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1 Simulation information 
This section summarises the key simulation settings of each global hydrological model (GHM). Note that more detailed 
information is available in the protocols of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) available at 
https://www.isimip.org/protocol. 

The following two input datasets were used for the GHM simulations, with specific model runs summarised in Table S1: 

1. Climate & CO2 concentration scenarios (i.e. atmospheric forcing) 
- GSWP3: observations-based dataset providing the climate forcing data. 
- RCP2.6: future climate and CO2 concentration from RCP2.6 
- RCP6.0: future climate and CO2 concentration from RCP6.0 
- HINDCAST: historical modelled climate and CO2 concentration. 

2. Human influence and land-use scenarios 
- nosoc: Naturalized runs (no human impact). No irrigation. No population and GDP data prescribed.  
- varsoc: Varying historical land use and other human influences over historical period. 
- 2005soc: Fixed year-2005 land use and other human influences. 

Note that GSWP3 was used as the sole observational atmospheric forcing dataset in this investigation. We also used 
modelled atmospheric forcing datasets introduced by four global climate models (GCM): GFDL-ESM2M, HadGEM2-ES, 
IPSL-CM5A-LR and MIROC5. 

Table S1. Simulation set up of GHMs used in this investigation. ‘Climate’ represents atmospheric forcing dataset while 
‘human’ represents human influence and land-use scenarios. Note that a more detailed inventory of available model runs is 
provided in Table S2.  

Model GSWP3_VARSOC GSWP3_NOSOC GCMHIND GCMRCP2.6 GCMRCP6.0 

H08 
Climate: GSWP3 
Human: varsoc Climate: GSWP3 

Human: nosoc 

Climate: HINDCAST 
Human: 2005soc 

Climate: rcp26 
Human: 2005soc 

Climate: RCP6.0 
Human: 2005soc 

LPJmL 
Climate: HINDCAST 
Human: varsoc (except 
for ORCHIDEE using 
nosoc) 

PCR-GLOBWB 
WaterGAP2 
MPI-HM Simulations not 

available ORCHIDEE 

The results of preliminary assessment over 3666 observation locations suggest minor influence of human influence and land-
use scenarios on the characteristics of trends in streamflow extremes (see section 4 of this supplementary material), and thus 
only GSWP3_NOSOC was used in the main text (denoted as GSWP3 in the main text). 

2 Simulated streamflow extraction  
For very large catchments, where excess rainfall takes a significant amount of time to reach the outlet, the routing scheme 
plays an important role in model performance related to high flow events (Zhao et al., 2017) and thus routed discharge is the 
more appropriate measure of simulated streamflow. The same simulation product, however, potentially does not perform 
well for small catchments, partially due to the coarse resolution of GHMs (Hunger and Döll, 2008). To address this concern, 
we adopted a common threshold of 9,000km2 (approximate the size of 1o×1 o grid cell) to separate the selected catchments 
into two groups and applied different procedures to extract simulated streamflow. 

2.1 Weighted-area average for stations with catchment from 0 to 9000 km2 
2.1.1 Producing weighted-area tables  
For stations with catchment area less than or equal to 9000 km2, the catchment boundary was superimposed to the ISIMIP 
grid to identify intersecting cells, and a weighted-area table was calculated for each case. Simulated runoff was extracted by 
averaging the un-routed surface runoff from all intersect cells (considering weight). Runoff was then converted into 
discharge data.  

Figure S1 provides an illustration of the weighted-area table for station US_0002282 (red dot; Merrill catchment of 
Pascagoula River, Mississippi, US) which has the total number of 15 upstream cells (dark-grey cells). Two components of 
the weighted-area table were used to label intersect cells: (1) cell number (dark red) and (2) normalised fraction of each cell 
(weights) that is covered by the catchment boundary (dark blue). The normalisation was performed such that the weights 
add up to one for each catchment, and these weights are used to extract simulated runoff for this catchment. 



 

Figure S1. Illustration of the table of weights.  

