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Abstract. To improve the understanding of trends in extreme flows related to flood events at the global scale, historical and 24 

future changes of annual maximum of 7-day streamflow are investigated, using a comprehensive streamflow archive and 25 

six global hydrological models. The models’ capacity to characterise trends in annual maximum of 7-day streamflow at the 26 

continental and global scale is evaluated across 3,666 river gauge locations over the period from 1971 to 2005, focusing on 27 

four aspects of trends: (i) mean, (ii) standard deviation, (iii) percentage of locations showing significant trends and (iv) 28 

spatial pattern. Compared to observed trends, simulated trends driven by observed climate forcing generally have a higher 29 

mean, lower spread, and a similar percentage of locations showing significant trends. Models show a low-to-moderate 30 

capacity to simulate spatial patterns of historical trends, with approximately only 12-25% of the spatial variance of observed 31 

trends across all gauge stations accounted for by the simulations. Interestingly, there are statistically significant differences 32 

between trends simulated by GHMs forced with observational climate and forced by bias corrected climate model output 33 

during the historical period, suggesting the important role of the stochastic natural (decadal, inter-annual) climate variability. 34 

Significant differences were found in simulated flood trends when averaged only at gauged locations compared to when 35 

averaged across all simulated grid cells, highlighting the potential for bias toward well-observed regions in the state-of-36 

understanding of changes in floods. Future climate projections (simulated under RCP2.6 and RCP6.0 greenhouse gas 37 

concentration scenario) suggest a potentially high level of change in individual regions, with up to 35% of cells showing a 38 

statistically significant trend (increase or decrease; at 10% significance level) and greater changes indicated for the higher 39 

concentration pathway. Importantly, the observed streamflow database under-samples the percentage of  locations 40 

consistently projected with increased flood hazards under RCP6.0 greenhouse gas concentration scenario by more than an 41 



order of magnitude (0.9% compared to 11.7%). This finding indicates a highly uncertain future for both flood-prone 42 

communities and decision makers in the context of climate change. 43 

1 Introduction 44 

Global hydrological models (GHMs) are critical tools for diagnosing factors of rising trends in flood risk (Munich Re, 45 

2015;Swiss Re, 2015;Miao, 2018;Smith, 2003;Guha-Sapir et al., 2015;CRED, 2015), and can help identify the 46 

contribution of changing flood hazard characteristics relative to the changing exposure of human assets to floods. GHMs 47 

are also used to project future changes in flood hazard, owing to their ability to simulate streamflow under projected 48 

atmospheric forcing. Using GHM simulations, several studies have found more regions showing increasing trends than 49 

decreasing trends in flood hazards at the global scale, and have attributed these changes to anthropogenic climate change 50 

(Dankers et al., 2014;Arnell and Gosling, 2014;Alfieri et al., 2015;Kettner et al., 2018;Willner et al., 2018;Asadieh and 51 

Krakauer, 2017). The pattern of increasing trends obtained from GHM simulations is consistent with observations of 52 

increases in precipitation extremes (Westra et al., 2013;Westra et al., 2014;Donat et al., 2013;Guerreiro et al., 2018) that 53 

have been used by a number of studies as a proxy to suggest that flood hazard may increase as a result of climate change 54 

(Alfieri et al., 2017;Pall et al., 2011;IPCC, 2012;Forzieri et al., 2016).  55 

The inference of changes in flood hazard following the same direction as extreme precipitation may be appropriate over 56 

regions where rainfall plays the dominant role in flood occurrence (Hoegh-Guldberg et al., 2018;Mallakpour and 57 

Villarini, 2015;Mangini et al., 2018), but recent evidence based on instrumental trends in flood hazard suggests it is not 58 

necessarily globally applicable (Ivancic and Shaw, 2015;Blöschl et al., 2019). This is due to a ‘dichotomous relationship’ 59 

between trends exhibited in extreme precipitation and extreme streamflow (Sharma et al., 2018), highlighted in recent 60 

observation-based studies of trends in streamflow magnitudes (Wasko and Sharma, 2017;Do et al., 2017;Hodgkins et al., 61 

2017;Gudmundsson et al., 2019). The hypothesised reason for this potentially inconsistent relationship is the complexity 62 

of the drivers of flood risk (Johnson et al., 2016;Blöschl et al., 2017;Do et al., 2019;Berghuijs et al., 2016), with the 63 

implication that historical and future changes to flood hazard at the global scale are unlikely to be reflected by changes to 64 

a single proxy variable alone, such as annual maximum rainfall. For example, even though trends in extreme flows are 65 

highly correlated to changes in extreme rainfall when rainfall plays the dominant role (Mallakpour and Villarini, 66 

2015;Blöschl et al., 2017), snowmelt-related flood magnitude has been found to decrease in a warmer climate, potentially 67 

due to a shift in snowmelt timing (Burn and Whitfield, 2016;Cunderlik and Ouarda, 2009). The sign of change is also 68 

unclear for locations where antecedence soil moisture plays an important role (Woldemeskel and Sharma, 2016;Sharma et 69 

al., 2018), owing to the combined influences of seasonal/annual precipitation, potential evaporation and extreme 70 



precipitation (Bennett et al., 2018;Ivancic and Shaw, 2015;Leonard et al., 2008;Wasko and Nathan, 2019). The sensitivity 71 

of changes in streamflow to anthropogenic influences such as urbanization, dams and reservoir operations, or river 72 

morphology (FitzHugh and Vogel, 2011;Slater et al., 2015) further suggests that it is not possible to use trends in extreme 73 

precipitation alone to infer changes in flood hazards.   74 

To better understand historical and future trends in streamflow, the emphasis has therefore moved to analysing trends 75 

directly in streamflow measurements. Investigations using streamflow observations at global, continental and regional 76 

scales (see Do et al. (2017) and references therein) have generally detected a mixed pattern of trends, with some global-77 

scale studies finding more stations having decreasing trends than increasing trends (Do et al., 2017;Hodgkins et al., 78 

2017;Kundzewicz et al., 2004). These conclusions appear prima facie to be inconsistent with model-based evidence, 79 

which generally suggests the opposite (more locations showing increasing trends). However, varying sampling strategies, 80 

statistical techniques and reference periods make it difficult to derive a common perspective of trends in global flood 81 

hazards from a composite of observational and modelling studies. In addition, data coverage limitations (Hannah et al., 82 

2011;Gupta et al., 2014;Do et al., 2018a) remain a barrier to reliably benchmarking trends over some areas such as the 83 

flood-prone regions of South and East Asia.  84 

GHMs, with the advantage of better spatial coverage, remain an important line of evidence about historical and future 85 

trends. GHMs also enable the possibility to explore the individual roles of atmospheric forcing, land use change and other 86 

drivers of change on streamflow trends by including or excluding a specific factor from simulation setting. However, no 87 

study has evaluated the performance of GHMs in terms of reproducing trends of streamflow indices, including flood 88 

indicators. To date, GHMs have been assessed extensively on their capacity to represent physical features of the 89 

hydrological regime, such as streamflow percentiles, the seasonal cycle, or the timing of peak discharge (Gudmundsson et 90 

al., 2012a;Zaherpour et al., 2018;Beck et al., 2017;Zhao et al., 2017;Veldkamp et al., 2018;Pokhrel et al., 2012;Biemans 91 

et al., 2011;Giuntoli et al., 2018). Nevertheless, streamflow variability can be subject not only to long-term changes in 92 

atmospheric forcing, but also to climate variability (e.g. inter-annual, inter-decadal) as well as human activities across the 93 

drainage basin (Zhang et al., 2015;Zhan et al., 2012). Thus, the GHMs’ capacity to represent physical features of a 94 

hydrological regime is not necessarily sufficient to determine their performance in simulating characteristics of trends. 95 

The absence of a holistic understanding of GHMs’ capacity to simulate trends implies that model-based inferences on 96 

changes in flood hazards are highly uncertain (Dankers et al., 2014), limiting the usefulness of GHMs in developing flood 97 

adaptation policy in a warming climate. 98 



To address this limitation and further improve GHMs’ applicability, this study provides the first comprehensive 99 

evaluation of GHMs’ capacity in simulating historical trends of a flood hazard indicator. This study also explores the 100 

uncertainty in developing projected changes in flood hazards using GCMs-GHMs ensemble. Specifically, we used the 101 

Global Streamflow Indices and Metadata (GSIM) archive (Do et al., 2018b;Gudmundsson et al., 2018), to-date the largest 102 

possible global streamflow database, to identify observed changes in annual maximum of 7-day streamflow (MAX7 103 

index) over the 1971-2005 period. Streamflow simulations, available through the Inter-Sectoral Impact Model 104 

