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1 Simulation information

This section summarises the key simulation settings of each global hydrological model (GHM). Note that more detailed
information is available in the protocols of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) available at
https://www.isimip.org/protocol.

The following two input datasets were used for the GHM simulations, with specific model runs summarised in Table S1:

1. Climate & CO; concentration scenarios (i.e. atmospheric forcing)
- GSWP3: observations-based dataset providing the climate forcing data.
- RCP2.6: future climate and CO; concentration from RCP2.6
- RCP6.0: future climate and CO; concentration from RCP6.0
- HINDCAST: historical modelled climate and CO, concentration.
2. Human influence and land-use scenarios
- nosoc: Naturalized runs (no human impact). No irrigation. No population and GDP data prescribed.
- varsoc: Varying historical land use and other human influences over historical period.
- 2005soc: Fixed year-2005 land use and other human influences.

Note that GSWP3 was used as the sole observational atmospheric forcing dataset in this investigation. We also used
modelled atmospheric forcing datasets introduced by four global climate models (GCM): GFDL-ESM2M, HadGEM2-ES,
IPSL-CM5A-LR and MIROCS.

Table S1. Simulation set up of GHMs used in this investigation. ‘Climate’ represents atmospheric forcing dataset while
‘human’ represents human influence and land-use scenarios. Note that a more detailed inventory of available model runs is
provided in Table S2.

Model GSWP3 VARSOC GSWP3 NOSOC GCMHIND GCMRCP2.6 GCMRCP6.0
Climate: HINDCAST
HO8 Human: 2005soc
LPImL Climate: GSWP3 -
Human: varsoc Climate: GSWP3 Climate: HINDCAST Climate: rcp26 Climate: RCP6.0
PCR-GLOBWB
Human: nosoc Human: varsoc (except | Human: 2005soc Human: 2005soc
WaterGAP2 for ORCHIDEE usin
MPI-HM Simulations not 10s0¢) &
ORCHIDEE available

The results of preliminary assessment over 3666 observation locations suggest minor influence of human influence and land-
use scenarios on the characteristics of trends in streamflow extremes (see section 4 of this supplementary material), and thus
only GSWP3 NOSOC was used in the main text (denoted as GSWP3 in the main text).

2 Simulated streamflow extraction

For very large catchments, where excess rainfall takes a significant amount of time to reach the outlet, the routing scheme
plays an important role in model performance related to high flow events (Zhao et al., 2017) and thus routed discharge is the
more appropriate measure of simulated streamflow. The same simulation product, however, potentially does not perform
well for small catchments, partially due to the coarse resolution of GHMs (Hunger and D6ll, 2008). To address this concern,
we adopted a common threshold of 9,000km? (approximate the size of 1°x1° grid cell) to separate the selected catchments
into two groups and applied different procedures to extract simulated streamflow.

2.1 Weighted-area average for stations with catchment from 0 to 9000 km?

2.1.1 Producing weighted-area tables

For stations with catchment area less than or equal to 9000 km?, the catchment boundary was superimposed to the ISIMIP
grid to identify intersecting cells, and a weighted-area table was calculated for each case. Simulated runoff was extracted by
averaging the un-routed surface runoff from all intersect cells (considering weight). Runoff was then converted into
discharge data.

Figure S1 provides an illustration of the weighted-area table for station US 0002282 (red dot; Merrill catchment of
Pascagoula River, Mississippi, US) which has the total number of 15 upstream cells (dark-grey cells). Two components of
the weighted-area table were used to label intersect cells: (1) cell number (dark red) and (2) normalised fraction of each cell
(weights) that is covered by the catchment boundary (dark blue). The normalisation was performed such that the weights
add up to one for each catchment, and these weights are used to extract simulated runoff for this catchment.
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Figure S1. Illustration of the table of weights.