2.1.2 Averaging approach for cases where there were more than one catchment sharing similar weighted-area 
tables 
Among catchments that have area less than 9000km2, there are many instances where two or more catchments have (almost) 
identical simulated runoff as they have similar weighted-area tables. All ISIMIP models have a common assumption of 
uniform parameterisation for runoff generation in the 0.5×0.5 grid area, which in concept should represent an average value 
of runoff at finer resolution. Note that ORCHIDEE in ISIMIP2b (GCMs driven) was run at 1o×1 o resolution, and the 
outputs were disaggregated evenly 0.5×0.5 resolution. Here we also treat catchments that intersect an identical set of 
dominant contributing grid-cells (total weights of at least 70%) as samples of an identical simulation domain. As a result, 
the area-weighted mean discharge of these catchments was calculated and used for model-observation comparison.  

A search was conducted across all weighted-area tables to identify cases that have an identical set of intersecting cells 
contributing at least 70% to the total weighting. Figure S2 provides an example of these cases. In the top panel, boundaries 
of ten catchments were superimposed on top of the ISIMIP gridline (0.5×0.5 degree), demonstrating that they share a 
common cell (number 70051) which contributes at least 70% to the total weight (showed in the bottom panel).  



 

 

Figure S2. Example of instances where there is a significant overlap in contributing cells. Top panel: locations of 10 
catchments that share a common contributing grid-cell (cell number 70051 (in dark-grey colour) contributes at least 70% to 
the total weight of each catchment) although specific catchments have different contributing cells. Bottom panel: weighted-
area table of these 10 catchments. 



Figure S3 illustrates another case where three different catchments share two common cells (no. 76524 and 76525). These 
cells contribute 100%, 79.1%, and 76.4% to the weighted-area tables of catchment US_0001198, US_0001199, and 
US_0001203 respectively. In both examples, the identified catchments were considered samples of the same modeling 
domain.  

 

 

Figure S3. Similar to Figure S2, but here we have two contributing cells. The total weight of these common cells (number 
76524 and 76525, highlighted in dark-grey colour) is higher than 0.7 in all cases and thus these three catchments were 
considered samples of the same modelling domain. 



For each set of n catchments with similar weighted-area tables, a single average discharge 𝑄ത(m3/s) was calculated to 
represent these individual time series in the model-observation comparison following below procedures: 

For observed discharge:   

1. Convert discharge Q (units: m3/s) to runoff rate R (units: m/day) using catchment area A (units: m2) for each 
catchment i.  

 𝑅௜ = 𝑄௜ × 24 × 3600/𝐴௜  (m/day) 
Average catchment size was also recorded: 

  𝐴̅ =
ଵ

௡
∑ 𝐴௜

௡
௜ୀଵ   (m2) 

2. Average runoff rate across all catchments (considering area-weights) 

 𝑅ത =
∑ ோ೔஺೔
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3. Back-calculate average discharge (m3/s):  

 𝑄ത =
ோത஺̅

ଶସ×ଷ଺଴଴
 (m3/s) 

For simulated discharge:   

1. Extract runoff rate using weighted-area tables as described in Section 2.1 for all catchments.  
2. Follow Step 2 and Step 3 of the observation procedure. 

 

2.3 Discharge output identification for catchment with area greater than 9000 km2 
For catchments with area greater than 9000km2, the ‘discharge output’ approach was adopted to find GHM cells 
corresponding to the catchments following Zhao et al. (2017). For a specific catchment, the grid cell corresponding to the 
catchment outlet was identified by matching catchment area available in a 0.5° drainage direction map (DDM30 dataset, 
freely available at http://www.uni-frankfurt.de/45218101/DDM30) and the reported area. The identified grid cell was then 
used to extract simulated discharge available in the ISIMIP data repository. Stations were removed if the procedure could 
not identify any DDM30 grid cell surrounding the reported geographical location with a drainage area discrepancy less than 
30% (see supplementary of Zhao et al. (2017) for detail).  