Intercomparison Project ISIMIP phase 2a and 2b (Warszawski et al., 2014), were used to derive historical (1971-2005) 105 

and projected (2006-2099) changes in MAX7 index simulated by GHMs. Observed and simulated trends were then 106 

analysed to achieve three research objectives.  107 

- Objective 1: to evaluate the capacity of GHMs to reproduce observed trends of an indicator of flood hazard 108 

(MAX7). The particular interest is in reconciling model- and observation-based inferences of historical changes 109 

in flood hazard at the global and continental scale. 110 

- Objective 2: to determine the representativeness of observation locations (streamflow gauges) in GHM 111 

simulations. This objective is motivated by the sparse coverage of streamflow observations over several regions 112 

(e.g. South and East Asia), which could lead to biased inferences of observation-based studies over large spatial 113 

domains wherever gauges are not a representative sample.  114 

- Objective 3: to assess the implication of model uncertainty for projections of flood hazard, focusing on the 115 

uncertainty of the mean/spread of trends together with the spatial pattern of trends in annual maximum 116 

streamflow. We are also curious of whether the regions consistently projected with an increase in flood have 117 

been adequately observed by the global observation networks. 118 

2 Data and methods 119 

This section summarizes the workflow to achieve three objectives of this study (Figure 1). Observed and simulated 120 

streamflow (section 2.1) were used to estimate the magnitude and significance of changes in an indicator of flood hazards 121 

(section 2.3). To enable an observation-model comparison, a procedure was developed to extract streamflow for a subset 122 

of observed catchments that meet data quality criteria (section 2.2). A range of statistical techniques were then applied to 123 

trends of an indicator of flood magnitude (section 2.4) to assess (i) the capacity of GHMs to reproduce characteristics of 124 

observed trends, (ii) the representativeness of observation locations in GHM simulations, and (iii) the implication of 125 

simulation uncertainty on projected trends (results are discussed in sections 3.1, 3.2, and 3.3).  126 



 127 

Figure 1. Flowchart of the datasets and methodologies used to achieve three research objectives of this study. 128 

2.1 Observed and simulated streamflow datasets 129 

The GSIM archive is used as daily observational discharge for this analysis. Daily streamflow simulations available 130 

through the ISIMIP are used, with historical simulations (forced with observational climate in ISIMIP2a and bias-131 

corrected climate model outputs in ISIMIP2b) spanning from 1971 to 2005 (Gosling et al., 2019) and future simulations 132 

(ISIMIP2b) covering 2006-2099 period (Frieler et al., 2017). Six GHMs are considered: H08 (Hanasaki et al., 2008b, a), 133 

LPJmL (Schaphoff et al., 2013), MPI-HM (Stacke and Hagemann, 2012), ORCHIDEE (Guimberteau et al., 134 

2014;Guimberteau et al., 2018), PCR-GLOBWB (Wada et al., 2014;Sutanudjaja et al., 2018), and WaterGAP2 (Müller 135 

Schmied et al., 2014;Mueller Schmied et al., 2016). These models were selected as they have provided discharge data 136 

within phases 2a and 2b of ISIMIP at the time this study began (June 2018). A summary of the similarities and differences 137 

across participated GHMs is provided in supplementary section 1.2. 138 

To assess the model structural uncertainty across GHMs, trends in streamflow extremes simulated under observational 139 

atmospheric forcing, available through the Global Soil Wetness Project Phase 3 (GSWP3) reanalysis (Kim, 2017), were 140 

compared to observed trends. The influence of the high uncertainty in climate models (Kumar et al., 2013;Kiktev et al., 141 

2003) on streamflow simulations was assessed by comparing observed trends and trends simulated when using 142 



atmospheric forcing from four General Circulation Models (GCMs) for the historical period (‘hindcast’ simulations; 143 

hereafter referred to GCMHIND atmospheric forcing). These GCMs were bias corrected but their simulations have 144 

different sub-monthly, inter-annual and decadal variability and thus the hindcast simulations reflect both GHM and GCM 145 

uncertainty. To quantify the implication of model uncertainty for future projections of flood hazard, trends simulated 146 

under projected climate change by the end of this century (using the same four GCMs) were also assessed for two 147 

greenhouse gas concentration scenario RCP2.6 (hereafter referred to GCMRCP2.6 atmospheric forcing) and RCP6.0 148 

(hereafter referred to GCMRCP6.0 atmospheric forcing). As a result, four simulation settings were used in this study, 149 

denoted by the atmospheric forcing; an overview is given in Table 1. These settings comprise two historical runs (GSWP3 150 

and GCMHIND runs), and two future runs (GCMRCP2.6 and GCMRCP6.0), collectively amounting to a total of 69 151 

simulations (see Table S3 in supplementary with full list of simulations).  152 

For GSWP3 simulations, a preliminary analysis (see section 4 of supplementary material) shows that both ‘naturalised 153 

runs’ (i.e. human water management not taken into account) and ‘human impact runs’ (i.e. human water management 154 

inputs were used) exhibit similar characteristic of trends in MAX7 index. Some potential reasons for negligible impacts of 155 

human water management are the spatial distribution of stream gauges (may be biased toward regions with insignificant 156 

changes in water management during the 1971-2005 period), or the inclusion of small catchments (more that 3,000 157 

catchments with reported area less than 9,000 km2), thus floods are more sensitive to changes in climate forcing relative to 158 

the accumulated basin-wide influence of human impacts. Naturalised runs were therefore chosen, since this setting is 159 

available for more GHMs (six) when compared to the human impact setting (four). Although significant efforts were 160 

made by ISIMIP to keep the setting across simulations as consistent as possible, there were some differences in model 161 

versions and input data (e.g., WaterGAP2.2 (ISIMIP2a) was used in ISIMIP2a while WaterGAP2.2c was used in 162 

ISIMIP2b; ORCHIDEE (Guimberteau et al., 2014) was used in ISIMIP2a while ORCHIDEE-MICT (Guimberteau et al., 163 

2018), with improvements on high latitude processes, was used in ISIMIP2b). Although the influence of versioning is 164 

minor for WaterGAP2, the potential effects of technical discrepancies cannot be checked in the context of this study, as 165 

not all required simulations are readily available (see our discussion in supplementary section 3.3). In addition, owing to 166 

technical requirements across GHMs, different models do not have the same set of coastal cells, which may lead to some 167 

minor effect to the statistics when averaged across all simulation grid-cells.  168 

Table 1. Summary of streamflow observation and simulation datasets used in this study. GSIM was used as the observed 169 

streamflow database. Streamflow simulations were obtained from six GHMs (H08, LJPmL, MPI-HM, ORCHIDEE, PCR-170 

GLOBWB and WaterGAP2). One observational atmospheric forcing dataset (GSWP3) and outputs of four GCMs were 171 

used as input for streamflow simulations.  172 



Reference 

window 

Streamflow 

obs./sim. 

No. of 

GCM-GHM 

combination 

Description Note 

Historical  

(1971-2005) 

GSIM - 
Observational streamflow selected from 

GSIM archive.  

Streamflow daily 

observations for 3,666 

unique locations 

GSWP3 

(ISIMIP 2a) 

6 
Historical simulation forced by 

observational atmospheric forcing.  

Model did not use human 

water management input. 

GCMHIND 

(ISIMIP 2b) 

21 

Historical simulation using atmospheric 

forcing from four GCMs: GFDL-ESM2M, 

HadGEM2-ES, IPSL-CM5A-LR and 

MIROC5. 

No HadGEM2-ES 

simulation for MPI-HM. 

 

No HadGEM2-ES and 

MIROC5 simulations for 

ORCHIDEE. 

Projection 

(2006-2099) 

GCMRCP2.6 

(ISIMIP 2b) 

21 

Future simulation forced by projected 

atmospheric forcing under greenhouse gas 

concentration scenario RCP2.6. Four GCMs 

were used: GFDL-ESM2M, HadGEM2-ES, 

IPSL-CM5A-LR and MIROC5. 

GCMRCP6.0 

(ISIMIP 2b) 

21 

Future simulation forced by projected 

atmospheric forcing under greenhouse gas 

concentration scenario RCP6.0. Four GCMs 

were used: GFDL-ESM2M, HadGEM2-ES, 

IPSL-CM5A-LR and MIROC5. 