2.1.2 Averaging approach for cases where there were more than one catchment sharing similar weighted-area
tables

Among catchments that have area less than 9000km?, there are many instances where two or more catchments have (almost)
identical simulated runoff as they have similar weighted-area tables. All ISIMIP models have a common assumption of
uniform parameterisation for runoff generation in the 0.5x0.5 grid area, which in concept should represent an average value
of runoff at finer resolution. Note that ORCHIDEE in ISIMIP2b (GCMs driven) was run at 1°x1 © resolution, and the
outputs were disaggregated evenly 0.5%0.5 resolution. Here we also treat catchments that intersect an identical set of
dominant contributing grid-cells (total weights of at least 70%) as samples of an identical simulation domain. As a result,
the area-weighted mean discharge of these catchments was calculated and used for model-observation comparison.

A search was conducted across all weighted-area tables to identify cases that have an identical set of intersecting cells
contributing at least 70% to the total weighting. Figure S2 provides an example of these cases. In the top panel, boundaries
of ten catchments were superimposed on top of the ISIMIP gridline (0.5x0.5 degree), demonstrating that they share a
common cell (number 70051) which contributes at least 70% to the total weight (showed in the bottom panel).
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Figure S2. Example of instances where there is a significant overlap in contributing cells. Top panel: locations of 10
catchments that share a common contributing grid-cell (cell number 70051 (in dark-grey colour) contributes at least 70% to
the total weight of each catchment) although specific catchments have different contributing cells. Bottom panel: weighted-
area table of these 10 catchments.



Figure S3 illustrates another case where three different catchments share two common cells (no. 76524 and 76525). These
cells contribute 100%, 79.1%, and 76.4% to the weighted-area tables of catchment US 0001198, US 0001199, and

US 0001203 respectively. In both examples, the identified catchments were considered samples of the same modeling
domain.
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Figure S3. Similar to Figure S2, but here we have two contributing cells. The total weight of these common cells (number
76524 and 76525, highlighted in dark-grey colour) is higher than 0.7 in all cases and thus these three catchments were
considered samples of the same modelling domain.



For each set of n catchments with similar weighted-area tables, a single average discharge Q(m?/s) was calculated to
represent these individual time series in the model-observation comparison following below procedures:

For observed discharge:

1. Convert discharge Q (units: m*/s) to runoff rate R (units: m/day) using catchment area A (units: m?) for each
catchment i.

R; = Q; X 24 x 3600/A4; (m/day)
Average catchment size was also recorded:
- 1
A= ;Z?=1Ai (m?)
2. Average runoff rate across all catchments (considering area-weights)
5 _ Y1 Ridi
R="r (m/day)
3. Back-calculate average discharge (m?/s):
=~  RA 3
Q= 24x3600 (m/s)

For simulated discharge:

1. Extract runoff rate using weighted-area tables as described in Section 2.1 for all catchments.
2. Follow Step 2 and Step 3 of the observation procedure.

2.3 Discharge output identification for catchment with area greater than 9000 km?

For catchments with area greater than 9000km?, the ‘discharge output’ approach was adopted to find GHM cells
corresponding to the catchments following Zhao et al. (2017). For a specific catchment, the grid cell corresponding to the
catchment outlet was identified by matching catchment area available in a 0.5° drainage direction map (DDM30 dataset,
freely available at http://www.uni-frankfurt.de/45218101/DDM30) and the reported area. The identified grid cell was then
used to extract simulated discharge available in the ISIMIP data repository. Stations were removed if the procedure could
not identify any DDM30 grid cell surrounding the reported geographical location with a drainage area discrepancy less than
30% (see supplementary of Zhao et al. (2017) for detail).

3 Supplementary Figures

3.1 Capacity of GHMs to reproduce observed trends at continental scale

As stream gauges are not evenly distributed across the world, Figure S4 provides a zoomed-in map for four regions with
relatively high number of stations (North America, Europe, South America, and Oceania). The most notable feature is a
significantly lower strength of trends exhibited through GSWP3/GCMHIND ensemble average compared to GSIM observed
trends. This pattern is likely the result of averaging technique (smoothed out variability of ensemble members) as the feature
is more pronounced in GCMHIND (21 simulations) compared to GSWP3 (6 simulations). Visual inspection of these results
suggests that the overall spatial pattern of observed trends seems to be preserved in GSWP3 while GCMHIND simulations
tend to incorrectly simulate some spatial pattern of trends (e.g. over Oceania).
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Figure S4. Normalised Theil-Sen slope for historical trends in flood magnitude (MAX7 index) over South America,
Europe, South America and Oceania (left panels: GSIM; middle panels: GSWP3; right panels: GCMHIND). Multi-model
average is shown for simulated trends. Trend is expressed in % change per decade.