3 Supplementary Figures 
3.1 Capacity of GHMs to reproduce observed trends at continental scale 
As stream gauges are not evenly distributed across the world, Figure S4 provides a zoomed-in map for four regions with 
relatively high number of stations (North America, Europe, South America, and Oceania). The most notable feature is a 
significantly lower strength of trends exhibited through GSWP3/GCMHIND ensemble average compared to GSIM observed 
trends. This pattern is likely the result of averaging technique (smoothed out variability of ensemble members) as the feature 
is more pronounced in GCMHIND (21 simulations) compared to GSWP3 (6 simulations). Visual inspection of these results 
suggests that the overall spatial pattern of observed trends seems to be preserved in GSWP3 while GCMHIND simulations 
tend to incorrectly simulate some spatial pattern of trends (e.g. over Oceania).  



 

Figure S4. Normalised Theil-Sen slope for historical trends in flood magnitude (MAX7 index) over South America, 
Europe, South America and Oceania (left panels: GSIM; middle panels: GSWP3; right panels: GCMHIND). Multi-model 
average is shown for simulated trends. Trend is expressed in % change per decade.   

Figure S5 illustrates the mean and standard deviation of simulated trends across all locations (% change per decade) for each 
individual ensemble member (multi-model average was showed in the manuscript). The mean and standard deviation of all 
trends (referred to as trend mean and trend standard deviation here-after) obtained from GSIM archive were also showed as 
dark blue line. GSWP3 simulations generally produced a higher trend mean and a lower trend standard deviation across all 
continents compared to the observed trends. The discrepancy varies substantially across different regions. For instance, 
Oceania exhibited a discrepancy up to 7% per decade for the trend mean and 8% per decade for the trend standard deviation. 



This feature indicates a substantial inconsistency between simulated trends and observed trends. Among the six GHMs, 
ORCHIDEE, PCR-GLOBWB and WaterGAP tend to have a higher trend mean with the exception of Africa. This pattern 
potentially indicates the influence of either (i) parameterisation, (ii) model capacity in reproducing observed trend 
characteristics, or (iiI) a bias of the GSWP3 forcing trends.  

Figure S5 also shows relatively lower capacity of GCMHIND simulation in terms of reproducing observed trend mean and 
trend standard deviation in streamflow maxima. There is no clear ranking pattern in terms of the modelled atmospheric 
forcing being used, suggesting that uncertainty in GCM model was inherited differently across GHMs, likely due to the 
variation of parameterisation strategies.  

 



Figure S5. Mean (left panels) and standard deviation (right panels) of trends (% change per decade) exhibited from GSIM 
(horizontal blue line) observed trends and GSWP3/GCMHIND (hollow dots) simulated trends at the continental scale. The 
x-axis indicates different models. Note that y-axis range varies across panels. A null-hypothesis test was conducted to assess 
whether the mean/standard deviation of simulated trends is statistically different to that obtained from observed GSIM 
trends (horizontal blue line). Dark-red filled dots indicate simulations rejecting the null-hypothesis (i.e. which is that 
simulated trend mean/trend standard deviation is not statistically different to that obtained from GSIM).  

3.2 Spatial uncertainty across simulated trends forced with different modelled atmospheric forcing 
The assessment in section 3.3 of the main text suggests the combined GCM-GHM uncertainty has led to the presence of 
high uncertainty in terms of regions with significant projected trends in streamflow extremes. That is, a region could be 
projected by an overall increasing trend by one member and a decreasing trend by another member. This feature is 
illustrated in Figure S6, which shows a notable mismatch in the spatial structure of projected trends in MAX7 index 
between two ensemble members. Under the RCP2.6 greenhouse gas emission scenario, H08 forced with GFDL-ESM2M 
(top panels) projects an increasing trend for the majority of Australia and Siberia, while ORCHIDEE forced with IPSL-
CM5A-LR (bottom panels) projects an overall decreasing trend for the same regions. This spatial uncertainty could come 
from either the climate trends introduced by GCMs (differentiate across GCMs), different RCPs, and model characteristics. 

 

Figure S6. The magnitude (left panels) and significance (right panels) of trends in simulated MAX7 time series across all 
grid cells under RCP26 greenhouse gas emission scenario (2006-2099). Top panels: H08 forced with gfdl-esm2m climate 
data; bottom panels: ORCHIDEE forced with ipsl-cm5a-lr climate data. These two models had the lowest value of pattern 
similarity (correlation of -0.17). 