 173 

2.2 Catchment selection and simulated streamflow extraction for observation-model comparison 174 

To enable an observation-model comparison, simulated discharge needs to be extracted from gridded model output. 175 

Large‐scale hydrological models, however, generally do not simulate discharge accurately over small-to-medium size 176 

catchments due to the coarse resolution of river network datasets in their routing schemes (Hunger and Döll, 2008). To 177 

address this limitation, previous GHMs evaluations usually selected large catchments (a threshold of 9,000 km2 was 178 

adopted, approximating the size of a one-degree longitude/latitude grid cell) and routed discharge (units: m3/s) at the 179 

outlet of the catchment was used as simulated streamflow for a specific catchment (Zhao et al., 2017;Veldkamp et al., 180 

2018;Zaherpour et al., 2018;Liu et al., 2017;Zaherpour et al., 2019). For evaluation studies that used relatively small 181 

catchments (e.g. area less than 9,000 km2), the un-routed runoff simulation (units: mm/day) was extracted while observed 182 



discharge was converted to runoff using catchment area prior to comparison (Gudmundsson et al., 2012b;Beck et al., 183 

2017). To increase the sample size for the model-observation comparison (the first objective), the present study used both 184 

daily (i) un-routed runoff for small catchments and (ii) routed discharge simulations for large ones, and thus two 185 

extraction procedures were adopted. A summary of these extraction procedures is provided below while detailed technical 186 

descriptions are provided in section 2 of supplementary material.  187 

 For catchments with area from 0 to 9,000 km2: un-routed runoff (mm/day) was extracted and then converted into 188 

discharge (m3/s) by multiplying averaged runoff with catchment area reported in station metadata. Specifically, 189 

catchment boundaries were superimposed on the GHM grid to obtain the weighted-area tables, which were then 190 

used to derive averaged runoff from the un-routed runoff simulation. To avoid double counting runoff from the 191 

same grid points, runoff for catchments that share similar weighted-area tables (i.e. similar simulated streamflow 192 

would be extracted – see supplementary section 2 for detail description) was averaged (using catchment areas as 193 

weights) and a single ‘averaged time series’ was used in place of the runoff from the component catchments.  194 

 For catchments with area greater than 9,000 km2: the ‘discharge output’ approach (Zhao et al., 2017) was 195 

adopted to extract routed discharge (m3/s) from the GHM cell corresponding to the outlet of each catchment.  196 

To ensure sufficient data is available for historical trend analysis, only GSIM stations with at least 30 years of data 197 

available during the 1971-2005 period were considered (each year having at least 335 days of available records, implying 198 

that annual maximum of a specific year is identified only when more than 90% of daily record is available). These 199 

relatively strict selection criteria also enable a comparison between this study and preceding observation-based 200 

investigations (Gudmundsson et al., 2019;Hodgkins et al., 2017). As catchment boundary shapefiles (Do et al., 2018a) 201 

were used to extract simulated streamflow for small catchments, stations were further filtered using two criteria: (i) 202 

availability of reported catchment area, and (ii) catchment boundary was accompanied with a “high” or “medium” quality 203 

flag (i.e. the discrepancy between reported and estimated catchment area is less than 10%).  204 

A total of 4,595 stations satisfied the quality selection criteria, of which large catchments (i.e. area greater than 9,000 205 

km2) where no suitable grid cell could be identified were further removed (11 catchments). For cases of two or more small 206 

catchments (i.e. area less than or equal to 9,000km2) having similar weighted-area tables, the ‘averaged time series’ (using 207 

catchment areas as weights) was calculated. A total number of 1,542 time series fell in this category and were aggregated 208 

into 624 ‘averaged time series’. Figure 2 shows the spatial distribution of the final dataset for model-observation 209 

comparison, containing data for 3,666 locations (3,042 non-averaged time series and 624 averaged time series). The 210 



majority of available catchments are located in North America and Europe, with some regions over Asia, Oceania and 211 

South America are also covered.  212 

 213 

Figure 2. Locations of 3,666 streamflow observations (blue dots: 3,024 non-averaged time series; yellow dots: 624 214 

averaged time series, where geographical coordinates were averaged from all component gauging coordinates) selected 215 

from GSIM archive for the model-observation comparison. Grey dots indicate GSIM time series that were removed due to 216 

insufficient data availability or quality.  217 

2.3 Detecting trends in annual maximum streamflow 218 

For each streamflow dataset, daily discharge was smoothed to 7-day averages to reduce variability in simulated 219 

streamflow, which can arise from the coarse routing parameters of GHMs (Dankers et al., 2014). The annual maximum 220 

time series of 7-day averaged discharge (labelled as the MAX7 index in the GSIM archive) was then derived to represent 221 

peak flow events. For gridded datasets, the ‘centre averaged approach’ (e.g. averaged streamflow of Jan 7th is the mean 222 

value of Jan 4 – 10th) was used (the common setting of the CDO software, freely available at 223 

https://code.mpimet.mpg.de/projects/cdo), and the MAX7 timeseries was therefore derived for each GSIM station using 224 

this same approach. As a result, the derived value of the MAX7 index is slightly different to the value available in the 225 

online version of GSIM , which applied a ‘backward-moving average’ technique (e.g. averaged streamflow of Jan 7th is 226 

the mean value of Jan 1 – 7th). Our preliminary analysis (not shown), however, indicated that this difference did not lead 227 

to substantial changes in the key findings (i.e., similar spatial composition between increasing and decreasing trends). 228 

The magnitude of trends in the MAX7 index at a specific catchment or grid cell was quantified using the normalised 229 

Theil-Sen slope (Gudmundsson et al., 2019;Stahl et al., 2010) and the results are expressed in % change per decade. The 230 

significance of the local trend was assessed using a Mann-Kendall test at the 10% two-sided significance level (Wilks, 231 



2011). The null hypothesis (no trend) is rejected if the two-sided p-value of the test statistic (Kendall’s τ) is lower than 232 

0.1, while the direction of the trend (i.e. increasing or decreasing) was determined using the sign of τ.  233 

2.4 Statistical techniques 234 

To explore GHMs’ capacity to simulate observed trends and the implication of model uncertainty to projected trends, 235 

trends in streamflow extremes obtained from GSIM (observed trends) and ISIMIP simulations (simulated trends) are 236 

analysed. The observed trends were available for 3,666 observation locations.  Simulated trends were available for all 237 

59,033 GHM grid cells (estimated from routed discharge of each grid cell; Antarctica and Greenland were removed). To 238 

enable a model-observation comparison, we also extract a subset of simulated trends over the 3,666 observation locations 239 

(described in section 2.2). 240 

2.4.1 A hypothesis-test approach for comparison of trend characteristics  241 

A range of hypothesis tests (summarised in Table 2; GSWP3 simulations were used to assess GHM uncertainty while 242 

GCMHIND simulations were used to assess the combined GCM-GHM uncertainty) was applied to address the first two 243 

objectives, which require comparing trend characteristics exhibited from different streamflow datasets. Four 244 

characteristics of trends were assessed: 245 

- Trend mean: The mean (% change per decade) of trends in streamflow extremes across all gauge-/cell-based time 246 

series over a spatial domain. A hypothesis test was adopted to assess whether the trend means exhibited from two 247 

specific streamflow datasets (e.g. model vs. observed) are significantly different from each other. 248 

- Trend standard deviation: The standard deviation (% change per decade) of trends in streamflow extremes across 249 

all gauge-/cell-based time series over a spatial domain. A hypothesis test was adopted to assess whether the trend 250 

standard deviations exhibited from two specific streamflow datasets are significantly different from each other. 251 

- Percentage of significant trends (%): The percentage of trends in a domain that are statistically significant, with 252 

gauge- or cell-based significance calculated using the Mann-Kendall test at the 10% significance level. To assess 253 

whether the percentage of significant (increasing/decreasing) trends exhibited from a specific streamflow dataset 254 

is produced by random chance, a field significance test (Do et al., 2017) was adopted (described in Table 2).    255 

- Trend spatial pattern: The spatial distribution of trends in streamflow extremes over a spatial domain. Pearson’s 256 

correlation (r statistic) (Galton, 1886;Kiktev et al., 2003) between trends of MAX7 index obtained from two 257 

datasets was used as a measure of similarity in the trend spatial structure. The hypothesis test (pattern similarity 258 

test) was adopted to assess whether: (i) the correlation between simulated trends introduced by GHMs and 259 



observed trends is significantly higher than zero; and (ii) the correlation between trends simulated under hindcast 260 

atmospheric forcing and observed trends is significantly lower than that between trends simulated under 261 

observational atmospheric forcing and observed trends. 262 



Table 2. Hypothesis tests conducted to address the first two objectives. 263 

Objective Null-Hypotheses Streamflow dataset Statistical tests 

Objective 1: 

Capacity of 

GHMs to 

reproduce 

observed trends in 

flood hazards 

Hypothesis 1: Trend means obtained from two 

streamflow datasets over observation locations 

were not statistically different from each 

other. 

(i) Observed discharge 

across 3,666 

observation locations 

 

(ii) Simulated 

discharge across 3,666 

observation locations 

(extraction processes 

outlined in Section 2.2)  

Two-sample t-test at the 10% two-sided significance level 

Hypothesis 2: Trend standard deviations 

obtained from two streamflow datasets over 

observation locations were not statistically 

different from each other. 