Figure S5 illustrates the mean and standard deviation of simulated trends across all locations (% change per decade) for each
individual ensemble member (multi-model average was showed in the manuscript). The mean and standard deviation of all
trends (referred to as trend mean and trend standard deviation here-after) obtained from GSIM archive were also showed as
dark blue line. GSWP3 simulations generally produced a higher trend mean and a lower trend standard deviation across all
continents compared to the observed trends. The discrepancy varies substantially across different regions. For instance,
Oceania exhibited a discrepancy up to 7% per decade for the trend mean and 8% per decade for the trend standard deviation.



This feature indicates a substantial inconsistency between simulated trends and observed trends. Among the six GHMs,
ORCHIDEE, PCR-GLOBWB and WaterGAP tend to have a higher trend mean with the exception of Africa. This pattern
potentially indicates the influence of either (i) parameterisation, (ii) model capacity in reproducing observed trend
characteristics, or (iil) a bias of the GSWP3 forcing trends.

Figure S5 also shows relatively lower capacity of GCMHIND simulation in terms of reproducing observed trend mean and
trend standard deviation in streamflow maxima. There is no clear ranking pattern in terms of the modelled atmospheric
forcing being used, suggesting that uncertainty in GCM model was inherited differently across GHMs, likely due to the
variation of parameterisation strategies.
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Figure S5. Mean (left panels) and standard deviation (right panels) of trends (% change per decade) exhibited from GSIM
(horizontal blue line) observed trends and GSWP3/GCMHIND (hollow dots) simulated trends at the continental scale. The
x-axis indicates different models. Note that y-axis range varies across panels. A null-hypothesis test was conducted to assess
whether the mean/standard deviation of simulated trends is statistically different to that obtained from observed GSIM
trends (horizontal blue line). Dark-red filled dots indicate simulations rejecting the null-hypothesis (i.e. which is that
simulated trend mean/trend standard deviation is not statistically different to that obtained from GSIM).

3.2 Spatial uncertainty across simulated trends forced with different modelled atmospheric forcing

The assessment in section 3.3 of the main text suggests the combined GCM-GHM uncertainty has led to the presence of
high uncertainty in terms of regions with significant projected trends in streamflow extremes. That is, a region could be
projected by an overall increasing trend by one member and a decreasing trend by another member. This feature is
illustrated in Figure S6, which shows a notable mismatch in the spatial structure of projected trends in MAX7 index
between two ensemble members. Under the RCP2.6 greenhouse gas emission scenario, HO8 forced with GFDL-ESM2M
(top panels) projects an increasing trend for the majority of Australia and Siberia, while ORCHIDEE forced with IPSL-
CMS5A-LR (bottom panels) projects an overall decreasing trend for the same regions. This spatial uncertainty could come
from either the climate trends introduced by GCMs (differentiate across GCMs), different RCPs, and model characteristics.
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Figure S6. The magnitude (left panels) and significance (right panels) of trends in simulated MAX7 time series across all
grid cells under RCP26 greenhouse gas emission scenario (2006-2099). Top panels: HO8 forced with gfdl-esm2m climate
data; bottom panels: ORCHIDEE forced with ipsl-cm5a-Ir climate data. These two models had the lowest value of pattern
similarity (correlation of -0.17).

4 Supplementary Tables

Considering a large number of simulations available (73 in total), the main text mostly used multi-model min/max/average
to illustrate the results for cases where there is more than one simulation available for an identical GHM/spatial-domain.
Table S2 provides a list of all 73 available models reported in this section together, with their simulation settings. Note that:

(1) GSWP3 VARSOC simulations (listed in Table S2 as HO§ GSWVAR, LPJ] GSWVAR, PCR._ GSWVAR, and
WAT GSWVAR) were not reported in the main text as (1) there were only four simulations available
(comparing to six simulations of GSWP3 NOSOC) and (2) the results obtained from GSWP3 NOSOC and
GSWP3 VARSOC are similar (Table S3).

