

correlation is weakest in Asia, as no simulation rejects the null-hypothesis of ‘zero similarity’, while the spatial 348 

correlation is strongest in Oceania (mainly southern Australia; correlation of 0.63). Oceania, however, exhibits the 349 

highest model-observation discrepancy in trend mean and trend standard deviation, indicating the capacity of a given 350 

GHM in terms of the trend spatial structure is not necessarily consistent with its performance in terms of the mean 351 

and spread of trends.  352 

GCMHIND simulations generally exhibit lower capacity in terms of reproducing trends. The majority of GCMHIND 353 

simulated trends tends to not capture the continental trend mean and trend standard deviation exhibited in the 354 

observed (see also Section 3.1 of the supplementary). GCMHIND trends also suggest the opposite composition 355 

between percentages of significant trends compared to GSIM trends (e.g. simulated trends suggest more locations 356 

showing significant increasing trends while observed trends suggest the opposite). Finally, the spatial correlation is 357 

also significantly lower than GSWP3 correlation (except for Asia and South America). Among six continents, 358 

GCMHIND trends exhibited the lowest correlation (-0.14) in Oceania, whereas GSWP3 suggested the strongest 359 

correlation in this continent. This assessment further indicates the substantial impact of atmospheric forcing relative 360 

to GHM model structure on the simulated trends in high flow events.  361 

  362 
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3.2 Determining the representativeness of observation locations in the GHM simulations 367 

To assess the representativeness of observations locations in GHM grid cells, trend characteristics obtained from all 368 

simulated grid cells were compared to those estimated from the observation locations (3,666 sites globally). For 369 

GSWP3 simulations, the results suggest a significant difference between trend characteristics from all model grid 370 

cells compared to those obtained from the observation locations (Table 6; multi-model averages shown). This feature 371 

is consistent at both global and continental scales, including North America and Europe – the continents with the best 372 

stream-gauge density. Specifically, the trend mean tends to get closer to zero, while the trend standard deviation 373 

obtained from all grid cells tends to be higher than that over observation locations. The difference between the 374 

percentages of significant increasing/decreasing trends across all grid cells also gets smaller. For instance, the 375 

percentage of observation locations showing significant increasing (decreasing) trends over Oceania is 3.7% (22.1%) 376 

for GSWP3 multi-model averages (reported in Table 5), while the corresponding values are 10.7% (15.1%) when all 377 

grid cells are considered (reported in Table 6). Additionally, field significance for increasing (decreasing) trends is 378 

detected in two (four) out of six simulations over Oceania, while the same feature could not be detected over the 379 

observation locations. These findings confirm that trends exhibited from observation locations are not a representative 380 

sample of trends obtained from all simulation grid cells, which has also been suggested through Figure 1. As a result, 381 

a common model-observation picture of changes in global flood hazard remains elusive. To enable a holistic 382 

perspective of changes in extreme flows, it is therefore crucial to improve data accessibility and expand streamflow 383 

observational networks to ensure unbiased samples are available for large scale investigations.  384 

The findings using GCMHIND simulations are similar in terms of the trend mean (closer to zero) and trend standard 385 

deviation (higher) across all grid cells relative to the observation locations. Across all land areas, the composition of 386 

the percentages of land mass showing significant trends exhibited by GCMHIND simulations contradicts that 387 

obtained from the GSWP3 simulations for many continents. For example, GSWP3 simulations suggest more land 388 

areas showing significant decreasing trends than increasing trends over Asia and Oceania while GCMHIND 389 

simulations indicate an overall increasing change in extreme flows over the same continents. This feature further 390 

confirms the importance of atmospheric forcing in driving the spatial structure of the simulated trends, which will be 391 

explored further in the next section. 392 

19

https://doi.org/10.5194/hess-2019-388
Preprint. Discussion started: 6 August 2019
c© Author(s) 2019. CC BY 4.0 License.