Two-variance F-test at the 10% two-sided significance level 

Hypothesis 3: Percentage of significant trends 

obtained from all observation locations of a 

specific streamflow dataset was not produced 

by random chance. 

Field significance test similar to that presented in Do et al. (2017) was 

adopted. A moving-block-bootstrap (block-length 𝐿 = 2) was used to 

derive a null-hypothesis distribution of the change that occurred due to 

random chance. The null hypothesis is rejected at 5% one-sided 

significance level when the true percentage falls on the right-hand side of 

the 95th percentile of the resampled distributions. 

Hypothesis 4: The correlation between trends 

obtained from two streamflow datasets was 

not significantly higher than ‘0’ (i.e. zero 

pattern similarity). 

‘Zero pattern similarity’ was compared to the probability distribution 

function (PDF) of pairwise correlation between simulated and observed 

trends, drawn from a bootstrap procedure similar to that proposed by 

Kiktev et al. (2003). The null hypothesis is rejected at 5% one-sided 

significance level when zero correlation falls on the left-hand side of the 

5th percentile of the resampled distributions. 



Hypothesis 5: The correlation between 

GCMHIND simulated trends and observed 

trends was not significantly lower than the 

correlation between GSWP3 simulated trends 

and observed trends 

The actual pairwise correlation between GCMHIND simulated trends 

and observed trends (denoted by 𝑟 ஼ெுூே஽) was compared to the 

bootstrapped PDF of correlation exhibited from GSWP3 simulated 

trends (denoted by 𝑟 ௌௐ௉ଷ
∗ ). If 𝑟 ஼ெுூே஽ falls on the left-hand side of the 

5th percentile 𝑟 ௌௐ௉ଷ
∗ , there is evidence to reject the null-hypothesis at the 

5% one-sided significance level. 

Objective 2:  

The 

representativeness 

of observation 

locations in the 

GHM simulations 

Hypothesis 6: Trend mean obtained from 

observation locations was not statistically 

different to that obtained from all grid cells. 

(i) Simulated discharge 

across 3,666 

observation locations 

(extraction processes 

outlined in Section 2.2) 

 

(ii) Routed discharge 

across all landmass 

grid cells (59,033 cells) 

Two-sample t-test at the 10% two-sided significance level 

Hypothesis 7: Trend standard deviation 

obtained from observation locations was not 

statistically different to that obtained from all 

grid cells. 

Two-variance F-test at the 10% two-sided significance level 

Hypothesis 8: Percentage of significant trends 

obtained from all grid cells of a specific 

streamflow dataset was not produced by 

random chance. 

Field significance test similar to that presented in Hypothesis 3 but 

trends obtained from all grid cells were the subject of the assessment. 

264 



2.4.2 Estimating uncertainty of trend characteristics across ensemble members 265 

The third and final objective, which focused on the implications of GCM-GHM uncertainty on projected changes in 266 

flood hazard, was addressed by quantifying the spread of trend characteristics (i.e. trend mean, trend standard 267 

deviation, and percentage of significant trends) exhibited from routed discharge projections under two representative 268 

concentration pathways.  269 

The spatial uncertainty of projected trends (GCMRCP2.6 and GCMRCP6.0) was also quantified by calculating intra-270 

/inter-model correlation of the trend patterns across all ensemble members available under the two projections. Intra-271 

model correlation represents spatial uncertainty introduced by the GCM and was calculated from simulated trends 272 

introduced by the same GHM (using different simulated atmospheric forcing). Inter-model correlation represents the 273 

combined GCM-GHM spatial uncertainty, and was calculated for each pair of simulated trends that were: (i) 274 

introduced by the different GHMs; and (ii) forced with different projected atmospheric forcing.  275 

To assess the robustness of GHMs in projecting changes in flood hazard, each grid-cell available in the discharge 276 

simulation grid was then categorised into one of the five ‘flood-risk’ (here “flood-risk” level is defined as the number 277 

of ensemble members projecting significant increasing trends) groups based on the number of 278 

GCMRCP2.6/GCMRCP6.0 simulation members projecting a significant increasing trend (Group 1: no members, 279 

Group 2: from 1 to 5 members, Group 3: from 6 to 10 members, Group 4: from 11 to 15 members and Group 5: from 280 

16 to 18 members).  281 

Finally, to assess whether locations projected with an increasing trend by the majority simulations are adequately 282 

monitored, each GSIM gauge was allocated into one of these five groups based on the gauge’s geographical 283 

coordinates. The allocation of gauges into these groups was then analysed to determine whether the most 284 

comprehensive global database of daily streamflow records to-date was evenly distributed across the five ‘flood risk 285 

regions’. An inadequately coverage of stream-gauge networks over high risk regions indicate potentially high 286 

vulnerability to future changes in flood hazards, as insufficient data is available to inform decision makers.  287 

3 Results and Discussion 288 

3.1 Capacity of GHMs to reproduce observed trends in flood hazards 289 

Visual inspection of the normalised Theil-Sen slope across the GSIM time series (top panel of Figure 3; regional 290 

maps provided in Supplementary Figure S4) shows a spatial pattern that is consistent with recent findings on trends in 291 

observed flood magnitude (Mangini et al., 2018;Do et al., 2017;Mallakpour and Villarini, 2015;Gudmundsson et al., 292 

2019;Burn and Whitfield, 2018;Ishak et al., 2013). Specifically, decreasing trends tend to dominate Asia (most 293 



stations located in Japan and India), Australia, the Mediterranean, western/north-eastern US and northern Brazil, 294 

while increasing trends appear mostly over central North America, southern Brazil and the northern part of Western 295 

Europe (including the UK). Note that the observation locations are not evenly distributed (86% in North America and 296 

Europe), and thus the confidence of this assessment varies substantially across continents.  297 

The multi-model average of GSWP3 simulated trends (trends simulated under observational atmospheric forcing; 298 

middle panels of Figure 3) has generally good capacity to reproduce spatial patterns of observed trends. The multi-299 

model average of GCMHIND simulated trends (trends simulated under hindcast atmospheric forcing; lower panels of 300 

Figure 3), however, could not reproduce some spatial agglomerations of trends in streamflow maxima (e.g. the 301 

decreasing trends in south-eastern Australia, increasing trends over north-eastern Europe). This feature indicates the 302 

inconsistent climate variability between GCMs and the real world, suggesting GCM climate forcing cannot account 303 

for observed trends at sub-continental scale. In addition, GCMs uncertainty can potentially contribute to this 304 

inconsitency. Interestingly, the multi-model average of both GSWP3 and GCMHIND simulations generally exhibits a 305 

lower magnitude of changes (i.e. closer to ‘zero change’) compared to the observed trends. This feature is more 306 

prominent in GCMHIND (21 simulations available) compared to GSWP3 (six simulations available), and can be 307 

explained by two possibilities. The first possible explanation is the nature of averaging, which tends to smooth out 308 

variability in trend magnitude across ensemble members, leading to a relatively ‘close to zero’ change across the 309 

globe (given that each GCMs has stochastic decadal climate variability, so that averaging results forced by GCMs 310 

tends to cancel trends). An alternative explanation is that individual simulations also exhibit a lower magnitude of 311 

change relative to observation. As Figure 3 is not sufficient to evaluate the latter possibility, a more detailed 312 

comparative analysis between observed trends and individual simulated trends using both historical climate forcings 313 

(via GSWP3) and GCM hindcasts was conducted. Specifically, four characteristics of trends in extreme flows (i.e. 314 

trend mean, trend standard deviation, percentage of significant trends and trend spatial structure) were assessed for 315 

individual simulations and the results are reported in following sections. At the global scale, GSIM observed trends 316 

exhibit a mean and standard deviation of -2.4% and 9.9% change per decade over the 1971-2005 historical period. 317 

Furthermore, there are 7.5% (12.1%) stations showing significant increasing (decreasing) trends (detected by the 318 

Mann-Kendall test at the 10% significance level). These numbers, however, are not statistically significant at the 319 

global scale. 320 

  321 



 322 

Figure 3. Normalised Theil-Sen slope for historical trends in flood magnitude (MAX7 index) exhibited over 3,666 323 

locations across three streamflow datasets (top left: GSIM; middle left: GSWP3; bottom left: GCMHIND). Multi-324 

model average is shown for simulated trends. Trend is expressed in % change per decade. Scatter plot between trends 325 

obtained from GSIM and GSWP3/GCMHIND simulated streamflow are provided in the right panels. 326 

 327 

Table 3 shows the results of the global model-observation comparison using GSWP3 simulated trends across the six 328 