(i1) In the main text, OBSHIS NOSOC simulations were denoted as GSWP3.



Table S2. Available ISIMIP streamflow simulations and associated setting.

Seq | Streamflow GHM Climate Human Period
simulations

1. HO08 GSWVAR Observation (GSWPv3) varsoc

2. HO8 GSWNO Observation (GSWPv3) nosoc

3. HO8 HIN G HINDCAST (GFDL-ESM2M) 1971-

4. HO08 HIN H HINDCAST (HadGEM2-ES) 2005

5. HO8 HIN I HINDCAST (IPSL-CMS5A-LR)

6. HO8 HIN M HINDCAST (MIROCY)

7. HO08 RCP2.6 G HOS RCP2.6 (GFDL-ESM2M)

8. HO08 RCP2.6 H RCP2.6 (HadGEM2-ES) 2005s0c

9. HO8 RCP2.6 1 RCP2.6 (IPSL-CM5A-LR)

10. | HO8 RCP2.6 M RCP2.6 (MIROCYS) 2006-

11. | HO8 RCP6.0 G RCP6.0 (GFDL-ESM2M) 2099

12. | HO8 RCP6.0 H RCP6.0 (HadGEM2-ES)

13. | HO8 RCP6.0 1 RCP6.0 (IPSL-CM5A-LR)

14. | HO8 RCP6.0 M RCP6.0 (MIROCS)

15. | LPJ GSWVAR Observation (GSWPv3) varsoc

16. | LPJ GSWNO Observation (GSWPv3) nosoc

17. | LPJ HIN G HINDCAST (GFDL-ESM2M) 1971-

18. | LPJ HIN H HINDCAST (HadGEM2-ES) 2005

19. | LPJ HIN I HINDCAST (IPSL-CM5A-LR) | ' 2°9¢

20. | LPJ HIN M HINDCAST (MIROCS)

21. | LPJ RCP2.6 G LPJmL RCP2.6 (GFDL-ESM2M)

22. | LPJ RCP2.6 H RCP2.6 (HadGEM2-ES)

23. | LPJ RCP2.6 I RCP2.6 (IPSL-CM5A-LR)

24. | LPJ RCP2.6 M RCP2.6 (MIROCS) 200550¢ 2006-

25. | LPJ RCP6.0 G RCP6.0 (GFDL-ESM2M) 2099

26. | LPJ RCP6.0 H RCP6.0 (HadGEM2-ES)

27. | LPJ RCP6.0 1 RCP6.0 (IPSL-CM5A-LR)

28. | LPJ RCP6.0 M RCP6.0 (MIROCS)

29. | MPI GSWNO Observation (GSWPv3) nosoc

30. | MPI HIN G HINDCAST (GFDL-ESM2M) 1971-

31. | MPI HIN I HINDCAST (IPSL-CMS5A-LR) | varsoc 2005

32. | MPI HIN M HINDCAST (MIROCS)

33. | MPI RCP2.6 G MPLHM RCP2.6 (GFDL-ESM2M)

34, | MPI RCP2.6 1 RCP2.6 (IPSL-CMS5A-LR)

35. | MPI RCP2.6 M RCP2.6 (MIROCS)

36. | MPI RCP6.0 G RCP6.0 (GFDL-ESM2M) 2005s0c gggg

37. | MPI RCP6.0 1 RCP6.0 (IPSL-CM5A-LR)

38. | MPI RCP6.0 M RCP6.0 (MIROCS)

39. | ORC GSWNO Observation (GSWPv3) nosoc 1971-

40. | ORC HIN G HINDCAST (GFDL-ESM2M) 2005

41. | ORC HIN I HINDCAST (IPSL-CMS5A-LR)