T
ab

le
 6

. C
ha

ra
ct

er
is

ti
cs

 o
f 

si
m

ul
at

ed
 tr

en
ds

 a
cr

os
s 

al
l g

ri
d 

ce
lls

 a
t b

ot
h 

co
nt

in
en

ta
l a

nd
 g

lo
ba

l s
ca

le
s 

(m
ul

ti
-m

od
el

 a
ve

ra
ge

s 
ar

e 
sh

ow
ed

).
 F

or
 e

ac
h 

si
m

ul
at

io
n,

 c
el

l-
ba

se
d 

tr
en

d 
39

3 

m
ea

n/
tr

en
d 

st
an

da
rd

 d
ev

ia
ti

on
 w

as
 c

om
pa

re
d 

to
 th

at
 o

f 
ga

ug
e-

ba
se

d 
tr

en
ds

 (
re

po
rt

ed
 in

 T
ab

le
 4

).
 V

al
ue

s 
in

 p
ar

en
th

es
es

 r
ep

re
se

nt
 th

e 
nu

m
be

r 
of

 s
im

ul
at

io
ns

 r
ej

ec
t t

he
 n

ul
l-

hy
po

th
es

is
 

39
4 

de
sc

ri
be

d 
in

 T
ab

le
 2

 (
up

 to
 s

ix
 s

im
ul

at
io

ns
 f

or
 G

SW
P

3 
an

d 
21

 s
im

ul
at

io
ns

 f
or

 G
C

M
H

IN
D

).
 G

SI
M

 r
es

ul
ts

 a
re

 a
ls

o 
pr

ov
id

ed
 f

or
 r

ef
er

en
ce

. 
39

5 

R
eg

io
n

 

T
re

nd
 m

ea
n

 
T

re
nd

 S
ta

n
d

. D
ev

. 
%

 s
ig

. i
nc

. t
re

n
ds

 
%

 s
ig

. d
ec

. t
re

nd
s 

G
SI

M
 

G
SW

P
3 

G
C

M
H

IN
D

 
G

SI
M

 
G

SW
P

3 
G

C
M

H
IN

D
 

G
SI

M
 

G
SW

P
3 

G
C

M
H

IN
D

 
G

SI
M

 
G

SW
P

3 
G

C
M

H
IN

D
 

A
si

a 
-3

.1
 

-0
.7

 (3
) 

0.
4 

(1
6)

 
8.

8 
10

.3
 (6

) 
9.

0 
(1

5)
 

4.
2 

7.
7 

(0
) 

9.
6 

(7
) 

15
.6

 
9.

9 
(3

) 
7.

7 
(4

) 

N
. A

m
er

ic
a 

-3
.5

 
-1

.8
 (4

) 
0.

4 
(1

9)
 

9.
4 

10
.3

 (6
) 

8.
3 

(1
7)

 
3.

2 
6.

9 
(1

) 
8.

2 
(4

) 
13

.4
 

12
.3

 (5
) 

6.
6 

(0
) 

E
ur

op
e 

2.
4 

1.
1 

(5
) 

0.
2 

(1
6)

 
8.

3 
8.

5 
(5

) 
8.

4 
(2

0)
 

22
.6

 
11

.5
 (2

) 
9.

1 
(5

) 
6.

3 
4.

5 
(0

) 
7.

9 
(3

) 

A
fr

ic
a 

-2
.5

 
0.

7 
(2

) 
-1

.7
 (1

5)
 

14
.8

 
11

.0
 (3

) 
10

.1
 (1

2)
 

6.
3 

10
.9

 (1
) 

8.
5 

(6
) 

10
.4

 
11

.2
 (2

) 
15

.5
 (1

1)
 

S.
 A

m
er

ic
a 

-2
.0

 
-2

.0
 (6

) 
-0

.7
 (1

9)
 

10
.1

 
8.

7 
(3

) 
9.

1 
(1

7)
 

7.
9 

4.
9 

(0
) 

5.
0 

(0
) 

10
.2

 
8.

6 
(0

) 
8.

2 
(1

) 

O
ce

an
ia

 
-1

0.
7 

-1
.0

 (6
) 

0.
5 

(1
7)

 
15

.8
 

11
.3

 (4
) 

10
.4

 (1
7)

 
4.

7 
10

.7
 (0

) 
10

.3
 (3

) 
29

.1
 

15
.1

 (1
) 

9.
6 

(6
) 

G
lo

ba
l 

-2
.4

 
-0

.6
 (6

) 
-0

.1
 (2

0)
 

9.
9 

10
.3

 (6
) 

9.
4 

(1
9)

 
7.

5 
8.

3 
(1

) 
8.

6 
(6

) 
 

12
.1

 
10

.2
 (4

) 
9.