GHMs. Compared to observed trends, most simulated trends have a significantly higher global trend mean at the 329 

observed locations and lower trend standard deviation. The percentage of locations showing significant trends varies 330 

substantially across simulations, but the values were not statistically significant. All GHMs demonstrate low-to-331 

moderate capacity in simulating the spatial pattern of trends (spatial correlation coefficients range from 0.35 to 0.50, 332 



indicating that GSWP3 simulated trends account for between 12%-25% of the cross-location variability in the 333 

observed trend signal). There is, however, a notable difference in terms of the overall sign of trends simulated by each 334 

GHM. This feature indicates that using different GHMs can lead to different interpretations about the overall change 335 

in flood hazard at the global scale, despite having a common boundary forcing. Therefore, the ‘closer to zero’ trends 336 

of ensemble averages (illustrated in Figure 3) likely reflects the implication of averaging rather than a systematic bias 337 

of GHMs toward a low magnitude of change. As an implication, ensemble averages even though useful, should not be 338 

used as a sole ground to infer changes in floods, as it may undermine the actual magnitude of simulated trends. As a 339 

result, the following analyses will report the full range (and mean) of each trend characteristic estimated across all 340 

ensemble members to communicate the uncertainty underlying the results.  341 

Table 3. Characteristics of trends in the MAX7 index over the 1971-2005 period across 3,666 locations for GSIM 342 

observed trends and GSWP3 simulated trends (six GHMs available). Trend mean and trend standard deviation are 343 

expressed in % change per decade. Correlation was obtained from GSIM observed trends and GSWP3 simulated 344 

trends for each GHM. Boldface texts represent values that reject the null-hypotheses outlined in Table 2 (hypothesis 1 345 

to 4).  346 

GHM 
Trend 

mean 

Trend stand. 

dev. 

% of sig. inc. 

trends 

% of sig. dec. 

trends 

Corr. 

obs. trend 

H08 -1.9 8.3 4.8 6.7 0.42 

LPJmL -2.2 7.1 4.5 7.3 0.37 

PCR-GLOBWB 0.1 7.7 9.6 6.1 0.46 

WaterGAP2 -0.3 8.2 8.5 4.2 0.49 

MPI-HM -2.1 8.7 5.6 7.5 0.50 

ORCHIDEE -1.4 8.6 7 8.2 0.35 

GSIM (observation) -2.4 9.9 7.5 12.1 - 

 347 

Table 4 provides the results of the model-observation comparison using GCMHIND simulated trends (intra-model 348 

averages are shown while results of individual simulations are reported in section 4 of supplementary material). 349 

Similar to GSWP3 trends, intra-model averages (i.e. calculated from simulations of one GHM) of GCMHIND trends 350 

tend to have a higher global mean and lower trend standard deviation than observed. The composition between the 351 

percentages of locations showing significant trends varies substantially across simulations and statistical significance 352 

was found only for decreasing trends over three out of 21 simulations (two LPJmL simulations and one MPI-HM 353 

simulation). The multi-model ranges encapsulate the observed trend mean and percentage of significant trends, while 354 

the observed trend standard deviation is clearly above the range exhibited from all GCMHIND simulations. The 355 

significantly lower simulated trend standard deviation can be partially attributable to the coarse resolution of GHMs’ 356 



atmospheric/land surface inputs, which may not sufficiently reflect the variation of hydrological processes across 357 

small-to-medium size catchments. 358 

Table 4. Characteristics of trends in the MAX7 index over the 1971-2005 period across 3,666 locations for 359 

GCMHIND simulated trends. Trend mean and trend standard deviation are expressed in % change per decade. Intra-360 

model averages of trend characteristics are shown for each GHM. Values in the parentheses show the number of 361 

simulations rejecting the null hypothesis (from 1 to 4) outlined in Table 2 (out of four GCMs). Multi-model 362 

min/max/average values together with those exhibited from GSIM are also provided. 363 

GHM 
Trend 

mean 

Trend stand. 

dev. 

% of sig. inc. 

trends 

% of sig. dec. 

trends 

Corr. 

obs. trend 

H08 -1.7 (4) 8.5 (4) 4.9 (0) 8.8 (0) 0.03 (2) 

LPJmL -2.3 (4) 7.9 (4) 4.2 (0) 12.6 (2) 0.09 (3) 

PCR-GLOBWB -1.1 (2) 7.4 (4) 7.5 (0) 9.4 (0) 0.06 (3) 

WaterGAP2 -1.3 (4) 8.4 (4) 5.4 (0) 8.0 (0) 0.02 (2) 

MPI-HM -1.8 (3) 8.7 (3) 5.7 (0) 9.9 (1) 0.05 (2) 

ORCHIDEE -0.4 (2) 8.6 (2) 6.9 (0) 7.0 (0) 0.04 (1) 

Multi-model min -4.2 7.0 2.2 4.1 -0.06 

Multi-model max 0.6 9.5 12.2 17.3 0.18 

Multi-model average -1.5 8.2 5.6 9.5 0.05 

GSIM (observation) -2.4 9.9 7.5 12.1 - 

 364 

Among 21 GCMHIND simulations, the ‘zero similarity’ hypothesis (hypothesis 5) was rejected over 13 simulations, 365 

indicating that GCM-GHM ensemble members possess some capacity to simulate the spatial structure of observed 366 

trends in streamflow extremes. The correlation between GCMHIND simulated trends and GSIM observed trends, 367 

however, is significantly lower than that exhibited from GSWP3 simulated trends across all GHMs (reported at Table 368 

3). The results of the similarity assessment are illustrated for a single GHM (H08; as the results were similar for other 369 

GHMs) in Figure 4, where the correlation between observed trends and GSWP3 simulated trends is significantly 370 

different from zero. In contrast, the correlation between observed trends and each of the simulated trends under 371 

hindcast atmospheric forcing (GCMHIND simulations) is much lower, with two of the four not being statistically 372 

higher than zero. These results confirm the substantial influence of atmospheric forcing on the simulated trend pattern 373 

relative to GHMs structure.  374 



 375 

Figure 4. Model-observation correlation between observed trends and simulated trends across all simulations 376 

(GSWP3 and four GCMHIND simulations) of a single model (H08; similar results for other GHMs). Coloured dots 377 

indicate actual correlation between a specific simulated trend pattern and observed trend pattern across 3,666 378 

locations. Colour lines represent the PDFs of correlation between simulated trend pattern and observed trend pattern 379 

obtained through a bootstrap resampling procedure (B = 2000). 380 

 381 

To further quantify changes at the regional scale, a model-observation comparison (identical to that at the global 382 

scale) was conducted over six continents and the results are summarised in Table 5 (multi-model averages are 383 

shown). The trend mean exhibited from GSIM ranges from -10.7% (Oceania) to 2.4% change per decade (Europe) 384 

while trend standard deviation ranges from 8.3% (Europe) to 15.8% change per decade (Oceania). The percentage of 385 

significant increasing (decreasing) trends exhibited from GSIM ranges from 3.2% to 22.6% (from 6.3% to 29.1%) 386 

and the composition of significant trends across the six continents is consistent to a previous investigation (Do et al., 387 

2017). The observed percentage of significant trends is found to be above random chance for Europe (increasing 388 

flood magnitude) and Australia (decreasing flood magnitude) and this feature is captured quite well by GSWP3 389 

simulated trends, with at least half of the simulations confirming field significances detected from GSIM. Trend 390 

characteristics simulated by GHMs at continental scale confirms some important findings from global scale 391 



assessments, suggesting substantial uncertainty of trends in streamflow extremes introduced by GHMs at the 392 

continental scale: 393 

- Both GSWP3 and GCMHIND simulations generally exhibit a higher trend mean and lower trend standard 394 

deviation compared to the observed trend at the continental scale (see also Section 3.1 of the supplementary).  395 

- GCMHIND simulations generally exhibit lower capacity to reproduce trend characteristics relative to 396 

GSWP3 simulations due to the combined GHM-GCM uncertainty. 397 

For GSWP3 simulations, the spatial correlation is weakest in Asia, as no simulation rejects the null-hypothesis of 398 

‘zero similarity’, while the spatial correlation is strongest in Oceania (mainly southern Australia; correlation of 0.63). 399 

Oceania, however, exhibits the highest model-observation discrepancy in trend mean and trend standard deviation, 400 

indicating the capacity of a given GHM in terms of the trend spatial structure is not necessarily consistent with its 401 

performance in terms of the mean and spread of trends.  402 

GCMHIND trends also suggest the opposite composition between percentages of significant trends compared to 403 

GSIM trends (e.g. simulated trends suggest more locations showing significant increasing trends while observed 404 

trends suggest the opposite). Among six continents, GCMHIND trends exhibited the lowest correlation (-0.14) in 405 

Oceania, whereas GSWP3 suggested the strongest correlation in this continent. This assessment further indicates the 406 

substantial impact of atmospheric forcing relative to GHM model structure on the simulated trends in high flow 407 

events. It is informative to note that this result is expected, as GCMs (although have been bias-corrected) generally 408 

have low capacity in reproducing the timing of wet/dry periods or the spatial distribution of climate extremes (Kiktev 409 

et al., 2007), and GHMs are likely to inherit these limitations when using GCMs’ outputs as climate forcing data.  410 

  411 



Table 5. Characteristics of trends exhibited from GSIM/GSWP3/GCMHIND streamflow dataset at the continental scale (each observation location of 3,666 sites was allocated into 412 

one of the six continents). For simulated trends, only the multi-model average is shown for each region. Trend mean and trend standard deviation are expressed in % change per 413 

decade. Values in the parentheses show the number of simulations rejecting the null-hypothesis described in Table 2 (up to six for GSWP3 simulations and 21 for GCMHIND 414 

simulations). For GSIM, field significance of increasing/decreasing trends was highlighted by boldface texts. 415 

Region 

No. of 

loc. 