4 Supplementary Tables 
Considering a large number of simulations available (73 in total), the main text mostly used multi-model min/max/average 
to illustrate the results for cases where there is more than one simulation available for an identical GHM/spatial-domain. 
Table S2 provides a list of all 73 available models reported in this section together, with their simulation settings. Note that: 

(i) GSWP3_VARSOC simulations (listed in Table S2 as H08_GSWVAR, LPJ_GSWVAR, PCR_GSWVAR, and 
WAT_GSWVAR) were not reported in the main text as (1) there were only four simulations available 
(comparing to six simulations of GSWP3_NOSOC) and (2) the results obtained from GSWP3_NOSOC and 
GSWP3_VARSOC are similar (Table S3). 

(ii) In the main text, OBSHIS_NOSOC simulations were denoted as GSWP3. 



 

 

 

Table S2. Available ISIMIP streamflow simulations and associated setting. 

Seq Streamflow 
simulations 

GHM Climate Human Period 

1. H08_GSWVAR 

H08 

Observation (GSWPv3) varsoc 

1971-
2005 

2. H08_GSWNO Observation (GSWPv3) nosoc 
3. H08_HIN_G HINDCAST (GFDL-ESM2M) 

2005soc 

4. H08_HIN_H HINDCAST (HadGEM2-ES) 
5. H08_HIN_I HINDCAST (IPSL-CM5A-LR) 
6. H08_HIN_M HINDCAST (MIROC5) 
7. H08_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2006-
2099 

8. H08_RCP2.6_H RCP2.6 (HadGEM2-ES) 
9. H08_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
10. H08_RCP2.6_M RCP2.6 (MIROC5) 
11. H08_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
12. H08_RCP6.0_H RCP6.0 (HadGEM2-ES) 
13. H08_RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
14. H08_RCP6.0_M RCP6.0 (MIROC5) 
15. LPJ_GSWVAR 

LPJmL 

Observation (GSWPv3) varsoc 

1971-
2005 

16. LPJ_GSWNO Observation (GSWPv3) nosoc 
17. LPJ_HIN_G HINDCAST (GFDL-ESM2M) 

varsoc 
18. LPJ_HIN_H HINDCAST (HadGEM2-ES) 
19. LPJ_HIN_I HINDCAST (IPSL-CM5A-LR) 
20. LPJ_HIN_M HINDCAST (MIROC5) 
21. LPJ_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2005soc 
2006-
2099 

22. LPJ_RCP2.6_H RCP2.6 (HadGEM2-ES) 
23. LPJ_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
24. LPJ_RCP2.6_M RCP2.6 (MIROC5) 
25. LPJ_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
26. LPJ_RCP6.0_H RCP6.0 (HadGEM2-ES) 
27. LPJ _RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
28. LPJ_RCP6.0_M RCP6.0 (MIROC5) 
29. MPI_GSWNO 

MPI-HM 

Observation (GSWPv3) nosoc 
1971-
2005 

30. MPI_HIN_G HINDCAST (GFDL-ESM2M) 
varsoc 31. MPI_HIN_I HINDCAST (IPSL-CM5A-LR) 

32. MPI_HIN_M HINDCAST (MIROC5) 
33. MPI_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2005soc 
 
2006-
2099 

34. MPI_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
35. MPI_RCP2.6_M RCP2.6 (MIROC5) 
36. MPI_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
37. MPI_RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
38. MPI_RCP6.0_M RCP6.0 (MIROC5) 
39. ORC_GSWNO 

ORCHIDEE 

Observation (GSWPv3) nosoc 
1971-
2005 

40. ORC_HIN_G HINDCAST (GFDL-ESM2M) 
41. ORC_HIN_I HINDCAST (IPSL-CM5A-LR) 
42. ORC_RCP2.6_G RCP2.6 (GFDL-ESM2M) nosoc (land 

use changes 
was 
considered) 

2006-
2099 

43. ORC_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
44. ORC_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
45. ORC_RCP6.0_G RCP6.0 (IPSL-CM5A-LR) 
46. PCR_GSWVAR Observation (GSWPv3) varsoc 