0 
(6

) 

 
39

6 

 
39

7 

20

https://doi.org/10.5194/hess-2019-388
Preprint. Discussion started: 6 August 2019
c© Author(s) 2019. CC BY 4.0 License.



3.3 The implication of simulation uncertainty on the projection of trends in flood hazard 398 

This section focuses on the uncertainty in simulated trends under projected climate forcing at the global scale. For 399 

MPI-HM (no simulation for HadGEM2-ES forcing), streamflow was only simulated across the main stream-network 400 

(approximately 45% of the global land grid cells), and thus three simulations of this GHM were removed from the 401 

analysis. As a result, only 18 ensemble members were used to explore the uncertainty in projected trends 402 

(GCMRCP2.6 and GCMRCP6.0 – trends estimated for the 2006-2099 period and all cells were considered).  403 

Table 7 shows a relatively low spread of the global trend mean (ranging from -1.3% to 0.8% change per decade; 404 

multi-model average of 0.0% change per decade for both GCMRCP2.6 and GCMRCP6.0) and trend standard 405 

deviation (ranging from 1.8% to 4.1% change per decade) across ensemble members. LPJmL and ORCHIDEE 406 

generally suggest a decreasing trend at the global scale, evident through the negative global mean and more grid cells 407 

showing significant decreasing trends. The standard deviation of trends in future simulations (multi-model average of 408 

2.3% and 3.2% change per decade for GCMRCP2.6 and GCMRCP6.0 respectively) is substantially lower than the 409 

historical run (multi-model average of 9.4% change per decade as reported in Table 6). This feature is potentially due 410 

to the capacity of longer time series in capturing the inter-decadal variability of the streamflow regimes, with both dry 411 

and wet periods being considered (Hall et al., 2014). Projected trends under the RCP2.6 scenario generally have 412 

closer to zero mean and lower standard deviation compared to those introduced by the RCP6.0 scenario, reflecting the 413 

nature of an ambitious ‘low-end warming’ scenario, when anthropogenic climate change reaches its peak at the 414 

middle of the 21st century followed by a generally stable condition.  415 

Interestingly, although most models suggest relatively moderate changes in the global trend mean, the composition 416 

between percentages of grid cells showing significant trends varies substantially, ranging from 7.5% (7.1%) to 30.1% 417 

(35.0%) for significant increasing (decreasing) trends at the 10 % level, with RCP6.0 generally exhibits higher values. 418 

This indicates that focusing on global averages may mask significant regional trends, as there was a substantially high 419 

percentage of locations exhibiting significant increasing and decreasing trends exhibited in individual models.  420 

Uncertainty in the spatial structure of trends in streamflow extremes is further investigated using both intra-model (to 421 

reflect GCM uncertainty) and inter-model correlations (to reflect the combined GCM-GHM uncertainty). A more 422 

robust spatial pattern of projected trends under RCP6.0 was found, indicated through generally higher intra-/inter-423 

model correlation (multi-model averages of 0.34/0.04) compared to those exhibited from trends simulated under 424 

RCP2.6; multi-model averages of 0.08/0.01) across all GHMs. This feature potentially reflects the less contrasted 425 

regional climate change of RCP2.6 relative to RCP6.0. The inter-model correlation (ranging from -0.18 to 0.21) is 426 
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consistently lower than intra-model correlation (ranging from –0.03 to 0.48) due to the combined uncertainty of both 427 

GHMs and GCMs.  428 

Table 7. The uncertainty in the characteristics of projected trends (GCMRCP2.6 and GCMRCP6.0) across 18 429 

members at the global scale (five GHMs). Trend mean and trend standard deviation have unit of %-change per 430 

decade. At-site significance of trend was identified using Mann-Kendall test at 10% level and the percentage of grid 431 

cells showing significant increasing/decreasing trends was reported (no field significance test was conducted). Intra-432 

model average value of each metric across is shown for each GHM (numbers of simulations are provided in the first 433 

column).  434 

Model 

No. 

of 

sim 

Trend mean 
Trend standard 

deviation 

% of sig. 

inc. trends 

% of sig. 