Trend mean Trend Stand. Dev. % sig. inc. trends % sig. dec. trends Corr. obs. trends 

GSIM GSWP3 GCMHIND GSIM GSWP3 GCMHIND GSIM GSWP3 GCMHIND GSIM GSWP3 GCMHIND GSWP3 GCMHIND 

Asia 96 -3.1 -1.2 (4) -2.7 (6) 8.8 6.6 (5) 7.2 (15) 4.2 4.2 (0) 2.2 (0) 15.6 10.3 (1) 9.7 (2) 0.07 (0) 0.11 (11) 

N. America 2441 -3.5 -2.4 (3) -1.6 (18) 9.4 7.9 (6) 8.0 (19) 3.2 2.8 (0) 5.3 (0) 13.4 7.5 (0) 9.3 (3) 0.38 (6) 0.03 (12) 

Europe 730 2.4 2.6 (6) -0.7 (17) 8.3 7.1 (5) 5.9 (21) 22.6 20.2 (3) 7.3 (1) 6.3 2.1 (0) 10.1 (4) 0.43 (6) 0.10 (13) 

Africa 48 -2.5 -1.3 (0) 1.5 (12) 14.8 9.8 (5) 8.0 (20) 6.3 2.8 (0) 9.6 (2) 10.4 10.4 (0) 3.3 (0) 0.46 (6) 0.07 (6) 

S. America 265 -2.0 -0.2 (5) -3.6 (14) 10.1 7.6 (6) 10.0 (20) 7.9 7.2 (0) 3.4 (1) 10.2 4.4 (0) 13.4 (5) 0.26 (6) 0.18 (17) 

Oceania 86 -10.7 -6.1 (4) 2.4 (21) 15.8 10.9 (6) 8.4 (21) 4.7 3.7 (0) 11 (2) 29.1 22.1 (4) 1.9 (0) 0.63 (6) -0.14 (2) 

416 



3.2 Determining the representativeness of observation locations in the GHM simulations 417 

To assess the representativeness of observations locations in GHM grid cells, trend characteristics obtained from all 418 

simulated grid cells were compared to those estimated from the observation locations (3,666 sites globally). For 419 

GSWP3 simulations, the results suggest a significant difference between trend characteristics from all model grid 420 

cells compared to those obtained from the observation locations (Table 6; multi-model averages shown). This feature 421 

is consistent at both global and continental scales, including North America and Europe – the continents with the best 422 

stream-gauge density. Specifically, the trend mean tends to get closer to zero, while the trend standard deviation 423 

obtained from all grid cells tends to be higher than that over observation locations. The difference between the 424 

percentages of significant increasing/decreasing trends across all grid cells also gets smaller. For instance, the 425 

percentage of observation locations showing significant increasing (decreasing) trends over Oceania is 3.7% (22.1%) 426 

for GSWP3 multi-model averages (reported in Table 5), while the corresponding values are 10.7% (15.1%) when all 427 

grid cells are considered (reported in Table 6). Additionally, field significance for increasing (decreasing) trends is 428 

detected in two (four) out of six simulations over Oceania, while the same feature could not be detected over the 429 

observation locations. These findings confirm that trends exhibited from observation locations are not a representative 430 

sample of trends obtained from all simulation grid cells, which has also been suggested through Figure 2. As a result, 431 

a common model-observation picture of changes in global flood hazard remains elusive. To enable a holistic 432 

perspective of changes in extreme flows, it is therefore crucial to improve not only models’ capacity, but also data 433 

accessibility and expand streamflow observational networks to ensure unbiased samples are available for large scale 434 

investigations.  435 

The findings using GCMHIND simulations are similar in terms of the trend mean (closer to zero) and trend standard 436 

deviation (higher) across all grid cells relative to the observation locations. Across all land areas, the composition of 437 

the percentages of land mass showing significant trends exhibited by GCMHIND simulations contradicts that 438 

obtained from the GSWP3 simulations for many continents. For example, GSWP3 simulations suggest more land 439 

areas showing significant decreasing trends than increasing trends over Asia and Oceania while GCMHIND 440 

simulations indicate an overall increasing change in extreme flows over the same continents. This feature further 441 

confirms the importance of uncertainty in atmospheric forcing in driving the spatial structure of the simulated trends, 442 

which will be explored further in the next section. 443 



Table 6. Characteristics of simulated trends across all grid cells at both continental and global scales (multi-model averages are showed). For each simulation, cell-based trend 444 

mean/trend standard deviation was compared to that of gauge-based trends (reported in Table 4). Values in parentheses represent the number of simulations reject the null-hypothesis 445 

described in Table 2 (up to six simulations for GSWP3 and 21 simulations for GCMHIND). GSIM results are also provided for reference. 446 

Region 

Trend mean Trend Stand. Dev. % sig. inc. trends % sig. dec. trends 

GSIM GSWP3 GCMHIND GSIM GSWP3 GCMHIND GSIM GSWP3 GCMHIND GSIM GSWP3 GCMHIND 

Asia -3.1 -0.7 (3) 0.4 (16) 8.8 10.3 (6) 9.0 (15) 4.2 7.7 (0) 9.6 (7) 15.6 9.9 (3) 7.7 (4) 

N. America -3.5 -1.8 (4) 0.4 (19) 9.4 10.3 (6) 8.3 (17) 3.2 6.9 (1) 8.2 (4) 13.4 12.3 (5) 6.6 (0) 

Europe 2.4 1.1 (5) 0.2 (16) 8.3 8.5 (5) 8.4 (20) 22.6 11.5 (2) 9.1 (5) 6.3 4.5 (0) 7.9 (3) 

Africa -2.5 0.7 (2) -1.7 (15) 14.8 11.0 (3) 10.1 (12) 6.3 10.9 (1) 8.5 (6) 10.4 11.2 (2) 15.5 (11) 

S. America -2.0 -2.0 (6) -0.7 (19) 10.1 8.7 (3) 9.1 (17) 7.9 4.9 (0) 5.0 (0) 10.2 8.6 (0) 8.2 (1) 

Oceania -10.7 -1.0 (6) 0.5 (17) 15.8 11.3 (4) 10.4 (17) 4.7 10.7 (0) 10.3 (3) 29.1 15.1 (1) 9.6 (6) 

Global -2.4 -0.6 (6) -0.1 (20) 9.9 10.3 (6) 9.4 (19) 7.5 8.3 (1) 8.6 (6)  12.1 10.2 (4) 9.0 (6) 

 447 

 448 



3.3 The implication of simulation uncertainty on the projection of trends in flood hazard 449 

This section focuses on the uncertainty in simulated trends under projected climate forcing at the global scale. For 450 

MPI-HM (no simulation for HadGEM2-ES forcing), streamflow was only simulated across the main stream-network 451 

(approximately 45% of the global land grid cells), and thus three simulations of this GHM were removed from the 452 

analysis. As a result, only 18 ensemble members were used to explore the uncertainty in projected trends 453 

(GCMRCP2.6 and GCMRCP6.0 – trends estimated for the 2006-2099 period and all cells were considered).  454 

Table 7 shows a relatively low spread of the global trend mean (ranging from -1.3% to 0.8% change per decade; 455 

multi-model average of 0.0% change per decade for both GCMRCP2.6 and GCMRCP6.0) and trend standard 456 

deviation (ranging from 1.8% to 4.1% change per decade) across ensemble members. LPJmL and ORCHIDEE 457 

generally suggest a decreasing trend at the global scale, evident through the negative global mean and more grid cells 458 

showing significant decreasing trends. The standard deviation of trends in future simulations is substantially lower 459 

than the historical run (reported in Table 6). This feature is potentially due to the capacity of longer time series in 460 

capturing the inter-decadal variability of the streamflow regimes, with both dry and wet periods being considered 461 