47. PCR_GSWNO 

PCR-
GLOBWB 

Observation (GSWPv3) nosoc 

1971-
2005 

48. PCR_HIN_G HINDCAST (GFDL-ESM2M) 

varsoc 
49. PCR_HIN_H HINDCAST (HadGEM2-ES) 
50. PCR_HIN_I HINDCAST (IPSL-CM5A-LR) 
51. PCR_HIN_M HINDCAST (MIROC5) 
52. PCR_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2005soc 
2006-
2099 

53. PCR_RCP2.6_H RCP2.6 (HadGEM2-ES) 
54. PCR_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
55. PCR_RCP2.6_M RCP2.6 (MIROC5) 
56. PCR_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
57. PCR_RCP6.0_H RCP6.0 (HadGEM2-ES) 
58. PCR_RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
59. PCR_RCP6.0_M RCP6.0 (MIROC5) 
60. WAT_GSWVAR 

WaterGAP2 

Observation (GSWPv3) varsoc 

1971-
2005 

61. WAT_GSWNO Observation (GSWPv3) nosoc 
62. WAT_HIN_G HINDCAST (GFDL-ESM2M) 

varsoc 
63. WAT_HIN_H HINDCAST (HadGEM2-ES) 
64. WAT_HIN_I HINDCAST (IPSL-CM5A-LR) 
65. WAT_HIN_M HINDCAST (MIROC5) 
66. WAT_RCP2.6_G RCP2.6 (GFDL-ESM2M) 

2005soc 
2006-
2099 

67. WAT_RCP2.6_H RCP2.6 (HadGEM2-ES) 
68. WAT_RCP2.6_I RCP2.6 (IPSL-CM5A-LR) 
69. WAT_RCP2.6_M RCP2.6 (MIROC5) 
70. WAT_RCP6.0_G RCP6.0 (GFDL-ESM2M) 
71. WAT_RCP6.0_H RCP6.0 (HadGEM2-ES) 
72. WAT_RCP6.0_I RCP6.0 (IPSL-CM5A-LR) 
73. WAT_RCP6.0_M RCP6.0 (MIROC5) 

 

Most results of the main text only showed the multi-model average for GCMHIND simulations of each GHM (up to four 
simulations per GHM) (e.g. Table 3 of the main text, which presents the characteristics of trends in the MAX7 index over 
1971-2005 period across 3666 locations globally). The following tables, therefore, provide the results of each experiment at 
the global scale for individual models to complement the key findings, in which: 

- Table S3 (adapted from Table 2 in the main text) describe the hypothesis tests. 
- Table S4 and S5 report trend mean/standard deviation, percentage of locations exhibiting significant trends and 

the correlation of simulated trends against observed trends (historical period from 1971 to 2005). The results of 
hypothesis test (described in Table S3) are also highlighted in Table S4 and Table S5.   

- Tables S6 and S7 report the value of simulated trend mean/trend standard deviation and the percentage of cells 
exhibiting significant trends for future period (2006-2099). Note that the statistical test described in Table S3 
was not adopted for these results. 

As noted in the main text, trends in peak discharge exhibited from ‘naturalised runs’ (GSWP3_NOSOC) are similar to those 
obtained from ‘human impact runs’ (GSWP3_VARSOC). This is specifically illustrated through Table S4, in which the 
trends characteristic are quite similar between two settings. For instance, PCR_GSWVAR suggests a global trend mean 
(standard deviation) of 0.0 (7.7) % change per decade, with a spatial correlation against observed trends of 0.5. These results 
are very similar to that reported for PCR_GSWNO.  



Table S3. Summary of the hypothesis tests conducted to address the first two objectives. The significance of these tests was reported in Table S4 and S5. 

Objective Null-Hypotheses Streamflow dataset Statistical tests 

Objective 1: 
Capacity of 
GHMs to 
reproduce 
observed trends 
in flood hazards 

Hypothesis 1: Trend means obtained from 
two streamflow datasets over observation 
locations were not statistically different 
from each other. 

(i) Observed 
discharge across 
3,666 observation 
locations 
 
(ii) Simulated 
discharge across 
3,666 observation 
locations (extraction 
processes outlined in 
Section 2)  

Two-sample t-test at the 10% two-sided significance level 

Hypothesis 2: Trend standard deviations 
obtained from two streamflow datasets 
over observation locations were not 
statistically different from each other. 