42. | ORC RCP2.6 G | ORCHIDEE RCP2.6 (GFDL-ESM2M) nosoc (land

43. | ORC RCP2.6 1 RCP2.6 (IPSL-CM5A-LR) use changes | 2006-

44. | ORC RCP6.0 G RCP6.0 (GFDL-ESM2M) was 2099

45. | ORC RCP6.0 G RCP6.0 (IPSL-CMS5A-LR) considered)

46. | PCR GSWVAR Observation (GSWPv3) varsoc




47. | PCR_ GSWNO Observation (GSWPv3) nosoc

43. | PCR HIN G HINDCAST (GFDL-ESM2M) 1971
49. |PCR HIN H HINDCAST (HadGEM2-ES)

50. | PCR _HIN I HINDCAST (IPSL-CM5A-LR) | V2% 2005

51. | PCR HIN M HINDCAST (MIROCS)

52. |PCR RCP2.6 G| p- RCP2.6 (GFDL-ESM2M)

53. [ PCR RCP2.6 H | o 5nwn RCP2.6 (HadGEM2-ES)

54. | PCR RCP2.6 | RCP2.6 (IPSL-CM5A-LR)

55. | PCR RCP2.6 M RCP2.6 (MIROCS) 2005s0c 2006-
56. | PCR RCP6.0 G RCP6.0 (GFDL-ESM2M) 2099

57. | PCR RCP6.0 H RCP6.0 (HadGEM2-ES)

58. | PCR_RCP6.0 1 RCP6.0 (IPSL-CM5A-LR)

59. | PCR_RCP6.0 M RCP6.0 (MIROCS)

60. | WAT GSWVAR Observation (GSWPv3) varsoc

61. | WAT GSWNO Observation (GSWPv3) Nnosoc

62. | WAT HIN G HINDCAST (GFDL-ESM2M) 1971-
63. | WAT HIN H HINDCAST (HadGEM2-ES) 2005

64. | WAT HIN [ HINDCAST (IPSL-CM5A-LR) | '2°9¢

65. | WAT HIN M HINDCAST (MIROCS)

66. | WAT RCP2.6 G RCP2.6 (GFDL-ESM2M)

67. | WAT RCP2.6 1 | WACTGAPZ 2 Cp) 6 (HadGEM2-ES)

68. | WAT RCP2.6 1 RCP2.6 (IPSL-CM5A-LR)

69. | WAT RCP2.6 M RCP2.6 (MIROCS) 2005500 2006-
70. | WAT RCP6.0 G RCP6.0 (GFDL-ESM2M) 2099

71. | WAT RCP6.0 H RCP6.0 (HadGEM2-ES)

72. | WAT RCP6.0 1 RCP6.0 (IPSL-CM5A-LR)

73. | WAT RCP6.0 M RCP6.0 (MIROCS)

Most results of the main text only showed the multi-model average for GCMHIND simulations of each GHM (up to four
simulations per GHM) (e.g. Table 3 of the main text, which presents the characteristics of trends in the MAX?7 index over
1971-2005 period across 3666 locations globally). The following tables, therefore, provide the results of each experiment at
the global scale for individual models to complement the key findings, in which:

As noted in the main text, trends in peak discharge exhibited from ‘naturalised runs’ (GSWP3 NOSOC) are similar to those
obtained from ‘human impact runs’ (GSWP3 VARSOC). This is specifically illustrated through Table S4, in which the
trends characteristic are quite similar between two settings. For instance, PCR_ GSWV AR suggests a global trend mean
(standard deviation) of 0.0 (7.7) % change per decade, with a spatial correlation against observed trends of 0.5. These results

- Table S3 (adapted from Table 2 in the main text) describe the hypothesis tests.
- Table S4 and S5 report trend mean/standard deviation, percentage of locations exhibiting significant trends and
the correlation of simulated trends against observed trends (historical period from 1971 to 2005). The results of

hypothesis test (described in Table S3) are also highlighted in Table S4 and Table S5.

- Tables S6 and S7 report the value of simulated trend mean/trend standard deviation and the percentage of cells
exhibiting significant trends for future period (2006-2099). Note that the statistical test described in Table S3
was not adopted for these results.

are very similar to that reported for PCR. GSWNO.