(Hall et al., 2014). Projected trends under the RCP2.6 scenario generally have closer to zero mean and lower standard 462 

deviation compared to those introduced by the RCP6.0 scenario, reflecting the nature of an ambitious ‘low-end 463 

warming’ scenario, when anthropogenic climate change reaches its peak at the middle of the 21st century followed by 464 

a generally stable condition.  465 

Interestingly, although most models suggest relatively moderate changes in the global trend mean, the composition 466 

between percentages of grid cells showing significant trends varies substantially, ranging from 7.5% (7.1%) to 30.1% 467 

(35.0%) for significant increasing (decreasing) trends at the 10% level, with RCP6.0 generally exhibits higher values. 468 

This finding indicates that inferences of changes focusing on global averages may mask significant regional trends, as 469 

there was a substantially high percentage of locations exhibiting significant increasing and decreasing trends 470 

exhibited in individual models.  471 

Uncertainty in the spatial structure of trends in streamflow extremes is further investigated using both intra-model (to 472 

reflect GCM uncertainty) and inter-model correlations (to reflect the combined GCM-GHM uncertainty). A more 473 

robust spatial pattern of projected trends under RCP6.0 was found, indicated through generally higher intra-/inter-474 

model correlation compared to those exhibited from trends simulated under RCP2.6 across all GHMs. This feature 475 

potentially reflects the less contrasted regional climate change of RCP2.6 relative to RCP6.0. The inter-model 476 

correlation is consistently lower than intra-model correlation due to the combined uncertainty of both GHMs and 477 

GCMs.  478 



Table 7. The uncertainty in the characteristics of projected trends (GCMRCP2.6 and GCMRCP6.0) across 18 479 

members at the global scale (five GHMs). Trend mean and trend standard deviation have unit of %-change per 480 

decade. At-site significance of trend was identified using Mann-Kendall test at 10% level and the percentage of grid 481 

cells showing significant increasing/decreasing trends was reported (no field significance test was conducted). Intra-482 

model average value of each metric across is shown for each GHM (numbers of simulations are provided in the first 483 

column).  484 

Model 

No. 

of 

sim 

Trend mean 
Trend standard 

deviation 

% of sig. 

inc. trends 

% of sig. 

dec. trends 

Intra-model 

correlation 

Inter-model 

correlation 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

GCM 

RCP2.6 

GCM 

RCP6.0 

H08 4 0.1 0.3 2.5 3.4 14.2 22.1 11.6 19.3 0.17 0.41 0.02 0.21 

LPJmL 4 -0.1 -0.2 2.1 3.0 10.0 19.1 9.4 19.7 0.04 0.41 0.01 0.18 

ORCHIDEE 2 -0.5 -0.8 2.6 3.6 9.1 14.4 17.6 28.1 0.07 0.34 0.03 0.11 

PCR-GLOBWB 4 0.1 0.0 2.4 3.4 15.1 22.7 11.6 20.2 0.07 0.30 0.02 0.18 

WaterGAP2 4 0.2 0.5 2.3 3.0 13.0 25.9 8.0 11.8 0.03 0.25 0.01 0.17 

Multi-model min - -0.6 -1.3 1.8 2.6 7.5 12.3 7.1 9.6 -0.03 0.12 -0.11 -0.18 

Multi-model max - 0.4 0.8 2.9 4.1 18.0 30.1 21.2 35.0 0.30 0.48 0.21 0.21 

Multi-model average - 0.0 0.0 2.3 3.2 12.6 21.6 11.0 18.9 0.08 0.34 0.01 0.04 

 485 

To quantity the robustness in terms of regions with significant trends in streamflow extremes, the number of 486 

simulations showing significant increasing/decreasing trends was counted for each grid cell (value ranging from 0 to 487 

18). As shown in Figure 5, the projections under RCP2.6 (top panels) do not suggest many regions with an increasing 488 

trend for most ensemble members, but consistently suggest decreasing trends over the majority of Africa, Australia 489 

and the western America. Although both scenarios suggested a similar spatial pattern, projections under the RCP6.0 490 

scenario (lower panels) show a substantially higher robustness in terms of regions with significant changes over time 491 

in streamflow extremes. For instance, significant increasing trends are projected consistently over southern and south-492 

eastern Asia, eastern Africa, and Siberia, while high agreement of decreasing trends is found over southern Australia, 493 

north-eastern Europe, the Mediterranean and north-western North America. These findings share some similarity with 494 

a previous investigation that used the ISIMIP Fast Track simulations (published before the ISIMIP2a and 2b 495 

simulations used here) to identify regions projected with an increasing magnitude of 30-year return level of river flow 496 

(Dankers et al., 2014). Specifically, both studies suggest overall: (1) an increasing trend over Siberia and South-East 497 

Asia; and (2) a decreasing trend over north-eastern Europe and north-western North America. The present study, 498 

however, additionally highlights a dominant decreasing trend over Australia, which was not shown previously. The 499 

different numbers of ensemble members (45 in Dankers et al. (2014) and 18 in the present study) and greenhouse gas 500 

concentration scenario (RCP8.5 in Dankers et al. (2014) and RCP2.6/RCP6.0 in the present study) between two 501 

studies indicate that the choice of GCM-GHM ensemble and greenhouse gas concentration scenarios could lead to 502 

substantially different projections of changes in flood hazard at the regional scale. 503 



 504 

Figure 5. Number of simulations showing statistically significant trends at the 10% level at each grid cell. The left 505 

panels show results for the assessment of increasing trends, while the right panels show results for significant 506 

decreasing trends. Top: results of GCMRCP2.6 simulations; Bottom: results of GCMRCP6.0 simulations. 507 

 508 

These results suggest the key role of GCM uncertainty in projections of changes in flood hazards, emphasising the 509 

importance of a flexible adaptation strategy at the regional scale that can take this uncertainty into account (Dankers 510 

et al., 2014) such as increasing flexibility in reservoir operations, and focusing on improved infrastructure resilience, 511 

and safety to prepare for uncertain changes in the flood hazards. Such a strategy is achievable only through a reliable 512 

and robust understanding of the change in flood hazard. The assessment of the representativeness of streamflow 513 

observations (section 3.2), however, demonstrated that the observation locations selected for this assessment are not a 514 

representative sample of the entire land mass. As a result, inference of changes in flood hazard may be biased toward 515 

well-observed regions. To further highlight the potential impact of limitations in observed streamflow datasets, the 516 

proportion of available stream gauges located in regions with different levels of projected ‘flood risk’ was assessed. 517 

We first categorised each simulation grid-cell into one of the five ‘flood-risk’ groups. Note that in this analysis, “risk” 518 

is defined as the number of simulations projecting a significant increasing trend, rather than the prominent definition 519 

of risk as the combination of hazard, exposure and vulnerability (Kron, 2005). In this analysis, RCP6.0 scenario was 520 

chosen as it yielded a higher global ‘risk’ of flood hazard relative to RCP2.6 scenario.  521 

Figure 6 presents the percentage of all simulated grid cells (left panel) categorized in each of the five groups, and of 522 

GSIM stations located in each group (right panel). As can be seen, 11.7% of grid cells fell into the “high risk” groups 523 

(8.9% from Group 4 with 11-15 ensemble members, and 1.8% in Group 5 with 16-18 ensemble members), while 524 



68.9% of grid cells fell into the “low risk” groups (22.0% for Group 1 with no ensemble members, and 46.9% for 525 

Group 2 with 1-5 ensemble members). Of all GSIM stations, only 0.9% are located in “high risk” grid cells (no 526 

station located in Group 5 grid cells) compared to 89.5% of stations located in “low risk” grid cells (35.4% for Group 527 

1 and 54.1% for Group 2). The uneven distribution of stream gauges indicates potential difficulties in using 528 

observational records to provide an assessment of global or regional changes in flood hazard, which in part arises 529 

from data caveats associated with the spatiotemporal coverage and quality of observed gauge records across the 530 

globe. This finding further suggests the urgent demand for ongoing efforts to make streamflow observation more 531 

accessible. In addition. new innovations in remote sensing (Gouweleeuw et al., 2018), or development of runoff 532 

reanalysis (Ghiggi et al., 2019) should also be supported to complement the understanding of changes in floods for 533 

locations that were not observed by stream gauges. 534 

 535 

Figure 6. Percentage of grid-cell (“Landmass”) grouped by the number of simulations projecting a significant 536 

increasing trend under RCP6.0 scenario; and the percentage of streamflow stations (“GSIM”) assigned into each 537 

group. The range of possible simulations is from 0 to 18 and binned into five groups (Group 1: no members, Group 2: 538 

from 1 to 5 members, Group 3: from 6 to 10 members, Group 4: from 11 to 15 members and Group 5: from 16 to 18 539 

members). To identify which group a specific station belongs to, the geographical coordinates of that station was 540 

superimposed on top of the global ‘flood-risk’ map. 541 



4 Summary and conclusions 542 

To explore the appropriateness of GHMs in simulating changes in flood hazards, this study evaluated the capacity of 543 

six GHMs to reproduce the characteristics of historical trends in 7-day annual maximum streamflow over the 1971-544 