Two-variance F-test at the 10% two-sided significance level 

Hypothesis 3: Percentage of significant 
trends obtained from all observation 
locations of a specific streamflow dataset 
was not produced by random chance. 

Field significance test similar to that presented in Do et al. (2017) 
was adopted. A moving-block-bootstrap (block-length 𝐿 = 2) was 
used to derive a null-hypothesis distribution of the change that 
occurred due to random chance. The null hypothesis is rejected at 
5% one-sided significance level when the true percentage falls on 
the right-hand side of the 95th percentile of the resampled 
distributions. 

Hypothesis 4: The correlation between 
trends obtained from two streamflow 
datasets was not significantly higher than 
‘0’ (i.e. zero pattern similarity). 

‘Zero pattern similarity’ was compared to the probability 
distribution function (PDF) of pairwise correlation between 
simulated and observed trends, drawn from a bootstrap procedure 
similar to that proposed by Kiktev et al. (2003). The null 
hypothesis is rejected at 5% one-sided significance level when 
zero correlation falls on the left-hand side of the 5th percentile of 
the resampled distributions. 

Hypothesis 5: The correlation between 
GCMHIND simulated trends and 
observed trends was not significantly 
lower than the correlation between 
GSWP3 simulated trends and observed 
trends 

The actual pairwise correlation between GCMHIND simulated 
trends and observed trends (denoted by 𝑟 ஼ெுூே஽) was compared 
to the bootstrapped PDF of correlation exhibited from GSWP3 
simulated trends (denoted by 𝑟 ௌௐ௉ଷ

∗ ). If 𝑟 ஼ெுூே஽ falls on the 
left-hand side of the 5th percentile 𝑟 ௌௐ௉ଷ

∗ , there is evidence to 
reject the null-hypothesis at the 5% one-sided significance level. 

Objective 2:  
The 
representativene
ss of 

Hypothesis 6: Trend mean obtained from 
observation locations was not statistically 
different to that obtained from all grid 
cells. 

(i) Simulated 
discharge across 
3,666 observation 
locations (extraction 

Two-sample t-test at the 10% two-sided significance level 



observation 
locations in the 
GHM 
simulations 

Hypothesis 7: Trend standard deviation 
obtained from observation locations was 
not statistically different to that obtained 
from all grid cells. 

processes outlined in 
Section 2) 
 
(ii) Routed discharge 
across all landmass 
grid cells (59,033 
cells) 

Two-variance F-test at the 10% two-sided significance level 

Hypothesis 8: Percentage of significant 
trends obtained from all grid cells of a 
specific streamflow dataset was not 
produced by random chance. 

Field significance test similar to that presented in Hypothesis 3 but 
trends obtained from all grid cells were the subject of the 
assessment. 



Table S4. Characteristics of trends in the MAX7 index (introduced by GHMs) over the 1971-2005 period 
averaged across the 3666 locations. Trend mean and trend standard deviation have units of %-change per 
decade. Gauge-based significant trends were identified using a Mann-Kendall test (10% two-sided 
significance level). The global significance of this result is then calculated using field significance test 
(5% one-sided significant level; highlighted in boldface text). Trend mean, trend standard deviation and 
trend spatial structure were compared against that exhibited by GSIM (see Hypothesis 1 to hypothesis 5 
of Table S3 for description of hypothesis tests; significant values were represented in boldface text).  

Streamflow 
simulations 

Trend 
mean 

Trend  
standard 
deviation  

Percentages of significant Correlation 
against 

observed 
trends 

Increasing trend Decreasing trend 

H08_GSWVAR  -2.0 8.3 4.8 6.7 0.4 
LPJ_GSWVAR -2.6 7.5 4.6 9.2 0.4 
PCR_GSWVAR 0.0 7.7 9.4 6.1 0.5 
WAT_GSWVAR -0.7 8.5 8.4 5.8 0.5 
H08_GSWNO -1.9 8.3 4.8 6.7 0.4 
LPJ_GSWNO -2.2 7.1 4.5 7.3 0.4 