Table S3. Summary of the hypothesis tests conducted to address the first two objectives. The significance of these tests was reported in Table S4 and S5.

Objective

Null-Hypotheses

Streamflow dataset

Statistical tests

Objective 1:
Capacity of
GHMs to
reproduce
observed trends
in flood hazards

Hypothesis 1: Trend means obtained from
two streamflow datasets over observation
locations were not statistically different
from each other.

Hypothesis 2: Trend standard deviations
obtained from two streamflow datasets
over observation locations were not
statistically different from each other.

Hypothesis 3: Percentage of significant
trends obtained from all observation
locations of a specific streamflow dataset
was not produced by random chance.

Hypothesis 4: The correlation between
trends obtained from two streamflow
datasets was not significantly higher than
‘0’ (i.e. zero pattern similarity).

Hypothesis 5: The correlation between
GCMHIND simulated trends and
observed trends was not significantly
lower than the correlation between
GSWP3 simulated trends and observed
trends

(i) Observed
discharge across
3,666 observation
locations

(i1) Simulated
discharge across
3,666 observation
locations (extraction
processes outlined in
Section 2)

Two-sample #-test at the 10% two-sided significance level

Two-variance F-test at the 10% two-sided significance level

Field significance test similar to that presented in Do et al. (2017)
was adopted. A moving-block-bootstrap (block-length L = 2) was
used to derive a null-hypothesis distribution of the change that
occurred due to random chance. The null hypothesis is rejected at
5% one-sided significance level when the true percentage falls on
the right-hand side of the 95" percentile of the resampled
distributions.

‘Zero pattern similarity’ was compared to the probability
distribution function (PDF) of pairwise correlation between
simulated and observed trends, drawn from a bootstrap procedure
similar to that proposed by Kiktev et al. (2003). The null
hypothesis is rejected at 5% one-sided significance level when
zero correlation falls on the left-hand side of the 5th percentile of
the resampled distributions.

The actual pairwise correlation between GCMHIND simulated
trends and observed trends (denoted by 7¢cppnp) Was compared
to the bootstrapped PDF of correlation exhibited from GSWP3
simulated trends (denoted by 1¢syps)- If T7eemminp falls on the
left-hand side of the 5™ percentile 74y p3, there is evidence to
reject the null-hypothesis at the 5% one-sided significance level.

Objective 2:
The
representativene
ss of

Hypothesis 6: Trend mean obtained from
observation locations was not statistically
different to that obtained from all grid
cells.

(i) Simulated
discharge across
3,666 observation
locations (extraction

Two-sample #-test at the 10% two-sided significance level




observation
locations in the
GHM

simulations

Hypothesis 7: Trend standard deviation
obtained from observation locations was
not statistically different to that obtained
from all grid cells.

Hypothesis 8: Percentage of significant
trends obtained from all grid cells of a
specific streamflow dataset was not
produced by random chance.

processes outlined in
Section 2)

(i1) Routed discharge
across all landmass
grid cells (59,033
cells)

Two-variance F-test at the 10% two-sided significance level

Field significance test similar to that presented in Hypothesis 3 but
trends obtained from all grid cells were the subject of the
assessment.




Table S4. Characteristics of trends in the MAX?7 index (introduced by GHMs) over the 1971-2005 period
averaged across the 3666 locations. Trend mean and trend standard deviation have units of %-change per
decade. Gauge-based significant trends were identified using a Mann-Kendall test (10% two-sided
significance level). The global significance of this result is then calculated using field significance test
(5% one-sided significant level; highlighted in boldface text). Trend mean, trend standard deviation and
trend spatial structure were compared against that exhibited by GSIM (see Hypothesis 1 to hypothesis 5
of Table S3 for description of hypothesis tests; significant values were represented in boldface text).