2005 period. The study also explored the implications of simulation uncertainty to projected changes in flood hazards 545 

over the 2006-2099 period. The findings of these investigations are summarized as follows. 546 

1. Using observations from the Global Streamflow Indices and Metadata (GSIM) archive, this study confirms 547 

previous findings about changes in flood hazard over data-covered regions (Do et al., 2017), in which 548 

significant decreasing trends were found mostly in Australia, the Mediterranean region, western US, eastern 549 

Brazil and Asia (Japan and southern India), while significant increasing trends were more common over 550 

central US, southern Brazil, and the northern part of Western Europe.  551 

2. Trends simulated by GHMs, when using an observational climate forcing, show moderate capacity to 552 

reproduce the characteristics of observed trends (i.e. the mean and standard deviation of trends, the 553 

percentage of stations showing significant increasing/decreasing trends, and the spatial structure of trends).  554 

3. Climate variability and climate model uncertainty (i.e., the effect of using different GCMs to simulate the 555 

historical climate) significantly reduced the extent to which the GHMs’ captured the observed spatial 556 

structure of trends. This was evident through significantly lower correlation between observed trends and 557 

simulated trends, when GCMs were used for the climate forcing, than when climate observations were used.  558 

4. The simulated trends over observed areas inadequately represented spatially averaged trends simulated for 559 

wider spatial areas from all GHM grid cells at the continental and global scales. This was evident in most 560 

simulations for trend mean and trend standard deviation, indicating a potential bias toward well-observed 561 

regions of observation-based inferences about changes in flood hazard.  562 

5. Under both RCP2.6 and RCP6.0 greenhouse gas concentration scenarios, simulated trends in 7-day 563 

maximum streamflow across ensemble members have relatively low uncertainty in terms of the global trend 564 

mean (ranging from -1.3% to 0.8% change per decade) and trend standard deviation (ranging from 1.8% to 565 

4.1% change per decade). 566 

6. Projected trends have wide spread of the percentage of land mass showing significant changes, ranging from 567 

7.5% (7.1%) to 30.1% (35.0%) for significant increasing (decreasing) trends. This result indicates that 568 

limited changes to the global mean flood hazard could potentially mask out significant regional changes.  569 

7. Projected trends in flood hazards show low inter-model spatial correlations (ranging from -0.18 to 0.21), 570 

indicating high uncertainty in future changes in flood hazards at the global scale. Under RCP6.0 scenario, 571 

some regions, e.g. south-eastern Asia, eastern Africa, Siberia, were consistently projected with significant 572 



increasing trends, which has some similarity to previous findings that used ISIMIP Fast Track simulations 573 

(Dankers et al., 2014).  574 

8. ‘High-risk’ regions (consistently projected with a significant increase in floods) of future changes in floods 575 

are sparsely sampled, covered by less than 1% of all available stream-gauges listed in the catalogue of 576 

GSIM. Data coverage, as a result, remains the key limitation of this study, which could potentially lead to an 577 

erroneous conclusion on the state-of-understanding of historical trends in flood hazard globally. Specifically, 578 

substantial changes, although having occurred, might not be captured by available streamflow records.  579 

Our findings also show that individual models may provide contradictory signal of changes in flood hazards for a 580 

specific region, indicating high uncertainty in model-based inferences of changes in flood hazards. As a result, 581 

alternatives for the conventional approach in estimating changes in streamflow extremes at the global and regional 582 

scale (i.e. unweighted mean across all grid points) should be investigated. For instance, the spatial weighted averages 583 

(e.g. using inverse distance relative to observed locations as weights) could be used to compute global means of 584 

changes. Regional analysis using homogenised regions as the basis of reporting spatial domains (Zaherpour et al., 585 

2018;Gudmundsson et al., 2019) could be a potential alternative for continental scale assessment.  586 

The substantial discrepancy of trends simulated by different GHMs, despite having a common forcing boundary, 587 

represents another challenges in using GHM ensemble, as there are a wide range of factors that could contribute to 588 

these discrepancies. This study provides a (non-exhaustive) list of key differences across participated GHMs 589 

(supplementary Section 1) that could individually or collectively lead to different model outputs. Diagnosing the 590 

influence of these factors to models’ capacity in simulating trends is still under-represented in the literature, and is an 591 

important research agenda for future investigations. For instance, the impact of different methods to simulate snow 592 

dynamic could be assessed by investigating model performances across catchments where snowmelt plays an 593 

(in)significant role in flood generations.  594 

Improved performance of GHMs in terms of simulating changes in flood hazard, considering the many factors 595 

influencing model capacity, is achievable only through the combined efforts of many communities. The spread of 596 

trends in streamflow extremes (trend standard deviation) could be simulated more accurately by finer spatiotemporal 597 

resolution GHMs. Such an improvement in GHMs, however, is highly dependent on the quality of input datasets (e.g. 598 

dam operations, historical irrigation databases and land-use/land-cover, in addition to atmospheric forcing), which are 599 

driven by advances in other geophysical disciplines (Bierkens et al., 2015;Wood et al., 2011). The moderate capacity 600 

of GHMs in terms of simulating the spatial structure of trends in streamflow extremes indicates the need for improved 601 

representation of runoff generation at the global scale (e.g. to better reflect rainfall-runoff relationship and the 602 



contribution of snow-dynamics), which is also a focus of large-sample hydrology (Gupta et al., 2014;Addor et al., 603 

2017). Uncertainty in GCMs, a long-standing challenge for the climate community, should also be addressed to 604 

enable robust projections of flood hazard in a warmer climate. One possibility is through constraining model 605 

performance using historical observations (to prevent climate models projecting an unrealistic state of the future 606 

climate system such as atmosphere energy balance or cloud feedbacks), which could potentially reduce the 607 

uncertainties of atmospheric forcing projections (Greve et al., 2018;Lorenz et al., 2018;He and Soden, 2016;Padrón et 608 

al., 2019). In addition, future development of GHMs should also pay attention to model’s capacity to simulate flood 609 

timing, an important metric to represent flood generation processes (Blöschl et al., 2017;Hall and Blöschl, 2018;Do et 610 

al., 2019). Integrating more sophisticated and effective routing schemes into future generations of GHM should also 611 

be emphasized to ensure runoff is accurately converted into river discharge (Zhao et al., 2017).  612 

This study presents a comprehensive investigation of historical and future changes in flood hazard using a hybrid 613 

model-observation approach. The results highlighted a substantial difference between trend characteristics simulated 614 

by GHMs and that obtained from GSIM archive. Our findings, therefore, suggest more attention should be paid to 615 

investigating GHMs performance in the context of historical and future flood hazard, which is important for not only 616 

the scientific community but also for stakeholders when using results of GHM simulations (Krysanova et al., 2018). 617 

This is particularly important to determine the appropriateness of GHMs in specific investigations, as model 618 

performance may vary substantially across different variables (e.g. moderate capacity in simulating spatial structure 619 

of trends may be accompanied by a low performance in terms of simulating trend mean). 620 

Large-sample evaluations, however, are highly dependent on data availability, which is one of the key barriers to a 621 

holistic perspective of changes in floods. In this study, the unevenly distributed GSIM stations, partially due to the 622 

constraint in data accessibility, do not provide representative samples at both global and continental scale. Sustained 623 

and collective efforts from the broad hydrology community (Addor et al., 2019), therefore, are required to make 624 

streamflow data becomes more FAIR (Findable, Accessible, Interoperable and Reusable; see Wilkinson et al., 2016), 625 

and ultimately complement our limited understanding of flood hazards. Data providers, considering their tremendous 626 

investments in maintaining and making streamflow observations publicly available, remain key agencies to enhance 627 

the evidence-base of the global terrestrial water cycle and changes in flood hazard. The important contribution of 628 

these agencies should be acknowledged appropriately when streamflow data being used. Centralised organisations 629 

such as GRDC or WMO should also push forward the movement of making streamflow data accessible to the 630 

research community. More initiatives based on citizen science (Paul et al., 2018) should be adopted, as this is a 631 

potential option to crowdsource water data and offset the limitation of traditional observation system. Finally, 632 



attention should also be paid to stream gauges maintenance, data housekeeping and data sharing to ensure ongoing 633 

flood monitoring is available to the present and future generations. 634 
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