ORC_GSWNO -1.4 8.6 7 8.2 0.4 

MPI_GSWNO -2.1 8.7 5.6 7.5 0.5 
PCR_GSWNO 0.1 7.7 9.6 6.1 0.5 
WAT_GSWNO -0.3 8.2 8.5 4.2 0.5 

H08_HIN_G -0.4 8.9 6.1 7.8 0.1 

H08_HIN_H -2.8 8.4 2.2 10.8 -0.1 
H08_HIN_I 0.1 8.9 7.7 4.4 0.0 
H08_HIN_M -3.6 7.8 3.4 12.0 0.1 
LPJ_HIN_G -0.8 8.0 6.3 8.3 0.1 
LPJ_HIN_H -2.9 8.1 2.8 14.6 0.0 
LPJ_HIN_I -1.3 8.0 4.1 10.1 0.1 
LPJ_HIN_M -4.1 7.3 3.5 17.3 0.2 
ORC_HIN_G -0.9 8.6 5.2 7.6 0.0 
ORC_HIN_I 0.1 8.6 8.6 6.4 0.1 
MPI_HIN_G -1.3 9.5 5.9 7.9 0.1 
MPI_HIN_I 0.2 9.2 8.8 5.6 0.0 
MPI_HIN_M -4.2 7.3 2.3 16.3 0.1 
PCR_HIN_G -0.2 8.0 8.3 9.0 0.1 
PCR_HIN_H -2.5 7.1 2.7 11.0 0.0 
PCR_HIN_I 0.6 7.6 12.2 4.1 0.0 
PCR_HIN_M -2.1 7.0 6.9 13.5 0.1 
WAT_HIN_G 0.2 9.2 8.2 5.6 0.1 
WAT_HIN_H -2.9 8.1 2.7 10.9 -0.1 
WAT_HIN_I 0.5 8.8 6.2 4.2 -0.1 
WAT_HIN_M -2.9 7.3 4.3 11.4 0.1 

 



Table S5. Trend mean, trend standard deviation and percentage of significant trends averaged across all 
simulation grid cells. Trend mean and trend standard deviation have units of %-change per decade. Cell-
based significance was identified using the Mann-Kendall test at the 10% significance level. The global 
significance of this result is then calculated using field significance test at 5% one-sided level 
(highlighted in boldface text). Trend mean and trend standard deviation across all land mass were 
compared against that obtained across 3666 observation locations (reported in Table S4) and significant 
values are highlighted in boldface text (see Hypothesis 6 to hypothesis 8 of Table S3 for description of 
hypothesis tests). 

Streamflow 
simulations 

Trend mean 
Trend  

standard deviation  

Percentages of significant 
Increasing 

trend 
Decreasing 

trend 
H08_GSWVAR -0.5 10.1 8.4 10.7 
LPJ_GSWVAR -1.6 10.4 7.2 14.0 
PCR_GSWVAR -1.1 11.0 10.4 15.0 
WAT_GSWVAR -0.3 11.4 10.8 11.0 
H08_GSWNO -0.3 9.9 8.3 9.6 
LPJ_GSWNO -0.9 9.9 7.4 11.5 
ORC_GSWNO -0.9 9.6 6.1 7.8 
MPI_GSWNO -0.7 10.2 6.4 7.5 
PCR_GSWNO -1.0 10.9 10.7 14.7 
WAT_GSWNO 0.0 11.1 10.9 10.1 
H08_HIN_G 1.5 10.8 15.4 10.4 
H08_HIN_H 0.0 8.5 7.4 9 
H08_HIN_I -0.7 9.3 7 10.7 
H08_HIN_M 0.4 8.9 8.7 8 
LPJ_HIN_G -0.3 9.3 8.9 9.1 
LPJ_HIN_H -1.1 8.7 5.1 9.9 
LPJ_HIN_I -1.1 8.7 6.1 9.2 
LPJ_HIN_M -0.8 9.1 7.7 9.4 
ORC_HIN_G 0.6 9.5 8.4 6.3 
ORC_HIN_I -0.9 8.2 3.9 6.8 
MPI_HIN_G -0.1 7.3 4.5 5 
MPI_HIN_I -0.2 10.3 10.9 11.2 
MPI_HIN_M -1.4 9.3 5.5 11.1 
PCR_HIN_G 1.3 11.3 14.9 11.1 
PCR_HIN_H -0.4 8.7 8.1 10.5 
PCR_HIN_I -1.3 10.7 7.7 12.2 
PCR_HIN_M 0.4 9 11.7 9.9 
WAT_HIN_G 1.5 10.9 15.3 7.2 
WAT_HIN_H 0.0 9.1 6.3 7.3 
WAT_HIN_I 0.0 9.4 6.9 7.5 
WAT_HIN_M 0.4 9.7 10.8 7.2 