dec. trends 

Intra-model 

correlation 

Inter-model 

correlation 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

H08 4 0.1 0.3 2.5 3.4 14.2 22.1 11.6 19.3 0.17 0.41 0.02 0.21 

LPJmL 4 -0.1 -0.2 2.1 3.0 10.0 19.1 9.4 19.7 0.04 0.41 0.01 0.18 

ORCHIDEE 2 -0.5 -0.8 2.6 3.6 9.1 14.4 17.6 28.1 0.07 0.34 0.03 0.11 

PCR-GLOBWB 4 0.1 0.0 2.4 3.4 15.1 22.7 11.6 20.2 0.07 0.30 0.02 0.18 

WaterGAP2 4 0.2 0.5 2.3 3.0 13.0 25.9 8.0 11.8 0.03 0.25 0.01 0.17 

Multi-model min - -0.6 -1.3 1.8 2.6 7.5 12.3 7.1 9.6 -0.03 0.12 -0.11 -0.18 

Multi-model max - 0.4 0.8 2.9 4.1 18.0 30.1 21.2 35.0 0.30 0.48 0.21 0.21 

Multi-model average - 0.0 0.0 2.3 3.2 12.6 21.6 11.0 18.9 0.08 0.34 0.01 0.04 

 435 

To quantity the robustness in terms of regions with significant trends in streamflow extremes, the number of 436 

simulations showing significant increasing/decreasing trends was counted for each grid cell (value ranging from 0 to 437 

18). As shown in Figure 4, the projections under RCP2.6 (top panels) do not suggest many regions with an increasing 438 

trend for most ensemble members, but consistently suggest decreasing trends over the majority of Africa, Australia 439 

and the western America. Although both scenarios suggested a similar spatial pattern, projections under the RCP6.0 440 

scenario (lower panels) show a substantially higher robustness in terms of regions with significant changes over time 441 

in streamflow extremes. For instance, significant increasing trends are projected consistently over southern and south-442 

eastern Asia, eastern Africa, and Siberia, while high agreement of decreasing trends is found over southern Australia, 443 

north-eastern Europe, the Mediterranean and north-western North America. These findings share some similarity with 444 

a previous investigation that used the ISIMIP Fast Track simulations (published before the ISIMIP2a and 2b 445 

simulations used here) to identify regions projected with an increasing magnitude of 30-year return level of river flow 446 

(Dankers et al., 2014). Specifically, both studies suggest overall: (1) an increasing trend over Siberia and South-East 447 

Asia; and (2) a decreasing trend over north-eastern Europe and north-western North America. The present study, 448 

however, additionally highlights a dominant decreasing trend over Australia, which was not shown previously. The 449 

different numbers of ensemble members (45 in Dankers et al. (2014) and 18 in the present study) and greenhouse gas 450 

concentration scenario (RCP8.5 in Dankers et al. (2014) and RCP2.6/RCP6.0 in the present study) between two 451 
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studies indicate that the choice of GCM-GHM ensemble and greenhouse gas concentration scenarios could lead to 452 

substantially different projections of changes in flood hazard at the regional scale. 453 

 454 

Figure 4. Number of simulations showing statistically significant trends at the 10% level at each grid cell. The left 455 

panels show results for the assessment of increasing trends, while the right panels show results for significant 456 

decreasing trends. Top: results of GCMRCP2.6 simulations; Bottom: results of GCMRCP6.0 simulations. 457 

 458 

These results suggest the key role of GCM uncertainty in projections of changes in flood hazards, emphasising the 459 

importance of a flexible adaptation strategy at the regional scale that can take this uncertainty into account (Dankers 460 

et al., 2014). Such a strategy is achievable only through a reliable and robust understanding of the change in flood 461 

hazard. The assessment of the representativeness of streamflow observations (section 3.2), however, demonstrated 462 

that the observation locations selected for this assessment are not a representative sample of the entire land mass. As a 463 

result, inference of changes in flood hazard may be biased toward well-observed regions.  464 

To further highlight the potential impact of limitations in observed streamflow datasets, the proportion of available 465 

stream gauges located in regions with different levels of projected ‘flood risk’ was assessed. We first categorised each 466 

grid-cell into one of the five ‘flood-risk’ groups based on the number of simulations projecting a significant 467 

increasing trend. In this analysis, RCP6.0 scenario was chosen as it yielded a higher global ‘risk’ of flood hazard 468 

relative to RCP2.6 scenario. Figure 5 presents the percentage of all simulated grid cells (left panel) and of the subset 469 

of GSIM station (right panel) falling in each of the five groups. As can be seen, 11.7% of grid cells fell into the “high 470 