Trend Percentages of significant Correlation
Streamflow Trend standard against
simulations mean deviation | Imereasing trend | Decreasing trend observed
trends
HO8 GSWVAR 2.0 8.3 4.8 6.7 0.4
LPJ GSWVAR -2.6 7.5 4.6 9.2 0.4
PCR_GSWVAR 0.0 7.7 9.4 6.1 0.5
WAT_GSWVAR -0.7 8.5 8.4 5.8 0.5
HO08 _GSWNO -1.9 83 4.8 6.7 0.4
LPJ GSWNO 2.2 7.1 4.5 7.3 0.4
ORC _GSWNO -14 8.6 7 8.2 0.4
MPI_GSWNO 2.1 8.7 5.6 7.5 0.5
PCR_GSWNO 0.1 7.7 9.6 6.1 0.5
WAT_GSWNO -0.3 8.2 8.5 4.2 0.5
HO08 HIN G -0.4 8.9 6.1 7.8 0.1
HO8 HIN H -2.8 8.4 2.2 10.8 -0.1
HO8_HIN_I 0.1 8.9 7.7 4.4 0.0
HO8 _HIN M -3.6 7.8 34 12.0 0.1
LPJ_HIN_G -0.8 8.0 6.3 8.3 0.1
LPJ_HIN_H -2.9 8.1 2.8 14.6 0.0
LPJ_HIN I -1.3 8.0 4.1 10.1 0.1
LPJ_HIN_M -4.1 7.3 3.5 17.3 0.2
ORC_HIN_G -0.9 8.6 5.2 7.6 0.0
ORC_HIN_I 0.1 8.6 8.6 6.4 0.1
MPI_HIN_G -1.3 9.5 5.9 7.9 0.1
MPI_HIN_I 0.2 9.2 8.8 5.6 0.0
MPI_HIN_ M -4.2 7.3 2.3 16.3 0.1
PCR_HIN_G -0.2 8.0 8.3 9.0 0.1
PCR_HIN H 2.5 7.1 2.7 11.0 0.0
PCR_HIN I 0.6 7.6 12.2 4.1 0.0
PCR_HIN M 2.1 7.0 6.9 13.5 0.1
WAT _HIN G 0.2 9.2 8.2 5.6 0.1
WAT _HIN_H -2.9 8.1 2.7 10.9 -0.1
WAT_HIN_I 0.5 8.8 6.2 4.2 -0.1
WAT_HIN_M -2.9 7.3 43 11.4 0.1




Table S5. Trend mean, trend standard deviation and percentage of significant trends averaged across all
simulation grid cells. Trend mean and trend standard deviation have units of %-change per decade. Cell-
based significance was identified using the Mann-Kendall test at the 10% significance level. The global
significance of this result is then calculated using field significance test at 5% one-sided level
(highlighted in boldface text). Trend mean and trend standard deviation across all land mass were
compared against that obtained across 3666 observation locations (reported in Table S4) and significant
values are highlighted in boldface text (see Hypothesis 6 to hypothesis 8 of Table S3 for description of
hypothesis tests).

S.t reami.low Trend mean Trend . Ill:ce::::;:;ges T s;z)g:;?::sl;:lg
simulations standard deviation

trend trend
HO8_GSWVAR -0.5 10.1 8.4 10.7
LPJ]_ GSWVAR -1.6 10.4 7.2 14.0
PCR_GSWVAR -1.1 11.0 10.4 15.0
WAT_GSWVAR -0.3 11.4 10.8 11.0
H08_GSWNO -0.3 9.9 8.3 9.6
LPJ]_GSWNO -0.9 9.9 7.4 11.5
ORC_GSWNO -0.9 9.6 6.1 7.8
MPI_GSWNO -0.7 10.2 6.4 7.5
PCR_GSWNO -1.0 10.9 10.7 14.7
WAT_GSWNO 0.0 11.1 10.9 10.1
HO08 HIN G 1.5 10.8 15.4 10.4
HO08_HIN_H 0.0 8.5 7.4 9
HO8 HIN I -0.7 9.3 7 10.7
HO08_HIN_M 0.4 8.9 8.7 8
LPJ HIN G -0.3 9.3 8.9 9.1
LPJ HIN H -1.1 8.7 5.1 9.9
LPJ HIN I -1.1 8.7 6.1 9.2
LPJ_HIN_M -0.8 9.1 7.7 9.4
ORC_HIN_G 0.6 9.5 8.4 6.3
ORC_HIN_I -0.9 8.2 3.9 6.8
MPI_HIN_G -0.1 73 4.5 5
MPI_HIN_I -0.2 10.3 10.9 11.2
MPI_HIN M -1.4 9.3 5.5 11.1
PCR_HIN_G 1.3 11.3 14.9 11.1
PCR_HIN H -0.4 8.7 8.1 10.5
PCR_HIN_I -1.3 10.7 7.7 12.2
PCR_HIN M 0.4 9 11.7 9.9
WAT HIN_G 1.5 10.9 15.3 7.2
WAT HIN_H 0.0 9.1 6.3 7.3
WAT _HIN_I 0.0 9.4 6.9 7.5
WAT _HIN M 0.4 9.7 10.8 7.2