 



Table S6. Characteristics of projected trends (GCMRCP2.6) across 18 members at the global scale. Mean 
and standard deviation have unit of %-change per decade. Note that no statistical test was conducted. 

Streamflow 
simulations 

Trend mean 
Trend  

standard deviation  

Percentages of significant 
Increasing 

trend 
Decreasing 

trend 
H08_RCP2.6_G 0.0 2.1 10.9 9.6 
H08_RCP2.6_H 0.4 2.7 18.0 11.0 
H08_RCP2.6_I 0.0 2.3 11.5 14.2 
H08_RCP2.6_M 0.0 2.8 16.2 11.6 
LPJ_RCP2.6_G -0.1 1.8 7.5 7.4 
LPJ_RCP2.6_H 0.0 2.1 10.7 10.6 
LPJ_RCP2.6_I -0.1 2.1 9.1 10.6 
LPJ_RCP2.6_M 0.0 2.2 12.6 9.0 

ORC_RCP2.6_G -0.3 2.3 9.0 13.9 

ORC_RCP2.6_I -0.6 2.9 9.2 21.2 

PCR_RCP2.6_G 0.1 2.1 11.0 9.0 

PCR_RCP2.6_H 0.3 2.3 16.6 11.2 

PCR_RCP2.6_I 0.0 2.8 15.5 13.9 

PCR_RCP2.6_M 0.1 2.5 17.4 12.4 
WAT_RCP2.6_G 0.0 2.1 9.6 7.1 
WAT_RCP2.6_H 0.4 2.2 14.1 7.5 
WAT_RCP2.6_I 0.2 2.3 12.3 10.0 
WAT_RCP2.6_M 0.2 2.4 16.1 7.3 

  

Table S7. Characteristics of projected trend (GCMRCP6.0) across 18 members at the global scale. Trend 
mean and trend standard deviation have unit of %-change per decade. Note that no statistical test was 
conducted. 

Streamflow 
simulations 

Trend mean 
Trend  

standard deviation  

Percentages of significant 
Increasing 

trend 
Decreasing 

trend 
H08_RCP6.0_G 0.3 3.0 19.7 17.1 
H08_RCP6.0_H 0.7 4.0 27.2 18 
H08_RCP6.0_I -0.4 3.4 15.3 27.1 
H08_RCP6.0_M 0.4 3.3 26.2 14.9 
LPJ_RCP6.0_G -0.1 2.6 17.5 15.7 
LPJ_RCP6.0_H -0.2 3.4 22.3 21.9 
LPJ_RCP6.0_I -0.6 3.1 14.0 24.8 
LPJ_RCP6.0_M 0.1 3.0 22.6 16.2 

ORC_RCP6.0_G -0.3 3.0 16.4 21.1 

ORC_RCP6.0_I -1.3 4.1 12.3 35.0 

PCR_RCP6.0_G -0.1 3.0 18.9 18.7 

PCR_RCP6.0_H 0.1 3.8 26.0 22.2 

PCR_RCP6.0_I -0.5 3.6 18.3 25.6 

PCR_RCP6.0_M 0.5 3.0 27.7 14.4 
WAT_RCP6.0_G 0.4 2.6 23.5 9.8 
WAT_RCP6.0_H 0.7 3.2 29.6 10.7 
WAT_RCP6.0_I 0.0 3.2 20.4 16.9 
WAT_RCP6.0_M 0.8 3.1 30.1 9.6 
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