risk” groups (8.9% from Group 4 with 11-15 ensemble members, and 1.8% in Group 5 with 16-18 ensemble 471 
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members), compared to only 0.9% of stations available in GSIM archive (0.9% from Group 4 and no station located 472 

in Group 5). In contrast, 68.9% of grid cells fell into the “low risk” groups (22.0% for Group 1 with no ensemble 473 

members, and 46.9% for Group 2 with 1-5 ensemble members), compared to 89.5% of stations available in GSIM 474 

archive (35.4% for Group 1 and 54.1% for Group 2). The uneven distribution of stream gauges indicates potential 475 

difficulties in using observational records to provide an assessment of global or regional changes in flood hazard, 476 

which in part arises from data caveats associated with the spatiotemporal coverage and quality of observed gauge 477 

records across the globe.  478 

 479 

Figure 5. Percentage of grid-cell (“Landmass”) grouped by the number of simulations projecting a significant 480 

increasing trend under RCP6.0 scenario; and the percentage of streamflow stations (“GSIM”) assigned into each 481 

group. The range of possible simulations is from 0 to 18 and binned into five groups (Group 1: no members, Group 2: 482 

from 1 to 5 members, Group 3: from 6 to 10 members, Group 4: from 11 to 15 members and Group 5: from 16 to 18 483 

members). To identify which group a specific station belongs to, the geographical coordinates of that station was 484 

superimposed on top of the global ‘flood-risk’ map. 485 

4 Summary and conclusions 486 

To reconcile observed and simulated trends in historical flood hazards at the global and continental scale, this study 487 

evaluated the capacity of six GHMs to reproduce the characteristics of historical trends over the 1971-2005 period, 488 

24

https://doi.org/10.5194/hess-2019-388
Preprint. Discussion started: 6 August 2019
c© Author(s) 2019. CC BY 4.0 License.



using observations from the Global Streamflow Indices and Metadata (GSIM) archive. The observed trends in annual 489 

maximum streamflow confirm previous findings about changes in flood hazard over data-covered regions (Do et al., 490 

2017), in which significant decreasing trends were found mostly in Australia, the Mediterranean region, western US, 491 

eastern Brazil and Asia (Japan and southern India), while significant increasing trends were more common over 492 

central US, southern Brazil, and northern Europe.  493 

The ability of GHMs to reproduce trends in streamflow maxima was assessed, focusing on four characteristics of 494 

trends (i.e. the mean and standard deviation of trends, the percentage of stations showing significant 495 

increasing/decreasing trends, and the spatial structure of trends). Trends simulated by GHMs, when using an 496 

observational climate forcing, show moderate capacity to reproduce the characteristics of observed trends. Climate 497 

forcing uncertainty (i.e. the effect of using different GCMs to simulate the historical climate), however, significantly 498 

reduced the extent to which the GHMs’ captured the observed spatial structure of trends. This was evident through 499 

significantly lower spatial correlation between observed hydrological trends and simulated trends, when GCMs were 500 

used for the climate forcing, than when climate observations were used.  501 

The simulated trends over observed areas inadequately represented spatially averaged trends simulated for wider 502 

spatial areas from all GHM grid cells at the continental and global scales. This was evident in most simulations for 503 

trend mean and trend standard deviation, indicating a potential mismatch between observation-based and model-based 504 

inferences about changes in flood hazard. As a result, alternatives for conventional approach in estimating change of 505 

streamflow extremes at the global and regional scale (i.e. unweighted mean across all grid points) should be 506 

investigated. For instance, the spatial weighted averages (e.g. using inverse distance relative to observed locations as 507 

weights) could be used to compute global means of changes. Regional analysis using homogenised regions as the 508 

basis of reporting spatial domains (Zaherpour et al., 2018;Gudmundsson et al., 2019) could be a potential alternative 509 

for continental scale assessment. 510 

Uncertainties of trends in streamflow extremes were analysed to assess their implication on the development of 511 

projected changes in flood hazard over the 2006-2099 period. Under both RCP2.6 and RCP6.0 greenhouse gas 512 

concentration scenarios, simulated trends across ensemble members have relatively low uncertainty in terms of the 513 

global trend mean (ranging from -1.3% to 0.8% change per decade) and trend standard deviation (ranging from 1.8% 514 

to 4.1% change per decade). The spread of the percentage of land mass showing significant trends is high, ranging 515 

from 7.5% (7.1%) to 30.1% (35.0%) for significant increasing (decreasing) trends. This indicates that limited changes 516 

to the global mean flood hazard could potentially mask out significant regional changes. The spatial correlations 517 
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across inter-model trend patterns are generally low (ranging from -0.18 to 0.21), further indicating high levels of 518 

uncertainty. 519 

In terms of regional planning to mitigate flood hazard, individual models may provide contradictory signals of 520 

changes in flood hazard for a specific region. Under RCP6.0 scenario, some regions, e.g. south-eastern Asia, eastern 521 