Table S6. Characteristics of projected trends (GCMRCP2.6) across 18 members at the global scale. Mean

and standard deviation have unit of %-change per decade. Note that no statistical test was conducted.

Percentages of significant

S.t reamiolow Trend mean Trend . Increasing Decreasing
simulations standard deviation

trend trend
HO8 RCP2.6 G 0.0 2.1 10.9 9.6
HO8_RCP2.6_H 0.4 2.7 18.0 11.0
HO8_RCP2.6_1 0.0 2.3 11.5 14.2
HO8_RCP2.6_M 0.0 2.8 16.2 11.6
LPJ RCP2.6 G 0.1 1.8 7.5 7.4
LPJ_RCP2.6_H 0.0 2.1 10.7 10.6
LPJ_RCP2.6_1I 0.1 2.1 9.1 10.6
LPJ_RCP2.6_ M 0.0 2.2 12.6 9.0
ORC RCP2.6 G 0.3 2.3 9.0 13.9
ORC RCP2.6 I -0.6 2.9 9.2 21.2
PCR RCP2.6 G 0.1 2.1 11.0 9.0
PCR RCP2.6 H 0.3 2.3 16.6 11.2
PCR RCP2.6 I 0.0 2.8 15.5 13.9
PCR RCP2.6 M 0.1 2.5 17.4 12.4
WAT RCP2.6 G 0.0 2.1 9.6 7.1
WAT_RCP2.6_H 0.4 2.2 14.1 7.5
WAT_RCP2.6_1 0.2 2.3 12.3 10.0
WAT_RCP2.6_M 0.2 2.4 16.1 7.3

Table S7. Characteristics of projected trend (GCMRCP6.0) across 18 members at the global scale. Trend

mean and trend standard deviation have unit of %-change per decade. Note that no statistical test was

conducted.
Streamflow | e Trend e T Pecreasing
simulations standard deviation

trend trend
HO08 RCP6.0 G 0.3 3.0 19.7 17.1
HO08 RCP6.0 H 0.7 4.0 27.2 18
HO8_RCP6.0_I 0.4 3.4 15.3 27.1
HO08 RCP6.0 M 0.4 3.3 26.2 14.9
LPJ RCP6.0_G 0.1 2.6 17.5 15.7
LPJ_RCP6.0_H 0.2 3.4 223 21.9
LPJ_RCP6.0_I 0.6 3.1 14.0 24.8
LPJ_RCP6.0_M 0.1 3.0 22.6 16.2
ORC RCP6.0 G -0.3 3.0 16.4 21.1
ORC RCP6.0 I -1.3 4.1 12.3 35.0
PCR RCP6.0 G -0.1 3.0 18.9 18.7
PCR RCP6.0 H 0.1 3.8 26.0 222
PCR RCP6.0 I 0.5 3.6 18.3 25.6
PCR RCP6.0 M 0.5 3.0 27.7 14.4
WAT RCP6.0 G 0.4 2.6 23.5 9.8
WAT_RCP6.0_H 0.7 3.2 29.6 10.7
WAT_RCP6.0_I 0.0 3.2 20.4 16.9
WAT RCP6.0_ M 0.8 3.1 30.1 9.6
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