Africa, Siberia, were consistently projected with significant increasing trends, which has some similarity to previous 522 

findings that used ISIMIP Fast Track simulations (Dankers et al., 2014). These ‘high-risk’ regions, however, are 523 

sparsely sampled, covered by less than 1% of all available stream-gauges listed in the catalogue of GSIM. Data 524 

coverage, as a result, remains the key limitation of this study, which could potentially lead to an erroneous conclusion 525 

on the state-of-understanding of historical trends in flood hazard globally. Specifically, substantial changes, although 526 

having occurred, might not be captured by available streamflow records.  527 

Improved performance of GHMs in terms of simulating changes in flood hazard, considering the many factors 528 

influencing model capacity, is achievable only through the combined efforts of many communities. The spread of 529 

trends in streamflow extremes (trend standard deviation) could be simulated more accurately by finer spatiotemporal 530 

resolution GHMs. Such an improvement in GHMs, however, is highly dependent on the quality of input datasets (e.g. 531 

dam operations, historical irrigation databases and land-use/land-cover, in addition to atmospheric forcing), which are 532 

driven by advances in other geophysical disciplines (Bierkens et al., 2015;Wood et al., 2011). The moderate capacity 533 

of GHMs in terms of simulating the spatial structure of trends in streamflow extremes indicates the need for improved 534 

representation of runoff generation at the global scale (e.g. to better reflect rainfall-runoff relationship and the 535 

contribution of snow-dynamics), which is also a focus of large-sample hydrology (Gupta et al., 2014;Addor et al., 536 

2017). Uncertainty in GCMs, a long-standing challenge for the climate community, should also be addressed to 537 

enable robust projections of flood hazard in a warmer climate. One possibility is through constraining model 538 

performance using historical observations, which could potentially reduce the uncertainties of atmospheric forcing 539 

projections (Greve et al., 2018;Lorenz et al., 2018;He and Soden, 2016;Padrón et al., 2019).  540 

This study presents a comprehensive investigation of historical and future changes in flood hazard using a hybrid 541 

model-observation approach. The results highlighted a substantial difference between trend characteristics simulated 542 

by GHMs and that obtained from GSIM archive, suggesting more attention should be paid to investigating GHMs 543 

performance in the context of historical and future flood hazard. This is particularly important to determine the 544 

appropriateness of GHMs in specific investigations, as model performance may vary substantially across different 545 

variables (e.g. moderate capacity in simulating spatial structure of trends may be accompanied by a low performance 546 

in terms of simulating trend mean). Large-sample evaluations, however, are highly dependent on data availability, 547 
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which has been emphasised as one of the key barriers to a holistic perspective of changes in floods. Specifically, the 548 

unevenly distributed GSIM stations, partially due to the constraint in data accessibility, do not provide representative 549 

samples at both global and continental scale. Sustained and collective efforts from the broad hydrology community, 550 

therefore, are required to make streamflow data becomes more FAIR (Findable, Accessible, Interoperable and 551 

Reusable; see Wilkinson et al., 2016), and ultimately complement our limited understanding of flood hazards. Data 552 

providers, considering their tremendous investments in maintaining and making streamflow observations available in 553 

the public domain, remain key agencies to enhance the evidence-base of the global terrestrial water cycle and changes 554 

in flood hazard. Centralised organisations such as GRDC or WMO should also push forward the movement of 555 

making streamflow data accessible to the research community. More initiatives based on citizen science (Paul et al., 556 

2018) should be adopted, as this is a potential option to crowdsource water data and offset the limitation of traditional 557 

observation system. Finally, attention should also be paid to stream gauges maintenance, data housekeeping and data 558 

sharing to ensure ongoing flood monitoring is available to the present and future generations. 559 
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